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Measurement in the standard formulation and time

Measurements are encoded by quantum operations Q,Q′.
These are superoperators on the space B of mixed states.
Unitary dynamics is also encoded by superoperators Ũ on B.
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state 𝜎3 The product
Q′ ◦ Ũ ◦Q encodes
joint measurement
and evolution. Its
order is the temporal
order of processes.

Time plays a special
role!



Quantum theory without spacetime metric?
If spacetime is dynamical, as in a general relativistic setting, there is
no a priori metric “separating” space and time. What do we do then?

?

?

?

?

The standard formulation of quantum theory breaks down.



How do we do quantum gravity? (I)

Traditionally three lines of attack have been followed:

1. Do what you can do: Measure in classical spacetime.
2. Just go for it: Ignore the problems (for now).
3. Quantum theory is wrong: There.



Asymptotic measurement: QFT

Consider measurement only at asymptotic infinity, infinitely early and
infinitely late time, described by transition probabilities. This is how
the S-matrix in quantum field theory works to describe scattering
processes. This requires perturbation theory.
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At early and late
times particles
are far apart and
do not interact.
The interesting
physics happens
at intermediate
times.



Asymptotic measurement: QG

Fix an approximate classical metric background at asymptotic
infinity. Observations take place exclusively in this region. This
requires perturbation theory in the metric.
(Perturbative Quantum Gravity, String Theory)
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Straightforward perturbation
theory breaks down. Can this
work even in principle?



How do we do quantum gravity? (II)

Traditionally three lines of attack have been followed:

2. Just go for it: Keep the mathematics of the standard formulation,
but throw away the background metric and with it the physical
content. Focus on the mathematical objects: Hilbert spaces, a
Hamiltonian, observables as operators. Use canonical quantization to
construct these. Hope that in some future an operational connection of
these objects with physical reality can be established. (Quantum
Geometrodynamics, Loop Quantum Gravity)

So far no such connection has been proposed. There might be none.



How do we do quantum gravity? (III)

Traditionally three lines of attack have been followed:

3. Quantum theory is wrong: Quantum theory as we know it is
fundamentally limited and must be replaced by some different
underlying theory. Known physics is modified. (Causal sets, Gravity
induced collapse models)

There is no evidence for violations of quantum theory as we know it.
Also, it is difficult to reinvent physics from scratch and still reproduce
known results to high precision.



We can do better…

…by using the positive formalism which compared to the standard
formulation of quantum theory is,

more fundamental: the standard formulation is recovered when
appropriate, known physics is not modified
timeless: does not require a notion of time
local: implements manifest spacetime locality without metric
operational: recovers and generalizes quantum measurement
theory



Quantum gravity in the GBF

1 Perturbative quantum gravity: This depends on the integration of
QFT with the GBF. If finite regions can be described successfully,
this might yield new insight into this approach. But there is no
reason to expect improvement of the non-renormalizability issue.

2 Spin foam quantum gravity: Spin foam models arise naturally
from a path integral picture. Also, they naturally describe finite
regions of spacetime. This suggests their interpretation as
background independent quantum theories in terms of the GBF.

3 A functorial top-down approach: The mathematical structure of
CQFT that is part of the GBF also suggests a top-down approach:
Guided by axiomatics, functoriality, and representation theory
and with a minimum of assumptions explore the theory space.
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Spin foam models

Spin foam models provide a quantization for a range of gauge
theories. They are based on a discretization of spacetime in terms of
cell complexes or triangulations.

Hypersurfaces are 3-dimensional
oriented cell complexes
Regions are 4-dimensional
oriented cell complexes

Gauge fields on hypersurfaces are encoded in terms of holonomies
between cells. The Schrödinger quantization of this space leads to a
basis in terms of spin networks.
The dynamics in regions is quantized via a Feynman path integral.
This yields spin foam amplitudes.



Discretized connections I

To construct the Hilbert space HΣ for the
hypersurface Σ, we need to quantize the
space of connections on Σ. Σ is discretized in
terms of a cellular decomposition.

Given a “gauge” (local trivialization),
connections give rise to holonomies along
paths. We choose paths dual to the cellular
decomposition. We call them links (green
lines). Their end points are nodes (blue dots).



Discretized connections II

The holonomies associate one element hl of
the structure group G to each link l. We
denote this space by K1

Σ = GL, where L is the
number of links in Σ.
A gauge transformation consists of the
assignment of one element gn of G to each
node n. The gauge group is thus K0

Σ = GN,
where N is the number of nodes.

hl

gn

gl+gl−

hl

A gauge transformation g ∈ K0
Σ acts on h ∈ K1

Σ via
(g ⊲ h)l := gl+hlg−1l− . The configuration space is the
quotient KΣ := K1

Σ/K0
Σ.



State space

Supposing that G is compact for simplicity, there is a unique
normalized biinvariant measure on G, the Haar measure 𝜇. This
allows to define a Hilbert space L2(G) of complex functions on G with
the inner product,

⟨𝜓, 𝜂⟩ =
∫
G
𝜓(g)𝜂(g) d𝜇(g).

By putting the same inner product on each copy of G, we obtain a
Hilbert space H1

Σ := L2(K1
Σ). The action of the gauge group K0

Σ on K1
Σ

induces an action on H1
Σ . The subspace HΣ ⊆ H 1

Σ of invariant functions
on K1

Σ can be identified with a space of functions on the configuration
space KΣ. This Hilbert space is our state space.



The dual picture: spin networks

The Hilbert space HΣ on the cellular
hypersurface Σ can be constructed explicitly
in terms of spin networks.

Associate to each link l a
finite-dimensional irreducible
representation Vl of G.
Associate to each node n an intertwiner
In ∈ Inv

(⊗
l∈𝜕nV±

l

)
between the

representations of the adjacent nodes.

Vl

In

Spin networks yield a complete description of HΣ:

HΣ =
⊕
Vl

⊗
n∈Σ

Inv
(⊗
l∈𝜕n

V±
l

)
.



A simple model: BF-theory

We start with the Palatini action of gravity,

SPalatini
M (e,A) =

∫
M

tr(e ∧ e ∧ F).

A – connection with gauge group Spin(1, 3) = SL(2,C)
F – curvature 2-form of the connection A
e – 4-bein frame field

To simplify this theory we replace e ∧ e with the Lie algebra valued
2-form field B. This yields BF theory,

SBF
M (B,A) =

∫
M

tr(B ∧ F).

This is not gravity, but becomes gravity if we add certain constraints.



Amplitude
The Feynman path integral determining the amplitude 𝜌M : H𝜕M → C
in the region M can be encoded in terms of the propagator ZM.

Amplitude map
𝜌M(𝜓) =

∫
K1
Σ
𝜓(h) ZM(h−1) d𝜇(h)

Here, it is simpler to think of the propagator as a function
ZM : K1

𝜕M → C rather than a function K𝜕M → C.
For BF theory the propagator turns out to be,

Z̃BF
M (h) =

∏
l∈𝜕M

𝛿(hl).

In gauge invariant form this is,

ZBF
M (h) =

∫
K0
𝜕M

∏
l∈𝜕M

𝛿(gl−hlg−1l+ ) d𝜇(g).



Regions and spin foams

For a topological theory like BF-theory, the amplitude for a region M
is simple. In general, we take advantage of the CQFT gluing rule to
compute amplitudes. As M is composed of many elementary regions
(cells) we need only know the amplitude 𝜌C for an elementary cell C,
also called vertex amplitude. Taking a basis consisting of spin
networks, we obtain a spin foam.

A famous model for implementing the constraints is the Barrett-Crane
model. In this model G = SU(2) × SU(2) and we write g = (gL, gR). The
cell propagator for (a version of) this model is,

ZBC
C (h) =

∫
K0
𝜕C

∏
l∈𝜕C

(∫
SU(2)×SU(2)

𝛿(gLl−kh
L
l k

′(gLl+)
−1)𝛿(gRl−kh

R
l k

′(gRl+)
−1) d𝜇(k)d𝜇(k′)

)
d𝜇(g).
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Spin foam summary (I)

Spacetime hypersurfaces are 3-dimensional cell complexes
Spacetime regions are 4-dimensional cell complexes
Gauge fields on hypersurfaces are encoded in terms of
holonomies between cells
The state spaces on hypersurfaces can be described in terms of
spin networks (with ends!)
A simple spin foam model is completely determined by its cell
(vertex) amplitudes
Spin foam partition functions, amplitudes etc. then follow from
the gluing rules



Operators

Denote BΣ the space of operators on HΣ. Essentially,

BΣ = HΣ ⊗ H ∗
Σ = HΣ ⊗ HΣ = L2(KΣ) ⊗ L2(KΣ) = L2(KΣ × KΣ)

In the connection representation:
HΣ consists of gauge-invariant functions on K1

Σ = GL.
BΣ consists of gauge-invariant functions on K1

Σ × K1
Σ
= G2L.

Ψ ∈ BΣ acts on 𝜏 ∈ HΣ as,

(Ψ ⊲ 𝜏) (g) =
∫
K1
Σ

Ψ(g, h)𝜏(h−1) d𝜇(h).

The identity operator is 1(g, h) = 𝛿(gh−1). The operator product is,

(Ψ′Ψ)(g, h) =
∫
K1
Σ

Ψ′(g, k)Ψ(k−1, h) d𝜇(k).
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Operators
The adjoint Ψ† of an operator Ψ is,

Ψ†(g, h) = Ψ(h−1, g−1)

The trace of an operator is,

tr(Ψ) =
∫
K1
Σ

Ψ(h, h−1) d𝜇(h).

The inner product in BΣ is the Hilbert-Schmidt inner product,

LΨ′,ΨMΣ := tr(Ψ′†Ψ) =
∫
K1
Σ×K1

Σ

Ψ′(g, h)Ψ(g, h) d𝜇(g)d𝜇(h).

An operator Ψ ∈ BΣ is positive if for any 𝜂 ∈ HΣ,

⟨𝜂,Ψ𝜂⟩ =
∫
K1
Σ×K1

Σ

Ψ(g, h) 𝜂(g) 𝜂(h−1) d𝜇(g)d𝜇(h) ≥ 0.



General states and null probes

General states
(density matrices or density operators) are positive operators in BΣ.

(In the standard formulation they also need to have unit trace.)

Pure states
are states of the form Ψ(g, h) = 𝜓(g)𝜓(h−1) with 𝜓 ∈ HΣ.

Null probe
⟦l,Ψ⟧M =

∫
K1
Σ×K1

Σ
Ψ(g, h) ZM(g−1) ZM(h) d𝜇(g)d𝜇(h)

If Ψ is positive, then ⟦l,Ψ⟧M ≥ 0.
If Ψ is a pure state given by 𝜓 ∈ HΣ, then ⟦l,Ψ⟧M = |𝜌M(𝜓) |2.



From observables to general probes

To work in the positive formalism we have to convert observables into
quantum operations / probes via their spectral decomposition.

Example: Area operator in loop quantum gravity
G = SU(2), representations are labeled by half-integer spins j. Spin
network state are eigenstates.

The area operator a𝜏 is associated to a 2-dimensional surface 𝜏 within
the 3-dimensional hypersurface Σ. For a spin network state 𝜓 its
eigenvalue is,

a𝜏𝜓 = c L2
Planck

∑
l∈𝜏

√
jl(jl+1) 𝜓.

To construct the corresponding operation we have to extract the
projectors onto the subspaces of spin network states with given area a,
a𝜏 =

∑
a a Pa.



Spin foam summary (II)

Spacetime hypersurfaces are 3-dimensional cell complexes
Spacetime regions are 4-dimensional cell complexes
Gauge fields on hypersurfaces are encoded in terms of
holonomies between cells
The state spaces on hypersurfaces can be described in terms of
spin networks (with ends!)
A simple spin foam model is completely determined by its cell
(vertex) amplitudes
Spin foam partition functions, amplitudes etc. then follow from
the gluing rules
(NEW) Adequate notions of operators, mixed state spaces and
null probes exist
(NEW) General probes are to be constructed…



A top-down approach to quantum gravity

List properties expected of a quantum theory of gravity and
construct/classify models with these properties.

In GR the metric is dynamical, but differentiable or topological
structure may be fixed. Need ball-shaped regions for local physics.

→ Consider a class of oriented compact topological/differentiable
4-manifolds with boundary as regions. Must include 4-balls and
be closed under gluing.

→ Admissible hypersurfaces are boundaries of regions and their
connected components. (These hypersurfaces carry in addition
the structure of an “infinitesimal 4-manifold neighborhood”.)

→ To each hypersurface Σ associate a Hilbert space HΣ, to each
region M an amplitude map 𝜌M : H𝜕M → C.

→ These structures have to satisfy the axioms. Gluings have to be
compatible with the extra structure of the 3-manifolds.
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Renormalization identities

topological
Relates regions of the
same type. There is only
one elementary region.

differentiable
Relates regions of the
same type. Regions have
corners.

metric
Relates regions of
different sizes. Link to
coupling constant
renormalization.



Corners

topological
Corners are
homeomorphic to
smooth hypersurfaces.

differentiable
Corners of different
angles are
diffeomorphic, but
distinct from smooth
hypersurfaces.

metric
Corners of different
angles are all distinct.



Symmetry
assume differentiable setting

Diffeomorphisms are gauge symmetries of GR.

On each region M acts its group of orientation preserving
diffeomorphisms GM.
On each hypersurface Σ acts its group of orientation preserving
diffeomorphisms GΣ. This induces iM : GM → G𝜕M.
Let Gint

M ⊆ GM be the subgroup that acts identically on the
boundary. We have the exact sequence

Gint
M → GM → G𝜕M

For each hypersurface Σ, GΣ must act on HΣ by unitary
transformations, i.e., HΣ is a unitary representation of GΣ.
For each region M, 𝜌M must be invariant under iM(GM). That is,
𝜌M(g ⊲ 𝜓) = 𝜌M(𝜓) for any 𝜓 ∈ H𝜕M and g ∈ iM(GM) ⊆ G𝜕M.

Representation theory of diffeomorphism groups is crucial ingredient.
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Refinement: Projectivity

It is well known that representations of symmetry groups on the
Hilbert space in quantum mechanics only have to be projective
representations. This is related to the fact that what has to be
preserved under symmetries are only measurable quantities like
probabilities and expectation values. The same is true in the general
boundary formulation. In light of this the previously mentioned
implementation of symmetries may be relaxed accordingly.



Measurement in quantum gravity

So far: measurements only on the boundary.
As in QFT: scattering matrix is the main object of interest.
But: is this justified in quantum gravity?

QFT scattering theory relies on perturbation theory. This does not
work in quantum gravity.
In QFT we also understand how to encode general measurements,
but this requires recurring to a non-relativistic picture.

The positive formalism allows to implement local measurements into
quantum theory, even in the absence of a spacetime metric.
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Quantum gravity in the positive formalism

A quantum theory in the amplitude formalism can be directly
converted into a quantum theory in the positive formalism.

In particular, spin foam models can be straightforwardly formulated
in the positive formalism. This opens the possibility to implement local
quantum measurements in spin foam models.

The top-down approach can be directly applied at the level of the
positive formalism. The representation theory of diffeomorphisms
again would play a key role. Projectivity of representations would be
automatic. The structure would be enriched by probes representing
local measurements in spacetime.
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