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Klein-Gordon Theory
Classical Theory

We consider a real scalar field theory in Minkowski spacetime with
the action

SM(𝜙) = 1
2

∫
d4x

(
(𝜕𝜇𝜙)𝜕𝜇𝜙 −m2𝜙2

)
.

The equations of motion are given by the Klein-Gordon equation:

(□ +m2)𝜙 = 0.

We denote by LM the space of solutions in a spacetime region M, and
by LΣ the space of germs of solutions on a hypersurface Σ.



Klein-Gordon Theory
Standard geometry – spacelike hypersurplanes (I)

Consider constant-time
hypersurfaces and
time-interval regions as in
the standard formulation. x

M

𝜙1

𝜙2

t1

t2
𝜙

Consider an constant-time hypersurface at time t. Expanding in
Fourier modes, elements of Lt are conveniently parametrized in terms
of functions on momentum space,

𝜙(t, x) =
∫ d3k

(2𝜋)32E

(
𝜙(k)e−i(Et−kx) + 𝜙(k)ei(Et−kx)

)
.



Klein-Gordon Theory
Standard geometry – spacelike hyperplanes (II)

The Lagrangian gives rise to the symplectic form,

𝜔t(𝜙1, 𝜙2) =
1
2

∫
d3x (𝜙2(t, x)𝜕0𝜙1(t, x) − 𝜙1(t, x)𝜕0𝜙2(t, x))

=
i
2

∫ d3k
(2𝜋)32E

(
𝜙2(k)𝜙1(k) − 𝜙1(k)𝜙2(k)

)
.

The standard complex structure is,

(J(𝜙)) (k) = −i𝜙(k).

This yields the complex inner product,

{𝜙1, 𝜙2}t = 2
∫ d3k

(2𝜋)32E 𝜙1(k)𝜙2(k).

Lt becomes the one-particle Hilbert space.
Ht is the space of wave functions or Fock space over Lt.



Klein-Gordon Theory
Standard geometry – scattering

Particles, i.e., elements of Lt, can
be characterized by 3 quantum
numbers: the components pi of
the 3-momentum. Moreover,
each particle is part of either
the in-state or the out-state.

Denote 𝜓(p1, . . . , pn) the n-particle state with momenta p1, . . . , pn in H .
The probability to find outgoing particles with momenta p′1, . . . , p′m
given incoming particles p1, . . . , pn is,

|⟨𝜓(p′1, . . . , p′m),U𝜓(p1, . . . , pn)⟩|2
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Evanescent waves

Wave equations generally have two types of solutions:

propagating waves
oscillating in all spatial directions:

evanescent waves
exponentially increasing/decaying
in one or more spatial directions:

ei(Et−p1x1−p2x2−p3x3 )

E2 = p21 + p22 + p23 +m2

ei(Et−p2x2−p3x3 )−p̃1x1

E2 = −p̃21 + p22 + p23 +m2

Applications: electromagnetic waves, acoustic waves, etc.
For simplicity in this lecture:
Relativistic scalar waves (Klein-Gordon equation)



Evanescent Waves

Aluminium, CC BY-SA 3.0, via Wikimedia Commons

Goran M Djuknic, Public domain, via Wikimedia Commons



Including evanescent waves

[Carniglia and Mandel 1971]
One possibility to include
electromagnetic evanescent
waves in the quantization is to
model media with different
refractive indices in space.
Then, global solutions can exist,
which consist of evanescent
waves in parts of space.

Limitations:
Applies only in very special situations (background medium)
No description of evanescent quanta alone
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Klein-Gordon Theory
Timelike Hyperplanes (I)

Consider hypersurfaces
with constant x1 coordinate
and corresponding
space-interval regions.

M
𝜙1

𝜙2

x1

t
𝜙

x′1Parametrize solution near constant x1 hypersurface,

𝜙(t, x1, x̃) =
∫
E2>k̃2+m2

dEd2k̃
(2𝜋)32k1

(
𝜙(E, k̃)e−i(Et−k̃x̃−k1x1 ) + 𝜙(E, k̃) ei(Et−k̃x̃−k1x1 )

)
where x̃ := (x2, x3), k̃ := (k2, k3), k1 :=

√
|E2 − k̃2 −m2 |.

Note that the sign of E can be negative.

These are the propagating waves: E2 > k̃2 +m2, oscillate in space
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Klein-Gordon Theory
Timelike Hyperplanes (II)

There are also evanescent waves: E2 < k̃2 +m2, exponential in space

𝜙(t, x1, x̃) =
∫
E2<k̃2+m2

dEd2k̃
(2𝜋)32k1

(
𝜙+(E, k̃)ek1x1 + 𝜙− (E, k̃)e−k1x1

)
ei(Et−k̃x̃) ,

with 𝜙±(E, k̃) = 𝜙±(−E,−k̃).

The space of solutions decomposes as Lx1 = Lp
x1 ⊕ Le

x1 .
The space of states is a tensor product Hx1 = Hp

x1 ⊗ H e
x1 .
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Klein-Gordon Theory
Timelike Hyperplanes (III)

The construction of Hp
x1 based on Lp

x1 parallels the spacelike case.
The Lagrangian gives rise to the symplectic form,

𝜔x1 (𝜙1, 𝜙2) = −1
2

∫
d3x

(
𝜙2(t, x)𝜕x1𝜙1(t, x) − 𝜙1(t, x)𝜕x1𝜙2(t, x)

)
=

i
2

∫ dEd2k̃
(2𝜋)32k1

(
𝜙2(E, k̃)𝜙1(E, k̃) − 𝜙1(E, k̃)𝜙2(E, k̃)

)
.

The standard complex structure is,

(J(𝜙)) (E, k̃) = −i𝜙(E, k̃).

This yields the complex inner product,

{𝜙1, 𝜙2}x1 = 2
∫ dEd2k̃

(2𝜋)32k1
𝜙1(E, k̃)𝜙2(E, k̃).



Klein-Gordon Theory
Timelike Hypersurfaces – scattering

Excluding evanescent degrees
of freedom:
Particles can be characterized
by 3 quantum numbers: the
momenta k2, k3 and the energy
E. Recall that E may be
negative. This yields the same
degrees of freedom as in the
spacelike case.

But, in contrast to the spacelike case there is no notion of in-state or
out-state. Rather each particle in a multi-particle state might
individually be either in-going or out-going. This is what the sign of
the energy E encodes.



Description of scattering experiments

conventional description
t

tin Hin

tout Hout

U

𝜓1

𝜓2

evolution in terms of operator
U : Hin → Hout
in terms of transition amplitudes
Hin ⊗ H ∗

out → C

alternative description

x

t

R

amplitude: HR → C



Solutions in classical field theory

hypersurface Σ at time t
t

LΣ

Σ

propagating wave

Cauchy property:
germs in LΣ � global solutions

propagating waves

hypersurface at radius R
t

x

M

R

propagating wave

hℓ

evanescent wave

kℓ

germs in LR > global solutions

propagating waves
+ evanescent waves



Klein-Gordon Theory
Timelike Hypercylinder (I)

Consider a hypercylinder given by a sphere of
radius R in space, extended over all of time.

Parametrize propagating solutions (E2 > m2)
near constant R hypersurface, (l = 0, 1, . . . ,
m = −l,−l + 1, . . . , l)

𝜙(t, r,Ω) =
∫
|E |>m

dE p
4𝜋

∑
l,m

(
𝜙l,m(E)hl(pr)e−iEtYm

l (Ω)

+𝜙l,m(E) hl(pr)eiEtY−m
l (Ω)

)
.

Here Ym
l denote the spherical harmonics and p :=

√
|E2 −m2 |. Also,

hl = jl + inl, where jl and nl are the spherical Bessel functions of the
first and second kind respectively.



Klein-Gordon Theory
Timelike Hypercylinder (II)

In the massive case m > 0, there are also evanescent solutions for
E2 < m2, with exponential behaviour in space.

𝜙(t, r,Ω) =
∫ m

−m
dE p

4𝜋 e
−iEt

∑
l,m

Ym
l (Ω)

(
𝜙x
l,m(E)kl(pr) + 𝜙i

l,m(E)k̃l(pr)
)
.

(1)
Here Ym

l denote the spherical harmonics and p :=
√
|E2 −m2 |. Also,

kl(z) = −il𝜋hl(iz)/2 and k̃l(z) = kl(−z) are modified spherical Bessel
functions that are real on R.

The space of solutions decomposes as LR = Lp
R ⊕ Le

R.
The space of states is a tensor product HR = Hp

R ⊗ H e
R.
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Klein-Gordon Theory
Timelike Hypercylinder (III)

Consider only propagating solutions at first.
The Lagrangian gives rise to the symplectic form,

𝜔R(𝜙, 𝜉) =
R2

2

∫
dtdΩ (𝜉 (t,R,Ω)𝜕r𝜙(t,R,Ω) − 𝜙(t,R,Ω)𝜕r𝜉 (t,R,Ω))

=
∫

dE ip
8𝜋

∑
l,m

(
𝜙l,m(E)𝜉l,m(E) − 𝜙l,m(E)𝜉l,m(E)

)
.

The standard complex structure is,

(J(𝜙))l,m(E) = i𝜙l,m(E).

This yields the complex inner product,

{𝜙, 𝜉}R =
∫

dE p
2𝜋

∑
l,m

𝜙l,m(E)𝜉l,m(E).



Klein-Gordon Theory
Timelike Hypercylinder

To go beyond standard transition amplitudes,
consider an example with a connected boundary.
[RO 2005]

M = R × B3
R.

𝜕M = ΣR = R × S2
R.

(Consider propagating waves only.)

The state space Hp
R is again a Fock space.

A particle can be characterized by three quantum numbers:
energy E and angular momentum l,m.
The sign of the energy determines if a particle is in-going or
out-going. The state space decomposes as Hp

R = Hin ⊗ Hout.
This decomposition is neither geometrical nor temporal.



Spatially asymptotic S-matrix (I)

Similarly, we can describe
interacting QFT via a spatially
asymptotic amplitude. Assume
interaction is relevant only
within a radius R from the
origin in space (but at all
times). Consider then the
asymptotic limit of the
amplitude of a free state on the
hypercylinder when the radius
goes to infinity:

S(𝜓) = lim
R→∞

𝜌R(𝜓)

[D. Colosi, RO 2007–2008]
The evanescent sector vanishes in the limit.



Spatially asymptotic S-matrix (II)

Results:
The perturbative description of interactions works as in the
standard path integral and S-matrix picture. Technically, the
interactions are introduced via sources. In the hypercylinder
geometry, this involves evanescent modes in an essential way,
even if they vanish asymptotically.
The S-matrices are equivalent when the interaction is confined in
space and time. This equivalence is realized through an
isomorphism of the asymptotic state spaces.
In the standard formulation, crossing symmetry is an emergent
feature of the S-matrix. In the hypercylinder setting of CQFT
crossing symmetry is manifest.



Vacuum and asymptotic boundary conditions



Vacuum and asymptotic boundary conditions



Kähler quantization and its limits

L+ ⊆ LC is always a Lagrangian subspace.

propagating waves
For propagating waves, L+ is always positive-definite, both for
spacelike and timelike hypersurfaces. Quantization proceeds as usual.

evanescent waves
For evanescent waves, L+ is null. No positive-definite inner product
suitable for quantization is obtained.



𝛼-Kähler quantization

[D. Colosi, RO 2020]
L± ⊆ LC complementary Lagrangian subspaces. LC = L+ ⊕ L−.
What if this is not a Kähler polarization?
(i.e., L+ is not positive-definite and L− ≠ L+)

Positive-definite real structure 𝛼
𝛼 : LC → LC anti-linear involution.
𝛼(L±) = 𝛼(L∓)
𝜔(𝛼(𝜙), 𝛼(𝜂)) = 𝜔(𝜙, 𝜂)
(𝜙, 𝜂)𝛼 := 4i𝜔(𝛼(𝜙), 𝜂) positive-definite on L+.

𝛼 has the interpretation of a modified complex conjugation
induces a twisted ∗-structure on the algebra of slice observables
generalizes reflection-positivity in Euclidean QFT
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Application: Scattering at finite distance

experiment confined at r < R
t

x

M

R

propagating wave

hℓ

evanescent wave

kℓ

Probe interior with both
propagating and evanescent
waves.
Examples:

refractive medium
Unruh-deWitt detector
(next slides)
black hole (ongoing project)
…



Emission of evanescent particles by UDW detector

Figure: Emission spectrum, namely probability per unit energy, for different
values of the detector energy gap Ω expressed in units of the mass of the field.
In the left-hand (right-hand) plot the time T takes the value 10 (100). The
coupling constant 𝜆 has been set equal to 0.01. [D. Colosi, RO 2023]



Emission of evanescent particles by UDW detector

Figure: Spontaneous emission probability as a function of the detector energy
gap Ω, at 𝜆 = 0.01. In addition to the emission probability for the radial
picture (solid line), the emission probability for the temporal picture (dashed
line) is also indicated. The characteristic time T is 5 (left-hand plot) and is 100
(right-hand plot). [D. Colosi, RO 2023]
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