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Abstract. Motivated by the wild behavior of isolated essential singularities in complex analysis,

we study singular complex analytic vector fields X on arbitrary Riemann surfaces M . By vector
field singularities we understand zeros, poles, isolated essential singularities and accumulation

points of the above kind.
In this framework, a singular analytic vector field X has canonically associated; a 1–form, a

quadratic differential, a flat metric (with a geodesic foliation), a global distinguished parameter

or C–flow box ΨX , a Newton map ΦX , and a Riemann surface RX arising from the maximal
C–flow of X.

We show that every singular complex analytic vector field X on a Riemann surface is in fact

both a global pullback of the constant vector field under ΨX and of the radial vector field on the
sphere under ΦX .

As a result of independent interest, we show that the maximal analytic continuation of the a local

C–flow of X is univalued on the Riemann surface RX ⊂M ×Ct, where RX is the graph of ΨX .
Furthermore we explore the geometry of singular complex analytic vector fields and present a

geometrical method that enables us to obtain the solution, without numerical integration, to the

differential equation that provides the C–flow of the vector field.
We discuss the theory behind the method, its implementation, comparison with some integration–

based techniques, as well as examples of the visualization of complex vector fields on the plane,
sphere and torus.

Applications to visualization of complex valued functions is discussed including some advantages

between other methods.
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1. Statement of the results

Vector fields related to complex analytic functions are very interesting and useful mathematical
objects, both from the point of view of pure mathematics as from that of applications. They
arise in multiple contexts: many physical phenomena can be modelled by vector fields (electric
fields, magnetic fields, velocity fields, to name a few); and there are many interesting applications
concerning the geometry and dynamics associated to them ([4], [5], [9], [21], [35], [37], [56], [57],
[60], [62], [69]). Moreover, the visualization of vector fields, besides being beautiful in itself, can
be of great help towards the understanding of certain theoretical concepts. In particular, it can be
used for the visualization of complex functions, which in of itself is a non–trivial problem ([60], [59],
[14], [15], [29], [63], [39], [26], [50]).

The main objects of study of this work are singular complex analytic vector fields
X(z) = fj(z)

∂
∂z on Riemann surfaces M ,

where j refers to the local charts of M , connected but non necessarily compact. The singular set
Sing(X) can admit zeros, poles, essential singularities and accumulation points of the above kind
of points (this is the meaning of the adjetive “singular”). Very roughly speaking, by the flow of
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X we understand the (local) C–flow, and since R ⊂ C, by trajectories of X we understand the
trajectories that arise from the (local) R–flow of Re (X). More precisely, the differential equation

(1)

{
ż(τ) = fj(z(τ))

z(0) = z0
for z(τ) : (τmin, τmax) ⊂ R −→M,

gives rise to the local real flow z(τ) of the singular complex analytic vector field X(z) = fj(z)
∂
∂z .

The real trajectories in (1) are simply called trajectories of X.

One can ask the following naive question:

What is a singular complex analytic vector field X on a Riemann surface M
and how explicitly can we describe it?

An answer to this question is explored in [57], [56], [5], [6], [7], and references therein. In these works,
the authors introduce as a main tool the following dictionary/correspondence between different
singular complex analytic objects, providing a rich geometric structure.

Singular complex analytic dictionary.
On any Riemann surface M there exist a one–to–one correspondence between:

1) Singular complex analytic vector fields X.
2) Singular complex analytic differential 1–forms ωX , related to X via ωX(X) ≡ 1.
3) Singular complex analytic orientable quadratic differential forms ωX ⊗ ωX .
4) Singular (real) analytic flat structures gX associated to the quadratic differentials ωX ⊗ωX ,

with suitable singularities, provided with a real geodesic vector field Re (X).
5) Singular complex analytic (possibly multivalued) maps, distinguished parameters,

ΨX(z) =

∫ z

z0

ωX : M −→ Ĉt,

for z0 ∈M not a zero of X, isolated essential singularity of X or accumulation point of the
above1.

6) Singular complex analytic (possibly multivalued) Newton maps

ΦX(z) = exp

[
−
∫ z

z0

ωX

]
: M −→ Ĉw,

for z0 ∈M not a zero of X, isolated essential singularity of X or accumulation point of the
above2.

7) The pairs
(
RX , π∗X,2( ∂∂t )

)
consisting of ramified Riemann surfaces RX ⊂M×Ĉt, associated

to the maps ΨX , and the vector fields π∗X,2( ∂∂t ) under the projection πX,2 : RX −→ Ĉt.
8) The pairs (ΩX ,F) consisting of maximal domains ΩX ⊂M × Ĉ of the complex flows of X

and holomorphic foliations F whose leaves are copies of the Riemann surface RX .

Let us write diagrammatically the correspondence as

1 By a careful analysis and suitable choices, the domain of ΨX can be considered to be the whole of M , likewise

for the the choice of z0. This is a delicate matter, see Remark 3.3.
2 Similarly, the domain of ΦX and the choice of z0 can be extended to be the whole of M .
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X(z) = fj(z)
∂
∂z

ωX(z) = dz
fj(z)

ΨX(z) =
z∫
ωX

(
(M\A, gX),Re (X)

)

�
�	�
�� @@I@@R

@@I@@R ��	�
��

ωX ⊗ ωX(z) (RX , π∗X,2( ∂∂t ))

?

6

?

6
(2)

here the subindex X means the dependence on the original vector field, in all that follows we omit
it when it is unnecessary.

The detailed statement and proof of (1)–(5) and (7) of the above dictionary can be found as
lemma 2.6 of [5]. A preliminary study of (8) is found as lemma 2.3 of [6].
The unification of (1)–(5) arrises from the idea of (local) distinguished parameters near regular
points, see for instance [42] §3.1 and [70] pp. 20–21. However in [5], [6], [7] and this work, we
exploit the global nature of the maps ΨX(z) and ΦX(z) in the 1–dimensional case. In [19], the
global nature of Ψ in the n–dimensional case is also explored.

In the present work, we explore and exploit items (6) and (8) of the dictionary.

For item (6) of the dictionary, following the ideas of S. Smale et al. [35], [69], on Newton vector
fields, in §6 we obtain two results:
A visualization scheme for vector fields X.

Theorem 1 (Visualization of singular complex analytic vector fields). Let X(z) = f(z) ∂∂z be a
singular complex analytic vector field on a Riemann surface M , and let z(τ) denote any trajectory of
X on M\Sing(X). Then there exist two (probably multivalued) functions ρ, θ : M\Sing(X) −→ R
such that

1) The ρ is constant along z(τ), i.e. ρ(z(τ)) = ρ(z(0)).
2) The θ defines the natural time parametrization, i.e. θ(z(τ)) = τ + θ(z(0)).

Secondly as a counterpart, for singular complex analytic functions ΨX and ΦX .

Theorem 2 (Visualization of singular complex analytic functions).

1) Let Ψ : M −→ Ĉ be a singular complex analytic function. Then the phase portraits of
X(z) = 1

Ψ′(z)
∂
∂z provides the level curves of −Im (Ψ),

X⊥(z)
.
= i

Ψ′(z)
∂
∂z provides the level curves of Re (Ψ).

2) Let Φ : M −→ Ĉ be a singular complex analytic function. Then the phase portraits of

X(z) = − Φ(z)
Φ′(z)

∂
∂z provides the level curves of arg (Φ),

X⊥(z)
.
= −i Φ(z)

Φ′(z)
∂
∂z provides the level curves of − log |Φ|.

In order to prove item (8) of the dictionary, the local C–flow of X a singular complex analytic
vector field is holomorphic at its zeros. However, note that maximal domain ΩX of the complex
flows of X are non–trivial at the poles, essential isolated singularities or accumulation points of the
above. In fact one may ask the question:
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Considering the maximal analytic continuation of the local flows,
what kind of structure will the maximal analytic continuation have?

Denoting M∗ as M minus poles, essential singularities and accumulation points of the above kind,
a detailed analysis of

(
RX , π∗X,2( ∂∂t )

)
in §12 shows that in fact:

Theorem 3 (Maximal domain for the flow). Let X be a singular complex analytic vector field on
a Riemann surface M , and let z0 ∈M\Sing(X) be an initial condition.

1) The maximal analytic continuation of the local flow
ϕj(z0, t) : {z0} × (Ct, 0) −→M∗

is univalued on the Riemann surface RX ⊂M × Ct, which is the graph of

ΨX(z) =

∫ z

z0

ωX : M∗ −→ Ct.

2) The Riemann surface RX is a leaf of the foliation F defined by the complex analytic vector
field

fj(z)
∂

∂z
+
∂

∂t
on M∗ × Ct

and the changes of the initial conditions z0 determine t–translations of RX .

The study of maximal domains of the flow from the viewpoint of complex differential equations is
a deep current subject, see [48], [32], [34] and references therein.

Sections 3, 4, 5, 6.1, and 12 are of theoretical flavor and familiarity with Riemann surface
theory is recomended. Sections 6.2, 6.3, 7, 8 and 9 are of numerical character, which might be of
interest for numerical experimentation or software development. Section 10 provides a panoramic
view of possible extensions to other frameworks. Section 11 deals with functions and only requires
elementary Complex Analysis.

We thank Coppelia Cerda Faŕıas for her help with the images.

2. Overview and discussion

Some advantages of singular complex analytic vector fields X over the real analytic
case on surfaces. On M\Sing(X), X determines a real vector field, Re (X), and a local R2–
action (both are real analytic). Furthermore, the singular complex analytic vector fields X enjoy
some very special properties respect to the real analytic vector fields and actions, on real analytic
surfaces.

Existence of global rectifying maps (flow box and Newton maps). Recall the classical result, which
goes back to Riemann, which states that “every compact Riemann surface M can be described as

a ramified covering on the sphere Ĉ, where the placings and orders of the ramification points and
their values determine M”, see [58] Lecture I, for this synthesis. Assertions (5)–(6) of the dictionary
provide a generalization to singular complex analytic vector fields: the following commutative
diagram of pairs, Riemann surfaces and vector fields, holds true

(3) (
Ĉt, ∂∂t

)
-

exp(−t)

(
Ĉw,−w ∂

∂w

)
.

ΦX@
@R

(M,X)
ΨX�
�	
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Note that ∂
∂t or −w ∂

∂w are the simplest complex analytic vector fields on the Riemann sphere Ĉ,
see Example 1 in §4.3.
In the language of differential equations:

• X admits a global flow–box

(4) X(z) = Ψ∗X

( ∂
∂t

)
(z) =

1

Ψ′X(z)

∂

∂z
.

• X is the Newton vector field of ΦX ,

(5) X(z) = Φ∗X

(
− w ∂

∂w

)
(z) = −ΦX(z)

Φ′X(z)

∂

∂z
.

In general, equation (4) does not hold for real analytic vector fields on any real analytic surface,
see [61] ch. 3, §1. As a corollary, no limit cycles appear for complex analytic vector fields, see [49],
[9], and [66], for other proofs. As for equation (5), recall the ideas of S. Smale et al. [35], [69]: the
Newton vector field of ΦX has attractors (sinks) at the simple roots of X, thus enabling the search
for the zeros of ΦX using its Newton vector field and their sinks.

Finite dimensional families of singular complex analytic vector fields. Finite dimensional families
are natural in the complex analytic category, in contrast with infinite dimensional families in the
smooth category. As examples, recall the polynomial families studied in [16] and [25].
In [5], [6] and [7], the authors study the geometry and dynamics of singular complex analytic
vector fields in the vicinity of essential singularities. In particular, they focus the dictionary on
meromorphic structurally finite 1–order d vector fields with r poles and s zeros on C. These are
finite dimensional families consisting of vector fields on the Riemann sphere with a singular set
composed of a finite number s ≥ 0 of zeros on C, r ≥ 0 of poles on C and an isolated essential

singularity (of finite 1–order d ≥ 1) at ∞ ∈ Ĉ, namely

(6) E (s, r, d) =
{
X(z) =

Q(z)

P (z)
eE(z) ∂

∂z

∣∣∣
Q,P,E ∈ C[z], degQ = s, degP = r, degE = d

}
,

where d ∈ N, s, r ∈ N ∪ {0} and r + d+ s ≥ 1.
In particular, when X ∈ E (0, r, d), they extend the dictionary (1)–(8) to:

9. Classes of (r, d)–configuration trees [ΛX ], see theorem 6.1 of [6].
10. Functions Ψ that can be expressed as quotients of linearly independent solutions of a certain

Shrödinger type differential equation (work in progress).

Automorphisms groups of singular complex analytic vector fields. Furthermore, in [7], they show
that subspace consisting of those X ∈ E (s, r, d) with trivial isotropy group has a holomorphic trivial
principal Aut(C)–bundle structure.

Incompleteneess of the flow and its geometric structure. In §12, we show that the maximal
analytic continuation of the a local flow of X is univalued on the Riemann surface RX ⊂M × Ct,
where RX is the graph of ΨX . Furthermore, the maximal domain ΩX of the complex flow is foliated
by copies of RX that differ by a t–translation.

Why are new visualizations methods required near essential singularities? In order to
gain insight into the behaviour of singular complex analytic vector fields, the correct visualization of
vector fields in the neighborhood of points of the singular set Sing(X) is required. The visualization
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of singular complex analytic vector fields at zeros and poles is well understood, see Proposition 2
and Figure 2 in §4.2. However essential singularities present a challenge, see for instance Figures 9
, 10, 12 and 13.

Complex analytic functions f(z) behave wildly in the neighborhood of an essential singularity.
This is the meaning of Picard’s theorem, in particular a function takes on all complex values, except
possibly one, in any neighborhood of an essential singularity. Obviously, essential singularities
of complex analytic vector fields f(z) ∂∂z present the analogous behavior. As a consequence, not
much has been done with respect to the visualization of the class of vector fields with essential
singularities: to our knowledge the only reported works related to the visualization of vector fields
in neighborhoods of essential singularities is that of [37] and [60]: in both cases they use integration–
based visualization schemes.

The main issue with the use of integration–based visualization methods and/or algorithms when
visualizing vector fields near an essential singularity, is that these algorithms are based on recursive
procedures. Hence, when the function characterizing the vector fields are evaluated near an essential
singularity, they assume arbitrarily small and large values. This in turn causes the numerical errors
to quickly become unmanageable, even when considering self–adjusting algorithms.

A brief survey of the visualization method for vector fields. Considering Diagram (3), one
has the option of studying the (possibly multivalued) singular complex analytic maps ΨX , or ΦX ;
because of correspondence (1)–(7) both are equivalent to the study of X. For instance, the right
hand side of Diagram (3), ΦX , easily provides a technique which enables us to completely solve,
by geometrical methods, the differential equation (1), i.e. in particular visualize the trajectories of
the singular analytic vector field X.

This technique, using ΦX , was originally presented by H. E. Benzinger, S. A. Burns and J. I. Palmore
[9], [18], [62] in order to visualize rational vector fields on C. In this work we show that the tech-
nique can be extended to work on singular complex analytic vector fields, even those that have
essential singularities or accumulation points of poles and zeros.
We do this by

i) extending the visualization method, originally presented by H. E. Benzinger, S. A. Burns and
J. I. Palmore for rational vector fields in C, to work on all Newton vector fields on an
arbitrary Riemann surface, and

ii) since all singular complex analytic vector fields are in fact Newton vector fields, this provides
a framework in which we can actually obtain a solution of (1) for all singular complex
analytic vector fields and hence can be visualized.

The conceptual idea behind the proposed geometrical method for visualizing singular complex
analytic vector fields, is the construction of a pair of real valued functions that are constant and
linear along the trajectories of the vector field (also known as first integrals or integrals of motion),
see Theorem 1.

As it turns out, the method that we generalize has some other very interesting and noteworthy
advantages over the usual vector field visualization techniques (see [44], [65], [67] for a classification
scheme of vector field visualization techniques). Amongst them, we state the following properties.

A) The method allows for the global visualization of vector fields on arbitrary Riemann sur-
faces.

B) It allows for the efficient visualization of the streamlines, even for specific initial conditions.
C) It can provide information relative to (the parametrization of) the flows.
D) It does not propagate numerical errors.
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E) It allows the correct visualization of vector fields even in regions where the usual integration–
based algorithms fail.

F) The computer resources needed for the visualization are much less than those needed by
other integration–based visualization techniques.

G) The algorithm can be easily parallelized.
H) Moreover it can be easily extended to work on a larger class of vector fields.

It should be noted from the outset that the method in question exploits a well known characteris-
tic of Newton vector fields, namely that their streamlines can be easily recognized by a geometrical
argument (see Lemma 4). Yet, it is interesting to note that apparently this method is unknown (or
at least not actively used), even for those who study Newton vector fields: for instance in [36], [71].
In particular, though they show that the Newton flow associated to the Weierstrass ℘–functions
can be characterized/classified (up to conjugacy) into three types of behaviour, and that they actu-
ally show phase portraits of the Newton flow associated to Weierstrass ℘–function and to Jacobi’s
sn–function, they still use a traditional integration–based algorithm (4–th order Runge–Kutta) for
the visualization of the vector field.

On the visualization of complex functions. In §11, as an application of the techniques and
methods developed in the previous sections, we explore the problem of visualization of singular
complex analytic functions.
We start with a quick review of some classical and or traditional methods unrelated to vector fields;
particularly images of regions, tilings a la Klein, the analytic landscape and domain coloring.
We then procede to explore two methods based on the visualization of the phase portrait of certain
singular complex analytic vector fields.
The advantages and disadvantages of the different methods are presented and discussed. In partic-
ular it should be noted that Theorem 2 provides

a) a natural tool for the visualization of both ΨX and ΦX ,
b) a natural counterpart to Theorem 1.

3. Analytic and geometric aspects of singular complex analytic vector fields

We define the basic objects of study, namely singular complex analytic vector fields, then present
a quick overview of the basic correspondence. The material is presented in full detail in [56], [57],
[5] and [6]. We describe a summary here for clarity and completeness in the exposition.

3.1. Notation and conventions.
M is an oriented smooth (i.e. C∞) two–manifold.
J is a complex structure on M (a smooth isomorphism of TM such that J2 = −1).
M = (M, J) is a Riemann surface.

Ĉ = C ∪ {∞} is the Riemann sphere.
(C, 0) denotes the usual domain for germs.
i =
√
−1.

We will be interested in complex–valued vector fields on a Riemann surface that are analytic in the
following sense. Let {φj : Vj ⊂M → C | j ∈ J}, be a holomorphic atlas for M .

Definition 1. By a singular complex analytic vector field

X =
{
fj(z)

∂

∂z

∣∣∣ z ∈ φj(Vj)}
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on M , we understand a (non–vanishing) holomorphic vector field X on M\Sing(X), where Sing(X)
is the singular set of X, which consists of:

• zeros, denoted by Z,
• poles, denoted by P,
• isolated essential singularities denoted by E, and
• accumulation points in M of zeros, poles and isolated essential singularities of X, denoted

by C.

So Sing(X) = (E ∪ P ∪ Z ∪ C) is the closure in M of the set (E ∪ P ∪ Z).

We will denote by
M� = M\E.

M0 = M�\(P ∪ Z) = M\Sing(X).

M
′

= M�\Z = M\(E ∪ Z).

M∗ = M�\P = M\(E ∪ P).

We wish to note that our definition of singular complex analytic vector fields includes several of
the classical families depending on what the singular set Sing(X) is. For instance:

• If E = P = ∅, then X is a holomorphic vector field on M . Note that in this case Sing(X) =
Z has no accumulation points in M (unless of course X is the identically zero vector field).

• Entire vector fields are precisely the holomorphic vector fields on C, or equivalently singular

complex analytic vector fields on Ĉ with P ∪ E equal to {∞} or ∅.
• If E = ∅ and Sing(X) has no accumulation points in M , then X is a meromorphic vector

field on M . Thus rational vector fields are precisely the meromorphic vector fields on Ĉ.
• If E is non–empty and there are no accumulation points of Z in M , then e ∈ E will consist

of an essential singularity of fj that has 0 as a lacunary value, that is there is a neighborhood
V of e where fj(z) 6= 0, for all z ∈ φj(Vj ∩ V ).

For other relevant cases one may consider E (s, r, d), meromorphic structurally finite 1–order d
vector fields with r poles and s zeros on C recall (6), see [5], [6] and [7]. For geometric structures
associated to vector fields and its applications see [34].

Since a vector field provides a geometric structure for M , see §3.2, in several places we use the
notation (M,X) as a pair, Riemann surface and vector field. Moreover, complex structures on M0

having conformal punctures on (E ∪ P ∪ Z) extend in a unique way to complex structures on all
of M ; we do not distinguish between the punctured Riemann surface (M0, J) and the extended
(M,J).

Moreover, since we will always be dealing with Riemann surfaces we will drop the “complex”
adjetive (unless we wish to emphasize it), and whenever a singular complex analytic differential
form, singular quadratic differential or singular function is mentioned, the meaning of singular
should be that of Definition 1.

3.1.1. Equivalence between singular complex analytic vector fields and real smooth vector fields,
trajectories.
On M , more precisely on M∗, there is a one to one correspondence between real smooth vector fields
satisfying the Cauchy–Riemann equations and (1, 0)–sections of the holomorphic tangent bundle
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locally given by

F −→X =
1

2
(F − iJF )

F = X +X ←−X.

In explicit local coordinates (Vj, φj) of M this is

X = fj(z)
∂

∂z
=
(
uj(x, y) + i vj(x, y)

) ∂
∂z

so the real part of X is

Re (X) := F = uj(x, y)
∂

∂x
+ vj(x, y)

∂

∂y
.

The trajectories of X as in (1) and the trajectories of Re (X) coincide. In passing, we note that
the imaginary part of X is given by

Im (X) := −vj(x, y)
∂

∂x
+ uj(x, y)

∂

∂y
,

and is nothing else than JF .
In particular since fj represents a holomorphic function on M∗, then uj and vj satisfy the Cauchy–
Riemann equations.

3.2. Equivalences between singular vector fields, singular differential forms, singular
orientable quadratic differentials and singular flat structures.

3.2.1. Equivalence with differential forms. To obtain the correspondence with differential forms,
consider the singular analytic vector field X = {fj(z) ∂∂z} restricted to M0. Since C is an algebraic
field, it follows by duality, that the singular complex analytic 1–form

ωX =
{ dz

fj(z)

∣∣∣ z ∈ φj(Vj)}
is such that ωX(X) ≡ 1. In fact, ωX is canonically well defined on all M ; having zeros, poles and
essential singularities at the points where X has poles, zeros and essential singularities, respectively.
The complex time necessary to travel from z0 to z in M0 under the complex flow of X is given by:

(7) ΨX,j(z) =

∫ z

z0

ωX : Vj ⊂M ′ −→ C.

A priori this depends on the homotopy class of the path from z0 to z in M ′. One also notices that
Ψj(z) = Ψk(z) + ajk on Vj ∩ Vk, for some ajk ∈ C. Hence, by direct analytic continuation we have
the (possibly multivalued) global singular analytic additively automorphic function

(8) ΨX(z) =

∫ z

z0

ωX : M0 −→ C.

See definitions 2.4 and 2.5 of [5].
Locally, if α(τ), β(s) : (−ε, ε) ⊂ R → φj(Vj) are trajectories of F and JF respectively, with
α(0) = β(0) = z0, then ∫ α(τ)

z0

ωX = τ and

∫ β(s)

z0

ωX = is.

In words F and JF describe the real and imaginary time necessary to travel from z0 to z.
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Moreover if z1 and z2 belong to the same real trajectory of Re (X) then

(9) gX–length(z1z2) =

∫
z1z2

ωX =

{
real time to travel from z1 to z2

under the local real flow of X,

where z1z2 means the geodesic segment in (M0, gX), that will be defined in 3.2.3, where it is
understood that the gX–length can assume negative values.

3.2.2. Equivalence with orientable quadratic differentials. A singular complex analytic quadratic
differential Q on M is by definition orientable if it is globally given as ω ⊗ ω for some singular
complex analytic differential 1–form ω on M . F. Klein [40] was the first to implicitly use these
objects to study complex integrals, J. A. Jenkins [42], and K. Strebel [70] provide presentations of
the subject, also recently J. C. Langer [43] provides computer visualizations of quadratic differentials.
Given Q = ωX ⊗ ωX , we get a canonical holomorphic atlas {(Vj,Ψj)} for M0 as above. Noticing

that the changes of coordinates Ψj ◦ Ψ−1
k are maps of the form {zk 7→ zj = zk + ajk | ajk ∈ C}, it

follows that the real horizontal foliation on C defines a horizontal foliation FQ on M0. Furthermore,
FQ is defined by a real non–vanishing vector field on M0 if and only if Q is orientable. Clearly
the horizontal foliation corresponds to the trajectories of F and there is a corresponding vertical
foliation corresponding to JF .

3.2.3. Construction of a flat structure from X. Now define the real analytic Riemannian metric

gX =

{
1

(uj(x, y))2 + (vj(x, y))2

(
1 0
0 1

) ∣∣∣ (x+ iy) ∈ φj(Vj)

}

on M0, respect to suitable (Vj, φj). F and JF define an orthonormal frame for gX on all M0. By
the Cauchy–Riemann equations F and JF commute, and the curvature of gX is zero. Equivalently,
the functions ΨX,j : (Vj, gX)→ (C, δ) are isometries, where δ is the usual flat metric on C, and the
trajectories of F and JF are unitary geodesics in the smooth flat Riemann surface (M0, gX).

Remark 1. In the language of quadratic differentials, ΨX,j, as in (7), is called a distinguished
parameter near a regular point for the orientable quadratic differential Q = {dz2/(fj(z))

2} see [70]
p. 20. Thus in the language of differential equations, we can say that ΨX,j is a local holomorphic
flow box for the vector field X, that is

(10) ΨX,j(z)∗

(
fj(z)

∂

∂z

)
=

∂

∂t
,

where again t ∈ C is complex time.
Of course, the global singular analytic additively automorphic function ΨX , see (8), also satisfies
(10): thus ΨX is a global flow box. This is further explored in §4, particularly in §4.4.

3.3. The Riemann surface RX . The graph of ΨX

(11) RX = {(z, t) | t = ΨX(z)} ⊂M × Ĉt

is a Riemann surface. The flat metric
(
RX , π∗X,2( ∂∂t )

)
is induced by

(
Ĉ, ∂∂t

)
via the projection of

πX,2, and coincides with gX = Ψ∗X(δ) since πX,1 is an isometry, as in the following diagram:
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(12)

(
M,X

) (
RX , π∗X,2( ∂∂t )

)
�

πX,1

?
πX,2

HH
HHH

HHHj
ΨX (

Ĉt, ∂∂t
)

Remark 2. 1. It should be noted that πX,1 :
(
RX , π∗X,2( ∂∂t )

)
−→ (M,X) is a biholomorphism if

and only if ΨX is single valued.
2. In Diagram (12) we abuse notation slightly by saying that the domain of ΨX is M . This is a
delicate issue, see Remark 3.3 following Proposition 1.
3. In what follows, unless explicitly stated, we shall use the abbreviated form RX instead of the
more cumbersome

(
RX , π∗X,2( ∂∂t )

)
.

Example 1 (Holomorphic vector fields on the Riemann sphere). The holomorphic vector fields on

Ĉt form a three dimensional complex vector space{
Y (t) = (at2 + bt+ c)

∂

∂t
| (a, b, c) ∈ C3

}
,

which is isomorphic to the Lie algebra of the group of biholomorphisms PSL(2,C) of the Riemann

sphere. These are the only complete vector fields on the Riemann sphere, see §12. In Ĉt, a
non zero holomorphic vector field Y (t) can have: two simple zeros or one double zero. Up to

automorphisms Aut(Ĉ) ∼= PSL(2,C), we get two qualitatively different families of (non–identically

zero) holomorphic vector fields on Ĉt:
1. The constant vector fields

λ ∂
∂t , λ ∈ C∗,

correspond to the family having a double zero. The vector field Re
(
λ ∂
∂t

)
has a dipole at infinity,

see §4.2.
(C, gX) is isometric to the euclidean plane foliated by (geodesic) trajectories of Re (λ) ∂

∂x +

Im (λ) ∂∂y . Notice that for any λ 6= 0; (Ĉ, λ ∂
∂t ) is global holomorphically equivalent to (Ĉ, ∂∂t )

or (Ĉ, t2 ∂
∂t ). (C, ∂∂t ) is isometric to the euclidean plane foliated by (geodesic) trajectories of ∂

∂x .
See Figure 1.

2. The linear vector fields
t
λ
∂
∂t , λ ∈ C∗,

which correspond to the family having two simple zeros. Contrary to the previous family, t
λ
∂
∂t

is global holomorphically equivalent to t
ν
∂
∂t if and only if λ = ±ν. The vector fields Re

(
t
λ
∂
∂t

)
have; two centers if Re (λ) = 0; one source, one sink otherwise, see §4.2.
In particular, the pullback of Y = −t ∂∂t will produce a Newton vector field on M (see §5 for the
definition), and the Riemannian manifold (C∗, gY ) is isometric to the euclidean cylinder C/2πiZ
foliated by (geodesic) trajectories of ∂

∂x . See Figure 1.

From these examples the case of pullbacks of ∂
∂t and t ∂∂t (or ±w ∂

∂w ) should be relevant, as we will
conclude in §4.4.3.

Example 2 (Vector fields having maximal domain of their flows different from Ct). Let(
Ĉ, X(z) = 1

R′(z)
∂
∂z

)
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Figure 1. Diagram (3) for X(z) = ∂
∂z . The holomorphic vector fields ∂

∂z and

−w ∂
∂w on the Riemann sphere appear in a very natural context.

be a rational vector field, for R(z) a rational function of degree at least two. X has at least one
pole and note that the holomorphic differential equations theory can not be applied. However, in
accordance with Diagram (12),

ΨX(z) = R(z) : Ĉz −→ Ct
is single valued. Thus, πX,1 provides a single valued global flow of X, with the property that

(13) R(z2)−R(z1) =

z2∫
z1

ωX =

{
complex time to travel from z1 to z2

under the flow of X,

for z1, z2 ∈ Ĉ. In particular for z1 a cero and z2 ∈ Ĉ\Sing(X) the complex time ∞ makes sense.
Moreover,

RX = ΩX = {(z,R(z)) | z ∈ Ĉ}.
For further discussion see §12.

3.4. The singular complex analytic dictionary.

Definition 2. ([10], p. 579) Let Ψ : M → C be a singular complex analytic possibly multivalued
function with a non–dense countable singular set A such that the restriction of Ψ to M\A is
holomorphic. Ψ is called additively automorphic if given two branches one has Ψα(z) = Ψβ(z)+aαβ ,
for some constants aαβ ∈ C.

Note that Ψ is single valued if and only if aαβ = 0 for all α, β. However, the 1–form dΨ is always
single valued on M , when Definition 2 holds true. For instance log(z) and log(P (z)), for P (z) a
polynomial, are additively automorphic, however P (z) log(z) is not.
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In summary one has the following result.

Proposition 1 (Singular complex analytic dictionary). On any Riemann surface M there is a
canonical one–to–one correspondence between:

1) Singular complex analytic vector fields X(z) = f(z) ∂∂z .

2) Singular complex analytic differential forms ωX , related to X via ωX = dz
f(z) .

3) Singular complex analytic orientable quadratic differential forms given by ωX ⊗ ωX .
4) Singular (real) analytic flat structures gX , satisfying gX(X) ≡ 1, with suitable singularities

on a non–dense countable set A ⊂ M , trivial holonomy in M\A and a (real) geodesible
unitary vector field WX whose singularities are exactly A.

5) Singular complex analytic (possibly multivalued) maps, distinguished parameters,

ΨX(z) =

∫ z

z0

ωX : M� → Ĉ

where z0 ∈M ′ and z ∈M�.
6) Singular complex analytic (possibly multivalued) Newton maps

ΦX(z) = exp

[
−
∫ z

z0

ωX

]
: M� → Ĉ

where z0 ∈M ′ and z ∈M�.
7) The pairs

(
RX , π∗X,2( ∂∂t )

)
consisting of branched Riemann surfaces RX , associated to the

maps ΨX , and the vector fields π∗X,2( ∂∂t ) under the projection πX,2 : RX −→ Ĉt.
8) The pairs (ΩX ,F) consisting of maximal domains ΩX ⊂M × Ĉ of the complex flows of X

and holomorphic foliations F whose leaves are copies of the Riemann surfaces RX .

Sketch of proof. The equivalence between (1), (2) and (3) is well known and extensively used; it is
only necessary to verify that the local complex analytic tensors transform in the required way, see
§3.2.1 and §3.2.2.

That (4) follows from (3) uses the flat metric associated to ωX ⊗ ωX , see §3.2.3.
For the converse assertion, we start with a flat structure g on M\A. Since the riemannian

holonomy of g, π1(M\A) −→ O(2), is the identity, we recognize WX and its counterclockwise π/2
rotated vector field, say eiπ/2WX , as the real and imaginary parts of a holomorphic vector field
X on (M\A, g). The extension of X to A depends on the nature of the singularities of X. The
suitable singularities hypothesis in (5), means that the extension exists. Obviously, poles and zeros
of X at A are suitable singularities and can be recognized by their normal forms in punctured
neighborhoods, see Proposition 2. For further details see [5] lemma 2.6 and theorem D.

The equivalence between (5) and (6) and their relationship is further explored in §4.4.3. The
correspondence between (5) and (7) follows from Diagram (12). Equivalence between (7) and (1) is
postponed to §12, see Corollary 4. The same is true for the equivalence between (7) and (8): this
is the content of Theorem 3 in §12. �

Remark 3. Some comments are in order:
1. ΨX and ΦX as in (5) and (6) of Proposition 1 are well defined and holomorphic maps for z at
the poles of ωX .
2. The local map Ψj =

∫
dζ/fj(ζ) in (7) is called distinguished parameter by K. Strebel [70] p. 20

and also by L. V. Ahlfors [1], we will continue using this name for the global map ΨX described in
(5) of Lemma 1.
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3. The choice of initial and end points z0, z for the integral defining ΨX and ΦX can be relaxed to
include the essential singularities by integrating along asymptotic paths associated to asymptotic
values of ΨX at the essential singularities E ⊂M , see remark 1.1 of [6].

4. Pullback of singular complex analytic vector fields

We start by recalling the classical local notion of holomorphically equivalent or conformally
conjugated vector fields, see [17], [38] p. 9 for the usual concepts. Moreover, the following remains
valid for regular points and singularities in the sense of Definition 1 (namely zeros, poles, isolated
essential singularities of X and accumulation points of the above at the origin).

Definition 3. Let X(z) = f(z) ∂∂z and Y (z) = g(z) ∂∂z be two germs of singular complex analytic
vector fields on (Cz, 0) and let

ϕf (z, t), ϕg(z, t) :
(
C2
z t, (z0, 0)

)
−→ (Cz, 0),

for a point z0 where f and g are holomorphic, be their local holomorphic flows.

1. X and Y are topologically equivalent if there exists an orientation preserving homeomorphism
Υ : (C, 0) −→ (C, 0) which takes trajectories of Re (X) to trajectories of Re (Y ) preserving their
orientation but not necessarily the parametrization.

2. X and Y are holomorphically equivalent if there exists a biholomorphism Υ : (C, 0) → (C, 0)
such that

(14) Υ(ϕf (z, t)) = ϕg(Υ(z), t)

whenever both sides are well defined, for the maximal analytic continuations.

Note that, under the assumption that Υ is a biholomorphism, (14) is equivalent to X = Υ∗Y .

Lemma 1. Two germs of singular complex analytic vector fields X(z) = f(z) ∂∂z and Y (z) = g(z) ∂∂z
on (C, 0) are holomorphically equivalent if and only if there exists a biholomorphism Υ : (C, 0) →
(C, 0) such that

(15) f(z) =
g(Υ(z))

Υ′(z)
, for all z ∈ (C, 0), z 6= 0.

Proof. The proof follows by taking the derivative with respect to t in (14). �

From a global point of view, two singular complex analytic vector fields (M,X), (N,Y ) on
arbitrary Riemann surfaces are holomorphically equivalent if there exists a biholomorphic map
Υ : M → N such that Υ(ϕX(z, t)) = ϕY (Υ(z), t) whenever both sides are well defined.

4.1. Pullbacks of singular complex analytic vector fields by singular complex analytic
maps. The pullback Υ∗ is a natural operation when considering vector fields.

Lemma 2. 1. Given a singular complex analytic vector field Y (t) =
{
gk(t)

∂
∂t

}
on N and a non–

constant, singular complex analytic map

Υ : M → N,

the pullback vector field X = Υ∗Y =
{
fj(z)

∂
∂z

}
is a singular complex analytic vector field well

defined on M . In particular

(16) fj(zj) =
gk(Υjk(zj))

Υ′jk(zj)
,
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where Υjk = φjk ◦Υ◦φ−1
j , Υ′jk =

dΥjk

dz , and {φj : Vj ⊂M → C}, {φk : Uk ⊂ N → C} are the charts
of M and N respectively.
2. Conversely, if X, Y are given singular complex analytic vector fields on M , N respectively and
Υ is a (possibly multivalued) singular complex analytic function that satisfies (16), then

X = Υ∗Y.

Proof. Follows from Lemma 1 and an easy computation in local coordinates. �

The second statement concerning multivalued functions will be used in our work in §4.4.1 and
§4.4.2.

We make a further convention: since we will be working on the Riemann surface M , no mention
will be made of the local coordinates if these are not needed.

4.2. Normal forms. Clearly special attention is needed in the neighborhoods of singularities of
the vector field X. Recall the description of the associated real flow and the normal forms for vector
fields, see Figure 2. Several authors have contributed with proofs, see J. A. Jenkins [42] ch. 3, J.
Gregor [30], [31], L. V. Ahlfors [1] p. 111, L. Brickman et al. [17], K. Strebel [70] ch. III, A. Garijo
et al. [27]. Further discussion on the origin of normal forms can be found in [33], [5] pp. 133, 159,
and references therein.

Proposition 2. Let X be a meromorphic vector field germ on (C, 0) having a pole or zero at the
origin. Up to local biholomorphism X is holomorphically equivalent to one of the following normal
forms.
1) For a pole of order3 −κ ≤ −1

1

zκ
∂

∂z
.

2) For simple zero

z

λ

∂

∂z
, λ = Res(ωX , 0).

3) For zero of order s ≥ 2

zs

1 + λzs−1

∂

∂z
, λ = Res(ωX , 0).

�

In the case of functions the normal forms are simpler.

Lemma 3. Let g be a meromorphic function germ on (C, 0) having a pole, regular point or zero at
the origin. Up to local biholomorphism g is equivalent to the following normal form

zk for k ∈ Z the multiplicity of f at 0.
�

3 We convene that the order/multiplicity of a pole is to be negative.
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1

z2
∂

∂z

1

z3
∂

∂z

1

z

∂

∂z

z2

1 + λz

∂

∂z

z3

1 + λz2
∂

∂z

z

λ

∂

∂z

(λ) = 0 (λ) < 0

(λ) > 0Re

ReRe

Figure 2. Phase portrait and normal forms of X at a pole or zero. Top row:
for a pole of order −κ ≤ −1, the phase portrait has 2(κ+ 1) separatrices arriving
or leaving the pole. Bottom row: simple zeros and zeros of order s ≥ 2, here
λ = Res(ωX , 0). For simple zeros, the phase portrait is the pullback via ΨX(z) =
λ log z of the constant vector field Y (t) = ∂

∂t . For s ≥ 2 the trajectories of X form
a flower with exactly 2(s− 1) petals. For further details see Examples 1, 4, 5, and
6.

4.3. Geometry and dynamics of the pullback. Recall that a covering Ψ : V → W is a
continuous surjective mapping such that for all w ∈ W , there exists an open set U 3 w in W with
the characteristic that Ψ−1(U) is a disjoint union of open sets O ⊂ V each of which satisfies that
Ψ : O → U is a homeomorphism.

A branched or ramified covering Ψ : V →W is a covering except at a finite number of points of
W . Said points are known as branch points or ramification points.

Remark 4 (Geometrical interpretation of the pullback). In the setting of Lemma 2, it is now natural
to consider singular complex analytic maps Υ : M −→ N as singular complex analytic ramified
covering maps, thus providing a geometric interpretation of the pullback:

The trajectories of X = Υ∗Y are the pre–images, via Υ of the trajectories of Y .

Considering biholomorphisms as the covering maps we obtain:

Example 3 (A PSL(2,C)–action on vector fields). Let Y (t) = g(t) ∂∂t be a complex vector field on

Ĉt and consider the pullback via a biholomorphism, T (z) = az+b
cz+d with ad− bc 6= 0, of Ĉ. Then

T ∗
(
Y (t)

)
(z) =

(cz + d)2

(ad− bc)
g(T (z))

∂

∂z
.
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A useful particular case is when T (z) = (1/z), so that (T ∗Y )(z) = −z2g (1/z) ∂
∂z .

Considering finitely ramified coverings, we unify several known examples, poles are the simplest.

Example 4 (Poles of order −κ ≤ −1). The vector field
X(z) = 1

zκ
∂
∂z on (C, 0),

has a pole of order −κ at the origin. The natural diagram is(
Cz, X(z) = 1

zκ
∂
∂z

) (
{ z

κ+1

κ+1 − t = 0}, π∗X,2( ∂∂t )
)

�
πX,1

?
πX,2

H
HHH

HHHHj

ΨX(z) = zκ+1

κ+1 (
Ĉt, ∂∂t

)
.

X(z) is the pullback via the distinguished polynomial parameter

ΨX(z) =
∫ z
ζκ dζ = zκ+1

κ+1

of the constant vector field Y (t) = ∂
∂t . The 2(κ + 1) separatrices arrive or leave the pole in finite

real time. See top row of Figure 2 and Figure 3 (a).

Allowing log(z) as a ramified covering we obtain zeros.

Example 5 (Simple zeros s = 1). The vector field
X(z) = 1

λz
∂
∂z on C, λ ∈ C∗,

has a simple zero at the origin. The natural diagram is(
Cz, X(z) = 1

λz
∂
∂z

) (
{λ log(z)− t = 0}, π∗X,2( ∂∂t )

)
�

πX,1

?
πX,2

HHH
HHH

HHj

ΨX(z) = λ log(z) (
Ĉt, ∂∂t

)
.

X(z) is the pullback via the distinguished additively automorphic parameter
ΨX(z) =

∫ z
1
λ
ζ dζ = λ log(z)

of the constant vector field Y (t) = ∂
∂t . See bottom left of Figure 2.

Example 6 (Multiple zeros s ≥ 2, with residue λ ∈ C). The vector field

X(z) = zs

1+λzs−1
∂
∂z , λ ∈ C,

has a zero or order s ≥ 2 at the origin, and residue λ. The natural diagram is(
Cz, X(z) = zs

1+λzs−1
∂
∂z

) (
{ 1

(1−s)zs−1 + λ log(z)− 1
1−s − t = 0}, π∗X,2( ∂∂t )

)
�

πX,1

?

πX,2

H
HHH

HHHHj

ΨX(z) =
1

(1−s)zs−1 + λ log(z)− 1
1−s (

Ĉt, ∂∂t
)

.

X(z) is the pullback of via the distinguished additively automorphic parameter
ΨX(z) =

∫ z
1

(
1
ζs + λ

ζ

)
dζ = 1

(1−s)zs−1 + λ log(z)− 1
1−s

of the constant vector field Y (t) = ∂
∂t . See Figure 2 and Figure 3 (b).
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Figure 3. The diagrams for the Riemann surfaces RX corresponding to 1
z2

∂
∂z and z4 ∂

∂z .
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Considering infinitely ramified covering maps we obtain essential singularities.

Example 7 (Essential singularity). The entire vector field X(z) = ez ∂∂z has an essential singularity

at ∞ ∈ Ĉ and no zeros or poles on C. It is the pullback via the ∞ to 1 ramified covering,
ΨX(z) = −e−z, of the constant vector field ∂

∂t . It is considered to be the simplest example of an
essential singularity. See Figure 4.

Figure 4. The diagram for a Riemann surface RX corresponding to ez ∂∂z .

4.4. Every singular complex analytic vector field is the pullback of ∂
∂t and of −w ∂

∂w .

4.4.1. Every singular complex analytic vector field admits a global flow box. A rather surprising
result is the following, first presented in [5].

Theorem 4 (Pullbacks of ∂
∂t ). Every singular complex analytic vector field X on M is the pullback

of ∂
∂t on Ĉt via an additively automorphic singular complex analytic map ΨX : M −→ Ĉt, i.e.

ΨX∗X =
∂

∂t
.

Moreover

(17) ΨX(z) =

∫ z

z0

ωX ,
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for z0 ∈M ′, and is a single–valued singular complex analytic function if and only if the periods and
residues of ωX are zero, i.e.

(18)

∫
γ

ωX = 0 for every [γ] ∈ H1(M ′,Z).

�

Note that (18) implies that the zeros of X, if there are any, are of order ≥ 2 (i.e. the poles of
ωX are non–simple). It also says that in this case ωX is an exact differential 1–form.

The above result is of particular interest from the point of view of the theory of differential
equations. Explicitly, the trajectories of X are mapped to trajectories of ∂

∂t , which are horizontal
straight lines in C (recall that we speak of real trajectories as in (1)). This is a remarkable property:
the existence and uniqueness of trajectories for singular complex analytic vector fields admits a very
simple proof, that is also global on Riemann surfaces M . Recall that for real analytic vector fields,
in general we can only obtain “long flow boxes”, see [61] ch. 3 §1. Moreover, X does not present
limit cycles, see [49], [9], [66]. Note that the point z0 can be a pole of X and the fact remains that
ΨX∗X = ∂

∂t provides a flow box around z0, as in Example 4.

4.4.2. Every singular complex analytic vector field is a pullback of λw ∂
∂w . Analogously one has the

following result, also first presented in [5].

Theorem 5 (Pullbacks of 1
λw

∂
∂w ). Every singular complex analytic vector field X on M is the

pullback of 1
λw

∂
∂w on Ĉw, for any λ ∈ C∗, via a (possibly multivalued) singular complex analytic

map ΦX(z) : M −→ Ĉw, i.e.

ΦX∗
(
X
)
(w) =

1

λ
w
∂

∂w
.

Moreover

(19) ΦX(z) = exp
( 1

λ

∫ z

z0

ωX

)
,

for z0 ∈M ′, and is a single–valued singular complex analytic function if and only if the periods and
residues of ωX are integer multiples of some complex number Π ∈ C∗, i.e.

(20) nΠ =

∫
γ

ωX for [γ] ∈ H1 (M ′,Z), n ∈ Z .

Proof. By Lemma 2, X(z) is the pullback of 1
λw

∂
∂w iff

f(z) =
1

λ

ΦX(z)

Φ′X(z)
,

for some (possibly multivalued) singular complex analytic function ΦX onM . Equivalently 1/(λf(z))
is the logarithmic derivative of ΦX(z), hence upon integration and exponentiation one obtains the
expression (19) for ΦX .
On the other hand, by virtue of the explicit form of ΦX and since exp is 2πi–periodic, the differ-
ential form ωX has a residue or period that is not an integer multiple of Π = 2πiλ if and only if
ΦX(z) is multivalued. �



22 A. ALVAREZ–PARRILLA, J. MUCIÑO–RAYMUNDO ET AL

4.4.3. Correspondence between ∂
∂t and −w ∂

∂w . As was seen in the previous two sections, one can

express any singular complex analytic vector field X on M as the pullback of either ∂
∂t or −w ∂

∂w
via the (possibly multivalued) functions

ΨX(z) =

∫ z

z0

ωX and ΦX(z) = exp
(
−
∫ z

z0

ωX

)
,

respectively.

Corollary 1. Let X be a singular complex analytic vector field on M . It is the pullback of ∂
∂t and

it is also the pullback of −w ∂
∂w . Furthermore ∂

∂t is the pullback via exp(−t) of −w ∂
∂w and we have

the following commutative diagram

(3) (
Ĉt, ∂∂t

)
-

exp(−t)

(
Ĉw,−w ∂

∂w

)
,

ΦX@
@R

(M,X)
ΨX�
�	

for the respective (possibly multivalued) singular complex analytic functions. �

Corollary 1 is exemplified in Figure 5 for the entire vector field X(z) = −e−ze
z ∂
∂z which has a

class 2 essential singularity at ∞ ∈ Ĉ, see [5]. Yet it is the pullback of both ∂
∂t and −w ∂

∂w .

5. Newton vector fields: pullbacks of −w ∂
∂w

We now recall a special kind of complex analytic vector fields that were first studied in the 80’s,
by M. W. Hirsch, S. Smale and M. Shub ([35], [69], [68], [21]). The concept of Newton vector field
was introduced together with that of Newton graphs that arise from studying Newton’s method of
root finding for a complex polynomial. Taking their definition as a guide we have:

Definition 4. A singular complex analytic vector field X(z) = fj(z)
∂
∂z on M is said to be a Newton

vector field if it can be represented as

X(z) = −
Φj(z)

Φ′j(z)

∂

∂z
,

for some (possibly multivalued) singular complex analytic function {Φj} on M .

From the definition and the results of §4.4.2 one has as an immediate consequence that Φ = ΦX
and the following.

Corollary 2. Every singular complex analytic vector field X on an arbitrary Riemann surface M
is a Newton vector field of a suitable ΦX .

Example 8. The complex vector field

X(z) = − tan(z)
∂

∂z

is the pullback via ΦX(z) = sin(z) of the complex vector field Y (t) = −w ∂
∂w , so in fact it is a

Newton vector field.
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Figure 5. Example of Diagram 3 for X(z) = −e−ze
z ∂
∂z .

On the other hand, recalling the geometrical interpretation of the pullback, and considering

Φα : Mz −→ Ĉw, a singular complex analytic ramified covering over the sphere, one can construct
Newton vector fields as the pullback via Φα of the radial vector field −w ∂

∂w on the Riemann sphere.
Note also that the composition of ramified coverings is still a ramified covering, hence:

Corollary 3. Let Sw, Nt and Mz be Riemann surfaces and let Y (w) = g(w) ∂
∂w be a singular

complex analytic vector field on Sw. Further suppose that

Φ1 : Mz −→ Nt, Φ2 : Nt −→ Sw

are singular complex analytic ramified coverings, then X(z) = f(z) ∂∂z is the pullback via Φ = Φ2◦Φ1

of Y (w) if and only if

f(z) =
g(Φ(z))

Φ′(z)
=

g(Φ2(Φ1(z)))

Φ′2(Φ1(z)) Φ′1(z)
.

Proof. The proof is a direct consequence of the chain rule and Lemma 2. �

So by considering Y (w) = −w ∂
∂w we can construct many Newton vector fields. Some examples

follow.
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Example 9. The complex vector field

X(z) = −(cosh(z) + 1)
∂

∂z

is obtained from −w ∂
∂w via pullback with ΦX = Φ3 ◦ Φ2 ◦ Φ1, where Φ3(s) = es, Φ2(t) = t−1

t+1 and

Φ1(z) = ez. It has zeros at zn = i(2n+ 1)π, n ∈ Z.

Example 10. The complex vector field

X(z) = ez ∂
∂z

is obtained from −t ∂∂t via pullback with ΦX = Φ2 ◦ Φ1, where Φ2(w) = ew and Φ1(z) = e−z. It
has an essential singularity at ∞.

Example 11. The complex vector field

X(z) =
ez3

3z3 − 1

∂

∂z

is obtained from −w ∂
∂w via pullback with ΦX = Φ2 ◦Φ1, where Φ2(w) = we−w3

and Φ1(z) = e−z.
It has an essential singularity at ∞ and 3 poles on the finite plane.

Remark 5. It should be noted that when Ψ is rational, the ω–limit set of almost any4 trajectory
for the flow of

X(z) = Ψ(z)
Ψ′(z)

∂
∂z

on M corresponds to the zeros of Ψ, in agreement with the work of M. W. Hirsch, S. Smale and
M. Shub ([35], [69], [68], [21]).
However, when Ψ is not rational, the ω–limit could be an isolated essential singularity (Examples
10 and 11) or an accumulation point of poles or zeros (Examples 8 and 9).

In Table 1 we present a summary of the different objects and their relations, encountered so
far. There we can observe that the residue of ωX plays an important role in the description of the
objects. This was already observed in [5], §5.7.

6. Visualization of Newton vector fields

We now move on to describe the actual method that will enable us to solve for the trajectories
of (and hence visualize) Newton vector fields. As mentioned in the introduction, the idea behind is
that there are two auxiliary real valued functions: one whose level curves correspond to trajectories
(streamlines) of the complex vector field (in differential equations this auxiliary function is called
a first integral), and the other one which is linear along the trajectories, hence providing the
parametrization of the solution.

4 There will be a finite number of trajectories, corresponding to the separatrices of the poles, where the ω limit
set will not be a zero.
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Table 1. Relationship between vector fields, 1–forms, distinguished parameter
and the Newton covering map germs.

Complex analytic Complex analytic Distinguished Newton
vector field 1–form parameter covering map

X(z) = f(z) ∂∂z ωX = dz
f(z) ΨX(z) =

z∫
ωX ΦX(z) = e−ΨX(z)

pole of zero of zero of
order −κ ≤ −1 order κ order κ+ 1

1
zκ

∂
∂z zκ dz 1

κ+1z
κ+1 e−

1
κ+1 z

κ+1

simple zero simple pole
1
λz

∂
∂z

λ
z dz λ log(z) z−λ

multiple zero s ≥ 2 multiple pole
zs

1+λzs−1
∂
∂z

(
1
zs + λ

z

)
dz

(
1

(1−s)zs−1 z−λe(s−1)zs−1

λ = Res(ωX , 0) + λ log(z)
)

essential essential
singularity at ∞ singularity at ∞

eP (z) ∂
∂z e−P (z)dz

z∫
eP (ζ)dζ e−

z∫ eP (ζ)
dζ

6.1. The fundamental observation. Let

X(z) = f(z)
∂

∂z
= −ΦX(z)

Φ′X(z)

∂

∂z

be a Newton vector field, recall that the trajectories z(τ) are the solutions to

(21)

 z′(τ) = −
ΦX
(
z(τ)

)
Φ′X
(
z(τ)

) ,
z(0) = z0,

for τ ∈ R, as in (1).

Lemma 4 (Fundamental observation). A trajectory z(τ) of X satisfies

(22) ΦX
(
z(τ)

)
= ΦX(z0)e−τ

if and only if z(τ) is a trajectory, passing through z0, of the Newton vector field corresponding to
ΦX .

Proof. The proof follows from implicitly differentiating the equation

ΦX
(
z(τ)

)
= ΦX(z0)e−τ ,

that is
Φ′X
(
z(τ)

)
z′(τ) = −ΦX(z0)e−τ

so that

z′(τ) = −
ΦX
(
z(τ)

)
Φ′X
(
z(τ)

) ,
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hence z(τ) is indeed a solution to (21). �

The fundamental observation can be understood in terms of the pullback as follows: The trajec-
tory z(τ) is the flow of the pullback, via Φ, of the field −w ∂

∂w (whose trajectories are straight lines,

parametrized by e−τ , that start at ∞ and end at 0 in Ĉt). See Figure 6.

ΦX-

Figure 6. The trajectories z(t) correspond to trajectories of −w ∂
∂w under the

covering map ΦX .

Consider now the Newton vector field normal to X,

X⊥(ζ) = i f(ζ)
∂

∂ζ
= − Φ̃X(ζ)

Φ̃′X(ζ)

∂

∂ζ
,

with Φ̃X being its corresponding covering map. Then one has

−i (log ΦX)
′

= −iΦ
′
X

ΦX
=

Φ̃′X

Φ̃X
=
(

log Φ̃X

)′
,

and it follows that Φ̃X = Φ−iX . Thus taking log(z) on both sides we obtain that

(23)
ρ(z)

.
= log

∣∣∣Φ̃X(z)
∣∣∣ = arg (ΦX(z))

θ(z)
.
= arg

(
Φ̃X(z)

)
= − log |ΦX(z)| .

Proposition 3 (Solving ż = −ΦX(z)
Φ′X(z) ). Let z(τ) be a trajectory of a singular complex analytic field

X(z) = −ΦX(z)

Φ′X(z)

∂

∂z
,

then

1) arg (ΦX(z(τ))) = arg (ΦX(z0)) is constant along the trajectories z(τ) of X, and
2) log |ΦX(z(τ))| = −τ + log |ΦX(z0)| is linear along the trajectories z(τ) of X,

where z0 = z(0).

Proof. For (1) use (23) and the fundamental observation (Lemma 4).
For (2), a similar argument works. �
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As a direct consequence we can now state the main theorem related to the visualization of
singular complex analytic vector fields.

Theorem 1 (Visualization of singular complex analytic vector fields). Let X(z) = f(z) ∂∂z be a
singular complex analytic vector field on a Riemann surface M , and let z(τ) denote any trajectory of
X on M\Sing(X). Then there exist two (probably multivalued) functions ρ, θ : M\Sing(X) −→ R
such that

1) The real valued function ρ is constant along z(τ). Hence in order to visualize the trajectories
that pass through the point z0 ∈M , one needs only plot the level curve ρ(z) = ρ(z0).

2) The real valued function θ defines a natural time parametrization along the trajectory z(τ).
In other words, if z(τ) is the trajectory passing through z0 at τ = 0, then the point z(τ1) is
given by the intersection of the curves ρ(z) = ρ(z0) and θ(z) = θ(z0) + τ1.

Moreover, ρ and θ can be expressed in terms of the distinguished parameter ΨX and the Newton
map ΦX as:

(24)
ρ(z) = arg (ΦX(z)) = −Im (ΨX(z)),
θ(z) = − log |ΦX(z)| = Re (ΨX(z)).

Proof. (1) Is a direct consequence of Proposition 3.a where ρ(z) = arg (ΦX(z)).
(2) Follows directly from Proposition 3.b, i.e. the linear behaviour of θ(z) = log |ΦX(z)| along

the trajectory z(τ):
θ(z(τ1)) = − log |ΦX(z(τ1))| = − log |ΦX(z0)|+ τ1,

and from the description of the trajectory z(τ):
ρ(z(τ1)) = ρ(z0).

Finally, Corollary 1, particularly Diagram 3, shows that ρ and θ can be expressed in terms of
ΨX or ΦX so (24) follows. �

Remark 6. 1. The auxiliary functions ρ and θ are known as constants of motion, integrals of motion,
or first integrals. On the other hand, recall that a generic real analytic vector field does not have a
first integral.
2. The acute reader will note that ρ and θ determine visualizations of the functions ΦX and ΨX

as polar and rectangular representations respectively.

This last remark provides a counterpart for Theorem 1

Theorem 2 (Visualization of singular complex analytic functions).

1) Let Ψ : M −→ Ĉ be a singular complex analytic function. Then the phase portraits of
X(z) = 1

Ψ′(z)
∂
∂z provides the level curves of −Im (Ψ),

X⊥(z)
.
= i

Ψ′(z)
∂
∂z provides the level curves of Re (Ψ).

2) Let Φ : M −→ Ĉ be a singular complex analytic function. Then the phase portraits of

X(z) = − Φ(z)
Φ′(z)

∂
∂z provides the level curves of arg (Φ),

X⊥(z)
.
= −i Φ(z)

Φ′(z)
∂
∂z provides the level curves of − log |Φ|.

�

Remark 7 (Solution for the flow of X and no propagation of error along the trajectories of X).
The above theorem shows that we are not only visualizing the flow of the singular complex analytic
vector field, but we are in fact

completely solving the system of differential equations that define the flow



28 A. ALVAREZ–PARRILLA, J. MUCIÑO–RAYMUNDO ET AL

including parametrization of the singular complex analytic vector field X(z).
Contrast this with the usual visualization techniques where information relating to the parametriza-
tion is not observed.
Moreover, the solutions are exact up to the numerical round–off errors incurred by the precision of
the mathematical routines used in the implementation. In other words, there is no error propagated
along the trajectories of X.

6.2. The algorithms. Given a singular complex analytic vector field

X(z) = f(z)
∂

∂z
= −ΦX(z)

Φ′X(z)

∂

∂z
,

according to Theorem 1 and (24), we require the plotting of the level curves of the real valued
function ρ(z) = arg (ΦX(z)) = −Im (ΨX(z)).

This can be done both on the (complex) plane and more generally on the Riemann surface M .
Moreover, it will be convenient to plot strip flows5, where, given an interval [a, b) ⊂ R we define
the strip flow associated to [a, b) as

(25) B[a,b) =
{
z ∈M | ρ(z) ∈ [a, b)

}
⊂M.

In this way the border is the level curves ρ(z) = a and ρ(z) = b, which correspond to trajectories of
the singular complex analytic vector field X. Note that B[a,b) can be a multiply connected subset
of M .

In the following algorithm we present the case of M being either the plane C or the Riemann

sphere Ĉ, the case of a general Riemann surface is similar and is further discussed in §10.
We can use strip flows to visualize the streamlines on the plane or Riemann sphere, using the

following:

Visualization algorithm.
(p refers to the plane, s to the sphere.)

1) Partition R into intervals
{

[aι, bι)
}

and select a color Cι for each interval [aι, bι) of the
partition.

2p) Choose a rectangular region of the plane (say R = [xmin, xmax] × [ymin, ymax]) where the
visualization is to take place, and a window size of say N by M pixels, then subdivide the
rectangular region of the plane intoN×M rectangular regions of size ∆x = (xmax−xmin)/N
by ∆y = (ymax − ymin)/M , note that each of these rectangular regions corresponds to a
pixel on the window.

2s) A triangulation of the Riemann sphere is constructed using a recursive algorithm that
ensures that the triangulation is almost uniform (start with a octahedron with vertices on
the sphere and recursively add a vertex at the center of each triangle and then normalize
the vertex to obtain a better triangulation for the sphere, consult [13] for more details).

3p) For each rectangle of the subdivision of R (a pixel) calculate its center z ∈ R ⊂ C.
3s) For each triangle in the triangulation of the sphere, one finds the barycentre z∗ and using

stereographic projection we identify the corresponding z ∈ C.
4) We proceed to calculate ρ(z) (or ρ(z∗)).
5) Since R is partitioned into intervals ρ(z) ∈ [aι, bι) for some ι, we proceed to color the pixels

(triangles), on the plane (Riemann sphere), corresponding to z (or z∗) with the color Cι.

5A concept due to [9], see [5] §11.
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Remark 8. Note that steps (2p) and (2s) ensure that both the resolution on the rectangular region
R of the plane and on the Riemann sphere, are uniform.

6.2.1. Plotting specific level curves. Due to the fact that there are an infinite number of trajectories
intersecting a given zero, it is very easy to identify the zeros of the corresponding Newton vector
field.
However the actual position of the poles are not so easily identified: by the nature of the poles
(recall Proposition 2 and Example 4), a pole of order −κ ≤ −1 has exactly (2κ+ 2) separatrices.
Similarly, it was shown in [5] definition 4.11, that for essential singularities there exists trajectories
that are analogs of the separatrices of poles: the horizontal asymptotic paths that have as α or ω
limit set the essential singularity.

With the above in mind and recalling that singular complex analytic vector fields on Ĉ can not
have limit cycles, we then can make the following observation.

Remark 9 (Plotting separatrices and horizontal asymptotic paths). In order to correctly visualize
the phase portrait of singular complex analytic vector fields, it is convenient to plot
• the separatrices of a pole and
• the horizontal asymptotic paths for essential singularities,
i.e. specific trajectories of the field (that is specific level curves of the real valued function ρ).
Recall the classical ideas of L. Markus and H. Benzinger on the decomposition of the phase portraits
using the above kind of specific trajectories, [53], [9], more recently [16], [5] §11.

Suppose we want to plot a specific trajectory, say one that passes through or has α or ω limit set
a point z0 on the plane. Then by Theorem 1 we need to plot the level curve of ρ corresponding to the
value ρ0 = ρ(z0). Since the fundamental unit we are using for the visualization is the subdivision

by rectangles on the rectangle R ⊂ C (or the triangulation of the Riemann sphere Ĉ), we need to
color those rectangles (or triangles) that intersect the level curve. For this note that

• the function ρ̂(z, z0) = ρ(z)−ρ(z0) can be zero in the interior of a rectangle (triangle), even
though at the center (or barycentre) it could be different from zero,

• we only want to color rectangles (or triangles) that intersect the level curve ρ̂(z, z0) = 0.

To achieve this we have the following:

Visualization algorithm for specific level curves.

(1) Once again we find the center z of each rectangle (or the barycentre z∗ of each triangle),
as well as the maximum distance δ from the center (or barycentre) to each of the vertices.

Note that in the case of the plane, δ =
√

∆x2 + ∆y2, since the basic unit is a rectangle.
(2) Using the fact that the gradient of a real valued function points in the direction of maximum

growth, let ê = ∇ρ̂(z,z0)
|∇ρ̂(z,z0)| = ∇ρ(z)

|∇ρ(z)| be the unit vector that points in the direction of

maximum growth of ρ̂(·, z0) at z (or z∗). Note that ρ̂(·, z0) is a C∞ function since it is the

real part of an analytic function. In fact, ê = X⊥(z)
|X⊥(z)|

(
or ê = X⊥(z∗)

|X⊥(∗)|

)
.

(3) Recalling that the sign of ρ̂ changes if and only if ρ̂ assumes the value zero, we consider the
product

ρ̂(z + δê, z0) ρ̂(z − δê, z0),

and so the level curve ρ̂ = 0 intersects the rectangle (or triangle) if the above product is
less than zero, so we color the rectangle (or triangle) associated to z (or z∗) if this happens.

In this way those rectangles (or triangles) that intersect the level curve ρ̂ = 0 are colored.
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Remark 10. Note that the above algorithm:

(1) Is optimal with respect to resolution for the case of the plane: that is one obtains the
best possible observable resolution. If one would increase the size of the rectangular mesh
∆x×∆y one would observe pixelation, and if one decreases the size of the rectangular mesh
∆x × ∆y, then no gain in resolution would be observed, since the size of the rectangular
mesh would be smaller that the size of each pixel on the screen.

(2) Is not optimal for the case of the sphere: since in this case the actual observed resolution
will depend on the particular parameters (viewpoint, distance of the camera to the sphere,
etc.) used in the visualization of the sphere as a 3D object on the screen.

(3) However, given a specific resolution, the algorithms ensure that no error is made as to which
streamlines intersect the chosen basic rectangles (or triangles) that specify the resolution,
hence for the chosen resolution the visualization is the best possible.

6.3. Parallelization of the visualization algorithms. It is clear that this method is a prime
candidate for parallelization, due to the fact that the visualization scheme for a particular pixel
does not depend on the neighboring pixels6. Hence a simple parallelization scheme where blocks of
pixels are assigned to distinct processors can be readily implemented. An extensive analysis and
implementation of this is yet to be done and will be presented elsewhere.

7. Analytic recognition of the ramified covering ΦX

As was shown in the previous section, Newton vector fields benefit from the visualization scheme
just presented, and since all singular complex analytic vector fields are Newton vector fields, this
makes the visualization scheme presented much more appealing.

Of course one still has to be able to explicitly calculate the real valued functions ρ(z) and θ(z)
of Theorem 1 in order to make use of the method.

In this aspect, the first author et.al. shows in [4] that there is a large class of vector fields
meromorphic on the plane, for which it is possible to explicitly construct the ramified covering ΦX
characterizing the vector field as a Newton vector field (and hence ρ(z) and θ(z) of Theorem 1
can also be calculated explicitly). In the same work they show again by an explicit construction,
that all doubly periodic (elliptic) vector fields (and hence vector fields on the torus) for which it is
possible to analytically recognize the ramified covering ΨX (see §10.1.2 for an example of an elliptic
vector field).

We recall these results in this section. Let F be the family of functions that satisfy the require-
ments of Cauchy’s Theorem on Partial Fractions (see [4] for further details). Suppose that g ∈ F ,
denote by

Gk(z) =

Nk∑
j=1

ajk
(z − bk)j

,

the principal part of g(z) at the pole bk of order Nk; and let

Pk(z) =

p∑
j=0

ãjkz
j ,

denote the corresponding polynomials (in case p > −1). Then in [4] it was proved that:

6This type of parallelization is known as embarrassingly parallelizable.
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Theorem 6. Let f(z) ∈ F . Then there is a meromorphic (possibly multivalued) function

(26) ΦX(z) =

∞∏
k=1

[
(z − bk)−Akeqk

(
1

z−bk

)
eQk(z)

]
,

where qk(z) and Qk(z) are unique polynomials with qk(0) = 0 and Qk(0) = 0, such that

f(z) = −Φ′X(z)

ΦX(z)
.

�

As a quick, and illustrative, example of the explicit construction of the ΦX defining the Newton
vector field, we consider the case of rational functions: let

(27) f(z) = −p(z)
q(z)

with q, p ∈ C[z] without common factors, and p monic. In particular consider

(28) p(z) =

J∏
j=1

(z − zj)mj , q(z) = b

K∏
k=1

(z − sk)nk ,

where mj , nk ∈ Z and b ∈ C are constants.
We then obtain theorem 2.3 of [9] as a corollary of our Theorem 6 (for the particular case of

rational functions):

Theorem 7 (H. E. Benzinger [9]). f(z) is a rational function as in (27) that satisfies

f(z) = −ΦX(z)

Φ′X(z)

if and only if there exist unique polynomials Pj, with Pj(0) = 0, and unique constants Aj ∈ C,
j = 1, . . . , J , such that

(29) ΦX(z) = CeP0(z)
J∏
j=1

(z − zj)Aje
Pj(

1
z−zj

)
,

where C ∈ C is an arbitrary constant.

Since an alternative (direct) proof is instructive and short we provide a sketch of proof.

Sketch of proof. (⇒): Consider − 1
f = q

p , with p and q polynomials as described above. By Euclid’s

division algorithm we have that q
p = d + r

p , with d, r ∈ C[z] of degree less than that of p. Next

consider the partial fraction decomposition of r
p :

(30)
r(z)

p(z)
=

J∑
j=1

(
Aj1
z − zj

+

mj∑
k=2

Ajk
(z − zj)k

)
,

and then integrate explicitly so that finally by exponentiation and renaming Aj = Aj1 we have

(31) ΦX(z) = CeP0(z)
J∏
j=1

(z − zj)Aje
Pj(

1
z−zj

)
.

(⇐): This is an elementary calculation left to the reader. �
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We have then an explicit characterization, and more importantly, a method of calculating the
ΦX(z), in the case that the complex analytic vector field is defined by a rational function f(z). For
the more general case when f(z) is a meromorphic function, one uses the Mittag–Leffler expansion
instead of the partial fraction decomposition in the above sketch of proof. Note that if a residue of
dz/f(z) is not an integer then ΦX(z) is in fact a multivalued function.

As examples of these explicit calculations consider the following.

Example 12. 1. Let f(z) = z(2z−i)2
(2z+i)2 then we find that

q(z)

p(z)
=

(2z + i)2

z(2z − i)2
,

so that d(z) = 0 and by partial fraction decomposition and explicit integration

ΦX(z) =
e

4i
2z−i

z
.

This shows that the complex vector field

X(z) =
z(2z − i)2

(2z + i)2

∂

∂z

is a pullback of −w ∂
∂w via ΦX , hence it is a Newton vector field.

2. Of course we can also consider the opposite case: suppose we know that

ΦX(z) = e1/z(z − 1),

then we can find the rational vector field

X(z) = − z2(z − 1)

z2 − z + 1

∂

∂z
.

Example 13. The vector field

X(z) = − 1√
2 + 1

z(z − 1)

z −
√

2√
2+1

∂

∂z
,

is a Newton vector field that comes from pullback of −w ∂
∂w via

ΦX(z) = z
√

2(z − 1).

The elliptic case is handled via the following theorem, where σ and ζ are the Weierstrass sigma
and zeta functions respectively (see again [4] for further details)

Theorem 8. Let f(z) be an elliptic function with fundamental periods 2w1 and 2w3, let b1, ..., br be
the poles of f(z) in the fundamental period parallelogram. Suppose bk is of order βk, with principal
part

Gk =
A1k

z − bk
+ · · ·+ Aβkk

(z − bk)βk
(k = 1, ..., r).

Then f(z) = −Φ′X(z)
ΦX(z) , and in fact there exist constants C ′ and C such that

ΦX(z) = C ′e−Cz
r∏

k=1

σ(z − bk)−A1k exp

 βk∑
j=2

(−1)j
Ajk

(j − 1)!
ζ(j−2)(z − bk)

 .

�
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Example 14. The elliptic vector field

X(z) = − ℘(z)

℘′(z)

∂

∂z
,

is of course a Newton vector field with ΦX(z) = ℘(z).

8. Examples of the visualization of singular complex analytic vector fields on Ĉ

Let X(z) = f(z) ∂∂z be a singular complex analytic vector field on the Riemann sphere Ĉ. If f(z)
has only poles or zeros in C (f is meromorphic on C), then three cases arise:

(1) f(z) has a pole or a regular point at ∞ ∈ Ĉ, in which case f(z) is a rational function.

(2) f(z) has an essential singularity at ∞ ∈ Ĉ.

(3) ∞ ∈ Ĉ is an accumulation point of zeros or poles of f(z).

In all three cases one needs to find the ramified covering ΦX(z) explicitly and proceed to calculate
the real valued function ρ(z) = arg (ΦX(z)) in order to plot its level curves.

8.1. Rational vector fields on Ĉ. The first cases are handled as in §7, that is Theorem 7 provides
us with the explicit ramified coverings that allows us to visualize the corresponding vector field.

8.1.1. The case of X(z) = z(2z−i)2
(2z+i)2

∂
∂z . Considering Example 12.1, the phase portrait of the rational

vector field
X(z) = z(2z−i)2

(2z+i)2
∂
∂z

can be visualized in Figure 7, both in the plane C and on the Riemann sphere Ĉ. In this case we

have a simple zero at the origin, a double zero at i
2 , a double pole at − i

2 , and∞ ∈ Ĉ is a first order
zero.
An advantage of plotting strip flows is that it also provides us with information regarding the
parametrization of the solutions, hence for instance one can see that the trajectories that approach
the zero at i

2 are slow compared to the trajectories that approach the pole at − i
2 .

8.1.2. The case of X(z) = − z
2(z−1)
z2−z+1

∂
∂z . This corresponds to Example 12.2, that is the rational

vector field
X(z) = − z

2(z−1)
z2−z+1

∂
∂z .

In Figure 8 we present the visualization of the phase portrait. As can be observed the borders of
the strip flows correspond to streamlines of the field. We are also plotting some explicit trajectories
that pass through the poles (of order −1 at the roots of z2 − z + 1) and zeros (of order 2 at 0 and
of order 1 at 1 and ∞) of the vector field.

8.2. Singular complex analytic vector fields with an isolated essential singularity at

∞ ∈ Ĉ. As examples of analytic vector fields with an isolated essential singularity at ∞ ∈ Ĉ we

present the cases of X(z) = ez ∂∂z in Figure 9, and of X(z) = ez3
3z3−1

∂
∂z in Figure 10. They correspond

to Examples 10 and 11 so the covering maps are ΦX(z) = ee−z and ΦX(z) = e−ze
−z3

respectively.
Worth noticing is that visualization of the phase portrait of a vector field near an essential

singularity is rather difficult with the usual methods. This is due mainly to the fact that the
algorithms, involving numerical integration, propagate errors along the trajectories, and Picard’s
theorem tells us that near an essential singularity the vector field takes on all but at most two values

in Ĉ; hence numerical integration breaks down rather quickly near the essential singularity. Even
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Figure 7. Visualization of the field X(z) = z(2z−i)2
(2z+i)2

∂
∂z . (a) Shows a vicinity of

the origin and one can observe a simple zero at the origin, a double zero at i
2 , and

a double pole at − i
2 . (b) Shows the vector field on the Riemann sphere where one

can see a simple zero at ∞ ∈ Ĉ and an order 2 pole at − i
2 .

Figure 8. Visualization of the field X(z) = − z
2(z−1)
z2−z+1

∂
∂z . The borders of the strip

flows correspond to streamlines of the field. We have also plotted the separatrices
associated to the poles of the field.
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though numerical errors are also present in our visualization scheme (as can be seen in particular
in the case of Figure 10), these do not propagate along the trajectories, and are due solely to
the numerical accuracy of the routines used to evaluate the auxiliary function ρ(z). A deeper
exploration of these errors is presented in §9.

8.2.1. The case of X(z) = ez ∂∂z . In Figure 9 (a), we show the strip flows on the Riemann sphere

of the vector field X(z) = ez ∂∂z in a vicinity of the essential singularity at ∞. Notice that the
strips cluster together and it is difficult to appreciate the behavior of the vector field. On the other
hand, by plotting specific trajectories we can examine the behavior of the flow near the essential
singularity, and since the error does not propagate along the trajectory, we can visualize the actual
trajectories (see Figure 9 (b)).

Figure 9. Visualization of X(z) = ez ∂∂z near the essential singularity at ∞ on
the Riemann sphere. In (a) we have plotted the strip flows. In (b) we have plotted
some of the trajectories.

Once again, one can use the strip flows to gather information regarding the parametrization of
the flow. For instance, one can observe that even though the trajectories appear symmetrical in
Figure 9 (b), the strip flows in Figure 9 (a) indicate that the trajectories approach ∞ from the
right much faster: in fact in finite time7. This is a clear advantage over the results reported in [60]
where only the trajectories are observed.

7 As observed in [5] p. 198, the singular analytic vector field X(z) = ez ∂
∂z

has two asymptotic values associated

to the essential singularity at∞ ∈ Ĉz ; 0 and∞, each with its own exponential tract. The trajectories that approach
the essential singularity inside the exponential tract associated to the finite asymptotic value arrive in finite time
(these are the trajectories on the right in Figure 9 (b)), while the trajectories that approach the essential singularity
inside the exponential tract associated to the asymptotic value ∞ (trajectories on the left in Figure 9 (b)) take

infinite time to reach the essential singularity.
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8.2.2. The case of X(z) = ez3
3z3−1

∂
∂z . In Figure 10 (a) we show the phase portrait of the vector field

X(z) = ez3
3z3−1

∂
∂z in the plane C where we can observe the three first order poles at 1

3√3
, ei2π/3

3√3
and

e−i2π/3
3√3

, while in Figure 10 (b) the phase portrait of the same vector field is shown on the sphere

in a vicinity of the essential singularity at ∞ ∈ Ĉ.
As mentioned before, some numerical errors are still present (solid color regions near the essential

singularity) due to the nature of the essential singularity of f(z), but there seems to be a strong
suggestion of some pattern characteristic to the essential singularities. This last remark is explored
further in [5] and [7] from a theoretical viewpoint.

Figure 10. Visualization of X(z) = ez3
3z3−1

∂
∂z ∈ E (0, 3, 3). (a) Shows the field in

the plane in a vicinity of the origin where one can observe the three simple poles

at 1
3√3

, ei2π/3
3√3

and e−i2π/3
3√3

. (b) Shows the field on the Riemann sphere, one can

observe the essential singularity at ∞ and a simple pole at e−i2π/3
3√3

.

In particular, note that X ∈ E (0, 3, 3), hence ΨX is single valued, RX is an infinitely ramified

Riemann surface over Ĉt and πX,1 provides a global flow of X. For further details see [7], where the
combinatorial concept of (r, d)–configuration trees allows for an accurate description of the Riemann
surfaces RX . A very rough drawing of a generic RX is provided in Figure 11.

8.3. Singular complex analytic vector fields with an accumulation point at ∞ ∈ Ĉ. The

third case, that in which∞ ∈ Ĉ is an accumulation point8 of zeros or poles of f(z) is also of interest.
Here we present two examples:

8.3.1. The case of X(z) = − tan(z) ∂∂z . As was seen in Example 8, the ramified covering charac-
terizing this vector field is Φ(z) = sin(z). In Figure 12 we provide the visualization of the phase
portrait of X. Clearly we observe a sequence of alternating simple poles and zeros along the real

axis accumulating to ∞ ∈ Ĉ.

8 Note that∞ ∈ Ĉ is not an isolated essential singularity for X, however it is a non–isolated essential singularity,

both in the sense of its Laurent series expansion and in the sense that the conclusion of Picard’s theorem is still
satisfied.
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Figure 11. A sketch of a Riemann surface RX for X(z) =
λ

(z−p1)(z−p2)(z−p3)e
b0z

3+...+b3 ∂
∂z ∈ E (0, 3, 3) according to Diagram (12). The

horizontal plane is Ct, generically there are three finite asymptotic values
{a1, a2, a3} and three finite critical values {p̃1 = ΨX(p1), p̃2 = ΨX(p2), p̃3 =
ΨX(p3)}.

By plotting the separatrices associated to the poles we can immediately observe their position. It
should be noted that in this case the separatrices are also horizontal asymptotic paths associated

to the (non–isolated) essential singularity at ∞ ∈ Ĉ.

8.3.2. The case of X(z) = −(cosh(z) + 1) ∂∂z . The ramified covering that characterizes this vector

field is given by Φ(z) = e
ez−1

ez+1 , as was remarked previously in Example 9. The visualization of the
phase portrait of X is provided in Figure 13. We observe a sequence of order two zeros along the

imaginary axis accumulating to ∞ ∈ Ĉ.
Notice that X does not have any poles, hence there are no separatrices. However by plotting
some specific level curves we can observe some of the horizontal asymptotic paths associated to

the the (non–isolated) essential singularity at ∞ ∈ Ĉ. Thus the behaviour of the flow of X on

neighborhoods of ∞ ∈ Ĉ is better understood.

9. Comparison with usual integration–based algorithms

In this section we compare the proposed method with two of the most widely used integration–
based algorithms: namely with the 4th order Runge–Kutta (RK4) and the Runge–Kutta–Fehlberg
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Figure 12. The field X(z) = − tan(z) ∂∂z visualized in the complex plane and on
the Riemann Sphere, using the techniques described in the text. One can observe
a sequence of alternating simple poles and zeros along the real axis accumulating

to ∞ ∈ Ĉ.

Figure 13. The field X(z) = −(cosh(z) + 1) ∂∂z visualized in the complex plane
and on the Riemann Sphere, using the techniques described in the text. In this case
one observes a sequence of zeros of order 2 along the imaginary axis accumulating

to ∞ ∈ Ĉ.

(RKF) algorithms. We do not consider Euler’s method because it uses a first order approach and
its results are expected to be worse than those obtained by the Runge–Kutta algorithms.

As seen in §4.2, given a singular complex analytic vector field X(z) = f(z) ∂∂z the generic be-
haviour of the flow is different in the neighborhood of:
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(1) non–singular points of X(z),
(2) singular points of X(z), which are further subdivided as

(a) zeros,
(b) poles,
(c) essential singularities and
(d) accumulation points of the above types.

We compare the behaviour in cases (1), (2a), (2b) and (2c) above using

(A) two integration–based algorithms:
(i) 4th order Runge–Kutta algorithm (RK4),
(ii) Runge–Kutta–Fehlberg algorithm (RKF), and

(B) the Newton method proposed in this note.

The integration–based algorithms, RK4 and RKF, are usually used to solve first order ODE systems.
The RK4 is a constant step-size method whose implementation is very simple and well known,
however one does not have control over the error incurred. The Runge–Kutta–Fehlberg is an
adjustable step-size method which allows some control on the error9. This method is a combination
of the Runge–Kutta of order four and five, hence is also known as RKF45. For further information
and explicit implementations of these algorithms consult [12].

Since the Newton method proposed in this note provides us with exact solutions10 to the problem
of finding trajectories (including parametrization) of the flow of a given complex analytic vector
field, then it is possible to calculate the (absolute) error involved while using integration–based
algorithms:
Let z̃τ = z̃(τ) denote the trajectory that passes through z0 at time τ = 0 obtained using an
integration–based algorithm, and let zτ = z(τ) denote the exact solution obtained with the Newton
method. Then the absolute error incurred by the integration–based algorithm is given by

(32) AbsErr(τ) = |zτ − z̃τ | .
So, in order to calculate the error at time t one has to:

(1) calculate z̃τ using the integration–based algorithm,
(2) calculate zτ as the intersection of ρ(z) = ρ(z0) with θ(z) = θ(z0)− τ ,
(3) calculate the error using (32).

On the other hand, the error of the exact solution (i.e. the one obtained with the Newton
method) can be estimated by an indirect method as the relative deviation of the exact solution
given by

RelDevh(τ) =
|ρ(zτ )− ρ(z0)|
|ρ(z0)|

.

This measurement can be interpreted as the unit–less distance of the calculated point zτ from the
actual trajectory. Moreover using this indirect method, one can also measure the deviation that
the integration–based algorithms have from the exact solution by calculating the relative error of
the integration–based solution as:

RelErrorh(τ) =
|ρ(z̃τ )− ρ(z0)|
|ρ(z0)|

.

9In the RKF algorithm the error is controlled by decreasing the step–size of the recursive algorithm, hence
increasing the computational requirements.

10 Recall that the solution is exact up to the numerical error incurred in the evaluation of the constants of motion
ρ and θ.
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These last two measurements can be used to compare side by side the solution obtained by the
Newton method and the integration–based methods.

9.1. Results of the comparison. We compared the associated errors obtained by the usual
integration methods vs. the exact solution obtained with the proposed methodology; also the
CPU time used by the different approaches is reported.

In all cases we restricted our analysis to a rectangular region of the plane, since to visualize the
results on the Riemann sphere stereographic projection is used independently of which visualization
method is chosen, hence this restriction does not affect the comparison results.

This was done in neighborhoods of: a regular (R) value of the flow, a zero (Z) of f , a pole
(P) of f , and an essential singularity (E) of f . The different errors

(
AbsErr(t), RelDevh(t) and

RelErrorh(t)
)

were plotted as a function of τ in a vicinity of τ = 0 resulting in Figures 14 (a), 15

(a), 16 (a), 17 (a) for the case of the 4th order Runge–Kutta algorithm; and in Figures 14 (b), 15
(b), 16 (b), 17 (b) for the case of the Runge–Kutta–Fehlberg algorithm. As for a measure of
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Figure 14. Comparison of the errors in a vicinity of a regular point obtained
(a) when using the 4th order Runge–Kutta algorithm, and (b) when using the
Runge–Kutta–Fehlberg algorithm. The vector field exp(z) ∂∂z was used with initial
condition z0 = iπ2 .

the computational resources, we report the CPU time used by the algorithms in calculating the
trajectories. In order to have a more realistic scenario, we measured the time it took to calculate
the trajectories starting at 5 different initial conditions z0 in each vicinity and report the average
times obtained. We report these times for each of the different generic neighborhoods in Table 2.
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Figure 15. Comparison of the errors in a vicinity of a zero obtained (a) when
using the 4th order Runge–Kutta algorithm, and (b) when using the Runge–Kutta–
Fehlberg algorithm. The vector field z4 ∂

∂z was used with initial condition z0 = i
2 .

Table 2. Average CPU time (measured in seconds) used for the calculation of
5 selected trajectories with the distinct algorithms, and for the calculation of the
complete (global) field. The integration-time interval chosen was 500 time units.

Time in seconds Time in seconds Time in seconds Time in seconds

Type of using Newton using 4th order using RKF for the calculation

neighborhood method RK4 algorithm algorithm of the global field

regular point (R) 0.026 0.042 0.252 0.844

singular point (Z) 0.591 0.892 0.312 0.884

singular point (P) 0.492 0.627 0.312 0.887

singular point (E) 0.420 0.652 0.358 0.830

9.2. Discussion of the results of the comparison.

9.2.1. Error comparison. As a result of examining Figures 14 thru 17, one first notices that the
Newton method proposed in this note has a very small error as can be observed on the graphs
of the relative deviation from the exact solution which in all cases but one remains below 10−15.
Even in the case of the vicinity of an essential singularity (E) the relative deviation remains below
10−11 which is at least 6 orders of magnitude better than the same case with the use of integration–
based techniques. The reason for this difference can be attributed to the fact that in a vicinity of
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Figure 16. Comparison of the errors in a vicinity of a Pole obtained (a) when
using the 4th order Runge–Kutta algorithm, and (b) when using the Runge–Kutta–
Fehlberg algorithm. The vector field 1

z
∂
∂z was used with initial condition z0 =

− 1
2 − i

1
2 .

an essential singularity the vector field has a mixture of behaviours as is further explained in (4)
below.

As for the errors incurred by the integration–based algorithms, there is a marked difference in
the different generic cases:

(1) In the neighborhood (R) of a regular point of the flow, the errors are very small: the relative
deviation (that is the relative difference in the calculated value of the constant of motion
ρ(z) versus the value ρ(z0)) is less than 10−15, while the relative error and the absolute
error in the RK4 case is of the order of 10−11, and 10−14 in the RKF case. Hence, even
when there is a difference of 3 orders of magnitude between the RK4 and the RKF case,
there is only one order of magnitude difference between using the RKF algorithm and the
Newton algorithm, in fact in this case the errors observed are mainly due to the numerical
precision employed in the calculations.

(2) In the neighborhood (Z) of a zero of X(z), the errors are in fact smaller than those encoun-
tered in a vicinity of a regular point: the absolute error is of the order of 10−15 in both the
RK4 and the RKF case, while the relative error and deviation differ only by one order of
magnitude (even though there is a factor of 2 between the relative error of the RK4 and the
RKF case). This small difference is due to the fact that the trajectories are approaching a
zero, hence the trajectories tend to converge.
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Figure 17. Comparison of the errors in a vicinity of an isolated essential singular-
ity obtained (a) when using the 4th order Runge–Kutta algorithm, and (b) when
using the Runge–Kutta–Fehlberg algorithm. The vector field −z2 exp( 1

z ) ∂∂z was
used with initial condition z0 = 0.1− i0.066.

In fact, in this case, the integration–based algorithms need longer integration times (hence
larger computational requirements) in order to visualize the trajectories as they approach
the zero. The higher the order of the zero, the longer the integration times needed to obtain
the same “quality” in the visualization.

(3) In the neighborhood (P) of a pole of X(z), the errors behave pretty much as in the case of
a regular point, except in the vicinity of τ = 0, where they increase quite noticeably. This
is due to the fact that since the initial point z0 of the trajectory is the closest point (on the
trajectory) to the pole, this is where the values of the vector field are largest, and hence
near this point is where the integration–based algorithms may fail.

(4) In the neighborhood (E) of an essential singularity of X(z), the errors respond in a more
complicated manner, since we have a mixture of behaviours. This is expected on the
following grounds: from an analytical viewpoint, one has by Picard’s Theorem that the
vector field takes on all but possibly one value in C infinitively often in any neighborhood
of the essential singularity, hence one expects to observe regions of behaviour similar to a
pole, regions with the behaviour of a zero, and regions with behaviour similar to a regular
value, all intermingled in a continuous (in fact analytical) way.
In this case the observed errors are quite big in the case of the RK4 algorithm, mainly
because almost immediately the calculated trajectory “jumps” to another trajectory that is
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far from the original one. This can be seen in the relative error, where one observes that the
relative error is constant for most of the backward and forward trajectory but the calculated
value of ρ(z) is very different from the original one ρ(z0). This same phenomena occurs in
the case of the RKF algorithm, but on a much smaller scale. On the other hand, as was
already observed, the relative deviation from the exact solution remains below 10−11, that
is the Newton technique is quite accurate.

9.2.2. CPU time. Due to the very different nature of the integration–based algorithms and the
Newton method proposed, it is rather cumbersome to actually compare the computational resources
that each algorithm utilizes to visualize a given trajectory. This phenomena is due to the fact that
the CPU time used when visualizing with the integration–based algorithms is directly dependent
on the integration time, which in turn depends on the parametrization (speed) of the trajectory.
For instance, for a trajectory that approaches a zero (Z) of the vector field, the usual methods need
a very long time interval in order to visualize the phase portrait (because as time advances, the
trajectories are slower), in the case of a trajectory that approaches a pole (P), the opposite is the
case.

On the other hand the Newton method does not have this limitation: one of the advantages of
the Newton method, lies in the fact that one visualizes the complete trajectories corresponding to
the value ρ(z0) that lie in the chosen region. When visualizing using the Newton method the time
interval does not matter.

In any case, as can be observed on Table 2, the CPU time employed to calculate the trajectories
behaves differently in the different generic cases: Apparently the usual integration–based techniques
are faster when there are no critical values of the flow, yet as soon as one approaches a critical value
of the flow the Newton method is faster than the integration–based methods. Moreover we can see
an increase in CPU time in the case of the RKF method when compared with the RK4 method. It
should be noticed that even though the CPU time required for the Newton method is basically the
same in all scenarios, this is not the case for the RK4 and or the RKF algorithms.

It should be noticed that the CPU time taken to calculate and visualize the complete field is just
3 to 4 times longer than the CPU time required for visualizing a single trajectory.

Also we would like to point out that another disadvantage that the usual integration–based
methods have and that the proposed method does not, is that in a small enough vicinity of an
essential singularity the usual methods stop working, but our proposed method provides a clear
visualization of the phase portrait (see Figure 18). This is mainly because convergence fails, even
with the RKF algorithm, near an essential singularity.

9.3. Implementation. All of the algorithms described (including the visualizations in Figures 8
thru 13 and Figure 18) were implemented using C++ and OPENGL on Mac OS X 10.5 running
on a 2.16 Ghz Intel Core 2 Duo processor with 2 GB of DDR2 SDRAM.

Remark 11. The algorithms were implemented in C++ on the Mac OS X 10.5 in order to do an
accurate comparison between the usual integration methods. However, we have developed a version
of the software readily available in JAVA with a function parser that can accept either

(a) rational vector fields X(z) = f(z) ∂∂z with f(z) = p(z)
q(z) , p, q ∈ C[z], or

(b) a distinguished parameter ΨX(z) =
∫ z 1

f(ζ)dζ, with f(z) a singular complex analytic func-

tion.
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(a)

(b)

(c)

Figure 18. In this figure we have plotted the trajectories corresponding to 18
initial conditions for the vector field z2 exp( 1

z ) ∂∂z in a vicinity of the essential sin-
gularity at 0. In (a) the trajectories were obtained using the RK4 algorithm, in (b)
using the RKF algorithm, and in (c) with our proposed algorithm. In (a) and (b)
the trajectories where plotted for forward and backward time. The initial condi-
tions can be identified in (b) as the place where the trajectories change from gray
to dark grey.
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This way we can visualize the singular complex analytic vector field X(z) = f(z) ∂∂z both on the

Riemann sphere Ĉ and on a user specified rectangular region of the plane C. This was done so that
the software could be accessible to a wider audience. The latest version can be found at
https://www.dropbox.com/sh/xfuor27nf820mwo/AAACyp0EsGx6Ain49VgUWRFMa?dl=0

10. Generalizations and open problems

In this section we present several directions that are natural to follow. We start by generalizing
the techniques and method to closed Riemann surfaces. In particular, we present an example of a
vector field on the torus visualized with the Newton method presented in this note.

We further present some ideas and an overview of how this can work for vector fields in Rn,
generalizing to differential manifolds of dimension n, and finally presenting some open (and natural)
questions. Some of these problems are currently being explored by the authors and will be presented
elsewhere.

10.1. Generalizing to analytic vector fields on Riemann surfaces. In order to actually
implement the visualization of singular complex analytic vector fields on Riemann surfaces with the
Newton method there are two obvious alternatives: using charts of the Riemann surface; and using
invariant vector fields.

10.1.1. Visualization using charts. An immediate generalization of what has been presented is to
visualize singular complex analytic vector fields on Riemann surfaces by using the charts associated
to the Riemann surface. Note that in fact we have already done so specifically for the case of the
Riemann sphere using Stereographic Projection.

The idea is simple: using charts one can do the visualization on the image in C of the chart and
then return it to the Riemann surface with the inverse map of the chart (as was explained, in the
case of the Riemann sphere, in §6.2).

Thus to generalize the method described above to Riemann surfaces, it is enough to take the

singular complex analytic vector field X̃ defined locally in M and by pushforward with the coor-

dinate of the chart fα, find the singular complex analytic vector field X = fα∗X̃ in C. Since this
field is a Newton vector field (by Theorem 5) then we can proceed to calculate its trajectories in C
and finally take them to M using f−1

α , thereby solving the case of Riemann surfaces.
Note that this approach also works with the usual integration–based techniques, and with other

vector field visualization techniques as well. In fact in [45] they use this approach to visualize
vector fields on “arbitrary surfaces”, using a texture-based approach. One of the problems that
they encounter, and deal with effectively, is that visual artifacts appear when passing from one
parametrization to another (that is when visualizing the vector field in Uα ∩ Uβ via f−1

α or when

visualizing the vector field using f−1
β ). This problem is expected to be present if using direct–flow

visualization and geometric flow visualization techniques as well.

10.1.2. Visualization using invariant vector fields. In this case the idea is to use the fact that closed

Riemann surfaces M can be modeled as the quotient of the universal cover M̃ of M with a subgroup

Γ of the automorphism group, Aut(M̃), of M̃ , i.e.

M = M̃/Γ.

Then a complex vector field on M̃ of the form

(33) X̃(z) = f̃(z)
∂

∂z
,

https://www.dropbox.com/sh/xfuor27nf820mwo/AAACyp0EsGx6Ain49VgUWRFMa?dl=0
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with f̃(z) invariant under the group Γ∗, where Γ∗ denotes the group action of Γ on the tangent
vector bundle as in Lemma 2, descends to a complex vector field X([z]) on M . Thus visualizing

X̃(z) on M̃ is equivalent to visualizing X([z]) on M .

By the uniformization theorem of closed Riemann surfaces, M̃ is either the Riemann sphere Ĉ,
the complex plane C, or the hyperbolic plane H = {z ∈ C : Im (z) > 0}. Furthermore, the first two
cases produce only one more family of orientable Riemann surfaces: tori or Riemann surfaces of
genus g = 1 (which arise from considering the group Γ generated by two non–collinear translations
on C). The third case produces a plethora of orientable Riemann surfaces, all of whom have negative
curvature (Riemann surfaces of genus g > 1).

In the case of tori, the class of functions which are invariant under the action of the automorphism
group of a torus are called elliptic functions and have been extensively studied. In particular recall
(see §7) that the first author has previously shown that all elliptic vector fields are in fact Newton

vector fields [4], by showing that an elliptic function f(z) can be expressed as a quotient − Φ(z)
Φ′(z) ,

for an explicitly constructed Φ in terms of Weierstrass σ and ζ functions (and their derivatives).
Thus one can apply the techniques introduced in this paper and reduce the problem of visualizing
the vector field to that of visualizing the level curves of ρ(z) = arg (Φ(z)).

As an example, in Figure 19 the elliptic vector field

(34) X̃(z) = − ℘(z)

℘′(z)

∂

∂z
,

is visualized using the techniques described in this note: the strip flows of ρ(z) = arg (℘(z)) are
plotted in Figure 19 (a), moreover the corresponding vector field on the torus is visualized in
Figure 19 (b). It should be noted that the vector field given by (34) was previously studied by
G. F. Helminck et al., see [36] for further details. In particular they showed that up to conjugation
the family of vector fields of the form (34) consist of three classes characterized11 by the form of
the parallelogram spanned by the parameters ω1, ω2 defining12 ℘(z). They visualized a couple
of trajectories using a 4th order Runge-Kutta integration algorithm for the case corresponding to
ω1 = 1, ω2 = 1

4 + 5
4 i, compare Figure 19 (a) with [36] figure 8. In the case of Riemann surfaces

of genus g > 1, a similar scheme will work: the Γ–invariant vector field X̃(z) given by (33) (which

is characterized by the Γ–invariant function f̃(z) which is analytic on H\S, where S is a discrete
set) will be meromorphic in C, and hence one will be able to explicitly represent them as Newton
vector fields. Since the characterization of the Γ–invariant meromorphic functions, for the case of
genus g ≥ 3, is a whole subject on its own13, the visualization of vector fields on Riemann surfaces
of genus g ≥ 3 is left for future work.

10.2. Generalizing to vector fields in Rn. In this direction there is already some work reported
in the literature: in 1988 S. A. Burns and J. I. Palmore [18] presented a generalization of some of the

11 The three types of behaviour are related to structural stability and the underlying lattice: if the underlying
lattice is non–rectangular the Newton vector field is structurally stable, otherwise the Newton vector field is not

structurally stable and there are two options for the underlying lattice, square and rectangular but not square. Up

to conjugacy these are all the options available.
12 The Weierstrass ℘–function is in fact characterized by the lattice Ω(ω1, ω2) with basis {ω1, ω2} ⊂ C such that

ω1/ω2 6∈ R. It can be proved that ℘ is doubly periodic with periods precisely ω1 and ω2. See [36] and references
therein for further details.

13The Γ–invariant functions in this case are known as automorphic functions and have very interesting applications
to number theory, amongst other things.
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(a) (b)

Figure 19. Visualization of the elliptic vector field X̃(z) = − ℘(z)
℘′(z)

∂
∂z . (a) on the

plane and (b) the corresponding vector field on the torus. The basis {ω1, ω2} ⊂ C
for the underlying lattice Ω(ω1, ω2) is {ω1 = 1, ω2 = 1

4 + 5
4 i}.

techniques they developed in [62], to some vector fields in Rn. In §10.2.1 we present an overview of
these techniques and mention some of its limitations.

An alternative generalization that is based upon the present work, but uses commutative algebras
with unity, instead of the complex number field, is outlined in §10.2.2.

10.2.1. Vector–valued Newton method in Rn. Since the results presented in this section have been
published elsewhere (see [62], [18]), we only give a rough sketch of the steps that need to be followed,
without going into the details.

Given a differentiable function F : Rn → Rn, locally one–to–one, and with a differentiable
inverse, then F defines the following vector field

H(x) = − [DF (x)]
−1
F (x),

where DF (x) is the Jacobian matrix of partial derivatives. This vector field is known as the Newton
vector field associated to F .

On the other hand, given a vector field H(x), it is possible to show that in a neighborhood of a
regular point x0 of H with H(x0) 6= 0, there exists F : Rn → Rn such that H is the Newton vector
field associated to F . Also, H and F satisfy

(35) DF (x)H(x) = −F (x).

This last equation, as in the complex case, is intimately linked to the solutions of

(36)
dx

dτ
= H(x),

since if x(τ) satisfies

F (x(τ)) = e−(τ−τ0)F (x(τ0)),
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then x(τ) is a trajectory solution of (36). Hence, by considering F = (F1, F2, · · · , Fn) and H =
(H1, H2, · · · , Hn) the relation (35) can be re-written as

H(x) · ∇Fi(x) = −Fi(x), i = 1, 2, · · · , n.

so by proposing that the Fi be of the form Fi = exp [Gi] one has

H(x) · ∇Gi(x) = −1,

and each difference Gij = Gi −Gj satisfies

H(x) · ∇Gij(x) = 0,

so that the Gij are constant on the trajectories of dx
dτ = H(x).

Note that in this case, as opposed to the complex case, one still has to solve a system of differential
equations to find the auxiliary functions Gij , but these equations are usually much simpler to solve
than the original ones that define the trajectories and that are solutions to (36). In a couple of cases
examined in [62], [18] these auxiliary functions Gij can be found, but there is no known technique
that works in general.

10.2.2. Generalized analytic functions and the Newton method. An alternative to the previous
method that will work for a large class of vector fields has been presented by some of the au-
thors in [8]. It is based upon the notions of generalized analytic functions: the basic idea is that
under certain conditions one may define a commutative algebra with unity of dimension n. More-
over, the differentiable functions of the algebra satisfy certain “Cauchy–Riemann equations”, in an
analogous manner as the case of the usual analytic functions over C (hence these functions are also
called generalized analytic functions).

Once this commutative algebra with unity is defined, one can develop an analog of analytic
function theory for these generalized analytic functions, so that finally the scheme presented in this
note can be carried over to the algebra, providing a framework where the generalized analytic vector
fields can be visualized by the same techniques.

For instance in the case of dimension 2, the class of vector fields for which this generalization
will work, includes the real valued vector fields

F (x, y) = u(x, y)
∂

∂x
+ v(x, y)

∂

∂y
,

whose Jacobian matrix of partial derivatives is of the form AJA−1, where A is an invertible matrix
and J is a matrix in one of the following normal forms(

a b
−b a

)
,

(
a b
0 a

)
,

(
a 0
0 b

)
.

Further work related to vector fields in this direction can be found in [24].

10.3. Generalizing to vector fields on differentiable n–dimensional manifolds. Once the
issue of visualizing vector fields in Rn is solved, an immediate option is to generalize this to dif-
ferentiable n-dimensional manifolds, once again using the charts associated to the differentiable
manifolds, or by using invariant vector fields on the universal cover. The description is completely
analogous to the one given in §10.1.1 and §10.1.2, so we omit it.
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11. Application: Visualizing complex functions

As an application of the proposed geometrical method for visualizing singular complex analytic
vector fields, we look into the problem of visualizing complex functions.

The naive approach of visualization of complex functions by their graph fails on account of a
simple dimension count: the domain and range of complex functions require two real dimensions
each, thus the graph is simply a (real) two dimensional surface embedded in (real) four dimensional
space. This is not easy to visualize because of our natural limitation to visualize (real) three
dimensional space. Thus it is not surprising that complex analysis has made huge advances with a
symbolic/algebraic approach.
However, with the advent of computers and the ease of use of them as tools for visualizing mathe-
matical objects, there has been a dramatic increase in the geometrical aspects of complex analysis.
In particular, a related topic with beautiful images is the iteration of complex functions. As far
as we know, it was B. Mandelbrot who first considered images of iterations, introducing what is
now known as the Mandelbrot set [52]; later on the work of R. L. Devaney (see [3] §4, and [22]),
P. Blanchard [11], J. Milnor [55] and many others, made iteration of complex functions known to a
much wider audience. Nowadays this is an area of intense and very productive research.
For the visualization of complex functions, a starting point which includes diverse articles, course
materials and applets is “Websites related to Visual Complex Analysis” [73].

In this section we do a quick review of some of the more common visualization techniques,
emphasizing what exactly each technique can or can not do. One wishes to be able to distinguish
zeros and poles (with their respective order/multiplicity), critical points and other singularities, in
particular essential singularities.
Understanding essential singularities is much more involved than the case of zeros and poles; a
reasonable first step can be found in [5], where the particular case of isolated essential singularities
arising from logarithmic branch points over a finite asymptotic value a ∈ C is studied. In the cited
work, angular sectors associated to the germ of a singular analytic vector field about an isolated
essential singularity are introduced; very roughly speaking each of these new entire angular sectors
consists of an infinite collection of hyperbolic and elliptic angular sectors, see Figures 7 and 8 of
this work and figures 1, 2, 3 and 5 of [5].
Warning: Our discussion related to essential singularities in this section is restricted to isolated
essential singularities arising from logarithmic branch points over finite asymptotic values {a} ⊂ C.

Many other families of essential singularities exist, for example ∞ ∈ Ĉ for trigonometric functions,
functions that have non conformal punctures etc., see [32] and [34].

11.1. Image of regions under f(z). A classical approach investigates images of specific curves
(and regions) under the mapping f(z). Even though this is part of any introductory course in
complex analysis and is essential for gaining an intuitive grasp of elementary functions, it is hard
to implement with more general complex functions. For some readily available free software see [2],
[54] and for some commercial software see for instance [46].

As an example of this technique, in Figure 20 we visualize the rational functions f1(z) = z3−1
z2

and f2(z) = z2

z3−1 using the image of a square region of C. As it is clear from this example, by
pushing forward the image, the result is a multivalued map which makes it difficult to “read–off”
the information regarding the map. This technique works best with small domains.

Advantages: easy to understand and present, even in elementary courses.
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Figure 20. Example of the rational functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1

visualized using the image of the square region [−2, 2]× [−2, 2] ⊂ C.

Disadvantages: hard to implement for general complex functions, moreover it is not easy to
“read” the information regarding the function.

11.2. Tilings a la Klein. To avoid the previously encountered difficulty, it is possible to use the
pullback. In this direction, a technique pioneered, as far as we know, by F. Klein in his “Protokolle”,
see [41] and [20], is the following.

Let f : Ĉz −→ Ĉw be a complex analytic function, and let

Rf = {w0, w1, . . . , ws} ⊂ Ĉw
be its set of ramification values, and

Cf = {c0, c1, . . . , c`} ⊂ Ĉz
its critical set. The simplest case is when f is a rational function (moreover, the method applies
for more general classes of functions).

Secondly, let γ ⊂ Ĉw be an oriented Jordan path running through Rf . Then Ĉw\γ is the union of
two open simply connected domains.

Recognizing Ĉw\γ as a two color tiling of the sphere, the pullback f∗γ determines a second tiling

Ĉz\f∗γ. That is

(f, γ) −→ f∗γ.
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For example if f is a rational function of degree d, the number of tiles in Ĉz\f∗γ is 2d. In Figure

21 we visualize as an example the rational functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1 .

Figure 21. Example of the rational functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1

visualized with tilings a la Klein. In both cases there are four critical points and
four critical values.

It is to be noted that unless the poles and zeros of the function f are critical points, the poles
and zeros will be undistinguishable by this technique.

Table 3. Interpretation of tilings of f∗γ

Function f Tiling of f∗γ

z0 is a simple
zero of f

z0 is a simple
pole of f

z0 is an isolated essential z0 is a vertex of the tiling
singularity of f with infinite tiles bordering it

z0 is a critical point z0 is a vertex of the tiling
of order k with 2k tiles bordering it
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Advantages: the procedure can be done by hand: for rational functions it is simple. However, it

also works for infinite ramified coverings f : M −→ Ĉ.
Disadvantages: considers the critical points (that can be regular points) of f , not the zeros or

poles. Depends strongly on the choice of γ, in fact the method “visualizes” pairs (f, γ): changing
γ for fixed f determines very different tilings.

11.3. Analytical landscapes. Another traditional concept for visualizing complex functions is
the so called analytical landscape, apparently introduced by E. Maillet [51] in 1903, which basically
is a graph of the absolute value |f(z)| of a complex function f(z),

f(z) −→ {(z, |f(z)|) | z ∈ C}.

Of course, even though useful, not all the information of the function f(z) could be conveyed: the
argument of f(z) was lost. However by drawing also the lines of constant argument this could be
solved. Even better, by use of colormaps it is possible to draw colored analytic landscapes where
isochromatic lines correspond to lines of constant argument. See Figure 22.

However, there is an inherent difficulty of reading off the information related to the function
f(z) when some of the essential parts might be hidden in the valleys behind the mountain rims or
covered by towers of poles.

Advantages: useful, particularly the colored analytical landscapes since it contains complete
information of the function f(z).

Disadvantages: inherent difficulty reading off the information related to the function, since it is
a three dimensional image projected onto two dimensions.

In these situations, the best one can do is to view the colored analytic landscape straight from
the top. The result is a flat color image sometimes called the phase portrait of f(z), representing
the color coded phase or argument of f(z),

f(z) −→ arg (f(z)) .

According to E. Wegert [72], the phase is better suited than the modulus to understand a function
and to reconstruct the properties of f(z). This alternative approach using colormaps for coloring
the domain of f(z) is called domain colorings.

11.3.1. Domain colorings. The main idea is to pullback the color, i.e. assign a color to each point
of the range of f(z) and then color each point z of the domain of the function according to the
color of its image f(z). Apparently these were first used in the WWW by F. Farris [23].
A very common colormap is to use the polar form of complex numbers to assign a color to each

point on the range Ĉ; the magnitude is assigned an intensity or brightness (0 is assigned black, ∞
is assigned white, or vice versa), while the argument is mapped to a “rainbow” color wheel using
the polar form of complex numbers. It is clear that phase portraits are a special form of domain
colorings where the modulus of f(z) is ignored.

Let us look a little more in detail on how phase portraits of functions convey the information
related to the function f(z). An order s zero of f(z) is seen as a rainbow color wheel repeated exactly
s times around the placement of the zero, with the color wheel following the same arrangement
as in the range about the origin. On the other hand, an order −κ ≤ −1 pole of f(z) is seen as
a rainbow color wheel repeated exactly κ times around the placement of the pole, with the color
wheel following the opposite arrangement as in the range about the origin. In other words, if we do
not know the color map associated to the range it is impossible to distinguish between a pole and
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Figure 22. Example of the rational functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1

visualized with the colored analytic landscape technique.
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a zero; this same idiosyncrasy appears also when we have a gray colored image. See Figure 23 for

an example of a phase portrait for the two functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1 .

Figure 23. Example of the rational functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1

visualized by their phase portrait. It is impossible to distinguish a pole from a zero
unless we know beforehand the colormap used. Note that the order of the pole or
zero is distinguished by the number of repeated color wheels around the pole or
zero.

Identifying isolated essential singularities and/or accumulation points of poles, zeros or essential
singularities is easy: they are characterized by the fact that any neighborhood of the singularity
intersects infinitely many isochromatic lines of the same color, see [72] p. 181.
On the other hand, since critical points are precisely where conformality is lost, critical points of f
are located where isochromatic lines form saddle points.
In Table 4 we summarize the above information.

Table 4. Domain coloring: Interpretation of phase portrait of f

Function f Phase portrait of f

z0 is an order s ≥ 1 rainbow color wheel
zero of f repeated exactly s times around z0

z0 is an order −κ ≤ −1 opposite rainbow color wheel
pole of f repeated exactly κ times around z0

z0 is an isolated essential any neighborhood of the singularity
singularity of f intersects infinitely many isochromatic lines

of the same color
z0 is a critical point the isochromatic lines form a saddle

Advantages: easy to implement, essential singularities are easily distinguished.
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Disadvantages: impossible to distinguish between a pole and a zero if the color map associated
to the range is unknown.

11.4. Visualizing complex functions via the phase portrait of vector fields. The following
methods use the phase portraits of certain vector fields to visualize complex functions. In order to
plot the phase portrait we use the methodology developed in the preceding sections, particularly
§6. A useful interpretation is expressed by the following diagram between complex analytic sections
of trivial, cotangent and tangent holomorphic line bundles over M

(37) F (z) −→ dF = F ′(z) dz −→ 1

F ′(z)

∂

∂z
.

Thus the real trajectories of 1
F ′(z)

∂
∂z are paths whose image under F (z) are horizontal lines; in other

words the horizontal trajectories of the quadratic differential (F ′(z))2 dz2.
Note that because of (24), when using the techniques developed in this work for visualizing

singular complex analytic vector fields X(z) = f(z) ∂∂z , we have the option of using Ψ(z) or Φ(z).

11.4.1. Visualizing f(z) on C via Xf (z) = f(z) ∂∂z or P̃f (z) = 1
f(z)

∂
∂z . In their classic work “Com-

plex Variables” G. Polya and G. Latta propose the use of vector fields to visualize complex functions
f(z) on the complex plane C, see [64] p. 61. Specifically, they propose the use of what is now known
as the Polya vector field

f(z) −→ Pf (z) = f(z) ∂∂z .
They use the Polya vector field as opposed to the more immediate vector field

f(z) −→ Xf (z) = f(z) ∂∂z ,
because Polya’s vector field has the following physical interpretation: a complex function f(z) is
analytic in a region D ⊂ C if its Polya vector field is differentiable, divergence free and curl free
throughout the region D. A further advantage is that Polya’s approach can also be used to visualize
and estimate complex integrals. In this direction recently, B. Braden contributes to the Polya vector
field interpretation of complex integrals, see [15].
However, it is to be noted that the Polya vector field Pf (z) is not a holomorphic vector field on

D ⊂ C; it is anti–holomorphic. This can be circumvented by recalling first that f(z) = |f(z)|2
f(z) and

secondly that multiplying a vector field by a non–vanishing scalar factor does not alter the phase
portrait, it just changes the parametrization. Hence we introduce the following.

Definition 5. Given a complex valued function f(z) on D ⊂ C, a priori C0, considering the
operator

(38) f(z) −→ P̃f (z) =
1

f(z)

∂

∂z
,

the image is the normalized14 Polya vector field of f .

Note that, if f(z) is a complex singular analytic function then P̃f (z) is a complex singular analytic
vector field with the same phase portrait (but a different parametrization) as the usual Polya vector
field Pf (z).

In 1996, T. Newton and T. Lofaro [60], use Xf (z) = f(z) ∂∂z to visualize functions of a complex
variable f(z); including f(z) = ez on the Riemann sphere. They use Runge–Kutta–Fehlberg

14This parametrization is precisely the one that makes complex time have norm one in the metric provided by
the pullback of the flat metric (C, δ) under Ψ(z) =

∫ z f(ζ) dζ.
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RKF4(5) integration based techniques to plot the flow or phase portrait of Xf (z). Also, T. Needham
[59], champions the use of vector fields for visualizing complex functions; however he does not
propose any particular implementation and/or discuss visualization techniques for vector fields.

Visualizing complex functions f(z) on C by plotting the phase portrait of Xf (z) or P̃f (z) provides
the following mayor advantage. Because of the normal forms for meromorphic vector fields, see
Proposition 2 and Figure 2, poles and zeros of vector fields are unequivocally recognized (including
their order) via the topology15 of the phase portrait, even without color plots. For examples see
Figures 7, 8 and 24.

Figure 24. Example of the rational functions f1(z) = z3−1
z2 and f2(z) = z2

z3−1 vi-

sualized as Xf1(z) = f1(z) ∂∂z and Xf2(z) = f2(z) ∂∂z respectively. In this case there
is no problem distinguishing between the two functions and all the information can
be read from the plots. Note that the phase portrait of Xf1(z) and Pf2(z) are the
same (with a different parametrization), similarly Xf2(z) and Pf1(z) have the same
phase portrait.

The phase portraits of singular analytic vector fields with isolated essential singularities arising
from logarithmic branch points over finite asymptotic values {a} ⊂ C, can with distinguished by
the presence of entire angular sectors, see [5] §5.2 for the appropriate definitions. Examples can be
found in Figures 9, 10 and more examples in [5] and [6].

However, a mayor flaw related to visualizing a function f(z) on an arbitrary Riemann surface

M via the normalized Polya vector field P̃f (z) = f(z) ∂∂z , or the vector field Xf (z) = f(z) ∂∂z , is

that considered as tensors f(z) and P̃f (z) (or Xf (z)) are quite different: i.e. when acted upon
by Aut(M) they do not transform in the same way. This is made evidently clear in the following
example.

15 Associated to each pole of order −κ ≤ −1 of a meromorphic vector field X, there are exactly 2(κ+1) hyperbolic

angular sectors, similarly zeros of order s ≥ 2 have exactly 2(s− 1) elliptic angular sectors; simple zeros have sectors
that depend on the residue of the associated 1–form ωX . See Figure 2.



58 A. ALVAREZ–PARRILLA, J. MUCIÑO–RAYMUNDO ET AL

Example 15. Consider f(z) = z2

(z−1)2 on the Riemann sphere Ĉ. Of course ∞ ∈ Ĉ is a regular

point. However when considering

Xf (z) = z2

(z−1)2
∂
∂z or P̃f (z) = (z−1)2

z2
∂
∂z

on Ĉ, each has a double zero at ∞ ∈ Ĉ. Considering rational functions f and vector fields X on
any compact Riemann surface M of genus g, topological invariants are the Chern class of the trivial
and tangent holomorphic line bundles as follow

#zeros(f)−#poles(f) = 0, #zeros(X)−#poles(X) = 2− 2g.

A summary of the information that can be observed with this visualization technique is presented
in Table 5.

Table 5. Visualization of f via phase portrait of Xf (z) = f(z) ∂∂z and P̃f (z) = 1
f(z)

∂
∂z

Function f Phase portrait of Phase portrait of

Xf (z) = f(z) ∂
∂z

P̃f (z) = 1
f(z)

∂
∂z

z0 is a simple zero of f angular sector corresponding 4 hyperbolic angular sectors
to a center around z0

z0 is an order s ≥ 2 2(s− 1) elliptic angular 2(s+ 1) hyperbolic angular
zero of f sectors around z0 sectors around z0

z0 is a simple pole of f 4 hyperbolic angular sectors angular sector corresponding
around z0 to a center

z0 is an order −κ ≤ −2 2(κ+ 1) hyperbolic angular 2(κ− 1) elliptic angular
pole of f sectors around z0 sectors around z0

z0 is an isolated essential infinitely many elliptic infinitely many elliptic
singularity of f and hyperbolic sectors and hyperbolic sectors

around z0 around z0

z0 is a critical point

trajectory of Xf trajectory of P̃f

Advantages: easily distinguishes key features of the function (zeros, poles, isolated essential
singularities and accumulation points of any of the above), even without color plots.

Disadvantages: it is not global in nature: because of the different tensor type between f and

Xf or P̃f , this technique will work on charts, but not necessarily on the whole Riemann surface M
where f is defined. Moreover, the critical points of f(z) are not immediately appreciated.

11.4.2. Visualizing the functions ΨX(z) on M via the vector fields X(z) = 1
Ψ′X(z)

∂
∂z or P̃X(z) =

Ψ′X(z) ∂∂z (via the singular analytic dictionary). An alternative that avoids the above mentioned
problems is to use (1) of Theorem 2.
From the correspondence given by the singular complex analytic dictionary (Proposition 1) and
Diagram 3, use

X(z) = 1
Ψ′X(z)

∂
∂z as a way of visualizing the complex functions ΨX(z).

It should be noted that this is in fact the visualization of the complex integral of the 1–form ωX
associated to the vector field X(z).
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More precisely considering (37) with ΨX(z), we observe that

(39) ΨX(z) −→ X(z) =
1

Ψ′X(z)

∂

∂z
.

Of course we can also consider the normalized Polya vector field

(40) ΨX(z) −→ P̃X(z) = Ψ′X(z)
∂

∂z
.

Note that simple zeros of ΨX(z) can not be distinguished since they correspond to regular points

for the vector fields, however the critical points of ΨX appear as poles of X and zeros of P̃X , hence
critical points of ΨX can not be distinguished from multiple zeros of ΨX . See Figure 25 and Table
6.

Table 6. Visualization of ΨX via phase portrait of X(z) = 1
Ψ′X(z)

∂
∂z and P̃X(z) = Ψ′X(z) ∂∂z .

Function ΨX Phase portrait of Phase portrait of

X(z) = 1
Ψ′
X

(z)
∂
∂z

P̃X(z) = Ψ′X(z) ∂
∂z

z0 is a simple zero of ΨX z0 is a regular point of X z0 is a regular point of P̃X

z0 is an order 2 zero of ΨX z0 is a simple pole of X z0 is a simple zero of P̃X
4 hyperbolic angular angular sector

sectors around z0 corresponding to a center
z0 is an order s ≥ 3 z0 is an order −(s− 1) ≤ −2 z0 is an order s− 1 ≥ 2

zero of ΨX pole of X zero of P̃X
2s hyperbolic angular 2(s− 2) elliptic angular

sectors around z0 sectors around z0

z0 is an order −κ ≤ −2 z0 is an order κ+ 1 ≥ 2 z0 is an order −(κ+ 1) ≤ −2

pole of ΨX zero of X pole of P̃X
2κ elliptic angular 2(κ− 2) hyperbolic angular
sectors around z0 sectors around z0

z0 is an isolated essential infinitely many elliptic and infinitely many elliptic and
singularity of Ψ hyperbolic sectors hyperbolic sectors

around z0 around z0

z0 is a critical point of ΨX of z0 is a pole of X z0 is a zero of P̃X

ramification index µ+ 1 ≥ 2 or order −µ ≤ −1 f order µ ≥ 1

trajectory of X(z) trajectory of P̃X(z)

z0 is a logarithmic z0 is a simple zero z0 is a simple pole
singularity of ΨX of ΨX of ΨX

λ log(z − z0) 1
λ

(z − z0) ∂
∂z

λ 1
z−z0

∂
∂z

angular sector 4 hyperbolic angular
corresponding to a center sectors around z0

Advantages: has the correct tensor type behaviour, hence can be used globally on Riemann

surfaces M . Critical points of the function Ψ appear as zeros of XΨ and poles of P̃Ψ. Logarithmic

singularities of Ψ appear as simple poles of XΨ and simple zeros of P̃Ψ
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X1(z) = 1
Ψ′X1

(z)
∂
∂z X2(z) = 1

Ψ′X2
(z)

∂
∂z

P̃X1(z) = Ψ′X1
(z) ∂∂z P̃X2(z) = Ψ′X2

(z) ∂∂z

Figure 25. Visualization of the rational functions ΨX1(z) = z3−1
z2 and ΨX2(z) =

z2

z3−1 . The phase portrait of the singular complex analytic vector fields X1(z) =
1

Ψ′X1
(z)

∂
∂z and X2(z) = 1

Ψ′X2
(z)

∂
∂z is presented on the top row, and on the bottom

row the phase portrait of the singular complex analytic vector fields P̃X1(z) =

Ψ′X1
(z) ∂∂z and P̃X2(z) = Ψ′X2

(z) ∂∂z . In this case the information of the simple zeros
of ΨX1

(z) is lost and instead information on the location of the critical points of
both ΨX1(z) and ΨX2(z) appears.
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Disadvantages: simple zeros of Ψ are invisible, furthermore there is no way to distinguish critical
points of Ψ from zeros of Ψ (necessarily of order ≥ 2).

12. Complex flows

Recall the following elementary fact.

Example 16 (Complete vector fields). A singular complex analytic vector field on a Riemann
surface M is complete if its flow is defined for all time and for all initial condition. A pair (M,X)
determine a complete vector field on a Riemann surface if and only if they appear in the following
list:

1)
(
C, X = P (z) ∂∂z

)
with P a polynomial of degree at most 1,

2)
(
Ĉ, X = P (z) ∂∂z

)
with P a polynomial of degree at most 2,

3)
(
C∗, X = λz ∂

∂z

)
, with λ ∈ C∗,

4)
(
M = C/Γ, X = λ ∂

∂z

)
, where M is a complex torus.

For a proof see [47].

The singular complex analytic dictionary (Proposition 1) allows the description of the maximal
domain for the flow even in presence of poles, as we show in the following.

Example 17 (Example 2 revisited). Let
(
Ĉ, X = 1

R′(z)
∂
∂z

)
be a rational vector field, for R(z) a

rational function of degree at least two. Then

ΨX(z) = R(z) : Ĉz −→ Ct
is single valued and in accordance with Diagram (12). In this case

RX = ΩX =
{(
z,R(z)

)
| z ∈ Ĉ

}
.

The assertion, the global flow Ψ−1(t) : ΩX −→ Cz of X starting at an initial condition z0, makes
precise sense, since

Ψ−1 := πX,1 : RX −→ Cz.

More generally, considering the maximal analytic continuation of the local flows, a structure for
the maximal analytic continuation can be recognized as follows.
Given z0 ∈M∗ (not a pole, essential singularity, or an accumulation point of poles, zeros or isolated
essential singularities of X), the local flow of X at z0 is a holomorphic map

ϕj(z, t) : Ω(z0, j) ⊂M∗ × Ct −→ M∗

(z, t) 7−→

{
z0 if z = z0 is a zero of X,

Ψ−1
j (t) if z is a non singular point of X,

the second case is described as z1 = Ψ−1
j (t), where

Ψj : z 7−→
∫ z1

z

dζ

fj(ζ)
= t.

The integral is computed in a simply connected neighborhood Vj ⊂ M∗ of z0, thus 1/fj(ζ) is
holomorphic on Vj, hence the map {Ψj : z 7−→ t} is single valued. However, the value of the
integral a priori depends on the choice of Vj. Hence, we must fix Vj in order to construct the local
flow ϕj(z, t). Making all these precisions, Ω(z0, j) ⊂ Vj × Ct is an open set.

Theorem 3 (Maximal domain for the flow). Let X be a singular complex analytic vector field on
a Riemann surface M , and let z0 ∈M\Sing(X) be an initial condition.
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1) The maximal analytic continuation of the local flow
ϕj(z0, t) : {z0} × (Ct, 0) −→M∗

is univalued on the Riemann surface RX ⊂M × Ct, which is the graph of

ΨX(z) =

∫ z

z0

ωX : M∗ −→ Ct.

2) The Riemann surface RX is a leaf of the foliation F defined by the complex analytic vector
field

fj(z)
∂

∂z
+
∂

∂t
on M∗ × Ct

and the changes of the initial conditions z0 determine t–translations of RX .

Proof. From the point of view of complex differential equations, ϕj(z0, t) = Ψ−1
j (t) : {z0} ×

(Ct, 0) −→M∗ for z0 ∈M0, is a local complex solution. Hence the map

πX,1 : RX −→M,

together with an initial condition, z0 ∈M0, provides the maximal domain for the complex trajectory
solution of X as an ordinary differential equation determined on M . The Riemann surface RX is
a leaf of the complex analytic vector field

fj(z)
∂

∂z
+
∂

∂t
on M∗ × Ct.

The singular complex analytic foliation in the whole two dimensional complex manifold has as leaves
copies of RX under translations in the Ct factor. The maximal domain of the maximal analytic
continuations of the flow for all z0 ∈M0 is

(41) ΩX =
⋃

t translations

RX

that is the domain for the assertion (3). It follows that, the complex flow ϕ(z, t) : ΩX ⊂M∗×Ct →
M∗ is completely determined by copies of one trajectory by πX,1, on each connected component of
M . �

Corollary 4 (From Riemann surfaces to vector fields). Consider Ct provided with the vector field
∂
∂t . The following statements are equivalent.

1) An arbitrary Riemann surface R ⊂ M × Ct determines a singular complex analytic vector
field X on M , following Diagram (12).

2) R is the graph of an additively automorphic map Ψ as in Diagram (12).
3) The decomposition

ΩX =
⋃

t translations
R ⊂M∗ × Ct

determines a holomorphic foliation F of ΩX , where the leaves of F do not contain plaques
of the form D(z0, r)× {t0}, for r > 0.

Proof. Note that, Ψ is an additively automorphic map if and only if its graph R satisfies Equation
(41). Hence it satisfies Diagram 12 for an appropriate X.
Allowing plaques of the form {z0} ×D(t0, r), for r > 0, in the leaves of F gives rise to X(z0) = 0
on M . Not allowing plaques of the form D(z0, r) × {t0} ensures that X is not identically ∞. A
plaque different to any of the above two cases in a leaf of F determines locally a non identically
constant X on M . �
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