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Abstract Let P be a complex polynomial of degree n ≥ 2 in the Riemann sphere, and let γ be an oriented

Jordan path running through its critical values. A classical algorithm, with roots in the pioneering work of

H. A. Schwarz and F. Klein, states that the inverse image of γ under P determines a finite tessellation with

tiles that are topological k–polygons with two alternate colors in the Riemann sphere. Following a question

by W. P. Thurston, we study under what conditions a finite graph (or equivalently a finite tessellation of

the Riemann sphere) originates from a generic polynomial P and an oriented Jordan path γ as above.
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1 Introduction

Tessellations are implicitly related to rational functions, very roughly speaking:

a complex rational function R of degree n ≥ 2 determines a tessellation of the Riemann sphere

by 2n tiles, which are topological k–polygons with alternate colors.

More than a century ago, the former tessellations of this kind originated in the pioneering work of H. A.

Schwarz [16] and F. Klein [5], [8]. We review their geometrical algorithm. Let R : Ĉz −→ Ĉw be a complex

rational function, and let γ ⊂ Ĉw be an oriented Jordan path running through the critical values VR of

R. We recognize that γ is a graph with vertices VR. The pullback graph R∗γ is well defined with vertices

of even valences at least 4 at the critical points of R, and vertices of valence 2 at the cocritical points of

R. Recall that a cocritical point of R is non critical such that it assumes a critical value under R. The

tessellation associated with R is the decomposition Ĉz\R∗γ, where every open connected component of the

decomposition is a tile of the tessellation. In fact, the tiles have alternate colors, say blue and gray. The

cocritical points play a crucial role, by allowing us to recognize the tiles of the tessellation as topological

k–polygons, here k is the number of critical values of R. Our problem can be seen as a converse of the above

algorithm, therefore from graphs and tessellations to polynomials. It can be stated as follows.
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Characterize the graphs Γ , with tessellations Ĉz\Γ that arise from polynomials P : Ĉz −→ Ĉw and oriented

Jordan paths γ running through the critical values VP of P .

To explain the ideas, Figures 1, 4 and 7 illustrate the simplest examples of the difference between an

initial graph Γ and its related P ∗γ. Around 2010, W. P. Thurston conducted a discussion group about “the

shape of rational maps”. This group found specific conditions under which a graph Γ can be recognized as

R∗γ for a generic rational function; see S. Koch et al. [9]. Obviously, polynomials are non generic rational

functions, because the infinity is a point of a higher ramification order. We recall that a generic polynomial

P of degree n ≥ 2 has n− 1 distinct finite critical values. Our main result is as follows.

Theorem 1 Let Γ ⊂ Ĉz be a finite, oriented, connected graph with tessellation Ĉz\Γ . The following asser-

tions are equivalent.

1) Under edge subdivision, Γ can be transformed into P ∗γ for some generic polynomial P of degree n ≥ 2

and an oriented Jordan path γ ⊂ Ĉw running through the critical values VP .

2) The graph Γ has n− 1 ≥ 1 vertices of valence 4 and a vertex at ∞ of valence 2n such that

i) there exists an alternating colouring of Ĉz\Γ with n blue and n gray tiles, and

ii) each blue tile has ∞ as a boundary vertex.

Assertion (1) states that the tessellation Ĉz\Γ arises from a polynomial function. As a novel aspect, our

proof of (2) ⇒ (1) is constructive. Given a graph Γ as in (2), the proof provides an algorithm for finding a

suitable edge subdivision of Γ , which transforms the graph Γ in one of the shape P ∗γ. Clearly, the result

is topological in the following sense. If we allow a small enough continuous ϵ–perturbation of a generic

polynomial P0 and its corresponding Jordan path γ0, then the pairs {(Pϵ, γϵ)} topologically determine the

same Γ in the Riemann sphere.

The structure of the article is as follows. In Section 2, we review the Schwarz–Klein classical algorithm

describing the tessellations of complex rational functions, see Theorem 2, and the result of W. P. Thurston

et al. In Section 3, the easy implication (1)⇒(2) is provided. In Example 3, we illustrate how consistent

labellings and edge subdivision operations allow us to go from graphs Γ to rational functions. The core of

our work is in Section 4, where we achieve the proof of (2)⇒(1) through a consistent labelling and edge

subdivision operations. A comment about the constructive nature of the proof is in Section 5.

Let us recall a necessarily incomplete list of highlights in the subject. H. A. Schwarz [16] considered

tessellations by triangles in his study of hypergeometric differential equations, see [7] §10.3 and [19] Ch. 5

for modern descriptions. In order to understand complex analytic functions, the works of F. Klein reveal his

mastery regarding graphs and tessellations, as seen in [5] and [8]. A. Speiser [17] and the brothers F. and

R. Nevanlinna [14] Ch. 6, §5, [13] Ch.XI, §2, established relations between transcendental complex analytic

functions and tessellations. More recently, G. V. Bely̆ı [3] and A. Grothendieck [6] considered the celebrated

correspondence between tessellations by triangles in Riemann surfaces, rational functions with three critical

values and dessins d’enfants.

2 Graphs and complex rational functions

Tessellations and graphs appear in many instances in the study of complex analytic functions and Riemann

surfaces, with very intricate meanings and notations. We provide accurate ad hoc concepts.

Definition 1 A tessellation of the Riemann sphere Ĉ is a union

T = T1 ∪ . . . ∪ Tn︸ ︷︷ ︸
blue tiles

∪T ′
1 ∪ . . . ∪ T ′

n︸ ︷︷ ︸
gray tiles

⊂ Ĉ, n ≥ 2, (1)
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where the 2n tiles {Tα, T
′
α}nα=1 are open Jordan domains, such that:

i) The union of their closures ∪n
α=1Tα ∪n

α=1 T ′
α is Ĉ.

ii) If the intersection of the closures of any two tiles is non-empty, then it consists of a finite number of

points and/or a finite number of edges (simple paths).

iii) If two tiles are adjacent along an edge, then they have alternate colors, blue and gray.

In all this work, Tα denotes a blue tile and T ′
α is gray. There are n blue tiles and n gray tiles, which is

called the global balance condition in [9]. By using the points and edges in (ii), a tessellation T determines

an underlying graph Γ as follows.

Definition 2 A t–graph Γ is a finite oriented connected graph in Ĉ, with vertices V (Γ ) of even valence

equal or greater than 4 and edges E(Γ ), such that:

i) T (Γ )
.
= Ĉ \ Γ is a tessellation, as in (1).

ii) Each blue tile Tα is in the left side of the oriented edges of its boundary ∂Tα.

Considering the above definitions in mind, a tessellation T and a t–graph Γ are essentially equivalent

objects, where the alternated coloring in Definition 1 corresponds to the oriented edges in Definition 2.

Hence, the name t–graph must be understood as an abbreviation of “tessellation graph”. The tessellations

from complex rational functions require a more accurate notion, as follows.

Definition 3 An R–map Γ̂ is a finite, oriented, connected graph in Ĉ, with vertices V (Γ̂ ) of even valence

equal or greater than 2 and edges E(Γ̂ ), such that:

i) If we forget the vertices of valence 2 of Γ̂ , then we obtain Γ such that:

T (Γ̂ )
.
= T (Γ ) = T1 ∪ . . . ∪ Tn ∪ T ′

1 ∪ . . . ∪ T ′
n

is a tessellation as in (1).

ii) Each boundary ∂Tα (resp. ∂T ′
α) of a tile has k ≥ 2 edges of Γ̂ .

iii) Local balance: for each subgraph Γ0 ⊂ Γ homeomorphic to S1, with the induced orientation of Γ , there

are strictly more blue tiles than gray tiles on the left side of Γ0.

To be explicit, consider a vertex 0 of valence 2 in Γ̂ and its two edges, thus (−1, 0) ∪ {0} ∪ (0, 1). The

operation of forgetting the vertex 0 replaces the above by the unique edge (−1, 1). Note that Γ̂ satisfies the

global and local balance conditions in the main result of [9].

Remark 1 An R–map Γ̂ has two numerical attributes:

• its degree n ≥ 2, and

• its k–gonality since the tiles of its tessellation T (Γ̂ ) are topological k–polygons.

Example 1 (R–maps Γ̂ defined by R∗γ) 1. Let R(z) = (z4 − 1)/2z2 be a rational function with critical

values VR = {i, −i, ∞} and critical points CR = {0, (1+ i)/
√
2, (1− i)/

√
2, (−1+ i)/

√
2, (−1− i)/

√
2, ∞}.

The choice of γ = iR ∪ {∞} determines an octahedron as a tessellation associated to Γ̂ = R∗γ, see Figure

1.a. The set of cocritical points is empty, hence Γ̂ = Γ .

2. Let P (z) = z3 − 3z be a polynomial with critical values VP = {−2, 2, ∞}, and we choose γ = R ∪ {∞}.
According to Figure 1.b, the tiles of T (P ∗γ) are topological triangles and the R–map Γ̂ = P ∗γ has vertices

ζ1, ζ2 of valence 2 (corresponding to the cocritical points of P ). Figure 1.c illustrates the associated t–graph

Γ with tiles that are topological digons and triangles; hence Γ̂ ̸= Γ .

3. Let Q(z) = (1 + 3z − 3z2 + 3z3)/(3 − 3z + 3z2 + z3), since VR = {1, i, −i}, the choice γ = { |w| = 1}
is suitable. Figure 1.d shows the R–map Γ̂ = Q∗γ. Clearly, there exist M1, M2 ∈ PSL(2,C) such that the

right–left equivalence P = M1 ◦Q ◦M2 holds, for the polynomial P (z) in (2).

The following result illuminates the theory of rational functions and tessellations, and we provide a

suitable version.
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a)

b)

c)

d)

Q

Fig. 1 Tessellation from rational functions, critical points are red, cocritical points are green. a) An R–map Γ̂ = R∗γ

from a rational function R, its tessellation is an octahedron. b) An R–map Γ̂ = P ∗γ from a cubic polynomial P . c) The

underlying t–graph Γ of P is obtained from Γ̂ by forgetting its vertices of valence 2. d) An R–map Γ̂ = Q∗γ from a rational
function Q, which is right–left Möbius equivalent to the above P .

Theorem 2 (B.Riemann, H.A. Schwarz, F.Klein, W.P.Thurston)

1) Let R : Ĉz −→ Ĉw be a rational function of degree n ≥ 2, and let γ ⊂ Ĉw be an oriented Jordan path

running through the critical values VR. The pair (R, γ) determines an R–map Γ̂ = R∗γ with vertices

V (Γ̂ ) = {critical points of R︸ ︷︷ ︸
even valence ≥4

} ∪ {cocritical points of R︸ ︷︷ ︸
valence =2

} (2)

and a tessellation T (Γ̂ ).
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2) An R–map Γ̂ in Ĉz with vertices of valence 2 or 4, having 2n− 2 ≥ 2 vertices of valence 4, and 2n tiles,

determines a (nonunique) a rational function R : Ĉz −→ Ĉw.

Note that, assertion (2) works for generic rational functions, see Theorem 3, while (1) assumes any

rational function of degree at least 2. We attribute the Theorem 2 to H. A. Schwarz [16] and F. Klein [8],

[5] since it is implicitly described in these works. The present result can be seen as a combinatorial version

of the Riemann’s existence Theorem, compare with [2], [18] Ch. 6, [10] p. 74, and [4] p. 85. Moreover, in

[13] Ch.XI §2 the Nevanlinna brothers expand the technique in Theorem 2 to the study of transcendental

functions, which leads to tessellations with an infinite number of tiles; see [15], [12], [1], [11] for contemporary

applications. After Theorem 2, the name R–map1 must be understood as a coarse abbreviation of “rational

function”.

Furthermore, a comparison with the following concept is illustrative. A branched cover R : Ĉz −→ Ĉw

is a continuous map such that there exists a finite set {wj}kj=1 ⊂ Ĉw satisfying the following:

i) the set R−1
(
{wj}kj=1

)
is a finite set, and

ii) the map R : Ĉz\R−1
(
{wj}kj=1

)
−→ Ĉw\{wj}kj=1 is a topological covering.

The degree of R is the number of preimages {R−1(w0)}, for w0 ∈ Ĉw\{wj}kj=1.

Corollary 1 An R–map Γ̂ determines a branched cover R : Ĉz −→ Ĉw of degree n ≥ 2. Conversely, a

branched cover R determine a (nonunique) R–map with degree n. 2

Clearly, the non uniqueness of assertion (2) in Theorem 2 is up to topological equivalence. Two branched

coversR1, R2 are right–left topologically equivalent whenR2 = ϕ2◦R1◦ϕ1, for ϕ1, ϕ2 orientation preserving

homeomorphisms of the Riemann sphere.

Proof of Theorem 2. Let us consider assertion (1). Let R(z) be a rational function of degree n ≥ 2 with k

critical values

VR = {w1, . . . , wj , . . . , wk} ⊂ Ĉw, here 2 ≤ k ≤ 2n− 2.

We assume that γ ⊂ Ĉw is an oriented Jordan path running through VR. In graph theory language, γ is an

oriented embedded graph with vertices V (γ) = VR of valence 2 and oriented edges E(γ) = {wj wj+1}kj=1 ∪
wk w1. The associated tessellation is

T (γ) = Ĉw\γ = T ∪ T ′,

where T and T ′ are open k–sided topological polygons with vertices VR and boundary γ. The blue polygon

T is in the left side of γ. In the category of graphs, the pullback Γ̂ = R∗γ of γ under R is well defined.

Thus, Γ̂ is an R–graph with

vertices V (Γ̂ ) =
⋃

j R
−1(wj) and edges E(Γ̂ ) =

⋃
j R

−1
(
{wj wj+1}kj=1 ∪ wk w1

)
.

It should be mentioned that the vertices of Γ̂ include the following:

• the critical points CR = {zj} of R as vertices of even valence ≥ 4, and

• the cocritical points CcR = {ζκ} of R as vertices of valence 2, according with Equation (2).

Moreover,

T (Γ̂ ) = T1 ∪ . . . ∪ Tn︸ ︷︷ ︸
R−1(T ) blue tiles

∪ T ′
1 ∪ . . . ∪ T ′

n︸ ︷︷ ︸
R−1(T ′) gray tiles

, (3)

is a tessellation with tiles that are topological k–polygons with alternate colors. The proof of assertion (1)

is done.

For assertion (2), we assume the existence of an R–map Γ̂ as a topological graph in the sphere S2.
As a first step, we construct a C1 diffeomorphism R : S2\V (Γ̂ ) −→ Ĉw. Consider the circle γ =

R ∪ {∞} ⊂ Ĉw furnished with vertices {w1, . . . , wk = ∞} and the respective k segments as edges. Assume

that the spheric length of the edges in S2 is 2π/k. Thus, γ is a graph with associated tessellation

1 Despite the abundance of previous references, we have not found a more suitable name.
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7

Fig. 2 Two topological k–polygons T1, T ′
1 are mapped to the half planes H2

+, H2
−, here we sketch the case k = 7. The

critical points are red, a cocritical point is green.

Ĉw\γ = H2
+ ∪H2

−,

here the upper half plane H2
+ = {Re (w) > 0} is a blue tile, see Figure 2. Let {zj} the vertices of valence

4 of Γ̂ and their associated t–map Γ , as in Definition 3.i. Without loss of generality, assume that each

oriented edge zjzj+1 ⊂ T1 of Γ is a C1 embedded trajectory in S2. For each edge, we consider a bijective,

continuous parametrization Lj(t) : [0, 2π/k] −→ zjzj+1 ⊂ S2. The parametrization induces a distance on

the edge, with length 2πk. There exists a C1 diffeomorphism h1 : T1 −→ H2
+ ⊂ Ĉw. In addition, we can

assume that h1 is an orientation preserving isometry from the oriented boundary of T1 (with the metric

induced by {Lj(t)}) to ∂H2
+ = γ (with the spheric metric). See Figure 2.

Assuming that the gray tile T ′
1 ⊂ S2 is adjacent with T1, there exists a C1 diffeomorphism h1′ : T ′

1 −→
H2

− ⊂ Ĉw, with analogous metric properties as the above h1. Note that, the maps h1 and h1′ coincide in the

intersection ∂T1∩∂T ′
1 ⊂ Γ̂ and up to slight modification (if it is necessary), they define a C1 diffeomorphism

from T1 ∪ T ′
1 minus the vertices of Γ̂ to Ĉw\{w1, . . . , wk}.

By using the hypothesis in the vertices of valence 4 and 2, there exists a consistent labelling of the

vertices of Γ̂ , thus

Lc : V (Γ̂ ) −→ {1, . . . , k}, zj 7−→ Lc(zj), (4)

where

• Lc is a bijection in the vertices of valence 4, and

• in the boundary of each blue tile Tα, the cyclic order of the labels Lc(zι) of the vertices {zι} = Γ̂ ∩ ∂Tα

coincides with the counterclockwise order of {zι} in ∂Tα. For the existence of Lc, see [9] p. 225.

Using Lc, we extend the above maps to cover all the tiles of the tessellation in S2, the complete local

C1 diffeomorphism is denoted as R : S2\V (Γ̂ ) −→ Ĉw. Clearly, the local behavior of R at each vertex zj of

Γ̂ is topologically equivalent to {z 7−→ zν/2}, where ν = 2, 4 means the valence of the vertex zj .

Secondly, we endow S2 with a complex structure, in a such way that the branched cover R is recognized

as a complex rational function R(z). Several proofs are available and probably the most elementary is

as follows. Consider the complex structure J on the (real) tangent bundle T Ĉw, defined as J ∂
∂x = ∂

∂y ,

J ∂
∂y = − ∂

∂x . Since R is a C1 local diffeomorphism, the pullback of J is well defined. It follows that

R :
(
S2\V (Γ̂ ), R∗J

)
−→ Ĉw

is a holomorphic nonsingular function. By applying the elementary Riemann’s extension theorem to the

conformal punctures at the vertices V (Γ̂ ), the function R holomorphically extends with critical points at

zj ∈ V (Γ̂ ). By the uniformization Theorem, (S2,R∗J) is the Riemann sphere Ĉz and R is a holomorphic

map, hence a rational function R(z) on Ĉz of degree n. 2

In particular, not every t–graph is a R–map, see Figures 3 and 10 in [9] for examples in the rational

non–polynomial case. Moreover, the existence of a rational functions R(z) from a t–map Γ was established

as follows.
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Theorem 3 (W.P.Thurston et al. [9]) A t–graph Γ with 2n− 2 vertices of valence 4 (by forgetting its

vertices of valence 2) is equal to R∗γ for a branched cover R : S2 −→ S2 of degree n ≥ 2 and suitable γ, if

and only if

i) the tiles of the tessellation T (Γ ) = Ĉz\Γ are Jordan domains,

ii) Γ is globally balanced, i.e. T (Γ ) has alternated n blue tiles and n gray tiles,

iii) Γ is locally balanced, i.e. for each subgraph Γ0 ⊂ Γ homeomorphic to S1, with the induced orientation

of Γ , there are strictly more blue tiles than gray tiles on the left side of Γ0. 2

Theorem 3 works for pairs (R, γ), where the rational function R of degree n attains the maximal number

2n− 2 of critical points. According to our definitions and as a matter of record:

• A pair (R, γ) denotes a rational function R and an oriented Jordan path γ ⊂ Ĉw running through the

critical values VR.

• Γ̂ is an R–map, with vertices of even valence ≥ 2.

• Γ is a t–graph, with vertices of even valence ≥ 4.

• T is a tessellation of the Riemann sphere Ĉz.

We have the following diagram:

Γ̂

T (R, γ).

Γ

Q
Q

Q
QkQ

Q
Q
Qs

4O

Q
Q

Q
QkQ

Q
Q
Qs1O ?

2O

6

3O

�
�

�
�3

5O

By definition, map 1O is an equivalence. Map 2O obtains a t–graph Γ from a R–map Γ̂ by forgetting the

vertices of valence 2 of Γ̂ , Figure 1.b–c illustrates this operation. Under additional hypothesis for Γ in

Theorem 3, the map 3O determines an R–map Γ̂ which is obtained from a t–graph Γ by edge subdivision,

adding vertices of valence 2. The map 4O is Theorem 2, and 5O is the composition of 3O and 4O. If Γ̂ and

Γ are related by 2O or 3O, then the tessellations T (Γ̂ ) and T (Γ ) coincide.

If the degree n of generic polynomials increases, then the number of cocritical points grows as (n −
1)(n − 2). Hence, starting with a t–map Γ , the edge subdivision operation 3O requires to knowning the

assignation of exactly (n− 1)(n− 2) cocritical points in suitable edges of Γ . We illustrate this trouble with

the next family of tessellations.

Example 2 (A family of quartic polynomials and their R–maps) Consider the family of polynomials

Pe(z) = ez − z2

2
+

z4

4
, e ∈ R. (5)

For e /∈ {0,±0.385}, the corresponding polynomials Pe(z) are generic. If −0.385 ≤ e ≤ 0.385, then we use

γ = R ∪ {∞}. In the other cases, the choice γ is cumbersome. For simplicity, we describe the affine aspect

of the tessellations.

Case e = 0. The polynomial is even, P0(z) = P0(−z). There are only two critical values, three critical points

and two cocritical points. A sketch of Γ̂0 is in Figure 3.a, and its tessellation is by topological triangles.

Case 0 < e < 0.385. The polynomial Pe(z) has three critical values, three critical points and six cocritical

points. Figure 3.b illustrates Γ̂e and its tessellation is by topological quadrangles.

Case e = 0.385. The associated Pe(z) has only two critical values, two critical points. Figure 3.c. illustrates

Γ̂e and its tessellation by topological triangles.
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Case 0.385 < e. Figure 3.d illustrates the case e = 2, thus Γ̂2, for other values of e the corresponding R–maps

are topologically equivalent.

Cases e < 0. Up to a rotation by π of Cz, the graph Γ̂e coincides with the corresponding cases Γ̂−e described

above.

Fig. 3 R–maps Γ̂e and their tessellations in Cz of the family of polynomials Pe(z) = ez − (1/2)z2 + (1/4)z4, with real

e. In particular for 0 < e < 0.385, Γ̂0 is different from Γ̂e. Moreover, if we forget the cocritical points, they determine
topologically the same t–graph Γ .

3 Theorem 1 proof (1) ⇒ (2) and consistent labellings

Let Γ be as in (1) of Theorem 1. By hypothesis, the edge subdivision operation adds vertices {ζκ} of valence

2 to Γ . The resulting graph is an R–map Γ̂ , as in Definition 3. Recalling Theorem 2 assertion (2), there

exists an oriented Jordan path γ ⊂ Ĉw running through the critical values of the corresponding polynomial

P (z), say {w1, . . . , wj , . . . , wn = ∞}.
Thus each tile Tα of T (Γ̂ ) is a n–sided topological polygon, and the path γ determines an order of the

critical values. The proof (1) ⇒ (2) is done.

In order to prove the converse assertion, an implicit datum is the consistent labelling of an R–map. The

following nontrivial example originated from a rational function is illustrative.

Example 3 (Consistent labelling and edge subdivision) Let Γ be a t–graph with tessellation T (Γ ) as in

Figure 4.a. Theorem 3 asserts that T (Γ ) originates from a generic rational map of degree 3.

In order to recognize an associated R–graph, we suppose that 4 critical values are required. Assume that

the critical values have labels {1, . . . , 4} such that the order 1 < . . . < 4 coincides with the (cyclic order) of

the critical values {wj} in the Jordan path γ
.
= R ∪ {∞}.

We perform two operations. Firstly, we label the vertices {zj} of Γ with {1, . . . , 4}, thus we have a function

L : V (Γ ) −→ {1, . . . , 4}, zj 7−→ L(zj).
In such way that the cyclic order of the labels in all the oriented boundaries ∂Tα of the blue tiles coincides

with the order of 1 < . . . < 4 in the Jordan path γ
.
= R ∪ {∞}, see Figure 4.b. The reader can verify that

the choice of L is the hard part of the construction. As second operation, the labels allow performing the

edge subdivision of the edges of Γ , as follows. An edge of the blue tile T1 has vertices with labels 1 and 4,
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    edge 
subdivision

labelling

a) b)

c) z

R

1 23 4

1234 123
3 41 2

4

Fig. 4 a) Tessellation of a t–graph Γ . b) A consistent labelling of the vertices of Γ . c) The edge subdivision of Γ determines

Γ̂ , hence a rational function R.

by edge subdivision, we introduce two hidden vertices of valence 2, and label them with 2 and 3, see Figure

4.c. The edges in the boundary of T2 have labels 1, . . . , 4, and no edge subdivision is required. We continue

the operations in an analogous way. The complete edge subdivision operation then produces an R–map Γ̂

such that all the tiles are topological quadrangles. Note that the labelling Lc extends to the hidden vertices

of valence 2 of Γ̂ . According to Theorem 2, we can verify that the pair(
R(z) = (z − 3)2/(z3 − 4), γ = R ∪ {∞}

)
determines the R–map Γ̂ .

We return to the polynomial case and ask about labelling the vertices of Γ with analogous properties

as in the above example.

As first step, we note that there exists a topological order ≺ in each boundary ∂Tα, which depends on

the orientation of the edges of Γ̂ and the existence of the vertex ∞ ∈ Ĉw, with valence 2n in Γ̂ . That is the

main technical difference with the rational non–polynomial case.

In fact, let zι, zj be finite critical or cocritical points of a polynomial P (z). Assume that we run through

the boundary ∂Tα\{∞} of a blue tile Tα of T (Γ̂ ), with counterclockwise direction, starting at zι ̸= ∞. If

we encounter zj (before than ∞), then we define

zι ≺ zj in ∂Tα\ {∞}.
If zj ̸= ∞, then by definition zj ≺ ∞ in ∂Tα. Obviously, the subscripts ι, j have no meaning with respect

to the order ≺.

Example 4 In Figure 1.b, looking at the corresponding blue tiles, we have ζ1 ≺ z1 and z2 ≺ ζ2.

Corollary 2 Let Γ̂ = P ∗γ be an R–map from a generic polynomial P (z) of degree n ≥ 2 and be γ a Jordan

path, as in Theorem 1. Then Γ̂ has a labelling

L : V (Γ̂ ) = {critical points of P} ∪ {cocritical points of P} −→ {1, . . . , n}, zj 7−→ L(zj), (6)

which satisfies

if zι ≺ zj in ∂Tα, then L(zι) < L(zj) in the order {1, . . . , n}. (7)
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2

Remark 2 1. As a consequence of equation (7), we note that necessarily L(∞) = n.

2. A generic polynomial P of degree n has n critical points in Ĉz. Hence, the labelling L of Γ̂ is injective

if and only if the cocritical point set of P is empty, thus the polynomial is z2 (up to right–left affine

equivalence).

4 Theorem 1 proof of (2) ⇒ (1)

Let Γ be a t–graph as is Theorem 1, assertion (2), with n ≥ 2 vertices

V (Γ ) = {z1, . . . , zj , . . . , zn−1︸ ︷︷ ︸
valence 4

, zn = ∞︸ ︷︷ ︸
valence 2n

} (8)

and 3n− 2 oriented edges

E(Γ ) = {zιzj}, where ι, j ∈ 1, . . . , n, (9)

here zι, zj correspond to the initial and final vertices. The associated tessellation is as in (1).

The main difficulty in ensuring the existence of a polynomial P (z) from the t–graph Γ lies in the fact

that the tiles Tα of its tessellation T (Γ ) are not a priori topological n–polygons, which is the n–gonality

property in Remark 1.

4.1 Scheme of the proof

Step 1. Construct a consistent labelling Lc for Γ . This useful concept is analogous to Corollary 2, as

follows.

Definition 4 Let zι, zj be two vertices of a t–map Γ in the boundary ∂Tα of a blue tile. The topological

order ≺ in ∂Tα is as follows: if zι, zj are both different of ∞ and we can run (with the counterclockwise

orientation) through ∂Tα\{∞} starting at zι and arriving at zj , then

zι ≺ zj .

Furthermore, if one of the vertices is ∞, then zj ≺ ∞.

Note that, the vertices zι, zj are not necessarily adjacent, and the vertex ∞ is the maximal element of

the order ≺ in ∂Tα.

Remark 3 1. Clearly, ≺ is a partial order for all the vertices of Γ .

2. By abusing of the notation, the symbol ≺ in Definition 4 is the same that the used in Corollary 2. If Γ is

a t–map obtained by an R–map Γ̂ forgetting its vertices of valence 2, then the partial order of the vertices

of Γ in Definition 4 coincides with the partial order of the vertices of Γ̂ in Corollary 2.

For simplicity, throughout the text we omit the adjective partial for the orders. The order ≺ is the key

ingredient for finding a suitable Γ̂ .

Definition 5 A consistent labelling Lc for Γ is a bijective function

Lc : V (Γ ) −→ {1, . . . , n}
zj 7−→ Lc(zj)

∞ 7−→ n

such that for all blue tile Tα of T (Γ ),

if zι ≺ zj in ∂Tα, then Lc(zι) < Lc(zj) in the order 1 < 2 < . . . < n.
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This labelling Lc allows us to make a globally consistent assignment of the finite vertices of Γ to the vertices

of some Jordan path γ ⊂ Ĉw.

Step 2. By the labelling Lc and edge subdivision operations, we add hidden vertices to Γ .

The hidden vertices {ζκ} of Γ are vertices of Γ̂ , which satisfy that the tiles Tα of the corresponding

Γ̂ = Γ ∪ {ζκ} are topological n–polygons. We add the hidden vertices as in the two cases below. Let zιzj

be an edge of Γ .

Case 1. Assume that zι ≺ zj in ∂Tα and Lc(zι) = k, Lc(zι) = k + ν + 1 with ν ≥ 1.

Note that zj = ∞ is allowed, which by definition has label n. Then by edge subdivision, ν hidden vertices in

zιzj are constructed. By using consistent labelling, the required hidden vertices are ζ1, . . . , ζν and moreover

they satisfy that

with respect to order zι ≺ ζ1 ≺ . . . ≺ ζν ≺ zj

with labels k < k + 1 < . . . < k + ν < k + ν + 1,
in ∂Tα,

see Example 5. Furthermore, the second row shows that the consistent labelling Lc of Γ extends to the

hidden vertices.

Case 2. Assume an oriented edge ∞zι of Γ .

If the label Lc(zι) = 1, then no hidden vertices are required.

If the label Lc(zι) = ν + 1 ≥ 2, then by edge subdivision ζ1, . . . , ζν hidden vertices are constructed. As

above, we have

with respect to order ζ1 ≺ . . . ≺ ζν ≺ zι

with labels 1 < . . . < ν < ν + 1,
in ∂Tα.

The second row shows that the consistent labelling of Γ extends to the hidden vertices.

Example 5 (Consistent labelling and edge subdivision) According to Figure 5, we consider zι ≺ zj in ∂Tα

and assume a consistent labelling Lc for Γ , such that Lc(zι) = 2 and Lc(zj) = 5. The edge zιzj requires

two hidden vertices ζ3, ζ4. In addition, the edge ∞zι requires one hidden vertex ζ1. Moreover, if we make

the choice of γ with vertices

{w1 < . . . < wn−1 < wn = ∞} ⊂ γ
.
= R ∪ {∞} ⊂ Ĉw,

then the definition of a branched cover P at the vertices and hidden vertices of Γ should satisfy that

P(∞) = wn = ∞, P(ζ1) = w1, P(zι) = w2, P(ζ3) = w3, P(ζ4) = w4, P(zj) = w5.

Step 3. Construct an R–map Γ̂ associated with Γ .

We define a branched cover P in the vertices of Γ as the composition P = I ◦ Lc, thus

(10)- -

Lr(zj) = mzj wm.- -

Lc I
{z1, . . . , zn−1} {1, . . . , n− 1, n} {w1, . . . , wn−1, wn = ∞}

Secondly, we will extend continuously P to the hidden vertices in Γ̂ and its tile boundaries ∂Tα. We will

extend P to the interior of the tiles Tα. By Theorem 2, P is a branched cover and determines a complex

polynomial P (z). Clearly, the hidden vertices in Γ̂ should be the cocritical points of P (z).

Example 6 (A consistent labelling) Consider the t–map Γ in Figure 1.c. The oriented Jordan path γ =

R ∪ {∞} has vertices {w1, w2,∞} with w1 < w2 < ∞. A consistent labelling for the vertices z1, z2,∞ of Γ

is

Lc(z1) = 2, Lc(z2) = 1, Lc(∞) = 3.

By edge subdivision operations, we add two hidden vertices ζ1, ζ2 of valence 2, to obtain an R–map Γ̂ with

vertices V (Γ̂ ) = {z1, z2,∞, ζ1, ζ2}, as in Figure 1.b. For the boundaries ∂Tα in the tessellation of Γ̂ , we

have that the order ≺ satisfies
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Fig. 5 Assuming the existence of a consistent labelling Lr(zι) = 2 Lr(zj) = 5 for Γ , the edge subdivision operation

transforms Γ to Γ̂ , by adding three vertices ζς of valence 2. We sketch the associated continuous branched covering P.

ζ1 ≺ z1 ≺ ∞ in ∂T1, z2 ≺ z1 ≺ ∞ in ∂T2, z2 ≺ ζ2 ≺ ∞ in ∂T3.

The tiles of the tessellation of Γ̂ are topological triangles.

Example 7 (Nonuniqueness of consistent labellings) As additional difficulty, in general a t–map Γ has many

labellings; however, the consistent ones are few. Let Γ with vertices V (Γ ) = {z1, z2, z3, ∞}, an affine sketch

of it is in the upper row of Figure 6. The orientation of Γ determines the blue tiles of T (Γ ). There are six

possible labellings

Lκ : V (Γ ) =
{
z1, z2, z3,∞

}
−→ {1, 2, 3, 4}, zj 7−→ Lκ(zj), ∞ 7−→ 4,

as follows:

a) L1(z1) = 1 L1(z2) = 2 L1(z3) = 3 ; d) L4(z1) = 2 L4(z2) = 3 L4(z3) = 1 ;

b) L2(z1) = 1 L2(z2) = 3 L2(z3) = 2 ; e) L5(z1) = 3 L5(z2) = 1 L5(z3) = 2 ;

c) L3(z1) = 2 L3(z2) = 1 L3(z3) = 3 ; f) L6(z1) = 3 L6(z2) = 2 L6(z3) = 1.

Which labellings Lκ are consistent for Γ? Consider L1 see Figure 6.a, according to the order ≺, we have

that z3 ≺ z2 on ∂T1 and L1(z3) = 3 > L1(z2) = 2. Therefore, the orders ≺ and < do not match in ∂T1.

By simple inspection, only the labellings L2 and L4 are consistent. Recalling Example 2, the labelling L2

(resp. L4) determines any of the polynomials

Pe(z) = ez − z2

2 + z4

4 , for e ∈ (0, 0.385, 0)
(
resp. e ∈ (−0.385, 0)

)
.

4.2 Test trees

Let Γ be a t–graph as in Theorem 1, assertion (2). In order to construct a consistent labelling Lc for Γ , an

auxiliary graph is the following.

Definition 6 The test tree T associated with Γ has n vertices

V (T ) = {v1, . . . , vα, . . . , vn} ⊂ Cz, where vα ∈ Tα,

and n− 1 edges

E(T ) = {vαvβ} ⊂ Cz, α, β ∈ {1, . . . , n}, α ̸= β,
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T1

Fig. 6 From a combinatorial point of view, there are six labellings Lκ for Γ in the upper row, which are sketch in (a)–(f).
The consistent labellings correspond to (b) and (d).

such that each vαvβ runs through one finite vertex zj ∈ ∂Tα ∩ ∂Tβ of Γ .

Since the vertices of Γ in Cz have valence 4, (we recall the genericity hypothesis in Theorem 1), the test

tree T is a well defined embedded graph.

In fact, if some cycle appears in T , it encloses a gray tile T ′
α, which is a contradiction, note that the vertex

∞ of Γ is in the closure of every tile of the tessellation T (Γ ). The edges of T do not have orientation, that

is vαvβ = vβvα.

Remark 4 There is a bijection between the vertices V (Γ ) of Γ in Cz and the edges E(T ) of its test tree T .

Hence, a labelling L for Γ determines a labelling

L : E(T ) −→ {1, . . . , n− 1}
for the edges its test tree T and vice versa. Note that the label n is not required for any labelling L of

E(T ). Moreover, by abusing of language, we say that T has a consistent labelling when the corresponding

labelling of Γ is consistent, see Definition 5.

Example 8 (On the scheme of the proof) Consider Γ as in Figure 7.a, the sketch of its test tree T is on the

right, and the superposition of Γ ∪ T is the center drawing. The edges of T are in bijective correspondence

with the affine vertices of Γ . A consistent labelling for Γ is

Lc(z1) = 2, Lc(z2) = 3, Lc(z3) = 1,
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which is equivalent to a consistent labelling for T
Lc(v1v2) = 2, Lc(v2v3) = 3, Lc(v3v4) = 1.

In summary, Figure 7 illustrates the complete scheme for the proof (2)⇒(1) of Theorem 1.

edge subdivision
labelling

1
2

3

1 1
2

2

3

3

Fig. 7 a) A t–map Γ and its tessellation, the tiles are topological digons and triangles, on the right the test tree T . b) A

consistent labelling for Γ and T determines the associated R–map Γ̂ = Γ ∪{ζk} such that its tiles are topological triangles.
The existence of an associated generic polynomial P follows.

In order to construct a consistent labelling Lc for the test tree T , we furnished its edges with additional

information. Recall two notions from graph theory. Let vαvβ be an edge of T ;

it is a leaf when one of its extreme vertices has valence 1,

it is a bridge when its extreme vertices have a valence equal to or greater than 2.

Let vα ∈ V (T ) be a vertex of T of valence at least 2, the ordered subtree of T formed by the incident edges

to vα is the star of vα, denoted

star(vα) = {vαvβ , . . . , vαvσ}.

Definition 7 Consider, vαvβ an edge of T , it assumes one of the following properties:

1) It is an initial leaf when in addition vαvβ
I of star(vα) is the edge that intersects the lower vertex

zι ∈ ∂Tα ∩ {z1, . . . , zn−1} of Γ , according to the order ≺ on ∂Tα, see Figure 8.

2) It is a non initial leaf.

3) It is a non initial bridge.

4) It is an initial bridge.

5) It is a double initial bridge.
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a

va

zj

zi

z

Fig. 8 The geometrical meaning of the initial edge of a test tree T ; it is the first edge associated with zι, when we travel
along the boundary ∂Tα starting from ∞ in the counterclockwise orientation.

We explain the five cases in the definition. For the sake of clarity, from now on we use a pictorial notation

for the test trees T . For the edges, the leaves are black and the bridges are green. For initial edges, we add

a small red bar and a circular arrow, following the geometrical rule in Figure 8. According to this pictorial

notation, there are five kinds of edges which can appear in a test tree T , Figure 9 illustrates them. Every

star(vα) of a test tree T has exactly one initial edge. In addition, an edge vαvβ can be initial for both

star(vα) and star(vβ).

a)

b)

c)

d)

e)

Fig. 9 The edges of a test tree T belong to one of five kinds: a) a non initial leaf, b) an initial leaf, c) a non initial bridge,
d) an initial bridge, e) a double initial bridge. The oriented circular arrows have counterclockwise orientation.

Example 9 Figure 10 illustrates two kinds of edges of test trees T and their tessellations. The example of

a non initial bridge appears in the test tree T of Figure 7. The assignment of small red bars and circular

arrows follows the geometrical rule in Figure 9.

a) b)

Fig. 10 Examples of test trees T with edges of kinds; non initial leaf, initial leaf, initial bridge, doble initial bridge.

4.3 Construction of consistent labellings

Proposition 1 Every t–map Γ admits at least one consistent labelling Lc.
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Proof. Let T be the test tree associated with the t–map Γ . If T has 2 vertices, then a consistent labelling

Lc exists by simple inspection, we deal with generic polynomials of degree 3. Recall Examples 1, 2 and 7.

We consider the case where T has n ≥ 4 vertices and n − 1 edges (we deal with polynomials of degree

n ≥ 4). By induction hypothesis on the number of vertices of T ; we assume that T originates from a tree

denoted Tn−1 by adding one vertice vn and one edge vαvn; thus

Tn−1
.
= T \(vn ∪ vαvn) (11)

is a connected tree. Again, by induction hypothesis Tn−1 has a consistent labelling, denoted

Ln−1 : E(Tn−1) −→ {1, . . . , n− 2},
we recall Definition 5 and Remark 4. In Section 5, the simplest case n = 4 and Tn−1 = T3 with 2 edges is

described. We want to perform a consistent labelling for T .

Case 1. We assume that the valence of vα in Tn−1 is at least 2 and the new edge vαvn is a non initial

leaf in T of the star with center in vα; see Figure 11.

i) We consider the star of vα in the tree T . The edge vβvα is the predecessor edge of vαvn. Assume that

the label under Ln−1 of vβvα is k.

ii) Multiply by 2 all the labels of Ln−1, in particular the label of vβvα is 2k; see the second row in Diagram

12.

iii) We assign a provisional label 2k + 1 for the edge vαvn.

iv) Recalling Remark 4, we note that the numerical order < in the duplicated labels coincides with the

topological order ≺ from Γ as in equation (7).

v) We eliminate the gaps between the labels in (iii) by a shift (down arrows) as follows

Ln−1 of Tn−1 in (11): 1, . . . , k, k + 1, k + 2, . . . , n− 2

↓ ↓ ↓ ↓ ↓
2, . . . , 2k, 2k + 1, 2(k + 1), 2(k + 2), . . . , 2(n− 2)

↓ ↓ ↓ ↓ ↓ ↓
Lc of T : 1, . . . , k, k + 1, k + 2, k + 3, . . . , n− 1.

(12)

We are done, and the resulting labels determine a consistent labelling Lc for the edges of T . By recalling

Remark 4, Lc is a consistent labelling for Γ .

Case 2. We assume that the valence of vα in Tn−1 is at least 2 and the new edge vαvn is an initial leaf

in T of the star with center in vα; see Figure 12.

i) In Tn−1, we consider the first edge vαvδ in the star of vα and assume that the label of vαvδ under Ln−1

is k.

ii) Multiply by 2 all the labels of Tn−1, in particular now the label of vαvδ is 2k.

iii) We define the provisional label 2k − 1 for the new edge vαvn.

iv) Recalling Remark 4, we note that the numerical order < in the duplicated labels coincide with the

topological order ≺ from Γ as in equation (7).

v) We eliminate the gaps between the labels in (iii) by a shift, as in equation (12),

Ln−1 of Tn−1 in (11): 1, . . . , k, k + 1, k + 2, . . . , n− 2

↓ ↓ ↓ ↓ ↓
2, . . . , 2k, 2k + 1, 2(k + 1), 2(k + 2), . . . , 2(n− 2)

↓ ↓ ↓ ↓ ↓ ↓
Lc of T : 1, . . . , k, k + 1, k + 2, k + 3, . . . , n− 1.

This performs a consistent labelling Lc for the edges of T . By recalling, Remark 4, we have a consistent

labelling Lc for Γ .
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n

a) b)
 1 n

Fig. 11 a) The valence of vα in the tree Tn−1 is at least 2 and and vα is the initial extreme of its bridge. b) In order to
obtain T ; we add a new blue edge vαvn to the star of vα in Tn−1. The new edge vαvn is a non initial leaf of T .

a) b)

 1 n

n

Fig. 12 a) The valence of vα in Tn−1 is at least 2 and vα is the non initial extreme of its bridge. b) In order to obtain T ;
we add a blue edge vαvn to the star of vα in Tn−1. The new edge vαvn is an initial leaf of T .

Case 3. We assume that the valence of vα in Tn−1 is 1 and the new edge vαvn is an extreme vertex of

T .

The edge vβvα is a leaf of Tn−1. After the addition of the new edge vαvn, we have that vβvα is a bridge

of T , see Figure 13. Hence, vα has valence 2 in T . Figure 13 shows that there are two possibilities:

• the new edge vαvn is a (non initial) leaf, or

• it is an initial leaf.

In any case, this leads us to one of the previous Cases 1 or 2.

The proof of Proposition 1 is done.

Figure 13 shows that a tree T (without the information of initial edges) does not determine a single

t–map Γ , a single tessellation (up to right–left topological equivalence).
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 1 n

Fig. 13 a) The valence of vα in Tn−1 is 1, it is the extreme vertex of a leaf. b)–c) In order to obtain T ; we add a blue
edge vαvn. There are two possible tessellations (b) and (c) associated to T . The choice of the tessellation determines which
is the new initial edge of T at vα.

5 A constructive algorithm

Let us consider an R–map Γ̂3 of a generic polynomial of degree 3, and let T3 be its test tree, provided with

its consistent labelling L2, as in Figure 14.a. For degree 3, there is only one class of generic polynomials up

to right–left topological equivalence.

In order to construct all the R–maps of generic polynomials of degree 4, we obtain new trees T by adding

a vertex v4 to T3. The respective blue edges vαv4 are illustrated in clockwise order from Figure 14.b–h.

Since the original Γ̂3 has seven edges, a priori there are seven different ways to add the new edge. In Figure

14, we describe the new seven test trees T provided with their consistent labellings Lc:

b) The new edge vαv4 is initial, and we apply Case 2 in proof of Proposition 1. Note that the new consistent

labelling L3 is different from the original L2; the original edges with labels 1 and 2, now have labels 2 and

3, respectively. The resulting polynomial appeared in Figure 3.d, note that the assignation of blue tiles

depends in the choice of an orientation of γ.

c) The new edge vαv4 is non initial, and we apply Case 1. Up to orientation preserving homeomorphism of

Ĉz, the resulting polynomial is P (z) = z
4 + z2

2 − z4

4 , with Γ = P−1(R ∪ {0}).
d) The new edge vαv4 is initial, we apply Case 2. The resulting polynomial appeared in Figure 3.d.

e) Up to orientation preserving homeomorphisms of Ĉz, it coincides with (b).

f) Up to orientation preserving homeomorphisms of Ĉz, it coincides with (d).

g) The new edge vαv4 is initial, we apply Case 1. Up to orientation preserving homeomorphism of Ĉz, the

resulting polynomial is P (z) = z
4 − z2

2 + z4

4 , with Γ = P−1(R ∪ {0}), as in Figure 6.b.

h) Up to orientation preserving homeomorphisms of Ĉz, this T coincides with (b).

Summing up, given any t–map Γ with n − 1 edges and its tessellation T (Γ ) in Ĉz, we can construct

its test tree T , by adding suitable n − 3 edges to the tree T3, as in Figure 14.a. In each step, a consistent

labelling Lc for the respective t–map exists. This provides a constructive algorithm which recognizes the

associated R–map Γ̂ with Γ , as Theorem 1 asserts.
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