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Plane Polynomials and Hamiltonian Vector
Fields Determined by Their Singular Points
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Abstract. Let Σ(f) be the singular points of a polynomial f ∈ K[x, y]
in the plane K

2, where K is R or C. Our goal is to study the singular
point map Sd, it sends polynomials f of degree d to their singular points
Σ(f). Very roughly speaking, a polynomial f is essentially determined
when any other g sharing the singular points of f satisfies that f = λg;
here both are polynomials of degree d, λ ∈ K

∗. In order to describe the
degree d essentially determined polynomials, a computation of the re-
quired number of isolated singular points δ(d) is provided. A dichotomy
appears for the values of δ(d); depending on a certain parity, the space
of essentially determined polynomials is an open or closed Zariski set.
We compute the map S3, describing under what conditions a configu-
ration of 4 points leads to a degree 3 essentially determined polynomial.
Furthermore, we describe explicitly configurations supporting degree 3
non essential determined polynomials. The quotient space of essentially
determined polynomials of degree 3 up to the action of the affine group
Aff (K2) determines a singular K-analytic surface.
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1. Introduction

Very roughly speaking, the singular point map sends polynomials f ∈ K[x, y],
of degree d, to their singular points

Sd : f �−→ Σ(f), (1)
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where Σ(f) .= I(fx, fy) is the affine algebraic variety (not necessarily reduced)
generated by the ideal of partial derivatives of f , see Definition 3. Under what
conditions is a degree d polynomial f ∈ K[x, y] essentially determined by its
singular points Σ(f) ⊂ K

2? Our approximation route uses a finite dimensional
framework. Let K[x, y]0≤d be the K-vector space of polynomials having at most
degree d (≥ 3) and a zero independent term, and let P = {(xι, yι)} be a
configuration of n different points in the plane. The linear projective subspace
of the polynomials with singular points at least in P, denoted as

Ld(P) .= Proj
({f ∈ K[x, y]0≤d | P ⊆ Σ(f)}), (2)

is well defined. We say that a polynomial f is essentially determined by P
when Ld(P) is a projective point {λf | λ ∈ K

∗}, see Definition 4. All this leads
us to the following.

Interpolation problem for singular points. Let P ⊂ K
2 be a configuration

of n different points, we try to determine the projective subspace Ld(P) of
polynomials of at most degree d with singular points at least in P.

This problem has several novel features. The singular values {cι} ⊂ K of
f can appear in different level curves {f(x, y)− cι = 0}; it is natural in Hamil-
tonian vector field theory and moduli spaces of polynomials, see Wightwick [18]
and Fernández de Bobadilla [11]. This is the main difference from the widely
considered problem of linear systems of curves in CP

2, e.g., Miranda [15] and
Ciliberto [8].

Very roughly speaking, for degree d ≥ 3 the relevant data are the car-
dinality and position of the configuration P, as a candidate to be a singular
point configuration Σ(f). For degree 3, the prescription of 4 singular points is
suitable. For degree d ≥ 4, however, the generic configuration P with (d − 1)2

points is too restrictive. Thus, the fiber S−1
d (P) will be generically empty. It

follows that the position of the configurations P coming from polynomials is
the hardest part to characterize. At this first stage, we consider mainly P as
isolated points of multiplicity one, Remark 1 provides an explanation. Our first
result describes the role of cardinality δ(d) of P in Eq. (2), see Proposition 1.

Dichotomy of the required number of singular points. If the dimension of
K[x, y]0≤d is odd (resp. even), then the configurations {P} with δ(d) points and
dimK(Ld(P)) ≥ 0 determine an open (resp. closed) Zariski set in the space of
configurations with δ(d) points, denoted as Conf (K2, δ(d)).

We compute the singular point map S3. Thus, a description for the 4
singular point configurations {P} with essentially determined polynomials is
provided. Recall that the affine group Aff (K2) acts on the space of polynomials,
see Eq. (20). This action is rich enough and yet treatable for degree 3. Let

A
.= {x4y4(x4 + y4 − 1)(x4 + y4)(x4 − 1)(y4 − 1) = 0} ⊂ K

2 = {(x4, y4)}
be an arrangement of six lines from two nested triangles, where of them is
� = {(0, 0), (1, 0), (0, 1)}. See Fig. 1a. We prove the following result.
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Theorem 1. Let f be a degree 3 polynomial having at least 4 singular points
Σ(f).
(1) f is essentially determined if and only if up to affine transformation the

four singular points are

Σ(f) = {(0, 0), (1, 0), (0, 1), (x4, y4)} and (x4, y4) /∈ A .

(2) f is not essentially determined if and only if up to affine transformation
the four singular points are

{(0, 0), (1, 0), (0, 1), (x4, y4)} and (x4, y4) ∈ A .

Moreover, in this case Σ(f) can be four isolated points or two parallel
lines.

In simple words, the 4-th point (x4, y4) generically determines the poly-
nomial f . We compute the fundamental domain for this Aff (K2)-action and
obtain a tessellation of K

2 = {(x4, y4)} with 24 tiles, as seen in Fig. 3. As ex-
pected, some interesting phenomena occur for configurations with nontrivial
isotropy groups in Aff (K2), Fig. 4 illustrates this. For degree d ≥ 3, a particu-
lar family of configurations is the grid of (d − 1)2 points, from the intersection
of two families of d parallel lines in K

2, see Definition 8. They provide examples
of nonessential determined polynomials with (d − 1)2 Morse singular points.
A remaining open question is are these grids of (d − 1)2 points the unique
mechanism in order to produce non essential determined Morse polynomials?

From the point of view of vector fields; under what conditions the singu-
lar points (i.e., zeros) of a Hamiltonian vector field determine it in a unique
way? This is a very general and interesting issue in real and complex foliation
theory, studied by Gómez-Mont and Kempf [13], Artes et al. [4], Campillo
and Olivares [6] and Ramı́rez [17]. See Corollary 6. These related results are
described in Sect. 7.

The content of this work is as follows. In Sects. 2 and 3, we study the prob-
lem of the dimension of linear systems for polynomials with singular points,
using the degree as a parameter. In Sect. 4, we characterize polynomials essen-
tially determined by their configurations of singular points; this proves Theo-
rem 1. In Sect. 5, we focus on the degree 4 case. For each configuration of 6
points, we obtain a plane curve of degree 6 by parametrizing the essentially
determined polynomials, see Proposition 2. Section 6 explores the behavior of
pencils of Hamiltonian vector fields with common simple singularities.

2. Linear Systems Ld(P)

Let K[x, y]0≤d (resp. K[x, y]0=d) be the K-vector space of polynomials with at
most degree d ≥ 3 (resp. the set for degree = d) and a zero independent term.
Consider

f(x, y) =
∑

1≤ι+j≤d

aιjx
ιyj ∈ K[x, y]0≤d, (3)
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from which the K-dimension of K[x, y]0≤d is 1
2 (d2 +3d) and its projectivization

is
Proj

(
K[x, y]0≤d

)
=
{
[f ] | f ∈ K[x, y]0≤d

}
= KP

1
2 (d2+3d−2), (4)

where [ ] denotes a projective class. Recall that

Conf (K2, n) =
{P = {(x1, y1), . . . , (xn, yn)} |
(xι, yι) 	= (xj , yj) for ι 	= j

}
/Sym(n) (5)

is the space of unordered configurations of n points in K
2, where the symmetric

group Sym(n) in n elements acts by exchanging the points. The configuration
space Conf (K2, n) is a K-analytic manifold.

Definition 1. Given a configuration P ∈ Conf (K2, n), the linear system of
polynomials of at most degree d with singular points at least in P is the pro-
jective subspace

Ld(P) =
{
[f ] | P ⊆ {fx(x, y) = 0} ∩ {fy(x, y) = 0}} ⊂ Proj

(
K[x, y]0≤d

)
.

(6)

In algebraic geometry language, {fx(x, y) = 0} and {fy(x, y) = 0} belong
to the linear system of algebraic curves

Ld−1

(− Σn
α=1(xι, yι)

)
.

See [8,15]. In several places, however we consider fx, fy as functions and not
just as algebraic curves.

The polynomials of at most degree d, the Hamiltonian polynomial vector
fields and the polynomial vector fields, of at most degree d − 1, are related by
linear maps

K[x, y]0≤d

∼=←→ Ham(K2)≤d−1 −→ X(K2)≤d−1

f ←→ Xf = −fy
∂
∂x + fx

∂
∂y −→ Xf .

In the space of Hamiltonian vector fields, Ld(P) determines a linear subspace

{λXf | P ⊆ Z(λXf ), λ ∈ K
∗} ⊂ Ham(K2)≤d−1.

Set theoretically, the zeros Z(λXf ) of the vector field Xf coincide with {fx(x, y)
= 0} ∩ {fy(x, y) = 0}.

Definition 2. Let f ∈ K[x, y] be a nonconstant polynomial. Over K = C, the
Milnor number of Xf at a zero point (xι, yι) ∈ Z(X) is

μ(xι,yι)(X) = dimC

OC2,(xι,yι)

< −fy, fx >
,

where OC2,(xι,yι) is the local ring of holomorphic functions at the point (xι, yι)
and < −fy, fx > is the ring generated by the partial derivatives.
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Remark 1. 1. Over K = C, if (xι, yι) is an isolated singular point of f , then
the notions of multiplicity for the intersection of the curves {fx(x, y) = 0} ∩
{fy(x, y) = 0} and the Milnor number for Xf coincide; see [14, p. 174].
2. A priori, we consider each point (xι, yι) ∈ P in (6) with multiplicity of
intersection 1 for the algebraic curves {fx(x, y) = 0} and {fy(x, y) = 0}.
3. By Bézout’s theorem, the maximal number of isolated singularities of Xf

on C
2 is (d − 1)2. In this case, all the affine singularities are of multiplicity 1.

4. Moreover, the maximal number of isolated singularities of Xf extended to
CP

2 is

(d − 1)2 + d.

Here the upper bound d comes from the intersection of a generic projectivized
level curve {f = c} with the line at infinity; see [6,13] for the case of rational
vector fields, which are not necessarily Hamiltonian.

Let A
2
K

= Spec K[x, y] be the affine scheme of the affine plane K
2, see [10,

pp. 48–49].

Definition 3. The singular point map of degree d is

Sd : K[x, y]=d −→ Spec K[x, y]

f �−→ Σ(f) = I(fx, fy),
(7)

sending a polynomial of degree d to its singular points Σ(f) as an affine alge-
braic variety (not necessarily reduced) generated by the ideal of partial deriva-
tives of f .

In fact, Σ(f) can be understood as a subscheme, with support at the
points {fx(x, y) = 0} ∩ {fy(x, y) = 0}, where the sheaf of ideals is defined
by the germs of I(fx, fy); compare with [6], [10, p. 100]. In a set theoretical
language, Σ(f) determines points and even algebraic curves. In the study of
rational vector fields on CP

2 however, the case of foliations with singularities
along curves is removed, see [6,13].

Remark 2. The simplest case of the interpolation problem for singular points
occurs when Σ(f) is a finite set of points of multiplicity 1, i.e., {fx(x, y) = 0}
and {fy(x, y) = 0} have transversal intersections. The Σ(f) is a configuration
in Conf (K2, n), for 0 ≤ n ≤ (d − 1)2.

Our former task is as follows: Given a configuration P, which is
dimK(Ld(P))?
To be clear, three relevant data must be considered the degree d of the poly-
nomials {f}, the cardinality n and the position of the configuration P. The
following diagram explains:
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position of P

cardinality n of P

����

����
dimK(Ld(P)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 Ld(P) = ∅.

0 [f ] = Ld(P) = KP
0

f is essentially determined.

κ ≥ 1 [f ] ∈ Ld(P) = KP
κ

f is nonessential determined.

(8)

The natural concepts are as follows.

Definition 4. Let f ∈ K[x, y]0≤d be a polynomial and let P be a configuration
of n points in K

2.

(1) A polynomial f is essentially determined by P when [f ] = Ld(P).
(2) A polynomial f is nonessentially determined by P when [f ] ∈ Ld(P) and

dimK(Ld(P)) ≥ 1.
(3) P is a forbidden configuration (for polynomials of at most degree d) when

Ld(P) = ∅.
(4) The set of degree d essentially determined polynomials is

Ed
.=
⋃

P
Ld(P) ⊂ Proj

(
K[x, y]0≤d

)
, (9)

where the union is over all configurations {P} such that dimK(Ld(P)) =
0.

Remark 3. (1) The strict set theoretical inclusion P � Σ(f) can be satisfied
for essentially determined polynomials f . For example, in the case of a
product of three lines, one possesses a multiplicity 1, say f = L2

1L2.
(2) The set of degree 3 essentially determined polynomials E3 is a union of

projective spaces; however, it is not a projective space, as Proposition 1
will show.

(3) As expected, many of the projective classes in Ed arise from Morse poly-
nomials. The converse is not true, as seen in Corollary 7.

3. On the Number of Required Singular Points

A novel aspect of the interpolation problem for singular points is its cardinality;
the configurations having a certain number δ(d) of points determine open or
closed Zariski sets in K[x, y]0≤d. As a key point, the dimension 1

2 (d3 + 3d) of
K[x, y]0≤d can be even or odd. Starting with degree d = 4, the pattern of these
dimensions is 4-periodic; even, even, odd odd, . . .. See the third column in
Table 1.
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Table 1. Dimensions and values for the interpolation problem

Degree d δ(d) Eq. (10) Number of
columns in φ
1
2 (d2 + 3d)

Number of
rows in φ
2δ(d)

Zariski topol-
ogy of {P} ⊂
Conf (K2, δ(d))

3 4 9 8 Closed
4 7 14 14 Open
5 10 20 20 Open
6 13 27 26 Closed
7 17 35 34 Closed

Proposition 1 (A dichotomy of the number δ(d) of required singular points).
Let K[x, y]0≤d be the set of polynomials having at most degree d ≥ 3, and let

δ(d) .=

{
1
4 (d2 + 3d − 2) when 1

2 (d2 + 3d) is odd,
1
4 (d2 + 3d) when 1

2 (d2 + 3d) is even.
(10)

1. If the dimension of K[x, y]0≤d is odd, then the configurations {P} with δ(d)
points and dimK(Ld(P)) ≥ 0 determine an open Zariski set in Conf (K2, δ(d)).
2. If the dimension of K[x, y]0≤d is even, then the configurations {P} with δ(d)
points and dimK(Ld(P)) ≥ 0 determine a closed Zariski set in Conf (K2, δ(d)).

Proof. Let f(x, y) ∈ K[x, y]0≤d be a polynomial as in (3). Assume that P =
{(xι, yι) | ι = 1, . . . , n} is set theoretically contained in Σ(f). A priori, each
point (xι, yι) ∈ P will drop the dimension of the vector space K[x, y]0≤d by 2.
In the linear framework, this leads to a linear system of 2n equations:

fx(xι, yι) = fy(xι, yι) = 0, ι = 1, . . . , n, (11)

with {aιj} as variables. Following Bézout’s theorem for a moment, let us con-
sider a configuration with n = (d − 1)2 points. We have a linear map

φ : K[x, y]0≤d
∼= K

1
2 (d2+3d) −→ K

2(d−1)2

f �−→ (
fx(x1, y1), . . . , fx(x(d−1)2 , y(d−1)2),

fy(x1, y1), . . . , fy(x(d−1)2 , y(d−1)2)
)
. (12)

The interpolation matrix φ depends on P, and for notational simplicity we
omit this dependence. The matrix φ has 1

2 (d2 + 3d) columns, 2(d − 1)2 rows
and a very particular shape because of the partial derivatives involved in it,
see Eqs. (17), (33) for explicit examples with d = 3, 4.

For degree d = 3 and a configuration P of 4 points; however, then the
rank of the matrix φ associated with P is 8 if and only if dimK(L3(P)) = 0.
If we consider degree d ≥ 4, then the number of rows of φ is bigger than the
number of columns. We must reduce the number n of required points in the
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configurations P, this n < (d − 1)2. The number δ(d) in (10) determines two
possibilities.

Case 1 in (10). For P with δ(d) = 1
4 (d2+3d−2) points, the interpolation matrix

φ has 1
2 (d2 + 3d) odd columns and 1

2 (d2 + 3d − 2) even rows, for example for
(d + 1) = 3, 6, 7. Moreover,

(number of columns of φ) − 1 = (number of rows of φ).

The dimension of the kernel of φ is at least one, thus dimK(Ld(P)) ≥ 0.
There are 1

2 (d2 +3d) minors Aj from the matrix φ(x1, y1, . . . , xδ(d), yδ(d)). The
complement of the algebraic equations

{Πjdet(Aj(x1, y1, . . . , xδ(d), yδ(d))) = 0} ⊂ Conf (K, δ(d))

describes the set of configurations having dimK(Ld(P)) = 0, corresponding to
the essentially determined polynomials. These configurations of δ(d) points in
Conf δ(d)(K2) determine an open Zariski and dense set, which is the second
part of assertion (1).

Case 2 in (10). The dimension of K[x, y]0≤n is even and we assume 1
4 (d2+3d) ∈

N points in P. The interpolation matrix φ is square of even size, and there are
1
2 (d2 + 3d) columns and rows; for example when d = 4, 5.
If we assume P such that {det(φ(x1, y1, . . . , xδ(d), yδ(d))) 	= 0}, then the only
vector in the {aιj} variables solving the linear system (11) is zero. The set of
desired polynomials is empty.

The configuration with nonempty polynomials
{P | det(φ(x1, y1, . . . , xδ(d), yδ(d))) 	= 0

} ⊂ Conf (K, δ(d))

determines an algebraic set. �

Recalling (4), the expected projective dimension of Ld(P), which is the
linear system of polynomials of at most degree d with singular points at least
in P ∈ Conf (K2, n), is

max

{
1
2
(d2 + 3d − 2) − 2n, −1

}
.

In Sect. 5, we provide an alternative for studying the even dimension case in
Proposition 1.

4. Essentially Determined Polynomials of Degree 3

4.1. A Linear System

In order to apply elementary methods, we introduce a very simple configuration
of 4 points, depending essentially on the fourth one (x4, y4). Secondly, we must
find a polynomial f(x4, y4, x, y) with a singular point set containing the above
simple configuration. Let

A
.=
{
xy(x + y − 1)(x + y)(x − 1)(y − 1) = 0

}
(13)
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(a) (b)

Figure 1. a The line arrangement A (of double lines) and
the triangle � = {V1, V2, V3}. b The analogous objects under
the linear map R, sending A to A and � to Δ

be an arrangement of six K-lines; it is illustrated in Fig. 1a.

Lemma 1. Let

P = {V1 = (0, 0), V2 = (1, 0), V3 = (0, 1), (x4, y4)}
∈ Conf (K2, 4), (x4, y4) /∈ A ,

be a fourt point configuration. The polynomial

f(x4, y4, x, y) = (y2
4(y4 − 1)(−1 + 2x4 + y4)(2x3 − 3x2)

+ x2
4(x4 − 1)(−1 + x4 + 2y4)(2y3 − 3y2)

− 6x4y4(x4 − 1)(y4 − 1)(x2y + xy2 − xy))a6

∈ K[x, y]=3, (14)

for a6 ∈ K
∗ is well defined and P = Σ

(
f(x4, y4, x, y)

)
.

It will be convenient to write Eq. (14) as a map to the space of polyno-
mials

f(x4, y4, , ) : K
2\A −→ K[x, y]=3, (x4, y4) �−→ f(x4, y4, x, y). (15)

Proof. Let the following be a polynomial

f(x, y) = a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2 + a6xy + a7y
2 + a8x + a9y

∈ K[x, y]0≤3. (16)
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For notational simplicity, only one subindex aι is considered. Let {(xι, yι) | ι =
1, . . . , 4} be an arbitrary configuration, and we require (a1, . . . , a9) to be solu-
tions of the linear system

⎛

⎜
⎜
⎜
⎜
⎝

...
3x2

ι 2xιyι y2
ι 0 2xι yι 0 1 0

0 x2
ι 2xιyι 3y2

ι 0 xι 2yι 0 1
...

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

a1

...
a9

⎞

⎟
⎠ =

⎛

⎜
⎝

0
...
0

⎞

⎟
⎠ . (17)

The interpolation matrix φ in (17) has 9 columns and 8 rows. The choice
P = {(0, 0), (1, 0), (0, 1), (x4, y4)} determines the linear system with only two
equations

fx(x, y) = 3a1x
2 + 2a2xy + a3y

2 + 2a5x + a6y + a8 = 0,
fy(x, y) = a2x

2 + 2a3xy + 3a4y
2 + a6x + 2a7y + a9 = 0.

Obviously, (0, 0) ∈ P implies the vanishing of the linear part fx(0, 0) = a8 =
0 = a9 = fy(0, 0). The linear conditions imposed by (1, 0) and (0, 1) are

{
fx(1, 0) = 3a1 + 2a5 = 0 a1 = − 2

3a5,
fy(1, 0) = a2 + a6 = 0 a6 = −a2,

{
fx(0, 1) = a3 + a6 = 0 a6 = −a3,
fy(0, 1) = 3a4 + 2a7 = 0 a4 = −2

3 a7.

The solution of this system

f(x4, y4, x, y) = a6

(
y4(−1 + 2x4 + y4)

3x4(x4 − 1)
x3 − x2y − xy2 +

x4(−1 + x4 + 2y4)

3y4(y4 − 1)
y3

+
y4(1 − 2x4 − y4)

2x4(x4 − 1)
x2 + xy +

x4(1 − x4 − 2y4)

2y4(y4 − 1)
y2

)

∈ K[x, y]=3

(18)
has rational coefficients. If we normalize, we get Eq. (14). �

Corollary 1. Let

P1 = {(0, 0), (1, 0), (0, 1), R1
.= (1, 1)} ∈ Conf (K2, 4)

be a four point configuration, and then dimK(Proj(L3(P1))) = 1.

We say that, R1 = (1, 1) is a rhombus point; see Fig. 1.

Proof. By replacing in φ the points in P1, a direct calculation shows that the
equivalent 9 × 8 matrix has a rank 7, where the null space of φ is given by
the vectors (0, 0, 0,−2/3, 0, 0, 1, 0, 0) and (−2/3, 0, 0, 0, 1, 0, 0, 0, 0). The linear
combination of the corresponding polynomials leads to

f(a,d,x, y) = a
(
2x3 − 3x2

)
+ d

(
2y3 − 3y2

)
, [a, d] ∈ KP

1. (19)

�
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Remark 4. Behavior of the linear system at A . Let P = {(0, 0), (1, 0), (0, 1),
(x4, y4)} be a configuration.
1. If (x4, y4) tends to be in a line

Lα ⊂ A
{
A
}\{R1 = (1, 1), R2 = (−1, 1), R3 = (1,−1)},

then the polynomial f(x4, y4, x, y) in (17) has two lines of singular points in the
respective pair of parallel K-lines Lα, Lβ , in the arrangement {A (x, y) = 0}.
Figure 4 provides a sketch up to affine transformations.
2. If (x4, y4) tends to be the vertex (0, 0) ∈ �, then the polynomial f(x4, y4,
x, y) in (16) becomes

f(0, 0, x, y) =
1
3
(x3 + y3) − (x2y + xy2) − 1

2
(x2 + y2) + xy.

As is expected, the curve {f(0, 0, x, y) = 0} has a cusp of multiplicity 2 at
(0,0), see Fig. 4. The same is valid if (x4, y4) tends to be any other vertex
(1, 0), (0, 1) of �. Figure 4 shows f(1, 0, x, y), corresponding to V2 = (0, 1)
denoted as V2 in the figure.

Remark 5. Let P be any configuration of four points. Thus L3(P) 	= ∅: there
exists a nonconstant degree 3 polynomial with singular points at least in P.

4.2. Affine Classification of Quadrilateral Configurations

We now study the independence of the previous results §4.1, with respect to
the coordinate system.

A valuable tool in the study of polynomials of degree 3 is the action of the
group of affine automorphisms of K

2, say Aff (K2). It is a six K-dimensional
Lie group. Let Aff (K2) acts on the space of polynomials of degree d as

Aff (K2) × K[x, y]=d −→ K[x, y]=d, (T, f) �−→ f ◦ T. (20)

This action is rich enough and yet treatable. The affine group acts on config-
urations such as

Aff (K2) × Conf (K2, n) −→ Conf (K2, n), (T,P) �−→ T−1(P). (21)

Thus, if f ∈ K[x, y]=d has n isolated singular points, say P ∈ Conf (K2, n),
then f ◦ T has singular points at T−1(P). Hence, a useful associated object is
the quotient space of quadrilateral configurations up to affine transformations.

Definition 5. The space of generic quadrilateral configurations is

Q =

⎧
⎨

⎩
P0 = {(x1 0, y1 0), . . . , (x4 0, y4 0)}

∣∣
∣
quadrilateral configurations
having no three collinear vertices
or determining two parallel lines

⎫
⎬

⎭

� Conf (K2, 4). (22)

Note that a quadrilateral configuration P0 does not have order. It deter-
mines several quadrilaterals, i.e., with a cyclic order in its vertices. Let
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� = {V1 = (0, 0), V2 = (1, 0), V3 = (0, 1)},

Δ = {V1 = (0, 0), V2 = (1, 0), V3 = (1/2,
√

3/2)}
be two triangles. Consider a linear transformation R ∈ GL(2, K) such that
R(�) = Δ, R(V2) = V2 and R(V3) = V3, see Fig. 1. The affine symmetries of
Δ,

Sym(3) = {σα ∈ Aff (K2) | σα(Δ) = Δ, α ∈ 1, . . . , 6}, (23)
are isomorphic to the symmetric group of order 3: with three reflections σ2, σ4, σ6

(with the axis in the lines N1, N2, N3) and their products σ1 = id, σ3, σ5; see
Fig. 1b. By abusing the notation, Sym(3) also denotes the affine symmetries
of �.
Thus, we use three coordinate systems as follows. Let P0 = {(x1 0, y1 0), . . . ,
(x4 0, y4 0)} as in (22). By using the affine action, we reduce P0 to {(x4, y4)}
or {(x4, y4)}. There are affine maps Tj ∈ Aff (K2) as follows

P0 = {(x1 0, y1 0), . . . , (x4 0, y4 0)}

P = {V1, V2, V3︸ ︷︷ ︸
�

, V4 = (x4, y4)} {V1, V2, V3︸ ︷︷ ︸
Δ

, V4 = (x4, y4)}.�

�
�

���

R

R−1

Tj R ◦ Tj
	

	
		


�
(24)

By notational simplicity, we also denote by P the configuration on the right
side.

A key point is the number of affine maps {Tj}, depending on P0 to be
computed in Corollary 2.

In accordance with Figs. 1 and 3, the triangles �, Δ determine the points,
line arrangements and regions below.

· Three rhombus points R1, R2, R3 (resp. R1, R2, R3).
· Four center points C1, C2, C3, C4 (resp. C1, C2, C3, C4).
· A six line arrangement A = L1 ∪ · · · ∪ L6 (resp. A = L1 ∪ · · · ∪ L6) sketched
as six double lines. A was already described in the introduction and in (13).
· A six line arrangement B = N1 ∪ · · · ∪ N6 (resp. B = N1 ∪ · · · ∪ N6) sketched
as six blue lines, where N1, N2, N3 are the axis of symmetry of �. The lines
N1, N2, N3 are fixed under σ1, σ2, σ3 in Aff (R2) leaving invariant �. The
lines N4, N5, N6 determine the triangle C1, C2, C3.
Naturally, these points and arrangements correspond to under the map R in
(24).
· In case K = R, we have two open connected regions in R

2; convex quadri-
lateral configurations when (x4, y4) ∈ Q1 (aquamarine) and nonconvex for Q2

(magenta).
Analogously, we have Q1 = R(Q1) and Q2 = R(Q2). Moreover, the bound-

ary of Q1, Q2 shall be described by using the isotropy of the respective con-
figurations.



Plane Polynomials and Hamiltonian Vector Fields Page 13 of 29   105 

Lemma 2. Let P ∈ Q be a generic quadrilateral configuration in K
2 as in (22).

If the affine isotropy group of P
Aff (K2)P

.= {T ∈ Aff (K2) | T−1(P) = P}
is nontrivial, then it is isomorphic to one of the subgroups below.

Case 1. Aff (K2)P ∼= Sym(3) if and only if up to affine transformation P has
vertices in an equilateral triangle and its center.

Case 2. Aff (K2)P ∼= Z2 × Z4 if and only if up to affine transformation P is a
rhombus; its vertices determine a pair of two parallel lines.

Case 3. Aff (K2)P ∼= Z2 if and only if up to affine transformation
(i) P = {(0, 0), (1, 0), (1/2,

√
3/2), (x4, y4)} where (x4, y4) is a fixed point under

the reflection σ′
2 with axis N2 in the isotropy of the triangle Δ and it is different

of the center of Δ,
(ii) Conversely, P is a trapezoid and its vertices determine two parallel lines,
different from a rhombus. �

Corollary 2. Let P0 be a generic quadrilateral configuration. The following as-
sertions are equivalent.

(1) P0 has a trivial isotropy group Aff (K2)P0 = id.
(2) There are 24 affine transformations R ◦Tj in (24), sending P0 to {(0, 0),

(1, 0), (1/2,
√

3/2), (x4, y4)}. �

Now we compute the orbit {R◦Tj(P0)}24
j=1 in terms of the fourth point in

{(x4, y4)} ∈ R
2. Certainly, the orbit has obvious elements given by the affine

symmetries of Δ. The nonintuitive transformations between quadrilateral con-
figurations R ◦ Tj(P0) are computed in the following result.

Lemma 3. Let

{(0, 0), (1, 0), (1/2,
√

3/2),
︸ ︷︷ ︸

Δ

V4 = (x4, y4)}

be a generic quadrilateral configuration and consider a vertex Vj ∈ Δ. There
exist three K-rational diffeomorphisms (different from the identity)

g(Vj , ) : K
2\A −→ K

2\A, V4 �−→ g(Vj , V4), j ∈ 1, 2, 3, (25)

such that the quadrilateral configurations

{(0, 0), (1, 0), (1/2,
√

3/2), V4} and {(0, 0), (1, 0), (1/2,
√

3/2), g(Vj , V4)}
are Aff (K2)-equivalent.

We note that g(Vj , ) are nonaffine maps.
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Figure 2. The point g(V2, V4) determines an affine map T
between generic quadrilateral configurations

Proof. The choice of one vertex Vj ∈ Δ, determines an opposite side Δ. With-
out loss of generality, we consider the vertex V2 = (1, 0) ∈ Δ and L1 =
{y − √

3x = 0} ⊂ A is the opposite side; see Fig. 2.
For fixed j = 2, we consider V4. Let L be the line by V4 and V2; L is the red
line in Fig. 2. We assume that L1 and L are nonparallel. There exists a unique
K-affine embedding

j : K −→ K
2, with j(K) = L, j(1) = V2, j(0) = L1 ∩ L

.= 0.

The definition of the map in L is

g(V2, ) : L\j(0) −→ L\j(0), V4 �−→ j

(
1

j−1(x4, y4)

)
. (26)

Secondly, we shall extend this definition for V4 ∈ K
2\L1. In order to avoid

cumbersome computations, the coordinates {(x, y)} in (24) are more suitable.
Assume P = {(0, 0), (1, 0), (0, 1), (x4, y4)}, the vertex is V2 = (1, 0) ∈ � and
L1 = {x4 = 0} is the opposite side. The analogous definition provides the
rational map

g(V2, ) : K
2\{x4(x4 − 1) = 0} −→ K

2\{x4(x4 − 1) = 0},

V4 = (x4, y4) �−→
( 1

x4
,
−y4 + y4x4

x4 − 1

)
.

(27)

It enjoys the properties described below.

· g(V2, ) is a birational map of K
2.

· g−1(V2, ) = g(V2, ), it is an involution.
· The point V2 and the line {x = −1} are fixed under g(V2, ).
· The poles of the map g(V2, ) are localized at {x = 0} and {x − 1 =
0}\{(0, 1)}. Thus, strictly speaking the map is a K-analytic diffeomorphism on
K

2\{x(x − 1) = 0}. In the synthetic definition (26), L1 and L are nonparallel.
This construction originates the pole of g(V2, ) at {x − 1 = 0}.
· A straightforward computations shows that the line arrangements A and B
(double and blue lines in Fig. 3) are poles or remain invariants under g2(V2, ).



Plane Polynomials and Hamiltonian Vector Fields Page 15 of 29   105 

In summary, we define (26) as

g(V2, ) .= R ◦ g(V2, ) ◦ R−1.

Finally, given V4 and g(V2, V4), there exists a unique transformation T ∈
Aff (K2), which leaves the line L1 fixed so that T (V4) = g(V2, V4); see Fig. 3.
Under T , the quadrilateral configurations

{(0, 0), (1, 0), (1/2,
√

3/2), V4} and {(0, 0), (1, 0), (1/2,
√

3/2), T (V4)}
are affine equivalent.

The other vertices of the triangle Δ determine rational maps g(V1, ),
g(V3, ), both enjoy analogous properties. �

Remark 6. Three blue lines in Fig. 3 correspond to the fixed points under the
reflection symmetries Sym(3) of Δ. By using (26), the complete configura-
tion of six blue lines N1, . . . , N6 is invariant under the three transformations
g(Vj , ). We leave this assertion for the reader.

Lemma 4. 1. The quotient space of generic quadrilateral configurations up
to affine transformations, given by

π : Q −→ Q/Aff (K2), {(x1 0, y1 0), . . . , (x4 0, y4 0)} �−→ [(x4, y4)], (28)

is a K-analytic surface Q.
2. For K = C, the quotient Q is a connected complex surface.
3. For K = R, the quotient has two connected components Q = Q1 ∪ Q2 and

singular points with local models K
2/Z2 or K

2/Sym(3).

Some comments are in order. Figure 3 illustrates the fundamental do-
mains for π over K = R. The double lines A = L1 ∪ · · · ∪ L6 in Figs. 1, 2, 3
and 4 correspond to forbidden positions for (x4, y4). Moreover, (x4, y4) ∈ Q1

determines a nonconvex quadrilateral configuration; (x4, y4) ∈ Q2 determines
a strictly convex quadrilateral configuration.

Proof. The set theoretical construction of the quotient is simple, and we de-
scribe its projection π in (28). Given P0 ∈ Q, we apply an affine transformation
R ◦ Tj in (24) sending it to

R ◦ Tj(P) = {(0, 0), (1, 0), (1/2,
√

3/2), V4 = (x4, y4)}.

Case 1. The isotropy is trivial Aff (K2)P = id. There are exactly 24 different
choices for R ◦ Tj , as in Lemma 2; we have that π has as a target K

2 =
{(x4, y4)}.

In order to describe its analytic properties, recall that the Klein four-
group K is isomorphic to Z2 × Z2. It is such that each element is self-inverse
(composing it with itself produces the identity) and composing any two of the
three nonidentity elements produces the third one; see [2, p. 87]. Moreover, the
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Figure 3. The plane R
2\A with coordinates {x4, y4}

parametrizes the quadrilateral configurations {V2, V2, V3, V4 =
(x4, y4)}. The pair tile Q = Q1 ∪ Q2 is a fundamental domain
for the moduli space of quadrilateral configurations, up to
Aff (K2)-equivalence. There are 24 copies of the fundamental
region Q. We colored Q2 and its copies with pink or blue (resp.
Q1 and its copies aquamarine or magenta) tiles for strictly
convex (resp. non convex) quadrilateral configurations

group Sym(4) is of order 24, having a Klein four-group K as a proper normal
subgroup; thus Sym(3) = Sym(4)/K. We recognize

K = {id, g(Vj , ) | j ∈ 1, 2, 3}
as the group in Lemma 3. Recall (23) and consider the homomorphism given
by

ϕ : Sym(3) −→ Aut(K), σ �−→ σ−1
α ◦ g(Vj , ) ◦ σα(x4, y4).

The semidirect product of K and Sym(3) determined by ϕ is Sym(4) = K �ϕ

Sym(3), see [2, p. 133]. Hence, we have a representation of Sym(4) in the
birational transformations of K

2\A and

Q =
Q

Aff (K2)
=

K
2\A

Sym(4)
(29)
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is the quotient space. See [16] for a general theory of the quotients of complex
manifolds under a discontinuous group of automorphisms. Assertion (1) is
done.

For assertion (2), we assume K = C; note that K
2\A is a connected

complex manifold. The local behavior of this complex quotient at the points
with nontrivial isotropy Z2 at the lines N1, N2, N3 is known to be nonsingular
(because of Chevalley [7], see also [12]). For C the isotropy is Sym(3) and the
same references describe the local structure of the quotient.

For assertion (3), we assume K = R, clearly the convexity or non convex-
ity of a quadrilateral configurations are affine invariants, from where there are
two connected components. At the points C, . . . , C4 and lines N1, N2, N3 where
the isotropy of the quadrilateral configurations is nontrivial, the quotient (29)
has singularities; it is an orbifold. �

As final step in the proof of Theorem 1, we consider the action on pro-
jective classes

A : Aff (K2) × Proj(K[x, y]=3) −→ Proj(K[x, y]=3), (T, [f ]) �−→ [f ◦ T ].
(30)

This action provides an Aff (K2)-bundle structure on K[x, y]=3. Denote the
stabilizer or isotropy group of [f ] ∈ Proj(K[x, y]=3) by

Aff (K2)[f ]
.= {T ∈ Aff (K2) | f ◦ T = λf, λ ∈ K

∗}.

Equations (15) and (24) provide bijective correspondence between the generic
quadrilateral configuration in (x4, y4) ∈ K

2\A and projective classes of poly-
nomials [f(R−1(x4, y4), x, y)]. If P ∈ Q, then we verify that the isotropy of
the quadrilateral configuration Aff (K2)P is isomorphic to Aff (K2)[f ]. Thus,
we have a section

f ◦ R−1 : K
2\{A} −→ Proj(K[x, y]=3), (x4, y4) �−→ [f(R−1(x4, y4), x, y)]

and a diagram

Proj(K[x, y]=3)

�

π[f(R−1(x4, y4), x, y)]

K
2\{A}

���������

Proj(K[x, y]=3)
Aff (K2)

,
(31)

where π is the projection of classes from the action (30). The Aff (K)-orbit
of a projective class [f ] ∈ K[x, y]=3 is homeomorphic to Aff (K2)/Aff (K2)[f ].
Obviously, K[x, y]=3,id is open and dense in K[x, y]=3.

The proof of assertion 1, Theorem 1 is done.
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Remark 7. It is well known (as a seen for instance in [9, p. 53]) that if we
consider

K[x, y]=3,id
.= {f ∈ K[x, y]=3 | Aff (K2)f = id},

then the restricted action in K[x, y]id, determines a principal fiber Aff (K2)-
bundle structure. In particular, the quotient K[x, y]=3,id/Aff (K2) is a two di-
mensional K-analytic manifold.

Remark 8. For K = R, the fundamental domain Q1 ∪ Q2 determines the bi-
furcation diagram of the respective Hamiltonian vector fields, see Fig. 4. By
construction, Q1 has two boundaries and one vertex C and Q2 has one boundary
(without extreme points).

We summarize the results in Table 2.

Example 1. Relation to the classification of cubic plane curves. The Hesse pen-
cil of cubic curves is

{z3 + x3 + y3 − 3μzxy = 0}, resp. {x3 + y3 − 3μxy + 1 = 0}, μ ∈ C
∗,

in the projective plane CP
2 = {[z, x, y]}, resp. the affine plane; see [3]. The

key property is that any nonsingular cubic plane is projectively equivalent to a
member of the Hesse pencil. The singular points of the affine Hesse polynomial

f(μ, x, y) = x3 + y3 − 3μxy + 1

determine a generic quadrilateral configuration
{
(0, 0), (μ, μ),

(− ζ1μ, ζ2μ
)
,
(
ζ2μ, −ζ1μ

)} ⊂ C
2\R

2,

where {1, ζ2, ζ3} are the cube roots of unity. In order to translate it to our
language, up to the linear transformation Mμ : C

2 −→ C
2, (x, y) �−→ (

μx −
ζ2μy, μx + ζ3μy

)
. The quadrilateral configuration changes to

P = {(0, 0), (1, 0), (0, 1), (2ζ1μ
2,
(
1 + ζ2

)
μ2)}.

By Theorem 1, the affine Hesse polynomial

f(μ, ) ◦ M(x, y) = μ3
(
2x3 − 3x(−1 + y)y − 3x2(1 + y) + y2(−3 + 2y)

)
+ 1

is essentially determined. Since these quadrilateral configurations are nonreal,
they are different from those given in Fig. 4.

4.3. Nonessential Determined Polynomials of Degree 3

By completeness, we describe the polynomials arising from the configurations

P = {(0, 0), (1, 0), (0, 1), (x4, y4)} ∈ Conf (K2, 4), (x4, y4) ∈ A .

Lemma 5. 1. Let P = {(0, 0), (1, 0), (x3, 0), (x4, y4)}, with x3 	= 0, 1 and
y4 	= 0, then dimK(Proj(L3(P))) = 0.

2. Let P = {(0, 0), (1, 0), (x3, 0), (x4, 0)} be a configuration, then dimK

(Proj(L3(P))) = 2.
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Figure 4. Bifurcation diagram of the real Hamiltonian
vector fields Xf◦R−1 according to the position of four singular
points in the fundamental region Q. At the rhombus point R1,
the configuration of four points P = {(0, 0), (1, 0), (0, 1), R1 =
(1, 1)} ⊂ Σ(fθ) is common; see Example 6. The up-
per row illustrates the topology of {fθ(x, y) | θ ∈
[0, π/2]}. A saddle connection bifurcation occurs for
θ = π/4. See https://github.com/alexander-arredondo/
Mathematica-code-for-Essentially-determined-polynomials-of-
degree-3/commit/e6a08f9a20da7b23d7a72beff8290af3a23260dc
for a code animation in Mathematica of this situation

https://github.com/alexander-arredondo/Mathematica-code-for-Essentially-determined-polynomials-of-degree-3/commit/e6a08f9a20da7b23d7a72beff8290af3a23260dc
https://github.com/alexander-arredondo/Mathematica-code-for-Essentially-determined-polynomials-of-degree-3/commit/e6a08f9a20da7b23d7a72beff8290af3a23260dc
https://github.com/alexander-arredondo/Mathematica-code-for-Essentially-determined-polynomials-of-degree-3/commit/e6a08f9a20da7b23d7a72beff8290af3a23260dc
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Proof. In assertion (1), up to an affine transformation we can assume y4 = 1.
The corresponding cubic polynomial takes the form f(x, y) = a4

(
2y3 − 3y2

)
,

where a4 ∈ K
∗.

For assertion (2), we search for polynomials f(x, y) ∈ K[x, y]0≤3 with at least
4 affine collinear singular points. The matrix of Eq. (17) results in the cubic
polynomials

f(x, y) = a3xy2 + a4y
3 + a7y

2 = y2(a3x + a4y + a7), [a3, a4, a7] ∈ KP
2,

with a line of singular points in {y = 0}. �

Example 2. The elementary methods provide an insight in the case of a double
point in Σ(f). Let P2 = {(0, 0), (1, 0), (0, 1), (0, 0)} be such a configuration. A
basis for L3(P2) is

x3 − 3x2, y3 − 3y2, x2y + xy2 − xy.

The first and second polynomials have lines of singularities, while the third
one has four isolated critical points. The family of polynomials is

f(a1, a2, a4, x, y) = a1(x3 − 3x2) + a2(x2y + xy2 − xy) + a4(y3 − 3y2),
[a1, a2, a4] ∈ KP

2.

As is expected, for values
{
(a1, a2, a4 = a2

2/9a1

}
the 2-dimensional family

f(a1, a2, a4, x, y) determines polynomials with three isolated singular points,
one of them of multiplicity 2, see Fig. 4.

5. Degree 4 Polynomials

Let
f(x, y) = a1x

4 + a2x
3y + · · · + a13x + a14y ∈ K[x, y]0≤4 (32)

be a polynomial as in (3). Here by notational simplicity, we have avoided the
double subindex, and let P = {(xι, yι) | ι ∈ 1, . . . , 7} be a configuration of
seven points. The associated linear system for Eq. (32) is
⎛

⎜
⎜
⎜
⎜
⎜
⎝

...
4x3

ι 3x2
ι y2

ι 2xιy2
ι y3

ι 0 3x3
ι 2xιyι y2

ι 0 2xι yι 0 1 0
0 x3

ι 2x2
ι yι 3xιy2

ι 4y3
ι 0 x2

ι 2xιyι 3y2
ι 0 xι 2yι 0 1

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

a1

...
a14

⎞

⎟
⎟
⎠ = 0, ι = 1, . . . , 7. (33)

The interpolation matrix φ, Eq. (33), is square. Hence, for an open and dense
set of configurations {P} ⊂ Conf (K2, 7) such that {det(φ) = 0}, the resulting
space of polynomials of degree 4 with having these P as critical points is empty.
In order to overcome this situation, we introduce the following concept.
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Definition 6. Assume K[x, y]0≤d with an even dimension and δ(d) = 1
4

(
d2 + 3d

)

as in (10). Given a configuration P0 ∈ Conf (K2, δ(d) − 1), consider a point
(x, y) ∈ K

2 and

P1 =
{

(x1, y1), . . . , (xδ(d)−1, yδ(d)−1)︸ ︷︷ ︸
P0

, (x, y)
}

∈ Conf (K2, δ(d)).

The interpolation algebraic curve of P0 is

I =
{
det

(
φ(x1, y1, . . . , xδ(d)−1, yδ(d)−1, x, y)

)
= 0

}
in K

2.

Obviously, I depends on P0, by notational simplicity we omit this de-
pendence. Thus, we have a map

P0 = {(x1, y1), . . . , (xδ(d)−1, yδ(d)−1)} �−→ I.

Proposition 2. Assume K[x, y]0≤d with even dimension.
1. The interpolation curve I of P0 describes the position of the δ(d)-th point

such that dimK(Ld(P1)) ≥ 0.
2. There exists a Zariski open set {P0} ⊂ Conf (K2, δ(d) − 1) such that the

associated {I} are algebraic curves of degree 2d − 2 in K
2.

Proof. For assertion (2), we consider the degree d polynomial

f(x, y) = a1x
d + a2x

d−1y + · · · + aδ(d)−1x + aδ(d)y.

After fixing the configuration P0, the associated linear system only has free
variables x, y, and the linear system is as follows
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

...

(d)xd−1 (d − 1)xd−2y (d − 2)xd−3y2 · · · 0 (d − 1)xd−2 · · · y2 0 2x y 0 1 0

0 xd−1 2xd−2y · · · 4y3 0 x2 2xy 3y2 0 x 2y 0 1
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

a1

...
aδ(d)

⎞

⎟
⎟
⎠ = 0. (34)

The determinant of this matrix has x2d−2 as a higher degree monomial, and
we are done. �

We describe some interpolation curves I.

Example 3. Let f ∈ K[x, y]0≤4 be a polynomial having of degree 4 and let
P0 = {(xι, yι) | ι ∈ 1, . . . , 6} be a fixed configuration of six different singular
points of f .

1. If three points of P0 are in a line {x = 0} and two points are in {x = 1},
then the interpolation curve I, of P0, is given by

I(x, y) =
(−1152y2

4y2
5(y4 − 1)2x6(x6 − 1)

)
x(x − 1)(x − x6)g(x, y). (35)
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The I is reducible and singular, it is the product of three parallel lines and a
polynomial g(x, y) that pass through the six points in P0.

2. Let P0 = {(xι, yι) | ι ∈ 1, . . . , 6} be any configuration of six points in the
grid of nine points

G = {x(x − 1)(x − c1) = 0} ∩ {y(y − 1)(y − c2) = 0}, where c1, c2 /∈ {0, 1}.

Therefore, the interpolation curve I, associated with the seventh point (x7, y7),
is the product of the six lines defining G.

3. Let P = {(xι, yι) | ι ∈ 1, . . . , 6} be a configuration of six singular points of
f . If the six points are distributed in a conic Q, then the interpolation curve
I, associated to the seventh point (x7, y7), contains the conic, which is I = Qg
for some g ∈ K[x, y]0≤4.

A complete study of the interpolation curves I arising from configurations
of six points is the goal of a future project.

6. Polynomial Vector Fields with (d − 1)2 Singularities

Now we will consider some special configurations of (d − 1)2 ≥ 4 points.

Definition 7. Let {F (x, y) = 0} and {G(x, y) = 0} be two algebraic curves
in K

2, both of degree d − 1 (≥ 2). We assume that they have transversal
intersections in exactly (d − 1)2 affine points; therefore

Pci = {F (x, y) = 0} ∩ {G(x, y) = 0} ∈ Conf (K2, (d − 1)2) (36)

is a complete intersection configuration. The associated pencil of curves is
{
μF (x, y) + νG(x, y) = 0 | [μ, ν] ∈ KP

1
}

. (37)

Pci is the base locus of the pencil of curves.

Corollary 3. An ordered pair of polynomial functions from (37), not just curves,
determines a SL(2, K)-pencil of polynomial vector fields

F(Pci) =
{

XM = −(cF (x, y) + dG(x, y)
) ∂

∂x
+
(
aF (x, y) + bG(x, y)

) ∂

∂y

∣
∣
∣

M =
(−c −d

a b

)
∈ SL(2, K)

}
(38)

Each vector field XM has singularities of multiplicity 1 at Pci. �

Lemma 6. Let Ud ⊆ X(K2)≤d−1 be the open and dense set of polynomial vector
fields of degree d−1, with exactly (d−1)2 singular points in Pci ⊂ Conf (K2, (d−
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1)2). Assume that Pci has a trivial isotropy group in Aff (K2). In Ud there exists
an analytic SL(2, K)-bundle structure as follows

SL(2, K) � Ud

�
π

Ud

SL(2, K)
⊆ Conf (K2, (d − 1)2). (39)

Proof. We want to show that a polynomial vector field X ∈ X(K2)≤d−1 has
(d−1)2 singular points exactly at Pci as in (36) if and only if it is of the shape
XM in (38).

(⇒) Let X = A(x, y) ∂
∂x +B(x, y) ∂

∂y be a vector field in X(K2)≤d−1. The curve
CA

.= {A(x, y) = 0} has at most degree d − 1 and would contain Pci. An open
set there exists of values {[μ, ν]} ⊂ KP

1 such that for each value the respective
curve {μF + νG = 0} in the pencil (37) intersects in a transversal way CA at
every point of Pci. By Bézout’s theorem, the degree of C is exactly d − 1. For
any point p ∈ CA\Pci ⊂ K

2, there exists a value, say [−c,−d] in (37), such that
its respective curve satisfies C−c−d ∩ CA ⊃ P̂ ∪ {p}. Hence (again by Bézout’s
theorem), both curves coincide as sets and A = −cF − dG as polynomials.

�

Thus, each configuration Pci has an associated fiber
{
XM | M ∈ SL(2, K)

} ⊂
Ud in (39), which is a family of not necessarily Hamiltonian vector fields. A
further goal is the study of the intersection

{
XM | M ∈ SL(2, K)

} ∩ Ham(K2)≤d.

Corollary 4. A jump phenomena. Let P = {(0, 0), (1, 0), (1/2,
√

3/2), (x4, y4)}
be a configuration leading to a family of vector fields F(P) = {Xm | m ∈
SL(2, K)} as in (38).

(1) If (x4, y4) ∈ K
2\A, then there exists one projective class in F(P) ∩ Ham

(K2)≤2.
(2) If (x4, y4) = R1, R2 or R3, then there exists a KP

1-family of Hamiltonian
vector fields F(P) ∩ Ham(K2)≤2. �

Example 4. A family
{
XM | M ∈ SL(2, K)

}
exists in (39) with (d−1)2 ≥ 4 points

as a base locus and such that its Hamiltonian vector fields Ham(K2)≤d−1 = [f ]
determine one projective class.
Consider two algebraic curves such that

Pci = {y − μΠd
ι=1(x − xι) = 0

︸ ︷︷ ︸
F (x,y)=0

} ∩ {x − νΠd
j=1(y − yj) = 0

︸ ︷︷ ︸
G(x,y)=0

}, d ≥ 3

has exactly (d − 1)2 ≥ 4 points.
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It follows that the associated 1-form ωm is exact if and only if m =(
a 0
0 a

)
.

In fact, suppose f(x, y) such that ωm = df , then

aF (x, y) + bG(x, y) = fx and cF (x, y) + dG(x, y) = fy.

As fxy = fyx, then a − b ∂
∂y Πd

j=1(y − yj) = −c ∂
∂xΠd

ι=1(x − xι) + d, so a = d
and b = c = 0.
By assuming ωm is exact and defining fm(x, y) =

∫ (x,y)
ωm, we conclude that

F(Pci) ∩ Ham(K2)≤d−1 = Ld(Pci) = [fm] and dimK(Ld(Pci)) = 0. (40)

Example 5. A fiber
{
XM | M ∈ SL(2, K)

}
as in (39), with (d − 1)2 ≥ 9 points

as a base locus satisfying that
{
XM | M ∈ SL(2, K)

} ∩ Ham(K2)=d = ∅.

Consider two hyperelliptic curves such that

P̂ = {F (x, y) = y2 − μΠd
ι=1(x − xι) = 0} ∩ {G(x, y) = x2 − νΠd

j=1(y − yj) = 0}
has exactly (d − 1)2 ≥ 9 points. It follows that ωm is nonexact for all m =(
a b
c d

)
. We conclude that

Ld(P̂) = ∅ and dimK(Ld(P̂)) = −1. (41)

In fact, if we suppose f(x, y) such that ωm = df , then 2ay−b ∂
∂y Πd

j=1(y−yj) =
−c ∂

∂xΠd
ι=1(x − xι) + 2dx, so a = b = c = d = 0.

Corollary 5. There exists a fiber F as in (39) having d2 points as a base locus
and

F(P̂) ∩ Ham(K2)=d = KP
1.

Moreover, KP
1 minus a finite set determines Morse polynomials.

The above result uses the following very particular configurations.

Definition 8. A grid of (d − 1)2 points G is determined by two sets of d − 1
parallel lines where one set is transverse to the other: up to affine transforma-
tion

G = {F (x, y) = Πd−1
j=1(y − yj) = 0} ∩ {G(x, y) = Πd−1

ι=1 (x − xι) = 0}
with exactly (d − 1)2 ≥ 4 points; it is a complete intersection.

Proof of the Corollary. The family XM with a grid of (d − 1)2 points is Hamil-
tonian if and only if

M ∈
{(

0 −d
a 0

)}
∼= K

2 ⊂ SL(2, K).
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In fact, ωm = (aF (x) + bG(y))dx + (cF (x) + dG(y))dy = 0 is exact if and only
if bG(y)y = cF (x)x. The equality holds only for b = c = 0.
The respective vector subspace of polynomials
{

f(a, d, x, y) = a

∫ (x,y)

Πd
ι=1(x − xι)dx + d

∫ (x,y)

Πd
j=1(y − yj)dy

∣
∣
∣ (a, d)

∈ K
2\{0}

}

⊂ K[x, y]0≤d (42)

shows that

Ld(P) ⊃ {[f(a, d, x, y)]} and dimK(Ld(P)) = 1. (43)

For (a, d) 	= (a, 0), (0, d), each polynomial f(a, d, x, y) ∈ K[x, y]0≤d in
(42) has (d − 1)2 Morse singular points. In fact, at each point p ∈ P, a very
simple observation with the Taylor series shows that f(a, d, x, y) = ãx2+ b̃y2+
O3(x, y), where ãb̃ 	= 0.

On the other hand, for (a, d) = (a, 0), (0, d) the polynomial f(a, d, x, y)
has lines of singular points in {P (x, y) = 0} or {Q(x, y) = 0}. �
Example 6. Real rotated Hamiltonian vector fields for the grid of 4 points. Let
G = {(0, 0), (1, 0), (0, 1), R = (1, 1)} be a grid, and its space of polynomials is

f(a, d, x, y) = a
(x3

3
− x2

2

)
+ d

(y3

3
− y2

2

)
.

In particular for K = R, we consider the family

Rθ =
{

fθ(x, y) = cos(θ)
(

x3

3
− x2

2

)
+ sin(θ)

(
y3

3
− y2

2

) ∣
∣
∣ θ ∈ [0, 2π]

}

of polynomials in (42). They originate from a family of rotated vector fields,
see Fig. 4. The algebraic curve {fθ(x, y) + c = 0} is reducible for θ = π/4 and
c = 1/6. In this case we obtain

{(x + y − 1)(2y2 − 2xy + 2x2 − y − x − 1) = 0}.

The following family of vector fields is related to the results in Ramı́rez
[17, Sect. 5] (non-generic Hamiltonian vector fields, theorem 5); see Fig. 4,
upper row.

Corollary 6. The 1-dimensional holomorphic family of Hamiltonian vector fields
of the polynomials

{
f(a, d, x, y) = a

(x3

3
− x2

2

)
+ d

(y3

3
− y2

2

) ∣
∣ ad = 1

}

has singularities at G = {(0, 0), (1, 0), (0, 1), R = (1, 1)} and spectra of eigen-
values

[
[i, −i], [1,−1], [i, −i], [1,−1]

]
.

�
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Corollary 7. For d ≥ 3, there exist Morse polynomials f ∈ K[x, y]0=d with
(d − 1)2 singular points that are not essentially determined. �

7. Closing Remarks

Let X(K2)≤d−1 be the space of polynomial vector fields {X} of at most degree
d−1 on K

2. A general and natural question is as follows. Under what conditions
is a polynomial vector field X on K

2 essentially determined by its configuration
of singular points, i.e., its zeros, Z(X) in K

2?
In simple words, a vector field X is essentially determined (in X(K2)≤d−1)

by its configuration of zeros Z(Xf );

if for any Y ∈ X(K2)≤d−1 satisfying Z(X) ⊂ Z(Y ) ⊂ K
2, then X = λY.

Recalling that for affine degree d the number of isolated singularities of the
associated singular holomorphic foliation F(X ) on the whole CP

2 is (d−1)2 +
d, the hypothesis of multiplicity 1 must be understood for all these points.
Proposition 1 confirms that in the Hamiltonian case only δ(d) ≤ (d − 1)2

points are required.
Recall which Gómez-Mont and Kempf [13], established in the complex

rational case the following deep result, that also enlightens the real case.
A meromorphic vector field X on CP

m, m ≥ 2, of degree r ≥ 2, with singular
points of multiplicity 1 is completely determined by its singular set.

Moreover, Artes et al. [4,5] prove the following:
A polynomial vector field X on K

2 of degree 2 is completely determined by the
position of its 7 singular points (including the points at infinity).

As far as we know, over K = C the more general result is due to Campillo
and Olivares [6]:
A singular holomorphic foliation X on CP

2 of degree r ≥ 2, is completely
determined by its singular scheme.

See Alcántara et al. [1] for recent developments regarding foliations with
multiple points. We summarize our results as follows.

Corollary 8. A polynomial Hamiltonian vector field Xf on K
2 of degree 2 is

completely determined (in the space of polynomial vector fields of degree 2, up
to a scalar factor λ ∈ K

∗) by its zero points, when there are 4 isolated points
different from {(0, 0), (1, 0), (0, 1), (1, 1)}, up to affine transformation.

Our hope is that the explicit results in this paper can illustrate the classifi-
cation of polynomials K[x, y] up to algebraic equivalence Aut(K2); see [11,18]
for this order of ideas. This potential application is the subject of a future
project.
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