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Abstract: On Riemann surfaces M , there exists a canonical correspondence between a possibly multivalued
function ΨX whose differential is single-valued (i.e. an additively automorphic singular complex analytic
function) and a vector field X . From the point of view of vector fields, the singularities that we consider
are zeros, poles, isolated essential singularities, and accumulation points of the above. The theory of singula-
rities of the inverse function ΨX

‒1 is extended from meromorphic functions to additively automorphic singular
complex analytic functions. The main contribution is a complete characterization of when a singularity of −

ΨX

1

is algebraic, is logarithmic, or arises from a zero with non-zero residue of X . Relationships between analytical
properties of ΨX , singularities of −

ΨX

1 and singularities of X are presented. Families and sporadic examples
showing the geometrical richness of vector fields on the neighbourhoods of the singularities of −

ΨX

1 are studied.
As applications, we have; a description of the maximal univalence regions for complex trajectory solutions of a
vector field X , a geometric characterization of the incomplete real trajectories of a vector field X , and a
description of the singularities of the vector field associated with the Riemann ξ-function.
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1 Introduction

Essential singularities of meromorphic functions Ψ on � are a natural source of intricate/complex behaviour
in analysis, iteration of functions, and differential equations, among other topics. From a geometrical point of
view, in 1914, Iversen [25] introduced the ideal points associated with a singularity of the inverse function −Ψ 1 by
defining neighbourhoods �( ) ⊂U ρa , where �∈a t is a singular value (i.e. a critical or an asymptotic value of
Ψ). Recently, Bergweiler and Eremenko have contributed in this direction, mostly applying their work to
holomorphic dynamics [8,14]. A great part of the complexity of an essential singularity is that its description
can require several ideal points, each with different behaviour. For meromorphic functions Ψ, the ideal points
are analytically classified as follows:
• algebraic singularities of the inverse function −Ψ 1 and
• transcendental singularities of the inverse function −Ψ 1.

We wish to extend this geometric perspective, more precisely the study via ideal points to not necessarily
isolated essential singularities of the following:
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(1) vector fields X and, as a natural consequence,
(2) certain multivalued functions ΨX associated with X .

Our framework is as follows. Let M be a connected, not necessarily compact, Riemann surface. By
definition, a singular complex analytic function �⟶MΨ :X t can admit accumulations of zeros, poles, and/
or essential singularities. Throughout the work, singular complex analytic means the analogous properties for
vector fields and 1-forms on M . In addition, ΨX is additively automorphic when its differential dΨX is a singular
complex analytic 1-form on M . Note that if ΨX is additively automorphic, then it can be single or multivalued.
The adjectives single-valued and multivalued shall be understood in the strict sense. Thus, the concept of
additively automorphic singular complex analytic function ΨX makes sense and includes the meromorphic case.

We recall the natural correspondence, which will be used throughout the work, between a function, a
vector field, and an associated Riemann surface. Let �⟶MΨ :X t be an additively automorphic singular
complex analytic function. The singular complex analytic vector field X on M canonically associated with ΨX is
defined by ( ) ≡XdΨ 1X , see Diagram 7 and Section 2. Conversely, given a complex analytic vector field X , the
associated ΨX is a (generically multivalued) additively automorphic singular complex analytic function. The
third element in the correspondence is the Riemann surface �� ⊂ ×MX t, roughly speaking the graph of ΨX .

The differential dΨX is the 1-form of time of X. By definition, the residue of X at a point is the residue of the
1-form of time dΨX at the point. In particular, ΨX is single-valued if and only if dΨX has all its residues and
periods1 equal to zero. For technical reasons, throughout the entire work, we require that the set of points
where the 1-form of time dΨX has non-zero residues be numerable.

The classical theory of singularities of the inverse function −
ΨX

1 fails for multivalued additively auto-
morphic singular complex analytic functions. As a simple example, consider a zero of X with non-zero residue
which gives origin to an essential singularity of −

ΨX

1 at the singular value �∞ ∈ t. Thus, by the classical
Casorati-Weierstrass theorem, the image of any neighbourhood of �∞ ∈ t is dense in M , i.e. the neighbour-
hoods ( )∞U ρ are not useful in order to distinguish ideal points.

As a valuable central result, in Section 3.2, we extend Iversen’s theory to also hold for additively auto-
morphic singular complex analytic functions ΨX , by introducing the fundamental domain Λ of ΨX , which is
essentially a maximal univalence region for ΨX .

The usefulness of vector fields X in the study of functions ΨX can be roughly stated as follows. The vector
field distinguishes the finite and infinite singular values �∈a t of ΨX and its ideal pointsUa in a clear geometric
way. A natural/heuristic idea of this is to exploit the phase portrait of the real part Re( )X . This method allows
us to describe the logarithmic singularities of −

ΨX

1 in geometric terms. Namely, the exponential tracts of ΨX can
be naturally classified as elliptic and hyperbolic tracts (Figures 1–3). This leads us to the following:

Ansatz: The ideal points or singularities of −
ΨX

1 can be understood as the points of the ideal boundary2of M
minus the essential singularities and the multivalued locus of ΨX . In other words, the ideal points are the branch
points of the Riemann surface �X .

Regarding the singularities of the inverse for single-valued ΨX on �=M , the cases of algebraic and
logarithmic singularities are understood best. Recall the following well-known classical result.

Theorem. (Nevanlinna, [35] Ch. XI, §1.3) A transcendental singularity of −Ψ 1 over an isolated asymptotic value is
logarithmic.

We shall prove a stronger version of the above result (the if and only if assertion and the extension to the
multivalued case). For this, we require the following definitions and methods suggested by the above ansatz.
Roughly speaking, a ⋆-transcendental singularity of −

ΨX

1 arises from a pole of dΨX with non-zero residue, see
Definition 3.14. Second, a singularity Ua is separate if for a small enough >ρ 0 the neighbourhood ( )U ρa does



1 As usual, the period of dΨX along β is the integral of dΨX in β, where [ ]β is in a basis of �( )H M ,1 and does not enclose an isolated
singularity or a conformal puncture of M .
2 For the sake of simplicity, we consider algebraic singularities also as ideal points, even though they are not on the boundary per se.
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not intersect any other neighbourhood of another ideal point; Definition 4.2 provides full details, see Examples
5.5–5.9 in Section 5. Regarding Nevanlinna’s result, for single-valued ΨX , a non-isolated singular value can support
separate (including logarithmic) and non-separate singularities. Our result covers the single, andmultivalued cases.

Theorem 4.4. (Separate singularities) Let �⟶MΨ :X t be an additively automorphic singular complex analytic
function. A singularity Ua of −

ΨX

1 is separate if and only if Ua is one of the following:
(1) algebraic,
(2) ⋆-transcendental,
(3) logarithmic.

Noting that the geometry3 of transcendental separate singularities is independent of the value of the
corresponding residue, it is natural to ask: Which new phenomena appear for multivalued ΨX?

. . 
.

. . .

. . 
.

. . .

Figure 1: (a) Elliptic tracts arise from the asymptotic value ∈∞ ℂt. (b) Hyperbolic tracts arise from finite asymptotic values ∈a ℂt . The
asymptotic values a, ∞ are represented by small red circles.

···

··
·

Figure 2: Geometry of exponential vector fields. (a) For ( ) =X z ez

z

∂

∂
of Example 4.1, the essential singularity at ∈∞ ℂz gives rise to two

logarithmic singularities; one hyperbolic tract over the singular value 0, and one elliptic tract over ∈∞ ℂt. (b) For ( ) ( )= ∕X z zez

z

2
∂

∂

3

of
Example 4.2.1, the essential singularity at ∈∞ ℂz gives rise to six logarithmic singularities. There are three hyperbolic tracts with finite
asymptotic value 0, with multiplicity 3, and three elliptic tracts with asymptotic value ∞, accurately denoted ∞ , ∞ , ∞1 2 3. The colouring
scheme for petal regions is as follows: green for hyperbolic tracts and blue for elliptic tracts, it will be used consistently throughout.



3 By geometry, we understand the geodesics described by Re( )X , with respect to the singular flat metric from X , and the topology
of the phase portrait of Re( )X .
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Using Definition 3.14, the relationship between the singularities of −
ΨX

1 and the singularities of X is the
statement of Theorems 4.6 and 4.9. A rough description of the relationship is as follows:

Figure 3: Geometry of vector fields X on ℂz with an essential singularity at ∞, with accumulations of poles and/or zeros. (a) is described
in Example 5.3, (b) in Example 5.5, (c) in Example 5.13, (d) in Example 5.11, (e) in Example 5.12, and (f) in Example 5.14. The colouring
scheme for neighbourhoods ( )U ρa , determining singularities of ΨX

‒1, is green for hyperbolic tracts and blue for elliptic tracts (to be
described in Definition 4.1 and Figure 1). Moreover, purple region in (c) denotes a connected component ( )U ρ∞ . Green and red dots
represent zeros and poles of ( )X z , respectively. It is remarkable, that G. Gyllström [18] describes intricate phase portraits of ordinary
differential equations one century ago.
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The adjective without residue means that the residue of dΨX at the respective essential singularity is not well
defined (e.g., if it is an accumulation of singularities with non-zero residue). The aforementioned relationship is
far from being a bijection; an essential singularity of X gives rise to none, one or more than one transcendental
singularity of −

ΨX

1. Example 4.3 provides a singularity of X in�nR that does not allow a singularity of the inverse
−

ΨX

1. In addition, Example 5.13 provides a singularity of X in �0 with exactly one singularity of −
ΨX

1. Theorem 5.1
describes generic X , where an essential singularity supports and even number of singularities of −

ΨX

1. As a
fortunate coincidence,

� � �� � � �= ∪ ∪ ∪ ∪ ∪R R nR0 0

also refers in a uniform way to the singularities of X , ωX , and ΨX . For example, �∈zs denotes a pole of X ,
simultaneously a zero of ωX and a critical point of ΨX .

In Section 5, we study finite dimensional holomorphic families of additively automorphic functions ΨX

with essential singularities. The use of the fundamental domain Λ technique allows us to reduce their study to
single-valued functions ΨX ,Λ. As one of the contributions of this work, the singularities of −

ΨX

1 for the multi-
valued case are considered for the first time in the literature. In particular, vector fields with essential
singularities that are accumulation points of zeros with non-zero residue are examined.

We consider the families

E �( ) ( )
( )

( )
[ ]( )= ⎧⎨⎩

=
∂
∂

∈ ≥ ⎫⎬⎭
s r d X z

Q z

P z z
Q P E z s r d, , e , , of degree , , 1 .E z

Theorem 5.1 describes the associated additively automorphic functions

�( )
( )

( )
( )∫= −z

P ζ

Q ζ
ζΨ e d , on .X

z

E ζ
z

All the singularities of −
ΨX

1 are separate. The zeros and poles with zero residue of dΨX correspond to algebraic
singularities of −

ΨX

1. The poles with non-zero residue of dΨX correspond to ⋆-transcendental singularities of −
ΨX

1.
The essential singularity consists of d2 logarithmic singularities: d elliptic tracts and d hyperbolic tracts
equidistributed about �∞ ∈ z.

These functions are the simplest in several deep subjects, determining functions with a finite number of
singular values. They are related to the Schwartzian second-order differential equation, see [23,35] Ch. XI, and
appear in the deformation of ramified coverings [44] and [45]. Also see our previous work [5] and references
therein.

As second kind of families, Theorem 5.2 studies the functions

( ) ( )= ∕z RΨ e ,X
πiz T2

where ( )R w are rational functions of degree ≥r 1, �∈T *. A systematic description that depends on the
behaviour of R is provided. Note that this family is the simplest having periodic functions and/or vector fields
where an accumulation of zeros and poles at the essential singularity ∞ appear.

In Section 5.3, the geometrical richness of the behaviour of the singularities of the inverse function −
ΨX

1

that may appear, even in the single-valued case, is explored. Examples of single-valued functions are con-
sidered from the perspective of vector fields; also examples of vector fields X which give rise to multivalued
additively automorphic ΨX are fully explained.
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In Section 6, we provide three applications. In Section 6.1, we obtain a description of the maximal region
for complex trajectory solutions of X , which a priori are multivalued.

Theorem 6.4. (Maximal univalence region for trajectory solutions) Let X be a singular complex analytic vector
field on M. The maximal univalence region for a non-stationary complex solution ( )z t of X is

D �{( ( )) ∣ }= ∈z z z M, Ψ \ .X X

Moreover, DX is independent of the initial condition �∈z M \o .

As a second application, an incomplete trajectory of X is a solution of Re( )X with a strict subset of � as
maximal domain of existence. Clearly, from the local analytic normal form of X , each pole p of X provides a
finite number of incomplete trajectories. In Proposition 6.5, the following natural result is presented.

Every non-rational, singular complex analytic vector field X on a compact Riemann surface gM , of genus g,
has an infinite number of incomplete trajectories. At a pole or essential singularity of X , the following clear
mechanism occurs.

Theorem 6.7. (Incomplete trajectories and finite singular values) Let X be a singular complex analytic vector
field on M . The following statements are equivalent.
(1) There exists an incomplete trajectory ( )z t of X having α or ω-limit at ∈z Ms .
(2) There exists a finite singular value �∈a t of ΨX , whose asymptotic path ( )α ta is a trajectory of Re( )X ending

at ∈z Ms .

This raises a natural question: Which neighbourhoods ( )U ρa of the singularities of −
ΨX

1 contain incomplete
trajectories, and how many are there?

As example, the neighbourhoods ( )∞U ρ of separate singularities over �∞ ∈ t do not have incomplete
trajectories. An analogous problem has been recently considered by Langley [28–30]. As an application of
Theorem 4.4, in Section 6.2, we prove a constructive description of how the incomplete trajectories of X on a
Riemann surface M arise in a vicinity of an essential singularity.

Theorem 6.9. (Localizing incomplete trajectories) Let X be a singular complex analytic vector field on M with an
essential singularity at ∈z Ms .
(1) Any neighbourhood ( )U ρa , of an essential transcendental singularityUa of −

ΨX

1 over a finite asymptotic value
�∈a t, contains an infinite number of incomplete trajectories of X.

(2) If ΨX has no finite asymptotic values at zs, then X has an infinite number of poles accumulating at ∈z Ms .

In other words, any neighbourhood of an essential singularity of X has an infinite number of incomplete
trajectories.

As a third and final application, in Section 6.3, by recalling the work of Broughan [10] on the Riemann

ξ -vector field ( ) ( )= ∂
∂X z ξ zξ z
, we show that it is not holomorphically equivalent to a pullback of a periodic

vector field with a finite number of distinct residues. Furthermore, we show that −
ΨX

1

ξ
has two logarithmic

singularities over finite asymptotic values, whose hyperbolic tracts are the left and right half planes delimited
by the critical strip. In addition, −

ΨX

1

ξ
has an infinite number of ⋆-transcendental singularities over ∞ corre-

sponding to the zeros with non-zero residue in the critical strip; see Proposition 6.14.
In Section 7, some possible avenues of further research are presented.
Finally, we make a few comments from a panoramic viewpoint:

• In Riemann surface theory, all the meromorphic functions can be constructed by using the elementary
blocks { }↦z zd , i.e. the algebraic singularities of the inverse.

• Many singular complex analytic functions can be constructed by using two new elementary blocks: hyper-
bolic and elliptic tracts, i.e. the logarithmic singularities of the inverse.
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• In the general case of singular complex analytic functions, an infinite number of new blocks appear: those
arising from the non-separate singularities of the inverse.

• Furthermore, for multivalued functions, the ⋆-transcendental singularities of the inverse complete the
aforementioned elementary blocks.

• In any case, as the examples throughout the text show, clear patterns can be recognized by using the
aforementioned elementary building blocks.

2 General facts about functions and vector fields

2.1 Functions and vector fields on Riemann surfaces

Let M be a Riemann surface, not necessarily compact, if we assume that p is a conformal puncture4 of M , then
we consider p in M . Thus, our Riemann surface M includes their conformal punctures.

Definition 2.1. On M , the adjective singular complex analytic for functions, vector fields, 1-forms, and quadratic
differentials means that they may have accumulation of zeros, poles, and/or essential singularities.

The singular complex analytic category includes holomorphic and meromorphic objects on compact
Riemann surfaces, which are not transcendental meromorphic: i.e. singular complex analytic is a larger class.

Definition 2.2. ([7] p. 579) A multivalued or single-valued analytic function ΨX on M is additively automorphic
when its differential dΨX is a single-valued 1-form.

Of course any single-valued singular complex analytic function is additively automorphic; however, not all
multivalued singular complex analytic functions are additively automorphic.

Notation.
(1) An additively automorphic singular complex analytic function ΨX on M satisfies Definitions 2.1 and 2.2.
(2) A single-valued additively automorphic singular complex analytic function ΨX on M is strictly single-valued.
(3) A multivalued additively automorphic singular complex analytic function ΨX on M is strictly multivalued.

The advantage of the subscript X is explained below.
Throughout this work, we assume that all the vector fields X are not identically zero and that the functions ΨX

are not identically constant. The formal expression of a vector field X in holomorphic charts �{ }⊂ ⟶ϕ V M: zj j

must be { ( ) ∣ ( )}∈∂
∂f z z ϕ V

zj j j ; as far as possible, we avoid this cumbersome notation.
From additively automorphic singular complex analytic functions to singular complex analytic vector fields. Let

�⟶MΨ :X t

be an additively automorphic singular complex analytic function (probably not well defined at every point
since we are abusing notation). Since its differential is single-valued, the canonical associated singular com-
plex analytic vector field is

( )
( )

= ′
∂
∂

X z
z z

M
1

Ψ
on .

X

From singular complex analytic vector fields to additively automorphic singular complex analytic func-
tions: Let



4 By definition, { }∪M p admits a holomorphic chart �( )⊂ ⟶ ⊂ϕ V M D: 0, 1
j j to the unitary disk with ( ) =ϕ p 0

j
, compatible with

the atlas of M .
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( ) ( )=
∂
∂

X z f z
z

(1)

be a singular complex analytic vector field on M . By definition, the singular complex analytic 1-form of time of X is

( )
( )

=ω z
dz

f z
.X (2)

We want to define ( ) ∫=z ωΨX

z

X with single-valued ωX .

Remark 2.3. The residue of ωX at ∈z M0 ,

�( ) ∫= ∈ω z
πi

ωRes ,
1

2
X

γ

X0 (3)

is well defined if and only if z0 is
(1) a regular point of X (as usual the counterclockwise path γ encloses z0 and the integral is zero),
(2) an isolated singularity of X , or
(3) a non-isolated singularity of X which is at most an accumulation of singular points with residue zero, e.g.

of poles of X (in this case the path γ encloses z0 and those infinite number of singular points).
By definition, the residue of X at a point z0 is the residue of ωX , i.e.

( ) ( )≐X z ω zRes , Res , .X0 0

The singularities of X,

     � � �

�

� � � �

�

{ }= = ∪ ∪ ∪ ∪ ∪ ⊂z M ,R R nRs 0 0 (4)

are possibly infinite, of the following kinds:
The zeros of X,

� � �{ }= = ∪q ,R0

where �0 (resp. �R) denotes the zeros of X with residue zero (resp. with non-zero residue).
The poles of X,

� { }= p .

The essential singularities of X,

� � � �{ }= = ∪ ∪e ,R nR0

where�0 (resp.�R) denotes the essential singularities of X with residue zero (resp. with non-zero residue), and
the points �nR where the residue is not well defined; these last are accumulation of points of �� ∪R R.

In addition, we introduce the following notations:

� �� � � �= ∪ = ∪and .R R R0 0 0

Because of technical reasons, to be used in Section 3.2, we require that �R is at most a numerable set.
Through all the work, � in (4) also refers to the singularities of ΨX and ωX . For example, in accordance with
equations (1) and (2), �∈zs denotes a zero of X and simultaneously a pole of ωX .

Note that

� �� �( ) ( )∪ = ∪M M\ \ .R R0

The additively automorphic singular complex analytic function associated with X is

� ��( ) ( )∫= ∪ ⟶z ω MΨ : \X

z

z

X R t

o

(5)

and the initial point of integration is a non-singular point �∈z M \o ; for simplicity, we omit it in some
instances.
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Remark 2.4.
(1) In (5), the integral function ( )zΨX is single-valued if and only if

(i) the residues ( )ω zRes ,X s , for �∈zs , and
(ii) the periods ∫ ω

β
X , where the class [ ]β is in a basis of the fundamental group ( )π M1 and does not enclose

an isolated singularity,
are both zero.

(2) Assertion 1.i is equivalent to �� �= ∪ = ∅R R R .
(3) The multivaluedness of the integral function shall be studied in Section 3.2.

Remark 2.5.
(1) In both cases, single-valued or multivalued ΨX is a global flow box that rectifies the corresponding singular

complex analytic vector field X , thus

( ) =
∂
∂

X
t

Ψ
*

.X

(2) In the language of quadratic differentials, ΨX is the global distinguished parameter of X , and we exploit the
global nature. Clearly, the poles of X determine zeros of ωX and critical points of ΨX in M .

Proposition 2.6. (Dictionary between the singular analytic objects, [3,33] §2) On a Riemann surface M, there
exists a canonical correspondence between the following objects.

(1) A singular complex analytic vector field ( )= ∂
∂X f z

z
, as in (1).

(2) A singular complex analytic 1-form ( )= ∕ω z f zdX , as in (2).

(3) An additively automorphic singular complex analytic function ( ) ∫=z ωΨX

z

X as in (5).
(4) An orientable singular complex analytic quadratic differential � = ⊗ω ωX X X , where the trajectories of X

coincide with horizontal trajectories of �X .
(5) A singular flat metric ∣ ∣=g tΨ* d

X
on M , which is the pullback of the flat Riemannian metric ∣ ∣ = +td dt ds2 2,

�≐ + ∈t it s , having suitable singularities at � and a unitary geodesic vector field Re( )X . By abuse of
notation, ( )M g,

X
denotes this singular non-compact Riemannian manifold.

(6) A Riemann surface � ( )
⎛
⎝

⎞
⎠

∂
∂π, *X t2 associated with an additively automorphic singular complex analytic func-

tion ΨX , where

� �� �{( ) ∣ ( ) ( )}= = ∈ ∪ ⊂ ×z t t z z M M, Ψ , \ .X X R t
(6)

□

Diagrammatically,

(7)

Remark 2.7. The correspondence (7) must be understood up to choice of initial point zo for the integral defining
the global distinguished parameter. Thus, ΨX and + cΨX , for �∈c , are considered the same object.
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Example 2.1. (Abelian integrals)
(1) Note that non-additively automorphic multivalued functions do not produce singular complex analytic vector

fields. For instance, consider the non-additively automorphic multivalued singular complex analytic function

 � � �( )
( )

[ ]∫= ⟶ ∈ ≥z
ζ

P ζ
P z PΘ

d
: , where , deg 2.

z

z t

Obviously, ( )
∂
∂P z

z
is not a single-valued vector field on�z. However, on the (hyper) elliptic Riemann surface

{ ( ) }= − =M w P z 02 , the integrand ( )∕z P zd determines a holomorphic 1-form ωX , thus the Abelian integral

z

z

�( ) ∫= ⟶ω MΨ :X X

is an additively automorphic singular complex analytic function on M . An associated meromorphic vector
field X on M is well defined.

(2) Let ωX be a meromorphic 1-form on a compact Riemann surface M . The integral function ( ) =zΨX

��∫ ⟶ω M: \
z

X R t is an additively automorphic singular complex analytic function.

Remark 2.8. Note that vector fields X with � ≠ ∅nR are quite common, for instance, see Figure 3(d), (e), and (f)
discussed in Examples 5.11, 5.13, and 5.14, where �nR is an accumulation of points of �R in the first two cases
and an accumulation of � �∪R in the third case. See also Example 4.3.

Lemma 2.9. With the notation as above.
(1) The following diagram of pairs, (Riemann surface, vector field), commutes

(8)

where π1 and π2 are local isometric, possibly branched coverings over ( )M g,
X

and �( ∣ ∣)t, dt as singular
Riemannian manifolds, respectively.
(2) Moreover, ΨX is single-valued if and only if the projection π1 is a biholomorphism between

�� �( ( ) )
⎛
⎝

⎛
⎝
∂
∂
⎞
⎠
⎞
⎠ ∪π

t
and M X, * \ , .X R2

(3) The (ideal) boundary of �X is totally disconnected, separable, and compact.

Proof. A proof of (3) can be found in [2] Ch. I §6, or [38] as Proposition 3. □

We shall use the abbreviated form �X instead of the cumbersome � ⎟⎜
⎛
⎝

⎛
⎝
⎞
⎠
⎞
⎠

∂
∂π, *X t2 .

Example 2.2. Let X be a singular complex analytic vector field on �=M z.
(1) By Lemma 2.9.2, the Riemann surface �X is biholomorphic to � �\z if and only if every zero or essential

singularity of X has zero residue (in symbols � �= 0, � �= 0).
(2) The Riemann surface �X is the universal cover of � � �( )∪\z if and only if every zero or essential

singularity of X has non-zero residue (in other words � �� ∪ ∪ = ∅nR0 0 ).

Definition 2.10. A maximal real trajectory solution of X is � ��( ) ( ) ( )⊆ ⟶ ∪z a b Mt : , \ , where
� { }∈ ∪ ∓∞a b, , satisfying that
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��
( )

( ( )) ( ) ( )= = ∈ ∪
z

f z z z M
d t

dt
t , 0 \ .o

Equivalently, ( )z t is a trajectory of the associated real vector field Re( )X .

Abusing notation, the phase portrait of X means the portrait of the real vector field Re( )X . Moreover, the
trajectories ( )z t of Re( )X coincide with the level sets

Im �{ ( ( )) }= ∈z c cΨ , for ,X

i.e. the horizontal trajectories of the orientable quadratic differential �X . However, the inversion ( )−
tΨX

1 of the
integral in equation (5) provides the non-stationary complex trajectory solutions of the vector field X .

There is a natural advantage of studying additively automorphic singular complex analytic functions ΨX

via the associated vector fields X , as seen in [3–5,33]. Very particular families of vector fields with one essential
singularity are considered in [3–5]. Meromorphic vector fields on compact Riemann surfaces are a current
subject of study, see, e.g. in [13,27] and references therein.

2.2 Local theory of vector fields

Definition 2.11. ([3] §5) Let �⎛⎝
⎞
⎠

∂
∂,

z
be the holomorphic vector field on the Riemann sphere with a double zero at

∞, and let Im � �{ ( ) } { }= ≥ ∪ ∞ ⊂z 02 .

(1) A hyperbolic sector is the vector field germ �( )= ⎛⎝
⎞
⎠

∂
∂H , 0 ,

z

2 , as in Figure 4(c).

(2) An elliptic sector is the vector field germ �( )= ⎛⎝ ∞ ⎞
⎠

∂
∂E , ,

z

2 , equivalently �( )
⎛
⎝ − ⎞

⎠
∂
∂w, 0 ,

w

2 2 when
⎧
⎨
⎩
↦ =

⎫
⎬
⎭

z w
z

1 ,

Figure 4(a).

(3) A (right) parabolic sector is the vector field germ

Im Re({ ( ) } { ( ) } )= ⎛⎝ ≤ ≤ ∩ > ∞
∂
∂
⎞
⎠+P z h z

z
0 0 , , ,

in addition the (left) parabolic sector −P occurs when Re( ) <z 0; �∈ +h is a parameter (Figure 4(b)).
The sectors are germs of flat Riemannian manifolds with boundary provided with a complex vector field; in

[3] §5, we describe their properties. Thus, we say that X has a hyperbolic, elliptic, or parabolic whenRe( )X has it.

Figure 4: (a) Elliptic E , (b) parabolic P , and (c) hyperbolic H sectors of Re( )X . The left drawing sketches the sphere ( )ℂ ,t t

∂

∂
describing

their embeddings under ΨX .
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The following result appears in the theory of quadratic differentials [1,26,43] and in complex differential
equations [9,15,19–21,34], (Figure 5).

Proposition 2.12. (Local analytic normal forms at zeros and poles of X ) Let �(( ) )z X, ,0 be a germ of a singular
complex analytic vector field; in each item, the corresponding assertions are equivalent.
(1)

(i) X is holomorphic and non-zero at z0.

(ii) Re( )X is topologically equivalent to Re
⎛
⎝
⎞
⎠

∂
∂t

.

(iii) Up to local biholomorphism X is ∂
∂z
.

(2)
(i) X has a zero at =z q0 of multiplicity ≥s 1.
(ii) For multiplicity one Re( )X is a source, sink, or centre; for multiplicity of at least two, it admits a

decomposition with − ≥s2 2 2 elliptic sectors and zero or one parabolic sectors.

(iii) Up to local biholomorphism, X is ( )

( ) ( )

−
− − −

∂
∂−

z q

λ z q s z1

s

s 1 , �∈λ .

(3)
(i) X has a pole at =z p0 of multiplicity − ≤ −k 1.
(ii) Re( )X admits a decomposition with +k2 2 hyperbolic sectors.

(iii) Up to local biholomorphism X is
( )−

∂
∂z p z

1

k .

(4)
(i) X has an essential singularity at =z e0 .
(ii) Re( )X has any other topology different from (1)–(3).

Proof. In Assertions (1)–(4), X is assumed to be holomorphic and non-zero in a punctured disk ( ) { }D z ρ z, \0 0 . In
(2), a parabolic sector appears if and only if � �( ) ∈ω zRes , \X 0 , for further details, see [3] §5. □

Figure 5: Local analytic normal forms: (a) simple zeros, (b) multiple zeros, and (c) poles of X . By simplicity, zeros and poles are at the origin.
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3 Singularities of ΨX

‒1: ideal points of �M \

The work of Iversen [25] originates the study of transcendental singularities of meromorphic functions, and
modern expositions can be found in Bergweiler and Eremenko [8] and Eremenko [14]. In this theory, the
inverse function −

ΨX

1 and the Riemann surface �X play an essential role.

Remark 3.1. We consider three family functions on M :
• single-valued additively automorphic singular complex analytic functions,
• multivalued additively automorphic singular complex analytic functions, and
• non-additively automorphic multivalued singular complex analytic functions.

The first two families are studied in Sections 3.1–3.3. The third family does not appear when we deal with
vector fields, see comment on Section 7.

3.1 Single-valued additively automorphic ΨX

In this section, we shall consider a singular complex analytic 1-form of time ωX with � = ∅R , and hence, the
domain is �M \ . In other words,

� � �( ) ∫= ⟶ = ∅z ω MΨ : \ ,X

z

z

X t R

o

(9)

is a single-valued additively automorphic singular complex analytic function, where the initial point of
integration is a non-singular point �∈z M \o . The integral function in equation (9) is a particular case of (5).

Definition 3.2. [8,14,25] Take �∈a t and denote by �( ) ⊂D a ρ, t, the disk of radius >ρ 0 (in the spherical
metric) centreed at a. For every >ρ 0, choose a component ( ) ⊂U ρ Ma of ( ( ))−

D a ρΨ ,X

1 in such a way that
<ρ ρ

1 2
implies ( ) ( )⊂U ρ U ρa a1 2

. Note that the function ( )→U ρ U ρ:a a is completely determined by its germ at 0.
The following two possibilities below can occur for the germ of Ua.

(1) ( ) { }∩ = ∈> U ρ z z M,ρ a k k0 . In this case, ( )=a zΨX k .
Moreover, if �∈a t and ( )′ ≠zΨ 0k , or = ∞a and zk is a simple pole of ΨX , then zk is called an ordinary
point.
On the other hand, if �∈a t and ( )′ =zΨ 0k , or if = ∞a and zk is a multiple pole of ΨX , then zk is called a
critical point and a is called a critical value of ΨX . We also say that the critical point zk lies over a. In this
case, ( )→U ρ U ρ:a a defines an algebraic singularity of −

ΨX

1.
(2) ( )∩ = ∅> U ρρ a0 . We then say that our choice ( )→ρ U ρa defines a transcendental singularity of −

ΨX

1 and that
the transcendental singularity Ua lies over a.

In both cases, the open set ( ) ⊂U ρ Ma is called a neighbourhood of the singularityUa. Therefore, when ∈ζ Mm ,
we say that →ζ Um a if for every >ρ 0, there exists �∈m0 such that ( )∈ζ U ρm a , for ≥m m0.

Remark 3.3. The germ Ua of Definition 3.2 case (2) can be understood as follows.
(1) A transcendental singularity of −

ΨX

1, namely, Ua, is equivalent to the addition of an ideal point Ua to �M \ .
(2) The addition of the ideal points { }Ua , together with their corresponding neighbourhoods { ( )} ⊂U ρ Ma ,

provides a Hausdorff completion/compactification of �M \ , see [2] Ch. I §6 for the general construction.

In our framework, the families of functions ( ) ( ( ) ( )) ( )∫= ∕ −z P ζ Q ζ ζΨ e dX

z
E ζ , in Theorem 5.1, provide pro-

totypes of this kind of compactification, even in the multivalued case.
(3) In what follows, we shall interchangeably refer to a transcendental singularityUa of −

ΨX

1 or an ideal pointUa of �M \ .

Let �∈ ⊂z Ms , the expression z tends to ∈z Ms makes sense. Recalling [14] p. 3, the following concept is
natural.
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Definition 3.4.
(1) LetUa be a transcendental singularity of −

ΨX

1. An asymptotic value �∈a t of ΨX means that there exists a C1

asymptotic path ( ) [ )∞ ⟶α Mt : 0,a , �( ) = ∈α z M0 \a o , tending to ∈z Ms with well defined slope, such
that

�( ( ))

( )

∫= = ∈
→∞ →∞

a α ωlim Ψ t lim .X a

α

X t
t t

ta

(10)

We shall not distinguish between individual members αa of the class of asymptotic paths [ ]αa giving rise to
the same transcendental singularity Ua over a of −

ΨX

1.
(2) A pair ( )α a,a is a branch point of �X .

Remark 3.5. Because of Lemma 2.9.3, we will assume that the asymptotic path in Definition 3.4 ends at the
singular point zs.
(1) There is a bijective correspondence between the following:

(i) classes [ ( )]α ta of asymptotic5 paths ( )α t ,
(ii) asymptotic values �∈a t counted with multiplicity,
(iii) transcendental singularities Ua of −

ΨX

1 and
(iv) branch points6 ( )α a,a of �X .

(2) Certainly, the notation Ua can be confusing for singular values a with multiplicity two or more; in those
cases, we add a subscript aσ , to distinguish them.

Definition 3.6. The singular values of ΨX are the critical values and asymptotic values, both counted with
multiplicity.

If �∈a t is an asymptotic value of ΨX , then there is at least one transcendental singularityUa of −
ΨX

1 over a.
Certainly, there can be finite or even infinite different transcendental singularities as well as critical and
ordinary points over the same singular value a.

Remark 3.7. (On the finitude of the set of asymptotic values)
(1) The Denjoy-Carleman-Ahlfors theorem provides a sharp estimate for the number of asymptotic values

when �=M z. If ΨX is an entire function with d finite asymptotic values, then the order of growth

( )
=

→∞

M r

r
dlimsup

log

log
,

r

where as usual ( ) ∣ ( )∣= ∣ ∣=M r zmax Ψz r X . Compare with [39] §5.2. In fact, the order of growth is a valuable
local analytic invariant, see [35] for single-valued functions. In [3], we consider this invariant for vector
fields, study some families, and relate it to the number of asymptotic values.

(2) On the other hand, there exist single-valued transcendental meromorphic functions on �z with an infinite
set of asymptotic values. See Gross [16] and Eremenko [14] §4.

Definition 3.8. A transcendental singularity Ua of −
ΨX

1 over a is as follows:
(1) direct if there exists >ρ 0 such that ( ) ≠z aΨX for ( )∈z U ρa , this is also true for all smaller values of ρ,
(2) indirect if it is not direct, i.e. for every >ρ 0, the function ΨX takes the value a in ( )U ρa , in which case the

function ΨX takes the value a infinitely often in ( )U ρa ,



5 A slight abuse of notation is made here, whenUa is algebraic (i.e. � �∈ ∪zs 0), the path ( ) →α zta s is not an asymptotic path, it is
just a path arriving to the critical point zs.
6 In the particular case of algebraic branch points arising from poles p

k
of X , we shall use the notation ( )͠p p,

k k
, instead of the more

cumbersome ͠͠( )α p,p kk
, since in this case ( )͠ =→∞α plim tp kt k

and ( ( )) ͠͠ =→∞ α plim Ψ tX p kt k
; see Example 5.7. Similarly, we shall use ( )∞q ,

k

for the branch points associated with the zeros q
k
of X .
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(3) logarithmic singularity over a if

�( ) ( ) { }⊂ ⟶ ⊂U ρ M D a ρ aΨ : , \X a t

is a universal covering for small enough ρ.

Naturally, logarithmic singularities are direct. We shall use “non-logarithmic” without the “direct” adjec-
tive when referring to direct non-logarithmic as well as indirect singularities.

Example 3.1. The simplest case of direct singularities arises from

� �( ) { }∫= ⟶−z ζΨ e d : \ 0 .X

z

ζ
z t

There are logarithmic singularities over the asymptotic values �∞ ∈0, t, respectively. For small enough >ρ 0,
the neighbourhoods ( )U ρ0 and ( )∞U ρ are exponential tracts. We illustrate this in Figure 2(a).

3.2 Multivalued additively automorphic ΨX ; the fundamental domain Λ

Consider a multivalued additively automorphic singular complex analytic function

� �� �( ) ( )∫= ∪ ⟶ ≠ ∅z ω MΨ : \ , ,X

z

z

X R t R

o

(11)

where the initial point of integration is a non-singular point �∈z M \o . The integral function in equation (11) is
a particular case of (5).

One of the fundamental hurdles in studying multivalued additively automorphic functions (11) à la Iversen,
Definition 3.2, is that the neighbourhoods ( ) ( ( ))= −

U ρ D a ρΨ ,a X

1 are not useful for distinguishing the ideal points
Ua. For the sake of clarity, we describe the simplest object where this occurs.

Example 3.2. (Singular points with non-zero residue) Let us consider the multivalued additively automorphic
singular complex analytic function

 � � �( ) ( ) { }∫= + = ∞ ⟶ ∈z λ z C λ
ζ

ζ
λΨ log

d
: \ 0, , *.X

z

z t

The associated ωX on �z has non-zero residues at

� � { }= = ∞0, .R

On the other hand, ( ) ( )= ∕−
t t λΨ expX

1 is an entire function that has an isolated essential singularity at �∞ ∈ t. As a
consequence of Picard’s theorem applied to −

ΨX

1, for any >ρ 0, the neighbourhood ( ) ( ( ))≐ ∞∞
−

U ρ D ρΨ ,X

1

is � { }∞\ 0,z .
In its original setting, Iversen’s theory of transcendental singularities does not make sense at �∞ ∈0, z, which
are poles of the associated ωX .
In other words, for every >ρ 0, the neighbourhoods ( )∞U ρ are all the same, and consequently, the ideal points ∞U ,
are not well defined. As will be seen in Section 3.3, this can be explained by considering the universal cover �
of � �\z R.
The analogous behaviour of −

ΨX

1 appears for many other families of functions, e.g.

( )
( )

( )
( )∫= −z

P ζ

Q ζ
ζΨ e d ,X

z

E ζ

assuming that their 1-forms of time have non-zero residues, see Theorem 5.1.
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3.2.1 Construction of a fundamental domain for ΨX

To extend Iversen’s theory of singularities of the inverse function to multivalued additively automorphic
singular complex analytic functions ΨX , note that in Diagram 8, the function = ∘−

π πΨX 1

1
2 factors through

�X . Very roughly speaking, for ΨX as in equation (11), we search for a maximal univalence domain Λ for ΨX (i.e.
where ΨX is defined and single-valued). Recalling Remark 2.4, we proceed as follows.

Let ΨX be as in equation (11).
(1) Assume first that �=M z or the disk Δz. (If �=M z, by adding the conformal puncture∞, we obtain �z.) Let

�R be the set of non-zero residue singular points of ωX ; assume by hypothesis that its cardinality is
≤ ≤ ∞κ2 (possibly infinite and numerable), i.e.

� { }= z z z, , …, .R κ1 2

(2) Assume that we have a collection of paths { }= =
−

γΓ
k k

κ

1

1, where γ
k
is the segment of Γ between zk and +zk 1

satisfying the following:
(i) Each ⊂γ M

k
is a continuous simple path with extreme points in�R and avoids other singular points in� .

(ii) For ℓ≠k , the intersection ℓ∩γ γ
k

is either one point ℓz (whenℓ = +k 1 or −k 1) in�R or is empty otherwise.
(iii) The set

M \Γ

is an open connected Riemann surface, where ( ) means the closure in M . Note that ωX is still a singular
complex analytic 1-form on M \Γ with singular set � �\ R.

(3) As usual, if we cut M along γ
k
, we obtain two boundary paths, say +γ

k
and −γ

k
, which are considered

without their extreme points zk and +zk 1. We define

( )≐ ⋃
=

+M γΛ \Γ .
k

κ

k0

1

Simply stated, we add to the open surface M \Γ only one boundary component +γ
k

for each path γ
k
.

(4) In the case �≠M Δ,z z, then M is not simply connected and we require an additional construction. Let
�{ }ℓ ℓ ⊂∼

=γ M \
L

1 be representatives of the generators of the fundamental group ( )π Λ1 0 . Note that ℓ
∼γ are simple

closed paths in Λ0. Hence, cutting Λ0 along the paths { }ℓ ℓ
∼

=γ
L

1 and once again adding only one of their

boundary components { }ℓ ℓ
∼
+ =γ

L

1, we obtain

ℓ
ℓ

ℓ
ℓ

⎜ ⎟= ⎛
⎝

⎛
⎝ ⋃

⎞
⎠
⎞
⎠

⋃∼ ∼
= =

+γ γΛ Λ \ ,

L L

0

1 1

a fundamental domain for ΨX .

Remark 3.9.
(1) Considering ωX , note that �∩Λ contains its

• zeros � and
• poles with residue zero �0.

Furthermore, �R is in the boundary of Λ.
(2) By construction, Λ is simply connected, has non-empty boundary, and ∫ =ω 0

β
X for any closed path β in the

locus, where ωX is holomorphic. The restriction of ΨX in equations (5) and (11),

� �( ) ∫= ⟶z ωΨ : Λ\X

z

z

X t,Λ

o

(12)

is a single-valued singular complex analytic function with singular set� �\ R (note that � �� �∪ = ∪R R).
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(3) In the construction of Γ, we have avoided the set of singular points, i.e. we have asked that �∩ = ∅Γ . This
has been done for simplicity; however, note that �∩ ≠ ∅Γ can be allowed (this is sometimes useful), since
ωX has zeros at � and ΨX is holomorphic on � .

Definition 3.10. A fundamental region for a multivalued additively automorphic function ΨX is
� �{( ( )) ∣ }= ∈ ⊂ ×z z z MΩ , Ψ Λ\ .X t

Remark 3.11.
(1) Obviously, a fundamental region Ω depends on the choice of zo, { }γ

k
and { }ℓ

∼γ .
(2) The following diagram commutes

(13)

where ∣π1 Ω and π2 are local isometries. The fundamental domain �Λ\ and the fundamental region Ω are
biholomorphic under ∣π1 Ω. Note that ∣= ∘− −

π πΨX ,Λ

1
1 Ω 2

1.

Since ΨX is single-valued on Λ, we proceed to slightly modify all the concepts in Section 3.1, by using Λ

instead of M . Let ( ) [ )∞ ⟶α t : 0, Λa be an asymptotic path, analogously as in equation (10) in Definition 3, so
( )α a,a is the branch point in �X corresponding to the path ( ) →α zta s, and

�( ( ))

( )

∫= = ∈
→∞ →∞

a α ωlim Ψ t lim .X

α

X t
t

,Λ
t

ta

Definition 3.12. (Extension to the additively automorphic case) Let ΨX be as in (11) and the function ΨX ,Λ, which
depends on the choice of Λ be as in (12). Take �∈a t and denote by �( ) ⊂D a ρ, t the disk of radius >ρ 0 (in the
spherical metric) centreed at a. For every >ρ 0, first choose a connected component

�(( ) ) ( ( ))⊂ −
V α a ρ π D a ρ, , of , ,a X 2

1

and, using Diagram 13, ∣π1 Ω is the restriction of π1 to Ω, then let

( ) ∣ ( (( ) ))≐U ρ π V α a ρ, , ,a a1 Ω

in such a way that <ρ ρ
1 2

implies ( ) ( )⊂U ρ U ρa a1 2
. The neighbourhoods ( )U ρa determine ideal points or

singularities Ua of −
ΨX ,Λ

1 .
With the aforementioned considerations, all the definitions and results presented in Section 3.1 apply for ΨX ,Λ.

Remark 3.13. (Some consequences of the multivalued nature of ΨX )
(1) In our construction of the neighbourhood ( )U ρa , there is a choice of one connected component of

( ( ))−
π D a ρ,2

1 . However, due to the choice of Γ, the projection ( ) ∣ ( (( ) ))=U ρ π V α a ρ, ,a a1 Ω can have an arbi-
trary number of connected components. For instance, in Examples 5.2 and 6.2 (Figures 6 and 7(a)), if
the paths ⊂γ Γ

k
are chosen to lie on the real axis, then at least one of the neighbourhoods ( )U ρa of

the transcendental singularities corresponding to the essential singularity would have two connected
components.

(2) Note that, when� ≠ ∅R , a new type of transcendental singularity of −
ΨX ,Λ

1 appears: ideal points ∞U arising
from the non-zero residue poles of ωX , see example below.
The following definitions are natural.
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Figure 6: Let ( ) =X z zez

z

∂

∂
, the singularities with non-zero residue are � � { }= = 0, ∞R . (a) The essential singularity at ∞ is represented

by a small red circle. Here, ⊂Γ ℂz (in red) is a path from 0 to ∞. (b) The flat metric ( )gℂ ,z X
is obtained from an infinite number of Reeb

components as in ez

z

∂

∂
and a cylinder. (c) The Riemann surface �X and a fundamental region Ω in the universal cover of  �ℂ \z are

sketched. Three singularitiesUaj
of ΨX ,Λ

‒1 whose neighbourhoods are hyperbolic and elliptic tracts (coloured green and blue, respectively),
and a ⋆-transcendental singularity coloured pink, arising from the source at =z 0. The colouring scheme is applied both in Λ and Ω.

Figure 7:We regard the vector field ( ) ( )=X z z z ‒ 1 e z

z

‒
∂

∂
, Example 6.2. (a) To better visualize the behaviour, we show the pullback vector

field ( ) ( )( )=Y w T X w* , with ( ) ( )= ∕ +T w w w‒ 1 ; the blue and green points correspond to the zeros of Y , and the red point is the
essential singularity of Y . The red arcs of a circle correspond to the inverse images of Γ. The hyperbolic and elliptic tracts are shaded
green and blue, respectively, while the ⋆-transcendental singularities corresponding to the zeros are pink. (b) Shows the universal cover
M ≅ Δ and some copies of the fundamental domain Λ . Note that the ideal points ofΨX

‒1 form a countable dense set on the boundary
Δ∂ of the disk Δ. Each neighbourhood of these ideal points is composed by an infinite number of angular sectors with angle 0. Each

angular sector is a tract of the ideal point of ΨX ,Λ

‒1 with the same behaviour. In this example: hyperbolic tracts (green), elliptic tracts
(blue), and parabolic sectors (pink).
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Definition 3.14. Assume that there exists an asymptotic path ( )α t in Λ tending to a singularity �∈zs ofωX with
asymptotic value a. The respective Ua is as follows:
(1) An essential transcendental singularity of −

ΨX ,Λ

1 , when �∈zs .

(i) A zero residue essential transcendental singularity of −
ΨX ,Λ

1 , when �∈zs 0.

(2) A non-zero residue transcendental singularity of −
ΨX ,Λ

1 , when �� �∈ = ∪z R R Rs .

(i) A ⋆-transcendental singularity of −
ΨX ,Λ

1 , when �∈z Rs .

(ii) A non-zero residue essential transcendental singularity of −
ΨX ,Λ

1 , when �∈z Rs .

Example 3.3. (Example 3.2 revisited) Let

� �( ) ( )= + = ≥ ∈−z λ z
z

M s λΨ log
1

, on , 1, *X s z1
(14)

be a multivalued additively automorphic function. Let us consider � �( { })= ∪ ∞+Λ \ 0,z . The fundamental
region is

 � �( )∫=
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ = ⎛⎝ + ⎞

⎠
⎫
⎬
⎭
⊂ ×−z ω z λ z

z
Ω , , log

1
.

z

X s z t

1

1

Note that ΨX is the integral of the normal form of ωX having a pole of multiplicity ≥s 1 at =z 0s , with non-zero
residue. Thus, for all paths ( ) →α t 0 in Λ, the asymptotic value of ΨX ,Λ is ∞ and the corresponding transcen-
dental singularity ∞U of −

ΨX ,Λ

1 lies over∞. The neighbourhoods ( ) ⊂∞U ρ Λ contain ( ( )) ∩D r ρ λ0, , Λ, for suitable
radius ( )r ρ λ, , which tend to 0 when →ρ 0; hence, Definition 3.12 is satisfied. According to Definitions 3.8 and
3.14, it is a direct singularity, which is not logarithmic; thus, ∞U is a ⋆-transcendental singularity of −

ΨX ,Λ

1 . Figure 8
illustrates the generic behaviour of ΨX , where the parabolic sector depending on λ appears; for an accurate
explanation, see [3] §5.
Note that for the singular point = ∞zs , the study is completely analogous.

We obtain the following normal forms summary for poles and zeros of ωX :

Singularity of −
ΨX

1 ( )zΨX ( )ω zX ( )X z Parameters

Algebraic for =λ 0 ≥s 1,
⋆-transcendental for ≠λ 0

( ) + −λ zlog
z

1

s 1
⎛
⎝ − ⎞

⎠
−

zd
λ

z

s

z

1

s ( )− −
∂
∂−

z

λz s z1

s

s 1

residue �∈λ

Algebraic
+

+z

k 1

k 1

z zdk ∂
∂z z

1

k

≥k 1

Remark 3.15.

(1) The transcendental singularities of −
ΨX

1 that appear in the classical theory of single-valued functions ΨX , as
in Definition 3.2, are all zero residue essential transcendental singularities, as in Definition 3.14.1.i.

(2) In Definition 3.14.2.i, since �∈z Rs , the asymptotic value is necessarily �= ∞ ∈a t.
(3) Note that non-zero residue essential transcendental singularities, Definition 3.14.2.ii, are also essential

transcendental singularities, Definition 3.14.1.

An accurate description of the singular values for ΨX ,Λ is required. In Definition 3.12, there is a choice of
fundamental domain Λ, equivalently of a fundamental region �⊂Ω X . This actually makes a difference on
what is considered a singular value of ΨX ,Λ.

Let ΨX be a multivalued additively automorphic singular complex analytic function, equation (11), and
assume that �∈a t is a singular value of ΨX ,Λ with asymptotic path ( ) ⊂α t Λa .
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Now, consider a path or class �( )∈ π Mϱ \ R1 , that starts at the non-singular point �∈z M \o , defining

∫≐ ωΞ .Xϱ

ϱ

Then

( )

∫ ∫
⎛

⎝
⎜ +

⎞

⎠
⎟ = +

→∞
ω ω alim Ξ .X

α

X
t

ϱ t

ϱ

a

In other words, the linear combinations �∈Ξ *ϱ of residues and periods of ωX determine an infinite
collection �{ }+ ⊂a Ξϱ consisting of:

(i) a singular value �∈a t of ΨX ,Λ and
(ii) an infinite number of fake singular values, one for each possible non-zero linear combination Ξϱ.

Of course, the only true singular value of ΨX ,Λ is a, since the paths ϱ concatenated with αa do not lie in Λ

unless ϱ is homotopic to the identity.

Proposition 3.16. (Configurations of singular values amongst fundamental regions) Let
� ��( )∪ ⟶MΨ : \X R t be a multivalued additively automorphic singular complex analytic function as in (11).

(1) Given any two fundamental regions Ω1 and Ω2, the singular values { }aj and { }∼aj of ΨX ,Λ1
and ΨX ,Λ2

, respec-
tively, satisfy

{ }= + =∼a a for j m or infinite and numerable jΞ , 1,…, ,j j ϱ

where �∈Ξϱ is a fixed linear combination of the residues and periods of ωX , which depends on the choice of
the two fundamental regions Ω1, Ω2 and on the initial point of integration zo for ΨX .

(2) The qualitative behaviour of the ideal points Ua associated with ΨX ,Λ1
and +Ua Ξϱ

associated with ΨX ,Λ2
is

independent of the choice of fundamental regions Ω1 or Ω2.

Proof. For (1), given two different fundamental regions, say Ω1 and Ω2, the corresponding ( )= πΛ Ω1 1 1 and
( )= πΛ Ω2 1 2 are simply connected subsets of the universal cover. There exists an element ϱ of the fundamental

Figure 8: A pole of (( ) ( ) )= ∕ ∕ω λ z s z z‒ ‒1 dX
s of order s at least 2, and non-zero residue λ. The associated vector field X has ≥s2 ‒2 2

elliptic sectors and one parabolic sector. The behaviour of the function ΨX , equation (14), is called an s-fold unbranched holomorphic log-
covering. The parabolic sector (and its corresponding images in Ω and ℂt) has been coloured pink for clarity. This illustrates a
⋆-transcendental singularity of ΨX ,Λ

‒1 .
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group �( )π M \ R1 such that ( )=Λ ϱ Λ2 1 as a cover transformation. Therefore, given a singular value �∈a t of
ΨX ,Λ1

, the value �+ ∈a Ξ tϱ is the corresponding singular value of ΨX ,Λ2
.

For (2), note that ΨX ,Λ1
and ΨX ,Λ2

differ only by the value �∈Ξ tϱ . However, since Ω1 and Ω2 are copies of

each other (up to cutting and pasting and using the flat metric g
X
on �X arising from ( )

∂
∂π*

t2 ). Then, the branch

points associated with Ua in ( ( ))
∂
∂πΩ , *

t1 2 and +Ua Ξϱ
in ( ( ))

∂
∂πΩ , *

t2 2 are related by the cover transformation ϱ.
Hence, the ideal points arising from either Λ1 or Λ2 are qualitatively the same. □

3.3 A model for �X ; the universal cover of �M \ R

Once again, we consider a multivalued additively automorphic singular complex analytic function as in (11),
namely,

� �� �( ) ( )∫= ∪ ⟶ ≠ ∅z ω MΨ : \ , ,X

z

z

X R t R

o

where the initial point of integration is a non-singular point �∈z M \o . Let

M �⟶π M: \ R

be the universal cover of �M \ R. The analytic extension of ΨX to M, namely,

M  � �( ) ( )∫= ⟶−z π ω πΨ * : \ ,X

z

X
1

0

is a single-valued additively automorphic singular complex analytic function, and thus, Section 3.1 applies. As a
mater of record,

M͠ =X π X* on

denotes the singular complex analytic vector field associated withΨX . Moreover, by Lemma 2.9.2, we have that

M� �( )= ∪ ≅ ∈ π MΩ , ϱ \ .X Rϱ ϱ 1

In fact, the surface �� ⊂ ×MX t in (6) can be reconstructed by using copies of the fundamental region Ω

by the analytical continuation of ΨX across the γ
k
as in the construction of Λ. Note that the Ωϱ are isometric

copies of Ω, using the flat metric g
X
on �X arising from ( )

∂
∂π*

t2 .

Remark 3.17.
(1) Even though in M the corresponding 1-form of time ͠ ≐ω d ΨX X always has zero residues, we shall still add

the adjective non-zero residue when naming those transcendental singularities U͠a of  −
ΨX

1 whose corre-
sponding singularity ( )͠≐U π Ua a is a non-zero residue transcendental singularity of −

ΨX ,Λ

1 . See
Definition 3.14.2.

(2) Assuming that � ≠ ∅R , by simple inspection, we obtain thatM is biholomorphic to Δ or � , the case � does
not appear.

A direct application of Proposition 3.16 yields the following result.

Corollary 3.18. Let � ��( )∪ ⟶MΨ : \X R t be a multivalued additively automorphic singular complex analytic
function, as in (11), with fundamental domain Λ, and let M  � �( ) ⟶−πΨ : \X

1
0 be its extension to the universal

cover M.
(1) For each singular value �∈a t ofΨX ,Λ, therearean infinite numberof singular values ��{ ∣ ( )}+ ∈ ⊂a π MΞ ϱ \ R tϱ 1 of
ΨX . In case that = ∞a , the singular value∞ ofΨX has infinite multiplicity.
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(2) The function ΨX has an infinite number of ideal points ͠ +Ua Ξϱ
, each of which has the same qualitative

behaviour, on each copy of Λ, as that of the ideal point Ua of ΨX ,Λ.
(3) When M is compact and M is biholomorphic to Δ, the non-zero residue transcendental singularities ofΨX ,

say { }U͠a , are a dense subset of ∂Δ.
(4) When M is biholomorphic to � , consider its compactification �z.

(i) If � � �= =R R, then �∞ ∈ z is a simple pole ofΨX .
(ii) If � � �= ≠R R, then ∞ is an isolated essential singularity ofΨX .
(iii) Otherwise, ∞ is an non-isolated essential singularity ofΨX .

Proof. Assertion (3) is true by simple inspection.
For assertion (4), assume that  � �⟶Ψ :X z t and � { }= ∞0,R , and thus, the lift to the universal cover is

 � �⟶Ψ : ,X z t

which has a singularity at �∞ ∈ z.
Case (i), where � �= R is equal to two simple poles of ωX at ∞0, , determines a simple pole ofΨX at ∞,

recalling the normal form of ωX in Proposition 5.
By an analogous argument in case (ii), since � � �= ≠R R, it follows thatΨX has an isolated singularity at

∞. Once again, by Proposition 5 it is an essential singularity ofΨX .
For case (iii), if �R is equal to two points ∞0, , and � �≠R , then the singularity of ΨX at ∞ has an

accumulation of the zero residue singularities, in complete detail, points in � �∪0 . □

The non-compact case for M in assertion (3) of Corollary 3.18 is left to the reader.

3.4 Equivalence relation on the singularities of ΨX ,Λ

‒1

Because of the biholomorphism between �X and the universal cover M of �M \ R, and Proposition 3.16.2, it is
natural to define an equivalence relation for different choices of Λ.

Definition 3.19. Consider two singularities ⊂U Λa 1 of −
ΨX ,Λ

1

1
over �∈a t, and ⊂∼U Λa 2 of −

ΨX ,Λ

1

2
over �∈∼a t . They

are in the same equivalence class [[ ]]Ua if there exists a cover transformation �( )∈ π Mϱ \ R1 such that the
following occurs:
(a) �( )= ⊂Ω ϱ Ω X2 1 ,

(b) = +∼a a Ξϱ, where ∫= ωΞ Xϱ
ϱ

,

(c) for each >ρ 0, there exist >ρ ρ, 0
1 2

such that

�( ( ( ))) ( ( ))⊂ ⊂ ⊂− − ∼π U ρ π U ρϱ Ωa a X1

1

1 1

1
2

and

�( ( ( ))) ( ( ))⊂ ⊂ ⊂− − −∼π U ρ π U ρϱ Ω .a a X
1

1

1

2 1

1
1

There exists an equivalence class [ ]⋅ of singular values induced by the equivalence class [[ ]]⋅ .
We shall say [[ ]]Ua is a singularity class of −

ΨX

1 over the singular value class [ ]a .

The equivalence relation is well defined; we leave the proof for the interested reader.

Remark 3.20.
(1) Clearly, condition (b) in Definition 3.19 is necessary but not sufficient for the equivalence relation on the

singular values.
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(2) A convenient abuse of notation is to say

−
U a“the singularity of Ψ over the singular value ,”a X

1

when in reality, we should say

[[ ]] [ ]−
U a“the singularity class of Ψ over the singular value class .”a X

1

4 Singularities of ΨX

‒1 from the perspective of vector fields

Because of the correspondence between singular complex analytic vector fields X and additively automorphic
singular complex analytic functions ΨX , given by Proposition 2.6; the study of the singularities of −

ΨX

1, both in
the single-valued case and in the multivalued additively automorphic case, benefits from the perspective of
vector fields.

Example 4.1. (Example 3.1 revisited) The distinguished parameter

� �( ) { }∫= ⟶−z ζΨ e d : \ 0 ,X

z

ζ
z t

with two logarithmic singularities over the asymptotic values 0 and ∞, has

( ) =
∂
∂

X z
z

ez

as its associated vector field. By considering the phase portrait of the associated vector field, the exponential tracts
Re( ) { ( ) ( ∣ ∣)}= > ∕U ρ z ρlog 10 over the asymptotic value 0, and
Re( ) { ( ) ( ∣ ∣)}= < ∕∞U ρ z ρlog 1 over the asymptotic value ∞

can be clearly distinguished (Figures 1 and 2(a)).

As an advantage of the existence of a vector field X associated with a function ΨX , we can refine
exponential tracts.

Definition 4.1.
(1) The pairs

U URe Re{ ( ) } { ( ) }= ⎛⎝ >
∂
∂
⎞
⎠ = ⎛⎝ <

∂
∂
⎞
⎠z

z
z

z
0 , e , 0 , eH

z
E

z

are the hyperbolic tract over 0 and elliptic tract over ∞ of ( ) = ∂
∂X z ez

z
, respectively (Figure 1).

(2) The pair ( ( ) )U ρ X,a is a hyperbolic tract over the asymptotic value a of X, or elliptic tract over the asymptotic
value = ∞a of X , if there is a biholomorphism U( ( ) ) ⊂ ⟶U ρ X Mϒ : ,a H , or to UE , respectively.

Certainly, the notion of biholomorphism is rigid. It is suitable for our present work since we gain flexibility
of this notion by applying it to open Jordan domains of ( )M X, and under variations of the radius ρ.

Let us recall the following theorem, cited in Section 1 in a brief version, due to Nevanlinna, that applies to
single-valued functions.

Theorem. (Nevanlinna’s isolated singular values, [35] Ch. XI §1.3, [46] Theorem 6.2.2) Let � �⟶Ψ :X z t be a
single-valued meromorphic function, and let a be an isolated singular value for ΨX . If Ua is a singularity of −

ΨX

1

over a, then Ua is algebraic or logarithmic.

As an immediate consequence, direct non-logarithmic and indirect singularities of (single-valued) −
ΨX

1 over
a imply that the singular value a is non-isolated, i.e. a is an accumulation point of singular values of ΨX . There
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are, however, logarithmic singularities of −
ΨX

1 over non-isolated asymptotic values a; see, for instance, Example
5.7 and its corresponding Figure 9. However, for multivalued additively automorphic functions, ΨX we also have
to consider the non-zero residue transcendental singularities of −

ΨX

1, see Definition 3.14.2. As seen in Remark
3.15.2, the ⋆-transcendental singularities of −

ΨX ,Λ

1 are not algebraic or logarithmic even though the asymptotic

value ∞ is isolated (in fact it is a direct non-logarithmic singularity over the isolated singular value �∞ ∈ t).
The aforementioned discussion shows that when working with multivalued additively automorphic sin-

gular complex analytic functions, it is not enough to just consider the singular values of the ideal pointsUa; one
must also examine the neighbourhoods ( )U ρa . For this, we introduce the following concept, understood as in
Remark 3.20.2, i.e. with a choice of a fundamental domain Λ.

Definition 4.2. For ΨX , an additively automorphic singular complex analytic function, letUa andUb be singularities
of −

ΨX

1 over the singular values a and b, respectively. A singularity Ua is separate if there exists >ρ 0 such that

( ) ( )∩ = ∅ ≠U ρ U ρ U U, for all .a b b a

In the aforementioned definition the case =a b is possible, see Example 4.2. In words, the ideal pointUa is
separate if for small enough >ρ 0 the neighbourhood ( )U ρa does not intersect any neighbourhood of another
ideal point. Similarly, an ideal point is non-separate if and only if any neighbourhood ( )U ρa always intersects a
neighbourhood of another ideal point.

Example 4.2.
(1) Separate singularities, case =a b. Consider

( ) =
∂
∂

X z
z z

e
.

z

2

3

The corresponding −
ΨX

1 has six logarithmic singularities arising from the essential singularity of X at �∞ ∈ z

and an algebraic singularity arising from the pole of X at the origin. All the singularities of −
ΨX

1 are separate.
The asymptotic values are

= = = ∞ = ∞ = ∞ = ∞a a a 0, and ,1 2 3 1 2 3

i.e. there are two asymptotic values, each of multiplicity 3. As can be seen in Figure 2(b), there are six
singularities of −

ΨX

1, corresponding to three hyperbolic tracts over 0 and three elliptic tracts over ∞. Full
details appear in Example 4.2 of [5].
Thus, the singular values a and b can be the same and yet Ua and Ub can be different singularities of −

ΨX

1.
(2) Non-separate singularities, case ≠a b. In Example 5.7,

Figure 9: Example 5.7, function ( ) ( )=zΨ eX
z zsin ‒ and phase portrait of the corresponding vector field ( )

( )

( )

=X z
z z

e

cos ‒ 1

∂

∂

z zsin ‒

. The neigh-
bourhoods ( )U ρ∞,‒ and ( )+U ρ0, of the non-separate singularities are coloured purple and orange, respectively.
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( ) ( )= −zΨ e ,X
z zsin

is considered. Among other things, it is shown that for any given >ρ 0, each neighbourhood ( )∞ −U ρ, and
( )+U ρ0, , with asymptotic values ∞ and 0, respectively, contains:

• an infinite number of neighbourhoods ( )±U ρak
, with asymptotic value 0 or∞, for k odd or even, respectively,

• an infinite number of critical points.
Thus, both ( )∞ −U ρ, and ( )+U ρ0, are non-separate, Figure 9 illustrates this fact.

Remark 4.3. The notion of separate is of a topological nature. Thus, even when dealing with multivalued
additively automorphic singular analytic functions ΨX , for small enough >ρ 0, the neighbourhoods { ( )}U ρa are
well defined. One just needs to recall that as soon as a choice of fundamental domain Λ has been made, all
happens inside the chosen Λ.

With the notion of separate singularity of −
ΨX

1, we can improve Nevanlinna’s isolated singular values
theorem.

Theorem 4.4. (Separate singularities) Let �⟶MΨ :X t be a additively automorphic singular complex analytic
function, as in (5). A singularity Ua of −

ΨX

1 is separate if and only if Ua is one of the following:
(1) algebraic,
(2) ⋆-transcendental,
(3) logarithmic.

Proof. ( )⇐ For cases (1) and (3), note that

( ) ( ) { }⟶U ρ D a ρ aΨ : , \X a,Λ

is an unbranched holomorphic covering for sufficiently small >ρ 0. In case (1), the covering is of finite
degree, and in case (2), it is the universal covering, in accordance with Definition 3.8. In either case, Ua is
separate.

For case (2), recall that equation (14) provides a local normal form as follows:

( ) ( )= + ∕ ≥−z λ z z sΨ log 1 , for 1.X
s

,Λ
1

Moreover, the asymptotic value is = ∞a and the neighbourhoods of ∞U are (up to biholomorphism) of the
form ( ) ( ( ) [ ]) [ ]≅ ∪∞ +U ρ D R R R0, \ 0, 0, , recalling the construction of Λ in Section 3.2.1.3. In fact,

( ) ( ( ) [ ]) [ ] ( ) { }

( )

≅ ∪ ⟶ ∞ ∞
⟼ + ∕

∞ +
−

U ρ D R R R D ρ

z λ z z

Ψ : 0, \ 0, 0, , \

log 1

X

s

,Λ

1

topologically is an s-fold unbranched holomorphic log-covering i.e. −s2 2 elliptic sectors followed by a para-
bolic sector determining λ (Figure 8). Clearly, Ua is separate.

( )⇒ Now, we assume thatUa is separate. Thus, given ≠U Ub a, there exists >ρ 0 such that ( ) ( )∩ = ∅U ρ U ρa b

in Λ. In particular, this implies that ( )U ρa does not contain any singular points other than ( )= →∞z αlim tas t ,
where αa is the asymptotic path corresponding to Ua. □

Recalling Definition 3.12, ∣= ∘ −
π πΨX ,Λ 2 1

1
Λ. In fact,

(( ) ) ( ) { }⟶π V α a ρ D a ρ a: , , , \a2 (15)

is an unbranched holomorphic covering, and

�∣ ⟶ ⊂π M: Ω Λ\1 Ω 0
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is a biholomorphism. It follows that for any neighbourhood ( ) ⊂U ρ Λa of a singularity Ua of −
ΨX

1, one has the
diagram

(16)

where (( ) )V α a ρ, ,a is the component of ( ( ))−
π D a ρ,2

1 such that

( ) ∣ ( (( ) ))≐U ρ π V α a ρ, , .a a1 Ω

Thus, to specify the neighbourhood ( )U ρa , we first choose a connected component �(( ) ) ⊂V α a ρ, ,a X

of ( ( ))−
π D a ρ,2

1 .
Since (15) is an unbranched holomorphic covering, it follows that the closure of (( ) )V α a ρ, ,a in �X is

topologically a disk or a punctured disk.
Having identified (( ) )V α a ρ, ,a , we now intersect with Ω. Once again, recalling the construction of Λ,

particularly Γ, in Section 3.2.1.3, three cases appear:
(A) (( ) )∂ ∩ = ∅V α a ρΩ , ,a , or
(B) (( ) )∂ ∩ =V α a ρ γΩ , ,a 1

for a simple path γ
1
that has as one of its extrema the branch point ( )α a,a .

(C)  (( ) )∂ ∩ = ∪V α a ρ γ γΩ , ,a 1 2
,

for some simple paths   �∪ ⊂γ γ X1 2
that have as common extrema the branch point ( )α a,a .

Note that ( ) = ⊂ ⊂π γ γ MΓ
j j1 .

In case (A), since ∣π1 Ω is a biholomorphism, it follows immediately that

∣ ( ) ( ) { }= ∘ ⟶−
π π U ρ D a ρ aΨ : , \X a,Λ 2 1

1
Λ

is an unbranched holomorphic covering. Thus, by [46] Theorem 6.1.1, either:
(A.i) there exists a biholomorphism Φ of ( )U ρa onto { ∣ ∣ ∣ }≐ < <Δ z z* 0 1 such that =Ψ ΦX

k
,Λ for some

natural number k , or
(A.ii) there exists a biholomorphism Φ of ( )U ρa onto the left half plane Re� { ∣ ( ) }= <− z z 0 such

that = ∘Ψ exp ΦX ,Λ .
For (A.i), Ua is algebraic and for (A.ii), Ua is logarithmic.
Let us now examine cases (B) and (C). By Definition 3.2, for < ′ <ρ ρ0 , the neighbourhoods satisfy

(( ) ) (( ) )′ ⊂V α a ρ V α a ρ, , , ,a a , where the closure is in �X .
Since (15) is an unbranched holomorphic covering, the closure of (( ) )V α a ρ, ,a in �X is topologically a disk

or a punctured disk.

Lemma 4.5. Let < ′ <ρ ρ0 . The paths γ
1
and γ

2
can be deformed to γ̂

1
and γ̂

2
, within (( ) )V α a ρ, ,a so that:

(a) γ̂
1
and γ̂

2
do not intersect (( ) )′V α a ρ, ,a , when (( ) )V α a ρ, ,a is topologically a disk,

(b) γ̂
1
and γ̂

2
coincide inside (( ) )′V α a ρ, ,a , when (( ) )V α a ρ, ,a is topologically a punctured disk.

Figure 10 illustrates the lemma. Note that the paths γ
1
and γ

2
do not change outside of (( ) )V α a ρ, ,a , hence

do not affect other singularities of −
ΨX ,Λ

1 .

Proof. Follows immediately from the fact thatUa is separate, and hence, we can deform γ
1
and γ

2
in the open set

( ) ( )′U ρ U ρ\a a , leaving the extrema at ( )∂U ρa and the branch point ( )α a,a fixed. □

Case (i) tells us that (( ) )∂ ∩ ′ = ∅V α a ρΩ , ,a , and we have reduced to case (A) above, soUa is an algebraic or
logarithmic singularity of −

ΨX ,Λ

1 .
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For case (ii), up to biholomorphism

�(( ) ) ( ( ) [ ]) [ ]′ ∩ = ∪ ⊂+V α a ρ D R R R, , Ω 0, \ 0, 0, ,a X

note that [ ]R0, projects by π1 to a trajectory ofRe( )X . By simple inspection, we can recognize that Figure 8 describes
ΨX . Thus, the singularityUa is a ⋆-transcendental singularity of −

ΨX ,Λ

1 . This completes the proof of Theorem 4.4. □

A list of the simplest singular behaviours is provided by the theorem below.

Theorem 4.6. (Topological behaviour ofRe( )X and the singularities of −
ΨX

1) Let X be a singular complex analytic
vector field and ΨX the corresponding additively automorphic singular complex analytic function, as in (5).
Considering the phase portrait of Re( )X on the neighbourhood ( )U ρa for small enough >ρ 0, the name of the
singularity of X, the type of singularity of −

ΨX

1, and the residue of the 1-form of time ωX at �∈zs with asymptotic
value �∈a t as in Definition 3.4, a partial correspondence is

Re( ( ) ( ))U ρ X,a con-
sists of

Name of the singularity
of X

Type of the singularity of −
ΨX

1 Value
of ( )ω zRes ,X s

( )+k2 2 hyperbolic
sectors

pole �∈p of multipli-
city − ≤ −k 1

algebraic singularity Ua over �∈a t 0

( )−s2 2 elliptic
sectors

�∈q 0 algebraic singularity ∞U over ∞ 0

and parabolic
sectors

zero �∈q of multipli-
city ≥s 2

�∈q R
⋆-transcendental singularity ∞U over ∞ �*

Source, sink or
centre

Simple zero �∈q R
⋆-transcendental singularity ∞U over ∞ �*

Hyperbolic tract Isolated essential singu-
larity �∈e

Logarithmic transcendental singularity Ua

over �∈a t

�

Elliptic tract isolated essential singu-
larity �∈e

Logarithmic transcendental singularity ∞U

over ∞
�

? Essential singu-
larity �∈e

Non separate essential transcendental singu-

larity Ua over �∈a t

�

□

Remark 4.7.
(1) The aforementioned result emphasizes the dichotomy between finite and infinite singular values of ΨX .
(2) A singular value �∈a t can admit several ideal points { }Ua over it.
(3) In the table of Theorem 4.6, the question mark in the last row means that many other topologies occur. For

instance, the last row contains direct and non-direct singularities.

By Lemma 2.9.3, each asymptotic path of ΨX can be realized as a trajectory ( )z t of Re( )Xeiθ with α or
ω-limit zs, for some θ, the converse is obvious.

Definition 4.8. A singularity ∈z Ms of X is reachable when there exists an asymptotic path of ΨX with limit zs.

Example 4.3. (A non-reachable singularity) Note that, not all singularities of X have an associated singularity
of −

ΨX

1. In our framework, the choice of a singular point �∈zs of X does not imply the existence of an
asymptotic path and its asymptotic value. For instance, consider the singular complex analytic vector field
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( ) =
∂
∂

X z
z

z z

cosh

cos
.

It has simple zeros at ( )±i k4 1
π

2
and simple poles at ( )±k4 1

π

2
, for �∈k . Thus, �= ∞ ∈z nRs is an accumulation

point of � �∪R (Figure 11). However, since there is no asymptotic path tending to = ∞zs , there is no
singularity of −

ΨX

1 associated with = ∞zs . Elliptic functions ℘( )z in �z provide analogous examples.

Theorem 4.9. (Ideal points in terms of singularities of X ) Let ΨX be an additively automorphic singular complex
analytic function, as in (5), and X its corresponding singular complex analytic vector field. A reachable singu-
larity �∈zs of X determines at least one singularity of −

ΨX

1.
(1) If the singularity �∈zs 0 of X has residue zero, then one of the following cases occurs.

(a) A zero of X of order 2 determines: a simple pole of ΨX , a non-singular point of ΨX , and an ordinary point
of −

ΨX

1.
(b) A pole or a zero (of order greater than 2) of X determines: a critical point of ΨX , and an algebraic

singularity of −
ΨX

1.
(c) An essential singularity of X determines: an essential singularity of ΨX , and at least one zero residue

essential transcendental singularities { }Uaι
of −

ΨX

1 over �{ } ⊂aι t.
(2) If the singularity �∈z Rs of X has non-zero residue, then it can be understood within equivalent perspec-

tives given by Λ or M:
(A) In the context of a fundamental domain Λ with ΨX ,Λ as in Section 3.2.

(a) A zero of X determines a ⋆-transcendental singularity ∞U of the inverse of −
ΨX ,Λ

1 over �∞ ∈ t.
(b) An essential singularity of X determines at least one non-zero residue essential transcendental

singularities { }Uaι
of −

ΨX ,Λ

1 over �{ } ⊂aι t and { }∞U over �∞ ∈ t.

(B) In the context of the universal cover M, withΨX the analytic extension of ΨX as in Section 3.3.
(a) When M = Δ, each singularity �∈z Rs of X determines an infinite number of non-zero residue

transcendental singularities of −
ΨX

1, { }͠ ⊂ ∂U Δa located on the boundary ∂Δ of M. Moreover,
when M is compact, the set of ideal points { }U͠a is dense in ∂Δ.
(i) A zero of X determines only the asymptotic value = ∞a and an infinite number of ideal points ͠∞U .
(ii) An essential singularity of X determines an infinite number of non-zero residue essential trans-

cendental singularities of −
ΨX

1 over �{ }+ ⊂a Ξι t, namely, ͠ +Ua Ξι
, where { }Ξ is the set of linear

combinations of residues and periods of ωX , and { }aι are the asymptotic values as in (2.A.b).
(b) When M �= , we consider its compactification �z.

Figure 10: Deformation of the paths γ
1
and γ

2
inside the conformal disk �(( ) ) ⊂V α a ρ, ,a X , as in Lemma 4.5. The red circle represents

the branch point ( )α a,a . (a) and (b) in the figure refer to cases (a) and (b) of Lemma 4.5.
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(i) If � � �= =R R, then �∞ ∈ z is a simple zero of X͠ .
(ii) If � � �= ≠R R, then ∞ is an isolated essential singularity of X͠ .
(iii) Otherwise, ∞ is an non-isolated essential singularity of X͠ .

In (1.c), (2.A.b), and (2.B.a.ii), the number of asymptotic values depends on the order of growth of X. □

As an illustrative family of Theorem 4.9, it is natural to consider.

Example 4.4. (Rational vector fields on � ) Let q q,…,
s1
be ≥s 3 distinct points in � and let �∈r r,…, *s1 , such

that ∑ =r 0k . We have the vector field

( ) ∑⎜ ⎟=
⎛
⎝ −

⎞
⎠

∂
∂=

−

X z
r

z q z
.

k

s

k

k1

1

In this case, the singular set is � � �= ∪R and � { }= =qR k k

s

1. Consider � �∈z \o , its global distinguished
parameter

( ) ( )∫ ∑ ∑⎜ ⎟=
⎛
⎝ −

⎞
⎠
= − +

= =
z

r ζ

ζ q
r z q CΨ

d
logX

z

z

k

s

k

k k

s

k k

1 1
o

is a multivalued additively automorphic singular complex analytic function. We construct a fundamental
region Λ for ΨX , as in Section 3.2.1. Let { }γ

k
be segments between two zeros { } =q

k k

s

1 of X , Γ is the union of these
segments, and thus,

�( )= ∪ +γΛ \Γz k

is a fundamental region. Each simple zero q
k
of X has a ⋆-transcendental singularity of −

ΨX ,Λ

1 over the asym-
ptotic value ∞, as in Theorem 4.6. Thus, �∞ ∈ t is an asymptotic value with multiplicity s. Considering the
universal cover Δ of � �\z R, Corollary 3.18.3 and Theorem 4.9.2.B.a.i applies.

5 Holomorphic families and sporadic examples

5.1 Exponential families

The family of entire functions with at most a finite number of logarithmic singularities is a cornerstone of the
theory of entire functions. A first analytic characterization due to Nevanlinna is the following.

Theorem. ([35] Ch. XI) Entire functions ΨX with degree −p 2 polynomials as Schwarzian derivatives are pre-
cisely functions that have p logarithmic singularities.

Figure 11: The singularity at ∞ of the vector field ( ) ( )= ∕X z z zcosh cos
z

∂

∂
, the small red circle, does not have an associated singularity

of ΨX

‒1.
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Also recall the pioneering work of Hille [23] and Taniguchi [44,45]; see Devaney [12] §10 for a modern
study. For the relations with the theory of the linear differential equation ( )″ − =y P z y 0, see [41] pp. 156–157.
We consider the family

E �( ) ( )
( )

( )
[ ]( )=

⎧
⎨
⎩

=
∂
∂

∈ ≥
⎫
⎬
⎭

s r d X z
Q z

P z z
Q P E z s r d, , e , , of degree , , 1 .E z

Each E( )s r d, , is a holomorphic family of complex dimension + + +s r d 1. Note that the functions
E( )∈ r dΨ 0, ,X are in the Speiser class, i.e. entire functions with a finite number of critical and asymptotic

values. The vector fields

E E( ) ( ) ( ) ( )=
∂
∂

∈ =
∂
∂

∈ ≥+ +X z
z

X z
z

d de 0, 0, 2 and e 0, 0, , for 3,az bz c z
d2

were studied by Hockett and Ramamurti [24] using real vector field methods. In [4] and [5], the families
E( )r d0, , are examined and described using combinatorial methods. Examples of phase portraits ofRe( )X , for
X in E( )0, 0, 1 and E( )0, 2, 3 can be found in Figure 2 and [4,5], for X in E( )1, 0, 1 in Figure 6, and for X in
E( )2, 0, 1 in Figure 7.

Recall our convention from equation (3), that the residue ( )X zRes , 0 of a vector field X at z0 is the residue of
the 1-form ωX at z0. Let

E �( )
( )

( )
( )( )=

∏ −
∏ −

∂
∂

∈ ∈
=
+

=
X z λ

z q

z p z
s r d λe , , , *,

j

m m

j

μ

ι

n

ι

ν

E z
1

1

R
j

ι

0

(17)

where m0 denotes the number of zeros with zero residue,
mR denotes the number of zeros with non-zero residue,
n denotes the number of poles; = ∑ =r νι

n

ι1 and = ∑ =
+

s μj

m m

j1

R0 .

Theorem 5.1. (The families E( )s r d, , ) Let

( )
( )

( )
( )∫= −z

P ζ

Q ζ
ζΨ e dX

z

E ζ

be the additively automorphic singular complex analytic function arising from E( )∈X s r d, , .
(1) The function ΨX has +n m0 critical values (n of them are finite) and +d m2 R asymptotic values (counted with

multiplicity); d over points in �t and +d mR over �∞ ∈ t.
(2) All the singularities of −

ΨX

1 are separate (algebraic, logarithmic, or ⋆-transcendental).
(3) There is a hyperbolic tract over each finite asymptotic value and an elliptic tract over each infinite asymp-

totic value corresponding to the essential transcendental singularities of −
ΨX

1.
(4) There is an μ

j
-unbranched holomorphic log-covering for each non-zero residue zero q

j
of X .

(5) The isolated essential singularity at �∞ ∈ z is the α or ω-limit point of an infinite number of incomplete
trajectories.

Proof. Step 1. We shall apply a rational approximation argument to X in (17), as in [35] ch. XI §3.4 and [5] §4.3.
Recall Euler’s formula for the exponential, thus

( )
( )

( )

( )

( )
( )

( )
( )

( )

( ) ( )

( )
( )

( )

( )

( )∫ ∫

≐
⎛
⎝ − ⎞

⎠

∂
∂

→∞⎯ →⎯ ∂
∂

≐

≐ ⎛
⎝ − ⎞

⎠ →∞⎯ →⎯ ≐−

X z
Q z

P z
z

Q z

P z z
X z

z
P ζ

Q ζ

E ζ
ζ

P ζ

Q ζ
ζ z

1

n e ,

Ψ 1
n

d n e d Ψ ,

E z

E z

X

z

z

z

z

E ζ
X

n

n

n

n

n

o o

with the convergence being uniform on compact sets.
In accordance with equation (17), X has the following features:
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• n poles at the roots { } =p
ι ι

n

1 of ( )P z with multiplicity { }νι , where = ∑ =r νι

n

ι1 ;

• m0 zeros with zero residue, at roots { } =q
j j

m

1
0 of ( )Q z with multiplicity { }μ

j
, where = ∑ =s μj

m

j0 1

0 ,

• mR zeros with non-zero residue, at roots { } = +
+

q
j j m

m m

1
R

0

0 of ( )Q z with multiplicity { }μ
j
, where = ∑ = +

+
s μR j m

m m

j1

R

0

0 , and

• an isolated essential singularity at �∞ ∈ z, the residue �( )∞ ∈XRes , may or not be zero.
Since the convergence →X Xn is uniform, we may assume that for sufficiently large n, the succession { }Xn ,

shares the following features with X :
• The n poles { } =p

ι ι

n

1, arising from the factor ( )P z , and the +m mR0 zeros { }ℓ=
+

q
j

m m

1
R0 , arising from the factor ( )Q z ,

are fixed (they do not depend on n); these poles and zeros coincide with those of ωX .
• However, the d poles { ( )} =e nσ σ

d

1 of Xn, each of multiplicity n, arising from the factor ( ( ) )− ∕E z1 n n, tend
towards �∞ ∈ z as → ∞n .

• The phase portrait of Re( )Xn at  ( )e nσ consists of +2n 2 hyperbolic sectors.
• Xn has a zero of multiplicity − + +r s dn 2 at �∞ ∈ z, the residue ( )∞XRes ,n of this zero may or not be zero,
however, if ( )∞ ≠XRes , 0, we may assume that ( )∞ ≠XRes , 0n .

• the phase portrait of Re( )Xn at �∞ ∈ z consists of ( )− + +r s2 dn 2 elliptic sectors if ( )∞ =XRes , 0n or
( )− + +r s2 dn 2 elliptic sectors and a parabolic sector if ( )∞ ≠XRes , 0n .
In the limit, when → ∞n , the zero at �∞ ∈ z and the poles { ( )} =e nσ σ

d

1 coalesce, forming an essential
singularity of X at �∞ ∈ z. A careful examination of the phase portraits of Re( )Xn as → ∞n shows that
Re( )X has
• d elliptic tracts and
• d hyperbolic tracts
angularly equidistributed about �∞ ∈ z, see Figure 4 in [5].

Step 2. Now let us consider the succession of additively automorphic functions { }ΨXn
and its limit function

ΨX . We shall choose a fundamental domain Λ (recall Section 3.2.1). Let = ∪ = γΓ κ

m

κ1
R be a simple path that passes

through the mR poles { }ℓ ℓ= +
+

q m

m m

1
R

0

0 with non-zero residue and let it end at the pole at ∞ (which may or not have

zero residue), i.e. γ
mR

has �∞ ∈ z as one of its extrema. Furthermore, for large enough ≫N 0, we may assume

that Γ avoids all the singularities of ωXn
for all > Nn . In this way, the fundamental domain �( )= ∪ = +γΛ \Γz κ

m

κ1
R

can be used with ΨX and ΨXn
for all > Nn , so that we obtain the single-valued functions ΨX ,Λn

that converge
uniformly on compact sets of Λ to ΨX ,Λ.

The succession { }ΨX ,Λn
and the function ΨX ,Λ have the following common properties.

• +n m0 critical values corresponding to the poles and zeros with zero residue of X arising from the factors
( )P z and ( )Q z , respectively,

• ⋆mR -transcendental singularities of −
ΨX ,Λ

1

n
arising from the zeros with non-zero residue of X ,

However, the succession { }ΨX ,Λn
has:

• d finite critical values corresponding to the d zeros of ωXn
arising from the factor ( ( ) )− ∕E z1 n n,

• the point �∞ ∈ z is a critical point of ΨX ,Λn
with critical value ∞ or a ⋆-transcendental singularity of −

ΨX ,Λ

1

n

with asymptotic value ∞, depending on whether ( )∞XRes ,n is zero or non-zero.
Step 3. Identification of the singularities. Clearly, ΨX has a finite number of singular values, and hence, the

singularities of −
ΨX

1 are separate. The poles and zeros with zero residue of X correspond to algebraic singula-
rities of −

ΨX

1. The zeros with non-zero residue of X correspond to ⋆-transcendental singularities of −
ΨX

1 (and
hence an μ

j
-unbranched holomorphic log-covering at each non-zero residue zero of X ). Moreover, the limit

function ΨX has an essential singularity at �∞ ∈ z and the phase portrait of X shows d elliptic tracts and d

hyperbolic tracts equidistributed about �∞ ∈ z. Each elliptic tract accepts a class of asymptotic paths with
asymptotic value �∞ ∈ t for ΨX ,Λ; each hyperbolic tract accepts a class of asymptotic paths with finite asymp-
totic value �∈aσ t for ΨX ,Λ.

Finally, each hyperbolic tract provides an infinite number of incomplete trajectories with the essential
singularity �∞ ∈ z being their α or ω limit point. □
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Example 5.1. ( E( )∈X d1, 0, using rational approximation) Let

E( ) ( )=
∂
∂

∈ ≥X z z
z

d de 1, 0, , for 1.z
d

The corresponding distinguished parameter is

( ) ( )∫= = −
−

z
ζ

ζ
d

zΨ
e

d
1

Γ 0, ,X

z
ζ

d

d

where ( ) ∫≐ ∞ − −a z ζ e ζΓ , d
z

a ζ1 is the incomplete Gamma function.
Euler’s formula provides the approximation of X by the vector fields

( ) =
⎛
⎝ − ⎞

⎠

∂
∂

≥X z
z

z
1

, for n 1,
z

n

n

n
d

so

( )
( )

∫ ⎟ ⎟⎜ ⎜=

⎛
⎝ − ⎞

⎠
= −

+
⎛
⎝
− ⎞

⎠
⎛
⎝

+ + − ⎞
⎠

+

z
ζ

ζ
d n

z

n
F n n

z

n
Ψ

1

d
1

1
1 1, 1; 2;1 ,X

z
ζ

d
n

d

0

n

n

2

1

1

d

n

where F2 1 is the classical Gauss’s hypergeometric function, see [36] ch. 15.
The zeros of Xn are 0, of order 1, and �∞ ∈ z of order +dn 1; with residue 1 and −1, respectively.
The poles of Xn are { ( ) }≐ ∕

=e en nσ
d

σ

d1
1

iπσ

d

2

, of order −n. Of course the poles of Xn are the critical points of ΨXn
.

Choosing �( [ ]) ( )= −∞ ∪ −∞ +Λ \ , 0 , 0z , we can compute the critical values of ΨX ,Λn

( ) ( )≐ = =∼ ∕e e σ dn Ψ n 0, for 1,…, .σ X
d

,Λ
1

iπσ

d
n

2

Moreover, the finite asymptotic values aσ of ( ) ∫= −z ζ ζΨ e dX

z
r ζ

,Λ
0

d

, are given by

�( ( ))= − = ∈ =
→∞

a
d

α σ dlim
1

Γ 0, t 0 , for 1,…, .σ σ

d
t

t

We conclude that the critical values ( )∼e nσ converge, to the finite asymptotic values.
Furthermore, travelling along the asymptotic paths ( ) ( )= − ∕ ∕α t te eσ

iπ σ d d iπ d2 , that arrive at �∞ ∈ z with angle

( )− +σ d
π

d

π

d

2 , for = +σ d d1,…, 2 , we see that ( )zΨX ,Λn
converges to �∞ ∈ t. Thus, there are d (classes of)

asymptotic paths that give rise to the asymptotic value �∞ ∈ t.
By using the techniques7 presented in [6], we visualize the phase portraits of Re( )Xn and Re( )X for =s 1 and
=d 5. The poles { }∕

=e n d
σ

d1
1

iπσ

d

2

are portrayed as green dots. Note that at �∞ ∈ z, there is a zero of Xn of order
exactly +dn 1. See Figure 12, for case =d 5.

Example 5.2. ( E( )∈X 1, 0, 1 ) Let us consider the vector field

E( ) ( )=
∂
∂

∈X z z
z

e 1, 0, 1 ,z

whose phase portrait of Re( )X on �z is sketched in Figure 6. Its global distinguished parameter

( ) ∫=
−

z
ζ

ζΨ
e

dX

z
ζ

1

is a multivalued additively automorphic singular complex analytic function. In this case, � { }= ∞0,R .



7 The images were obtained using simple code written in the JuliaTM 1.9.3 language which is particularly well suited for numerical
computation. The code is freely available upon request.

32  Alvaro Alvarez-Parrilla and Jesús Muciño-Raymundo



From the perspective of a fundamental region Section 3.2.1, we have that
�( )= ∪ +γ γΛ \ ,z

where γ is a path as in Figure 6. The fundamental region is

�{( ( )) ∣ }= ∈ ⊂z z zΩ , Ψ Λ .X X

Once again, Figure 6 shows a sketch of Λ,Ω, and the Riemann surface�X . According with Theorem 4.6, we have
three singularities of −

ΨX

1.
• The simple zero = ∈z 0 Λ has associated a ⋆-transcendental singularity of −

ΨX ,Λ

1 over the asymptotic value
�∞ ∈ t, its neihgbourhood ( ) ( ( ))≐ ∞∞

−
U ρ D ρΨ ,X ,Λ

1 is coloured pink in Ω, see Figure 6.
The essential singularity ∞ ∈ Λ has associated two non-zero residue essential transcendental singularities
of −

ΨX ,Λ

1 ;
• over the asymptotic value 0, the neighbourhood ( ) ( ( ))≐ −

U ρ D ρΨ 0,X0 ,Λ

1 is a hyperbolic tract, coloured green in
Figure 6, and

• over ∞, the neighbourhood ( ) ( ( ))≐ ∞∞
−

U ρ D ρΨ ,X ,Λ

1 is an elliptic tract, coloured blue in Figure 6.
The last two singularities are logarithmic.
From the perspective of the universal cover M of � { }∞\ 0,z : Corollary 3.18.4.ii applies.

5.2 Families of periodic vector fields

On �z, there exists a correspondence between
• singular complex analytic vector fields X on �z of period �∈T * with ωX having zero residues, and
• singular complex analytic functions ΨX of period T .
Moreover, in such a case,

( ) ( )= ∕z hΨ eX
πiz T2

is single-valued, where h is a suitable singular complex analytic function.

Theorem 5.2. (Families of periodic vector fields with single-valued ΨX ) Let X be a singular complex analytic
vector field on �z arising from a function ΨX in the family

P  � �{ ( ) ( ) ∣ }≐ = ⟶ ≥∕z R R rational of degreeΨ e : r 1 .X
πiz T

tr
2

The following assertions hold.
(1) X is periodic of period �∈T * with a unique essential singularity at �∞ ∈ z.
(2) ΨX has two asymptotic values ( )≐a R 01 and ( )≐ ∞a R2 , counted with multiplicity.
(3) Each of the two transcendental singularities of −

ΨX

1 is logarithmic. The corresponding exponential tracts are
(i) hyperbolic tracts when the asymptotic value is finite, and
(ii) elliptic tracts when the asymptotic value is ∞.

(4) If the critical point set �� ⊂R z of R satisfies that � { }∞ ≠ ∅\ 0,R , then X has an infinite number of poles
accumulating at �∞ ∈ z.

(5) If �∞ ∈ t is not an asymptotic value, then X has an infinite number of zeros of multiplicty 2 and residue zero
accumulating at �∞ ∈ z.

(6) The behaviour in (4) or (5) depends on the configuration of the two asymptotic values and infinity:
(i) (Generic case.) Three distinct points �{ }∞ ⊂a a, , t1 2 .
(ii) Two distinct points { }= ∞a a ,1 2 .
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Figure 12: Phase portraits of Re( )Xn for =n 1, 5, 20, 40 converging to Re( )X with E( )∈X 1, 0, 5 as in Example 5.1. Left hand side
portrays a neighbourhood of the origin, and the right-hand side a neighbourhood of ∈∞ ℂz. Note that by approaching ∈∞ ℂz along
paths that avoid the poles { }∕

=e n d
σ

d1
1

iπσ

d

2

(green dots), the value of ( )zΨn converges to ∈∞ ℂt . Images are of high resolution, and zooming
is suggested particularly for high values of n.
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(iii) Two distinct points { }= ∞a a,1 2 or { }= ∞a a,1 2 .
(iv) One distinct point { }= = ∞a a1 2 .

It provides a complete decomposition of the family Pr into four subfamilies.

As usual, generic means an open and dense set in the space of parameters of Pr.

Proof. The space of rational functions ( )R w of degree ≥r 1 is an open Zariski set in �� +2r 1, and hence, Pr

inherits this open complex manifold structure.
Without loss of generality, assume that the period is =T πi2 . Under pullback, we have a diagram

  � � �( ) ⟶ ⎛
⎝

∂
∂
⎞
⎠ ⟶

⎛
⎝

∂
∂
⎞
⎠X R

t t
, , * , .z w

R

t

e
z

(18)

Here, ∂
∂R*

t
is a rational vector field with

• zeros of order ≥2 and residue zero, at the poles of R, and
• poles at the critical points of R in �*

w with finite critical values.
From the aforementioned observations, the statements (4) and (5) follow.

Statement (1) follows from the periodicity and essential singularity of ez.
Statement (2) follows from noting that the asymptotic values of ez are precisely 0 and ∞, and thus, the

asymptotic values of ΨX are ( )≐a R 01 and ( )≐ ∞a R2 .
Note that ΨX is the universal cover of a neighbourhood of the transcendental singularities Ua of −

ΨX

1, and
hence, for the asymptotic values =a a a,1 2 and >ρ 0 sufficiently small, we have

( ) ( ( )) ( ( ( )))= =− −U ρ D a ρ R D a ρΨ , log , .a X

1 1

Thus, statements (3.i) and (3.ii) follow from Theorem 4.6.
For statement (6), in accordance with Diagram 18, the behaviour of R provides a sharp description of the

zeros and poles of X , as well as the exponential tracts of ΨX . A systematic description of the different
subfamilies in Pr is given by the configuration of the two asymptotic values and infinity.

(i) Generic case. A three distinct point { }∞a a, ,1 2 configuration.
Clearly, the aforementioned condition defines a generic set inPr. Moreover, X has an infinite number of

zeros of multiplicity at least 2 and residue zero accumulating at �∞ ∈ z, corresponding to assertion (5). In
addition, if the critical point set of R is different from 0 or ∞, then X has an infinite number of poles
accumulating at �∞ ∈ z; as in assertion (4). Finally, the neighbourhoods ( )U ρa1

and ( )U ρa2
of the singularities

of −
ΨX

1 will be hyperbolic tracts. See Example 5.3.
(ii) A two point { }= ∞a a ,1 2 configuration.

Since ≐ = ≠ ∞a a a1 2 , ΨX has one finite asymptotic value �∈a t of multiplicity 2, i.e. two logarithmic branch
points over the same finite asymptotic value a.
By necessity, ΨX has at least another branch point over � { }∈b a\ 1 , which cannot be transcendental. Thus, b

must be a critical value.
If = ∞b , then X has an infinite number of zeros of multiplicity at least 2 and residue zero accumulating
at �∞ ∈ z.

If ≠ ∞b , then X also has an infinite number of poles accumulating at �∞ ∈ z.
Finally, the two neighbourhoods ( )U ρa1

and ( )U ρa2
(over the same asymptotic value = =a a a1 2) of the

singularities of −
ΨX

1 will be hyperbolic tracts. Let

( ) { }=
+ +⋯+ +
+ +⋯+ +

=−
−

−
−R w

c w c w c w c

b w b w b w b
r s, r max , ,

r
r

r
r

s
s

s
s

1
1

1 0

1
1

1 0

(19)

be a rational function. A straightforward calculation shows that either

�( ) ( )= = = ∞ = = ∈r s
c

b

c

b
a R R

c

b
and , so 0 *,

r

r

t

0

0

0

0
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or

( ) ( )> = ∞ = = = ( )s r a R R cand 0 0, in particular 0 in 19 .0

See Example 5.4.
(iii) A two point { }= ∞a a,1 2 or { }= ∞a a,1 2 , configuration.

The vector field X will not have any zeros. If � { }∞ ≠ ∅\ 0,R , then X has an infinite number of poles accumu-
lating at �∞ ∈ z. One of the neighbourhoods of the singularities of −

ΨX

1 will be a hyperbolic tract and the other
will be an elliptic tract. In particular, equation (19) requires

�( ) ( )< = = ∈ = ∞ = ∞s r a R
c

b
a Rand 0 , .t1

0

0

2 (20)

The other option is given by considering the rational function ( ) ( )= ∕R w R w1 with R as in (20), so
( )= = ∞a R 01 and  �( )= ∞ ∈a R t2 . See Example 5.4.
(iv) A one point { }= = ∞a a1 2 configuration.

Note that, X will have no zeros, assertion (5) of Theorem 5.2 does not occur. If � { }∞ ≠ ∅\ 0,R , then X has an
infinite number of poles accumulating at �∞ ∈ z. The two neighbourhoods ( )U ρa1

and ( )U ρa2
of the singularities

of −
ΨX

1 will be elliptic tracts. In this case,
�( ) ( )< = ∞ = ∞ ∈ = ( )s r R R band 0 , in particular 0 in 19 .t 0

See Example 5.5. □

Example 5.3. (Two logarithmic singularities over finite asymptotic values) The vector field

( ) ( ( ) )= − +
∂
∂

= − ⎛
⎝
⎞
⎠
∂
∂

X z i z
z

i
z

z
cos 1 2 cos

2

2

is such that

( ) = ⎛
⎝
⎞
⎠ =

−
+

z i
z

Ψ tan
2

e 1

e 1
,X

iz

iz

so it falls under the hypothesis of Theorem 5.2, Case 6.i. Thus, ( ) ( ) ( )= − ∕ +R w w w1 1 and �− ∈1, 1 t are the
finite asymptotic values of ΨX . There are two logarithmic singularities of −

ΨX

1 over −1, �∈1 t, whose neigh-
bourhoods are hyperbolic tracts. In this case, X has an infinite number of double zeros and no poles
(Figure 3(a)).

Example 5.4.
(1) The pair

( )
( )

( )
( )

( )
= −

∂
∂

=X z i
z

z z
z

i z
2

sin

cos
and Ψ

1

2

1

sin
X

2

falls under the hypothesis of Theorem 5.2, Case 6.ii.
(2) Let �[ ]∈P z be a non-constant polynomial, the pair

( )
( )

( ) ( )= ′
∂
∂

=X z
P z

z P
1

e e
and Ψ e

z z X
z

falls under the hypothesis of Theorem 5.2, Case 6.iii.
In both cases, details are left to the interested reader.

Example 5.5. (Two logarithmic singularities over ∞) The vector field

( ) ( )=
∂
∂

X z z
z

sec
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is such that

( ) ( )= =
− −

z z
i

Ψ sin
e e

2
,X

iz iz

so it falls under the hypothesis of Theorem 5.2, Case 6.iv. Since ( ) ( )= − ∕−R w w w i21 takes ∞ ↦ ∞0, , thus
�∞ ∈ t is an asymptotic value of multiplicity 2 and ΨX has no finite asymptotic values. There are two loga-

rithmic singularities of −
ΨX

1 over �∞ ∈ t, whose neighbourhoods are elliptic tracts. Since ( )
( )∫ ∕
∕

ζ ζcos d
π

π

2

3 2

is
finite, the incomplete trajectories � �( ) ( ) ⊊ →z a bt : ,k z of X , having as images the real segments

�( ( ) )∕ + ∕ + ⊂π kπ π kπ2 , 3 2 , �∈k , are located at the poles {( ) }∕ +π k1 2 of X (Figure 3(b)).

5.3 Sporadic examples

In this section, we explore the limits of Theorem 4.4 by considering examples of single and multivalued
additively automorphic functions ΨX , emphasizing the geometrical richness of the vector field perspective.
In particular, how the knowledge of the phase portrait of Re( )X helps in determining and understanding the
type of singularities of −

ΨX

1.

Example 5.6. (An infinite number of separate singularities and no non-separate singularities) Let

( ) ( )=zΨ e .X
zsin

The associated vector field is

( )
( ) ( )

( )

= ′
∂
∂

=
∂
∂

−
X z

z z z z

1

Ψ

e

cos
.

X

zsin

See Figure 13. The critical points of ΨX are �{ ( ) ∣ }+ ∈k k2 1
π

2
, and its critical values are { }−e, e 1 .

The asymptotic values of ΨX are 0, ∞. Clearly, 0 and ∞ are isolated asymptotic values, so the transcendental
singularities are logarithmic.
By examining the phase portrait8 of Re( )X , it is clear that there are an infinite number of logarithmic
singularities.
Let �∈k , the asymptotic paths ( ) ( )= + ±±α k it 2 1 ta

π

2k
, are associated with the asymptotic values

= ⎧⎨⎩
=

∞ = ∞±
±

±
a

k

k

0 0, for odd ,

, for even .
k

k

k

Their neighbourhoods are

Re Im�( ) { ∣ ( ) ( ) ( ) ( )}= ∈ − + < ± >±U ρ z z k
π

π z R ρ2 1
2

, ,a zk

for appropriate ( )R ρ . Note that the neighbourhoods ±U0k
are hyperbolic tracts (coloured green in Figure 13), the

plus sign indicating the ones on the top, the minus sign indicating the ones on the bottom. Similarly the
neighbourhoods ∞ ±U

k
are elliptic tracts (coloured blue in Figure 13).

In addition, note that along the real axis ( )zΨX does not converge as → ±∞z , i.e. there is no asymptotic path (or
value) along the real axis.
There are no other singularities of −

ΨX

1, even though �∞ ∈ z is a non-isolated essential singularity of X .

Example 5.7. (Direct non-logarithmic singularity of −
ΨX

1) Consider the function



8 Note that, since ( ) ( )=zΨ eX
zsin the phase portrait of Re( )X is the pullback via ew of the phase portrait of Re ( ) )( ∂

∂zsec
z
, see

Example 5.5.
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( ) ( )= −zΨ e ,X
z zsin

studied in [29]. The associated vector field is

( )
( ) ( )

( )

= ′
∂
∂

=
−

∂
∂

−
X z

z z z z

1

Ψ

e

cos 1
.

X

z zsin

The critical points of ΨX are �{ ∣ }≐ ∈p πk k2 ,
k

with critical values �{ ∣ }͠ ≐ ∈−p ke
k

πk2 . See Figure 9. The
asymptotic values of ΨX are 0 and ∞. Note that they are non-isolated singular values. Since ΨX is entire and
these are omitted values, the corresponding transcendental singularities are direct.
Once again, from the phase portrait of Re( )X , there seems to be an infinite number of logarithmic singula-
rities. As in the previous example, for each �∈k , the asymptotic paths ( ) ( )= + ±±α k it 2 1 tk

π

2
, where >t 0,

are associated with the asymptotic values

= ⎧⎨⎩
=

∞ = ∞±
±

±
a

k

k

0 0, for odd ,

, for even .
k

k

k

Their neighbourhoods are

Re Im�( ) ∣ ( ) ( ) ( ) ( )= ⎧⎨⎩ ∈ − + < ± > ⎫⎬⎭±U ρ z z k
π

π z R ρ2 1
2

, ,a zk

for appropriate ( )R ρ . As mentioned earlier, the neighbourhoods ( )±U ρ0k
are coloured green and the neigh-

bourhoods ( )∞ ±U ρ
k

are coloured blue in Figure 9.
Since these neighbourhoods are mutually disjoint, the singularities are separate, so by Theorem 4.4, each ±Uak

is
logarithmic.
However, in this example, there are two more singularities of −

ΨX

1:
• The asymptotic value ∞, arising from the asymptotic path ( )−α t , having image �−, gives rise to a direct
transcendental singularity of −

ΨX

1, say ∞ −U , . The corresponding neighbourhoods ( )∞ −U ρ, contain the regions

Re� ∣ ( ) ( )
⎧⎨⎩ ∈ − < ⎛

⎝
⎞
⎠ < < ⎫⎬⎭z

π

z

π
z R ρ

2
arg

1

2
, ,z

for suitable ( )R ρ . These neighbourhoods are coloured purple in Figure 9.

Figure 13: Example 5.6, function ( ) ( )=zΨ eX
zsin and phase portrait of the corresponding vector field ( ) ( ) ( )=X z zsec e z

z

‒sin
∂

∂
. There are

infinite hyperbolic and elliptic tracts, coloured green and blue, respectively.
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• Similarly, the asymptotic value 0 arising from the asymptotic path ( )+α t , having image �+, gives rise to a
direct transcendental singularity of −

ΨX

1, say +U0, . The corresponding neighbourhoods ( )+U ρ0, contain the
regions

Re� ∣ ( ) ( )
⎧⎨⎩ ∈ − < ⎛

⎝
⎞
⎠ < > ⎫⎬⎭z

π

z

π
z R ρ

2
arg

1

2
, ,z

for appropriate ( )R ρ . These neighbourhoods are coloured orange in Figure 9.
The aforementioned implies that, for any given >ρ 0, each neighbourhood ( )∞ −U ρ, and ( )+U ρ0, contains an
infinite number of neighbourhoods ( )±U ρak

; thus are non-separate.
By Theorem 4.4, ∞ −U , and +U0, , are direct non-logarithmic singularities.

Example 5.8. (Indirect transcendental singularity of −
ΨX

1) Let

( ) ( )= ∕z z zΨ sin .X

The associated vector field is

( )
( ) ( )

=
−

∂
∂

X z
z

z z z zcos sin
.

2

The critical points of ΨX are the unbounded set �{ ∣ ( ) ( ) }∈ − =z z z zcos sin 0z , with critical values lying on the
real axis and converging to 0 as the critical points approach ±∞.
The asymptotic values of ΨX are 0 and ∞.
Since ∞ is an isolated asymptotic value, the singularities of −

ΨX

1 over ∞ are logarithmic. In fact, there are two,
say ∞±U , arising from the asymptotic paths ∞±α having images �+i and �−i . The corresponding (disjoint)
neighbourhoods are

Im�( ) { ∣ ( ) ( )}= ∈ ± >∞±U ρ z z R ρ ,z

for appropriate ( ) >R ρ 0.
The neighbourhoods ( )∞±U ρ are elliptic tracts.
On the other hand, since ΨX assumes the value 0 infinitely often along the real axis, the transcendental
singularities of −

ΨX

1 over 0 are indirect. In fact, there are two: ±U0 arising from the asymptotic paths ( )±α t0

having images �+ and �−.

Remark 5.3. (The topology of the vector field Re( )X does not determine the nature of the ideal points) The
previous example, shows that the vector fields

( )
( ) ( )

( ) ( )=
−

∂
∂

=
∂
∂

X z
z

z z z z
X z z

zcos sin
and sec1

2

2

have the same topological phase portraits, see Figure 3(b) and [4] §11 for accurate definitions. From the point of
view of the singularities of −

ΨX

1, they have important differences: the vector field X1 has an indirect transcen-
dental singularity, but X2 does not. Furthermore, ΨX1

has four asymptotic values { }∞ ∞0, 0, , , but ΨX2
only

two { }∞ ∞, .

Example 5.9. (Direct non-logarithmic singularity without critical points) Let

( ) ∫= −z ζΨ e d ,X

z

0

e
ζ

which is studied in [22,40]. The associated vector field is

( ) =
∂
∂

X z
z

e .e
z

It is clear that the critical point set of ΨX is empty. Let
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�
( ) ∫= = − ≈

∋ →∞
−

∞ −

+
a

t
tlim Ψ t

e
d 0.219384.X

t

0
t

1

There are an infinite number of finite asymptotic values of ΨX given by

� �{ ∣ }≐ + ∈ ⊂a a i kπ k2 ,k t0

with asymptotic paths

�{ ( ) ∣ }= + ∈ ≥α i kπ kt t 2 , for t 0,k

according to [22] p. 271.
Since the finite asymptotic values are isolated, the corresponding transcendental singularities of −

ΨX

1 are
logarithmic and their neighbourhoods ( )U ρak

are hyperbolic tracts over ak .
On the other hand, the asymptotic paths

�{ ( ) ( ) ∣ }= + + ∈ ≥β i k π kt t 2 1 , for t 0
k

have the asymptotic value �∞ ∈ t, in accordance with [22], statement (8). Note that ∞ is a non-isolated
asymptotic value. The asymptotic paths { }β

k
correspond to neighbourhoods ( )∞U ρk, that, for >ρ 0 sufficiently

small, are disjoint from the neighbourhoods of other singularities of −
ΨX

1; thus, these transcendental singula-
rities are separate. Hence, by Theorem 4.4, they are also logarithmic singularities of −

ΨX

1.
From statements (9) and (10) of [22], �∞ ∈ t is an asymptotic value for asymptotic paths arriving to �∞ ∈ t in
an angular sector of angle π2 that avoids the positive real line. We shall denote by ∞ −U , the corresponding
singularity. For >ρ 0, each neighbourhood ( )∞ −U ρ, contains an infinite number of neighbourhoods ( )U ρak

and
( )∞U ρk, , and hence, the singularity ∞ −U , is non-separate, thus direct non-logarithmic (Figure 14).

Example 5.10. (Direct non-logarithmic singularity of −
ΨX

1, with an accumulation of critical values) Let

( ) ( )=zΨ e sin e .X
z z

The associated vector field is

( )
( ) ( )

=
+

∂
∂

X z
z

1

e sin e e cos e
.

z z z z2

The critical points of ΨX are the unbounded set

�{ ∣ ( ( ) ( )) }∈ + =z e sin e e cos e 0 ,z
z z z z

which lie along the real lines of height ikπ , �∈k and whose real part is approximately given by
�{ (( ) ) ∣ }+ ∈j jlog 2 1

π

2
. Thus in particular, the critical points lie to the right of Re( ) ( )= ∕ ≈z πlog 3 2 1.55019.

The corresponding critical values lie on the real axis and converge to −∞ as the critical points approach ∞.
The asymptotic values of ΨX are �∞ ∈0, t.
Since =a 0 is an isolated asymptotic value, there is a (direct) logarithmic singularityU0 over it. Its neighbour-
hoods ( )U ρ0 are contained in half planes

Re�( ) { ∣ ( ) ( )}⊂ ∈ < −U ρ z z R ρ ,z0

for appropriate ( ) >R ρ 0. The neighbourhoods ( )U ρ0 are hyperbolic tracts over 0 and are coloured green in
Figure 15.
On the other hand, since ΨX is entire, ∞ is an omitted value, and hence, the singularity ∞U associated with the
asymptotic value ∞ is direct.
Note that any neighbourhood ( )∞U ρ , coloured purple in Figure 15, of this direct singularity contains a half
plane Re{ ( ) ( )}>z R ρ , for appropriate ( )R ρ , and thus an infinite number of critical points (algebraic singula-
rities of −

ΨX

1). Therefore, ∞U is non-separate, i.e. it is a direct non-logarithmic singularity over ∞.
It is to be noted that this ΨX only has two transcendental singularities of −

ΨX

1: a logarithmic singularity over 0
and a direct non-logarithmic singularity over ∞.
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Example 5.11. We consider the vector field

( ) ( )=
∂
∂

X z i z
z

sin .

In Figure 3(d). is a sketch of the phase portrait of Re( )X . Since �� { ∣ }= ∈kπ kR , clearly ΨX is multivalued
additively automorphic. Let ( ) = +γ kπ πt t

k
for [ ]∈t 0, 1 , and �{ } { }= ∈γΓ

k k \ 0 so �[ ] [ ]= −∞ ∪ ∞ ⊂πΓ , 0 , z is a
closed arc of a circle containing ∞. It follows that a fundamental region is

Figure 14: Example 5.9, function ( ) ∫=z ζΨ e dX

z

0

‒e
ζ

and phase portrait of the corresponding vector field ( ) =X z e
z

e
∂

∂

z

. The neighbour-
hood ( )U ρ∞,‒ of the non-separate singularity is coloured purple.

Figure 15: Example 5.10, function ( ) ( )=zΨ e sin eX
z z and phase portrait of the corresponding vector field

( ) ( ( ) ( ))= +X z e sin e e cos ez z z z

z

2 ‒1
∂

∂
. The neighbourhood ( )U ρ∞ of the non-separate singularity is coloured purple.
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�
�

( )
{ }

= ⋃
∈

+γΛ \Γ ,z

k
k

\ 0

as in Section 3.2.1. The restriction of ΨX to Λ, for = ∕z π 2o ,

�( ) ( ) ( ( ( )) ( ( )))∫= = ∕ − ∕ ⟶z i ζ ζ i z zΨ csc d log sin 2 log cos 2 : ΛX

z

z

t,Λ

o

is single-valued. The fundamental region is

�{( ( )) ∣ }= ∈ ⊂z z zΩ , Ψ Λ ,X X

see Figure 16(a) for a sketch of Ω.
One can observe a sequence of simple zeros accumulating at �∞ ∈ z:
• each simple zero of X , at =q kπ

k
, �∈k , has asymptotic value ∞, and

• the essential singularity at �∞ ∈ z, has two finite asymptotic values = ∓ ∕±a π 2; arising from asymptotics
paths, ( ) ⊂±α t Λ, that start at zo and arrive at �∞ ∈ z inside of the upper or lower half planes �+ or �−,
respectively.

By using Diagram 13 and Definition 3.14, the singularities of −
ΨX ,Λ

1 are:
• the ⋆-transcendental singularities �{ }∞ ∈U k k, corresponding to the zeros { }q

k
of X , and

• the two essential transcendental singularities ±Ua .

Figure 16: A sketch (using surgery) of the fundamental regions �⊂Ω X of the vector fields: (a) ( )i zsin
z

∂

∂
and (b) ( )i zcos

z

∂

∂
. In both

cases, the zeros are simple with imaginary linear parts, hence they are isochronous centres ofRe( )X and determine half cylinders in the
metric ( )gℂ ,z X

i.e. of height ( )0, ∞ or ( )‒∞, 0 . Moreover, the upper and lower ends of the cylinders, which are not identified (coloured
green), correspond to the zeros of the vector fields (green points in ℂz). The path Γ (coloured red) is a cut between the zeros of X ,
obtaining flow boxes. The letters indicate the corresponding identifications, that describe the connected regions Ω.
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Since the finite asymptotic values ±a are isolated, then by Theorem 4.4, the essential transcendental singula-
rities ±Ua are logarithmic transcendental singularities of −

ΨX ,Λ

1 . Moreover, since the asymptotic values ±a are
finite, the neighbourhoods ( )±U ρa are hyperbolic tracts, which can be clearly observed on the phase portrait.
From the perspective of the universal cover M of � { }∞\ 0,z , Corollary 3.18.3 applies.

5.3.1 A family of vector fields with only one tract

Let us now consider the family

� � �( ) ( ) ∣ ℓℓ
⎧
⎨
⎩

=
∂
∂

∈ ∈ ∈
⎫
⎬
⎭

X z λz z
z

r λcos *, even , *
r

of singular complex analytic vector fields on �z with an essential singularity at∞. In particular, for ℓ ≥ 0, X is
holomorphic at 0. By using the complex quotient

z
  � � �( ) [ ]⟶ ∕ ± = ⟼ ±π id z z: , ,z z

here [ ] denotes the equivalence class, it follows that z( )cos is well defined. The function ( )zcos is entire and
non-vanishing at 0.

Example 5.12. Case ℓ = 0, =r 1. A transcendental singularity of −
ΨX

1 with an accumulation of simple zeros. The
vector field

( ) ( )=
∂
∂

X z i z
z

cos

has a unidirectional sequence of simple zeros (isochronous centres) � �� {( ) ∣ }= + ∕ ∈ ⊂ +kπ π k2R
2 that

accumulates to the essential singularity at ∞. The corresponding

C( ) ( ) [ ( ) ( ) ( )]∫= − = + − − − −z i ζ ζ i ie ie z eΨ sec d 2 2 Li Li 2 tan ,X

z

i z i z i z

0

2 2
1

is a multivalued additively automorphic singular complex analytic function, whereC
( )

( )
≐ ∑ ≃=

∞ −
+ 0.91597k k0

1

2 1

k

2 is
Catalan’s constant and ( )

( )∫= − −
z uLi d

z u

u2
0

log 1 is the dilogarithm function, see [31]. The phase space of Re( )X is
sketched in Figure 3(e). Note that �∞ ∈ z is an accumulation (from the right) of the simple zeros�R of X . We
construct a fundamental domain Λ for ΨX , Subsection 3.2.1. Let { }γ

k
be real segments between two consecutive

zeros of X , Γ is the closure of these segments, a fundamental region
�( ) [ ]= ∪ = ∕ +∞+γ πΛ \Γ , where Γ 2, .z k

The periods of the trajectories of Re ( )
⎛
⎝

⎞
⎠

∂
∂i zcos

z
are as follows:

( ) ( ) ( )= = − +T π r iπ k2 1 4 2 ,k k
k 2

where ( ) ∫= =r ω q ωRes ,k X k πi ϑ
X

1

2
, and as usual, ϑ encloses the respective zero. Each zero q

k
of X determines a

basin of periodic trajectories ofRe( )X , sayCk , which provided with the metric g
X
is isometric to a semi-infinite

flat cylinder of perimeter Tk . Thus, the perimeters of the cylinders tend towards ∞, as the zeros approach the
essential singularity ∞ (Figure 16(b)).
On the other hand, since ( )X z is entire, ΨX does not have any finite critical values. Moreover, since ΨX ,Λ is
single-valued on Λ, and there is only one homotopy class of paths approaching �∞ ∈ z, there is one finite
asymptotic value for ΨX ,Λ arising from the asymptotic path ( ) = −α t t for �∈ +t , that is,

C �( ( ))= = ≃ ∈
→∞

a α i ilim Ψ t 4 3.66388 .X t
t

,Λ
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Thus, the singular values are { }∞a, . Once again, by Theorem 4.4, the singularity Ua associated with the
asymptotic value a is logarithmic. Since the asymptotic value �∈a t is finite, ( )U ρa are hyperbolic tracts,
coloured green in Figure 3(e).
Thus, by using Diagram 13 and Definition 3.14, all the singularities of −

ΨX ,Λ

1 are:
• the ⋆-transcendental singularities �{ }∞ ∈U k k, corresponding to the zeros q

k
of X , and

• the logarithmic singularity Ua over the finite asymptotic value �∈a t as above.
From the perspective of the universal cover M of � { }∞\ 0,z , Corollary 3.18.1-3 applies.

Example 5.13. Case ℓ = 0, = −r 1. A direct non-logarithmic singularity of −
ΨX

1 over ∞ with an accumulation of
finite critical values. The vector field

( )
( )

=
∂
∂

X z
z z

1

cos

has an unidirectional sequence of poles � �� { ( ) ∣ { }}= ≐ + ∕ ∈ ∪ ⊂ +p kπ π k2 0
k

2 that accumulates to the essential
singularity al∞. The singular set of X is � � � { }= = ∪ ∞X . The single-valued additively automorphic entire function

( ) ( ) ( ( ) ( ) )∫= = + −z ζ ζ z z zΨ cos d 2 sin cos 1 ,X

z

0

has critical points at � with critical values � �{ ( ) ( ) ∣ { }}͠ ≐ − + − ∈ ∪ ⊂p k π k1 2 1 2 0
k

k
t , an alternating

sequence centreed about �∈0 t with accumulation point �∞ ∈ t. A model for the Riemann surface �X can
be constructed by surgery as follows, see Figure 17:
• As a first step consider copies of �t, say � L\t 0 and � ( )∪L L\t 0 1 , where L0 is a branch cut starting at the
branch point ( )͠p p,

0 0
and L1 is a branch cut starting at the branch point ( )͠p p,

1 1
, both of ramification index 2.

As usual, the boundaries of the L0’s are identified: side a with side ′b and side b with side ′a .
• Second, for each �∈k consider� ( )∪ +L L\t k k 1 , here Lk is a branch cut starting at the branch point ( )͠p p,

k k
of

ramification index 2, and +Lk 1 is a branch cut starting at the branch point ( )͠+ +p p,
k k1 1

of ramification index 2.
The aforementioned copies of � ( )∪ +L L\t k k 1 are glued along the corresponding branch cuts Lk , � { }∈ ∪k 0 .
Moreover, note that �∞ ∈ t is an asymptotic value with asymptotic path ( )∞α t in the angular sector
{ }< <z π0 arg 2 .

Lemma 5.4. Let ( ) ( )∫=z ζ ζΨ cos dX

z

0
, the singularity ∞U of −

ΨX

1 is
(1) non-separate,
(2) direct and non-logarithmic.

Proof. To prove (1), consider �( ) ⊂D R0, t, for ∣ ∣͠>R p
1
, note that the complement is ( )∞ ∕D R, 1 . By considering

Diagram 8, it follows that �( ( ))∞ ∕ ⊂−
π D R, 1 X2

1 contains an infinite number of branch points for ∣ ∣͠>R p
1
. From

this it immediately follows that ( ) ( ( ))∕ = ∞ ∕∞
−

U R D R1 Ψ , 1X

1 contains an infinite number of critical points { }p
k
.

Thus, ∞U is non-logarithmic.
Finally, since ΨX is entire, ( )∞ ∉ ∞U ρ for >ρ 0, so ∞U is also direct. □

The singularities of −
ΨX

1 are as follows:
• the algebraic singularities corresponding to the poles p

k
of X , and

• exactly one direct and non-logarithmic singularity ∞U .
Figure 3(c) illustrates the phase portrait of Re( )X at ∞. Note that every neighbourhood ( )∞U ρ contains an
infinite number of poles of X . Moreover, the phase space of Re( )X has at infinity a region which is a
topological elliptic tract (with an angular sector of angle π2 ); however, it is nonanalytically equivalent to
the elliptic tract in Definition 4.1.
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Example 5.14. Consider the vector field

( ) ( )=
∂
∂

X z z
z

tan .

A sketch of the phase portrait of Re( )X can be found in Figure 3(f). Once again the simple zeros of X are
�� { ∣ }= ≐ ∈q kπ kR k

, whence ΨX is multivalued.
The poles of X are �� { ∣ }= ≐ + ∈p kπ k

k

π

2
, and since �∞ ∈ z is an accumulation point of zeros and poles, it

follows that � { }= ∞ .
We now choose a fundamental domain as in Section 3.2.1; for this, we note that because of Remark 3.9.3 it is not
necessary that Γ avoid � . Let

( ) [ ]= − ∈γ q π tt t , for 0, 1 ,
0 0

�( ) ( ) [ ] { }= + ∈ ∈γ q k π t kt sign t , for 0, 1 , and \ 0 .
k k

Let �{ }= ∈γΓε k k , so �⊂Γ z is a simple path containing ∞. It follows that a fundamental domain is
�

�

( )= ⋃
∈

+γΛ \Γ ,z

k
k

as in Section 3.2.1. The restriction of ΨX to Λ, for = ∕z π 2o ,

�( ) ( ) ( ( ))∫= = ⟶z ζ ζ zΨ cot d log sin : ΛX

z

z

t,Λ

o

is single-valued. The fundamental region is

�{( ( )) ∣ }= ∈ ⊂z z zΩ , Ψ Λ .X X

Figure 17: A sketch (using surgery) of the fundamental region �⊂Ω X of the vector field ( ) ( ( ))= ∕X z z1 cos
z

∂

∂
. The segments of ( )π Γ1

‒1

are in red in Ω. Thus, there are infinite copies of ℂt in Ω with auxiliary cross cuts Lk , whose boundaries are identified to produce branch
points ( )͠p p,

k k
of index two. The Lk are orthogonal to the trajectories of Re( )X . The critical values p͠

k
accumulate to ∈∞ ℂt. A

neighbourhood ( ) ⊂D ρ∞, ℂt is coloured purple. The preimage ( ( )) ⊂π D ρ∞, Ω2

‒1 is one connected component, coloured purple, and
contains an infinite number of branch points ( )͠p p,

k k
corresponding to poles of X , represented as red dots.
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A surgery model for Λ and Ω, illustrating Diagram 13, is shown in Figure 18. Recalling that �∈k , the needed
identifications are as follows:

+ +a b d cside is to be identified with side , side is to be identified with side .k k k k1 1

For simplicity of the drawing, the identifications are shown on two of the building blocks of Λ and only on one
of the building blocks of Ω.
In the same figure, on Λ one can also observe (as red trajectories ofRe( )X ) the segments { }γ

k
comprising Γ. The

corresponding image on Ω is observed as the red trajectories of Re( )X that come from ∞ and land on the
branch points ( )͠p p,

k k
that have ramification index 2.

Note that for the sequence of simple zeros and simple poles accumulating at �∞ ∈ z,
• each simple zero q

k
of X , has asymptotic value ∞,

• each simple pole p
k
of X , has critical value ͠ =p ikπ

k
; that is, the critical values associated with the poles� are

� ��� { ∣ }= ∈ ⊂ikπ k t, and
• the essential singularity at �∞ ∈ z has associated the asymptotic value∞ with multiplicity two arising from
asymptotics paths, ( ) ⊂±α t Λ, that start at zo and arrive at �∞ ∈ z inside of the upper or lower half planes�+
or �−, respectively.

By using Diagram 13 and Definition 3.14, the singularities of −
ΨX ,Λ

1 are as follows:
• the ⋆-transcendental singularities �{ }∞ ∈U k k, corresponding to the zeros { }q

k
of X ,

• the algebraic singularities Uikπ corresponding to the poles p
k
, and

• the two essential transcendental singularities ∞+U and ∞−U corresponding to asymptotic paths ±α .

Figure 18: A sketch (using surgery) of the fundamental region �⊂Ω X of the vector field ( ) ( )=X z ztan
z

∂

∂
. Using the π -periodicity of X in

ℂz, we recognize that each vertical band in ℂz has a pole of X (a red point), determining a branch point of index two in Ω. A
neighbourhood ( ) ⊂D ρ∞, ℂt is coloured yellow. The inverse image ( ( ))π D ρ∞,2

‒1 lifts to Ω with several connected components. The
segments of ( ) ⊂π Γ Ω1

‒1 are in red, recall that they are cuts, and hence, the colours that describe the connected components of
( ( ))π D ρ∞,2

‒1 change along them. Our interest lies in the two connected components that contain an infinite number of branch points,
these connected components are coloured purple and dark purple. The branch points ( )͠p p,

k k
corresponding to poles of X are

represented as red dots onΩ. Note that the critical values p͠
k
are ikπ , �∈k . The zeros of X are represented as green dots onℂz, and the

corresponding branch points ( )q , ∞
k

are not illustrated in Ω.
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Since the critical values (arising from the poles of X ) accumulate at �∞ ∈ t, the asymptotic values ∞ are not
isolated.
For the separateness properties of the singularities ∞±U , consider the fundamental region �⊂Ω X (for
the choice of fundamental domain Λ as mentioned earlier). Moreover, recall that ∣= ∘− −

π πΨX ,Λ

1
1 Ω 2

1, as in
Diagram 13, and thus, in Figure 18, the red segments ( ) ⊂−

π Γ Ω1

1 are cuts, and thus, boundaries of �⊂Ω X .
It follows that the purple and dark purple connected components of ( ( ))∞−

π D ρ,2

1 , correspond to the two
essential transcendental singularities ∞±U . Note that they always intersect with an infinite number of neigh-
bourhoods (( ) )͠ ′ ⊂V p p ρ, , Ω

k k
and (( ) )∞ ′ ⊂V q ρ, , Ω

k
, associated with the poles and zeros of X . In other words,

the two neighbourhoods ( )∞±U ρ intersect an infinite number of neighbourhoods of the branch points corre-
sponding to the poles and zeros of X .
We conclude that the two essential transcendental singularities ∞±U are non-separate.
From the perspective of the universal cover M of � { }∞\ 0,z , Corollary 3.18.1-3 applies.

6 Three applications

6.1 Maximal domains for the flow: the description of �X

Let X be a singular complex analytic vector field on a Riemann surface M . Our interest is in local non-
stationary complex trajectory solutions of X with initial conditions �∈z M \o , i.e.

�( ) ( ) ( )⊂ ⟶ ⟼ −
z t D ρ M t t: 0, , Ψ ,t X

1

where ��( ) ∫= ⟶z ω MΨ : \
z

z

X t
o

, compare with equation (5).

Definition 6.1.
(1) A vector field X is complete when its complex trajectory solutions { ( )}z t are holomorphic for all complex

time �∈t t and all initial condition ∈z Mo . Otherwise, X is incomplete.
(2) A real incomplete trajectory �( ) ( ) ⊆ ⟶z a b Mt : , of X is such that its maximal domain is a strict subset

( )a b, of � .

The following result is well-known, an elementary proof is provided in [32].

Corollary 6.2. A singular complex analytic vector field X on a Riemann surface M is complete if and only if
belongs to one of the following families.
(1) X is rational on � with two zeros (counted with multiplicity).
(2) X is polynomial of degree zero or one on � .
(3) X is polynomial of degree one on �* with zero at 0.
(4) X is holomorphic on a torus �∕Λ . □

For an incomplete X , the interesting phenomenon is the following.

Definition 6.3. A maximal region of univalenceDX of X is the connected Riemann surface obtained by analytic
continuation of a local non-stationary complex trajectory solution ( )z t , along paths from =t 0 in �t.

The surface DX satisfies that D �⟶π : X t2 is a Riemann domain (an unbranched cover).

Example 6.1. (Meromorphic vector fields case) Let X be a meromorphic vector field on M , non-necessarily
compact. The local analytic normal forms, Proposition 2.12, show that each pole p of X of order/multiplicity
− ≤ −k 1 provides exactly ( )+k2 2 hyperbolic sectors, and hence, the same number of separatrices which are
incomplete trajectories ( )z t having an α or ω-limit at the pole p. We consider a cover
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 �{ }⟶π M M: \u R

that kills classes �[ ] ( )∈β H M ,1 of the poles of ωX with non-zero residue and the non-zero periods of ωX . Note
that, since ωX is meromorphic non-zero classes �[ ] ( )∈β H M ,1 with ∫ =ω 0

β
X may exist; these classes are not

killed by πu. The maximal region of univalence of a non-stationary solution ( )z t of X is the punctured surface

D  � �{ ( )}= ∪−
M π\ .X u

1
0

Moreover, we recognize that

D � � � � �{( ( )) ∣ ( )} ( )= ∈ ∪ = ∪−
z z z M π, Ψ \ \ .X X X 1

1
0

The results outlined in Section 3.3, particularly Corollary 3.18 provides us with the following.

Theorem 6.4. (Maximal univalence region for trajectory solutions) Let X be a singular complex analytic vector
field on M. The maximal univalence region for a non-stationary complex solution ( )z t of X is

D �{( ( )) ∣ }= ∈z z z M, Ψ \ .X X

Moreover, DX is independent of the initial condition �∈z M \o .

Proof. Let �� ⊂ ×MX t be the Riemann surface defined as the graph of ( ) ∫=z ωΨX
z

z

X
o

as in equation (5). The
Riemann surface �X is a leaf of the singular complex analytic vector field

�( )
∂
∂

+
∂
∂

×f z
z t

Mon ,t

where ( )
∂
∂f z

z
corresponds to ( )zΨX due to Dictionary (7). The singular complex analytic foliation in the two-

dimensional complex manifold has as leaves:
• copies of �X under translations in the �t factor, and
• horizontal copies of �{ } ×q t from each zero q of X .
Clearly, DX is independent of the initial condition zo. Since we are considering holomorphic solutions, it is
necessary to remove the set � �( )∪−

π1

1
0 from �X . □

Example 6.2. Consider the vector field

E( ) ( ) ( )= −
∂
∂

∈−X z z z
z

1 e 2, 0, 1 ,z

with singular set �� � { }= = ∞ ⊂0, 1,R z. Its associated multivalued additively automorphic singular complex
analytic function is

( )
( )

∫= −
z

ζ ζ
ζΨ

e

1
d .X

z
z

The residues of the 1-form of time ωX at �R are { }− −1, e, 1 e , respectively.
A fundamental domain, as in Section 3.2.1, can be chosen as follows. Let ( ) = +γ it 1 t

1
and ( ) = −γ it t

2
, for

( )∈ ∞t 0, . Furthermore, let = ∪γ γΓ
1 2

. Thus, a fundamental domain is
�( ) ( )= ∪ ∪+ +γ γΛ \Γ .

1 2

Note that the singularities of −
ΨX ,Λ

1 are two ⋆-transcendental singularities over �∞ ∈ t corresponding to the two
zeros of X , and two logarithmic singularities: ∞U over ∞ and Ua over the finite asymptotic value

( )

∫= =
→∞

a ωlim 0.

α

X
t

t
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In other words, Λ contains an elliptic tract ( )∞U ρ (corresponding to the logarithmic singularity over ∞) and a
hyperbolic tract ( )U ρa (corresponding to the logaritmic singularity over the finite asymptotic value a)
(Figure 7(a)).
Since �� { }= ∞M \ \ 0, 1,R , the universal cover M = Δ is the unit disk. Moreover, M is composed of infinite
copies of an ideal hyperbolic quadrangle Λ glued together at the two borders γ

1
and γ

2
, see Figure 7(b). The

function  �⟶ΔΨ :X is holomorphic. The singular points of ΨX form a countable and dense set on the
boundary ∂Δ of the disk Δ; they are precisely the ideal points of −

ΨX

1. The reader can compare the present
singularities of ΨX on the boundary ∂Δ with the classical theorem of Plessner for singularities on the
boundary, see [37] §6.4. Clearly,ΨX is invariant under a Fuchsian group (the group of deck transformations).

6.2 Localizing incomplete trajectories

In [17], Guillot explores relations between complex differential equations and the geometrical properties of
their (incomplete) trajectories. We recall facts.

Proposition 6.5. Let X be a singular complex analytic vector field on a compact Riemann surface gM .
(1) A vector field X is rational and non-holomorphic on gM if and only if X has a finite (non-zero) number of

incomplete trajectories.
(2) Every non-rational, singular complex analytic vector field X on gM , has an infinite number of incomplete

trajectories.

Proof. Assertion (1) uses the normal form in Proposition 2.12. For Assertion (2), the argument is by contra-
diction, if the number of incomplete trajectories is finite, then by (1), X is rational. □

Note that the above proof is not constructive; however, the appearance of incomplete trajectories in the
vicinity of an essential singularity of X is explained in the next subsection.

Remark 6.6. Let X be a rational vector field on the Riemann sphere. There exists an incomplete trajectory ( )z t

of X having α or ω-limit at �∈p z if and only if p is a pole of X , equivalently p is a critical point of ΨX with a
finite critical value �( )͠ = ∈p pΨX t. In particular, if ( )α tp is a path with ( ) =→∞α plim tpt , then

( ( )) ͠=
→∞

α plim Ψ t .X p
t

With this in mind, the following is straightforward.

Theorem 6.7. (Incomplete trajectories and finite singular values) Let X be a singular complex analytic vector
field on M . The following statements are equivalent.
(1) There exists an incomplete trajectory ( )z t of X having α or ω-limit at ∈z Ms .
(2) There exists a finite singular value �∈a t of ΨX , whose asymptotic path ( )α ta is a trajectory of Re( )X ending

at ∈z Ms .

Proof. The argument follows directly from the definitions of asymptotic path, of a finite asymptotic value of ΨX

and of incomplete trajectories of X . □

Remark 6.8. Theorem 6.7 is independent of whether ΨX is single or multivalued.

A natural question to ask is where these incomplete trajectories are localized in a vicinity of an essential
singularity. The assertion is as follows.

Geometry of transcendental singularities  49



Theorem 6.9. (Localizing incomplete trajectories) Let X be a singular complex analytic vector field on M with an
essential singularity at ∈z Ms .
(1) Any neighbourhood ( )U ρa , of an essential transcendental singularityUa of −

ΨX

1 over a finite asymptotic value
�∈a t, contains an infinite number of incomplete trajectories of X.

(2) If ΨX has no finite asymptotic values at zs, then X has an infinite number of poles accumulating at ∈z Ms .

Proof. For statement (1), first, consider the case whenUa is a logarithmic singularity of −
ΨX

1. Recalling Theorem
4.6.1, note that for >ρ 0 small enough, the neighbourhood ( )U ρa of a logarithmic singularity Ua over a finite
asymptotic value a is a hyperbolic tract. It consists of an infinite number of hyperbolic sectors, and the
separatrices of each hyperbolic sector are incomplete trajectories. Thus, any neighbourhood ( )U ρa of the
logarithmic singularity Ua contains an infinite number of incomplete trajectories.

On the other hand, if the transcendental singularityUa of −
ΨX

1 is non-logarithmic, by Theorem 4.4,Ua is non-
separate. Thus, for any >ρ 0

a
, the neighbourhood ( )U ρa a

contains an infinite number of neighbourhoods
( )U ρa σσ

, for appropriate { }>ρ 0
σ

. Note that the collection { }aσ is bounded, i.e. the aσ are all finite, and satisfy

( ) ( )⊂U ρ U ρ .a σ a aσ
(21)

If an infinite number of aσ are critical values, we are done: these critical values have corresponding critical
points that are poles of X . Thus, by (21), any neighbourhood ( )U ρa of the non-logarithmic singularityUa contains
an infinite number of incomplete trajectories.
Otherwise, the collection { }aσ contains an infinite number of distinct (finite) asymptotic values. Without loss of
generality, we shall assume that { }aσ are all asymptotic values and that they once again satisfy (21). Now recall
that the associated Riemann surface �X has as its (ideal) boundary precisely the branch points corresponding
to all the asymptotic values of ΨX .
Since the (ideal) boundary of �X is totally disconnected, every branch point corresponding to the singularities
Uaσ

has a trajectory �( )͠ ⊂α tσ X arriving to it. This trajectory projects, via π1, to an incomplete trajec-
tory ( ) ( ) ( )⊂ ⊂ ⊂α U ρ U ρ Mtσ a σ a aσ

.
The proof of statement (2) is by contradiction. Assume that there is only a finite number of poles of X , the

number of incomplete trajectories is then finite. This contradicts Proposition 6.5. □

The interested reader can compare the aforementioned results with Theorems 1.2 and 1.3 of [40].

Remark 6.10. Whenever there is an essential singularity of X , we have the dichotomy described below.
• If ΨX has no finite asymptotic values, then X has an infinite number of poles accumulating at the essential
singularity of X at ∈z Ms .

• If X only has a finite number of poles, then ΨX has (at least) one finite asymptotic value.

6.2.1 What can be said about X without an explicit knowledge of ΨX?

As a direct consequence of Theorem 6.9, we can extend Langley’s result [28] from the case when −f 1 has a
logarithmic singularity over = ∞∼a , to the general case:

Corollary 6.11. Let ( )= ∂
∂X f z

z
be a singular complex analytic vector field on M with an essential singularity at

∈z Ms . Any neighbourhood ( )∼U ρa of a transcendental singularity ∼Ua of −f 1 over a non-zero asymptotic value
� { }∈∼a \ 0t contains an infinite number of incomplete trajectories of X .

Proof. By definition, �⟶f M: t is transcendental meromorphic. Since f has a non-zero asymptotic value ∼a , it

follows that there is an asymptotic path ( )α͠ t of f such that
( ( )) ∣ ∣͠

⊂ ⎛
⎝

⎞
⎠∼D ε,

f α a

1

t

1 for small enough >ε 0 and large

enough >t 0. Thus,
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�( ( ))͠ = ∈
→∞

α alim Ψ t ,X t
t

i.e. ΨX has a as a finite asymptotic value. By Theorem 6.9, we are done. □

Lemma 6.12. The following assertions are equivalent.
(1) −f 1 has a logarithmic singularity over an asymptotic value �∈∼a .
(2) −

ΨX

1 has a logarithmic singularity over the corresponding asymptotic value �∈a as in (10).

Proof. ( ) ( )⇒1 2 . From the definition, a transcendental singularity ∼Ua of −f 1 is a logarithmic singularity over ∼a if
�( ) ( ) { }⟶ ⊂∼ ∼∼f U ρ D a ρ a: , \a is a universal covering for some >ρ 0. Hence, there exists a biholomorphism

( ) ( )⟶ ∼ϕ D r U ρ: 0, a such that ( ( )) ( )=f ϕ w wexp for small enough >r 0. In other words, −
ΨX

1 has a logarithmic
singularity over a.

( ) ( )⇐1 2 . Since ΨX is a universal cover, locally ( ( )) ( )=ϕ w wΨ expX so ( ( )) ( ) ( )= =f ψ w w wexp exp
d

dw
, i.e. f

is a universal covering for some >ρ 0. □

The following complements Corollary 6.11. Compare with [28] Theorem 1.2.

Proposition 6.13. Let �⟶f M: t be a transcendental meromorphic function, such that −f 1 has a logarithmic
singularity ∼Ua over �∈∼a t.
(1) If the singularity ∼Ua of −f 1 is over a non-zero asymptotic value � { }∈ ∪ ∞∼a * , then X , at ∈z Ms , has an

infinite number of hyperbolic sectors and an infinite number of incomplete trajectories.
(2) If the singularity ∼Ua of −f 1 is over the asymptotic value �= ∈∼a0 t, then X at ∈z Ms has an infinite number of

elliptic sectors.

Proof. Because of Lemma 6.12, it follows that −
ΨX

1 has a logarithmic singularity over a, recall equation (10). By
Theorem 4.4, f has at most a finite number of zeros and poles in the exponential tract. Thus,

� �
( ( ))

{ }
͠ = ⎧⎨⎩

∈ ∈ ∪ ∞
= ∞ =

∼
∼→∞

α
a a

a a
lim Ψ t

if * ,

if 0,
X

t

t

and hence, by Theorem 4.6, we are done. □

6.3 Riemann ξ -vector field

Let

( ) ( )=
∂
∂

X z ξ z
z

ξ
(22)

be the entire Riemann ξ -vector field, arising by considering the Riemann ξ -function as in Broughan et al. [10,11].
The following features are related to the vector field (22).
• The multivalued additively automorphic function associated with Xξ is

� �( )
( )

{ ( ) }∫= = ⟶z
ζ

ξ ζ
ξ zΨ

d
: \ 0 .X

z

z

tξ

0

• The real singular foliation of Re( )Xξ has a symmetry of reflection with respect to the critical line

Re{ ( ) }= ∕z 1 2 . In particular, it implies that the simple zeros { }+ iγ
n

1

2
of Xξ are isochronous centres.
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• In [11], it is proved that ( )≥ +T γ O γlog logn

π

n n4
for �∈n , where Tn is the absolute value of the periods

= ∕ ′⎛⎝ + ⎞
⎠τ πi ξ iγ2n n

1

2
of the nth isochronous centre + iγ

n

1

2
along the critical line. This implies that Tn is

strictly increasing.
• In [10], it is proved that there exists an infinite number of incomplete trajectories Γj , for �∈j , with α and

ω-limits at ±∞ that do not contain any singularities of ( )X zξ (crossing separatrices in their terminology).
Moreover, these incomplete trajectories separate the zeros on the critical line, i.e. −Γj 1 and Γj are the
boundaries of an unbounded band Bj.

Since it is unknown whether all the zeros on the critical line are simple (centres) the band containing the nth

isochronous centre + iγ
n

1

2
along the critical line is ( )Bj n . Note that there might be other zeros (not on the critical

line) inside each band Bj. However, it is well-known that if there are zeros not on the critical line, they must lie
inside the critical strip: a vertical strip of width 1 centreed at the critical line.
As is expected, we show that Xξ can not be as simple as a pullback of a periodic vector field, compare with
theorem 6.1 of [10].
Since ΨXξ

is a multivalued additively automorphic meromorphic function on �z, we proceed to construct a
fundamental domain Λ as in Section 3.2.1.

Consider first a closed Jordan path Γ that contains� { }∪ ∞R and the vertical segment [ ]− +iγ iγ,
1

2 1

1

2 1
. Now let

 [ ]= − +iγ iγΓ Γ\ ,
1

2 1

1

2 1
and the fundamental domain for ΨXξ

be �( )= ∪ +Λ \Γ Γz .

Proposition 6.14.
(1) The Riemann ξ -vector field (22) is not holomorphically equivalent to a pullback of a periodic vector field Y

with a finite number of distinct residues.
(2) Let Λ be the fundamental domain described earlier. The single-valued function ΨX ,Λξ

has:
(a) an infinite number of ⋆-trascendental singularities over ∞ corresponding to the zeros with non-zero

residue in the critical strip,
(b) two logarithmic singularities ±Uaα

over the finite asymptotic values ±aα ,
(c) two hyperbolic tracts: the left and right hand planes, Re{ ( ) }<z 0 and Re{ ( ) }>z 1 .

Proof. For the first statement, recall the fact that the residues of a vector field at its zeros are holomorphic
invariants. However, ( )X zξ has an infinite number of distinct periods.

For the second statement, let�R denote the zeros of ( )ξ z that determine a non-zero residue of the 1-form

of time ( )∕dz ξ z , in particular, the simple zeros { }± iγ
n

1

2
of ( )ξ z are contained in�R. Each of them is associated

with a ⋆-transcendental singularity over ∞.
On the other hand, the function ( )ξ z is entire, and thus, ΨXξ

does not have any finite critical values.
Moreover, since ΨX ,Λξ

is single-valued on Λ, and there are only two homotopy classes of paths approaching
�∞ ∈ z, there are two finite asymptotic values for ΨX ,Λξ

as follows: let � �( ) ⊂±α t \z R denote a simple path

starting at zo and ending at �±∞ ∈ z tangent to the real axis. The two finite asymptotic values are as follows:

�
( )

{ }

( )

∫≐ ≃ − ⊂
→∞±

±

a
ζ

ξ ζ
lim

d
13.0074, 10.9997 .α

α

t
t

t

Thus, we have two essential transcendental singularities ±Uaα
over the two finite asymptotic values ±aα .

Moreover, they are logarithmic since their asymptotic values are isolated. Their neighbourhoods ( )±U ρaα
are

hyperbolic tracts. Note that outside of the critical strip Re�{ ∣ ( ) }∈ < <z z0 1z , there are no zeros of ( )X zξ ,
hence the hyperbolic tracts are as stated. □
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7 Future work

The use of vector fields X , in particular, their phase portrait, allows us to observe the following new phe-
nomena, even for single-valued functions ΨX .
• In Example 5.6, the real line is not an asymptotic path; thus, there is no transcendental singularity associated
with the real line; however, any other path arriving to �∞ ∈ z corresponds to a logarithmic singularity of
−

ΨX

1. Thus at �∞ ∈ z, there are an infinite number of logarithmic singularities, and two rays �± that do not
correspond to transcendental singularities of −

ΨX

1. This phenomenon is not captured by Definition 3.2. As an
extreme situation, Example 4.3 shows that there are singularities of vector fields X that do not allow any
singularities of the inverse −

ΨX

1. A further characterization of these singularities might address this
limitation.

• The extension of Theorem 5.2 to the case ( ) ( ( ))=z f g zΨX , for a pair of entire functions f , g with non-
commensurable periods, remains open. This kind of factorization technique is useful to study families of
transcendental functions [42].

• A systematic study of non-separate singularities of −
ΨX

1 is left for future work. Particularly interesting is the
case when the cardinality of � �∪ R is at least 3: there is an obvious relationship with Fuchsian groups and
with the classical results of Plessner for singularities on the boundary of the disk ([37] §6.4).

• Of course the complete study of Riemann ξ -function, from the perspective of vector fields, warrants further

work. Two obvious perspectives present themselves: (a) to consider ( ) ( )= ∂
∂X z ξ zξ z
, or (b) to consider

( ) ( )=z ξ zΨ and its corresponding vector field ( ( ))∕ ′ ∂
∂z1 Ψ

z
.

• If Φ is any multivalued singular complex analytic function, then the extension of Iversen’s theory, (devel-
oped in Section 3.2, mainly Definition 3.12 and its consequences), can be carried through so long as one can
find a fundamental domain Λ (i.e. a maximal simply connected univalence region for Φ). However, a priori
the properties of the singularities of the inverse −Φ 1 can depend on the choice of Λ. A first step in this
direction would entail examining the case where the multivalued singular complex analytic function Φ has
an automorphy factor, which is not just a translation (as is the case for additively automorphic functions).
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