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Abstract. Making use of the general theory of connections invariant under a symmetry group which acts 
transiuvely on fibers, exphcit solutions are derived for SU(2) x SU(2)-symmetrlc multi-instantons over 
$2• S 2, with SU(2) structure group. These multi-instantons correspond to a principal fiber bundle 
characterized by a second Chern number given by 2m 2, with m an integer. 

Mathematics Subject Classifications (1991), 53C05, 53C30, 55R 10. 

1. Introduction 

The existence of instantons over S:  x S 2 follows from the work of Sober6n-Chfivez 
[1] on the classification of stable complex bundles of  rank 2 over S 2 x S 2, and the 

correspondence between stable complex bundles and self-duality established by 
Donaldson [2]. However, to the extent of  our knowledge, no explicit solutions for 
these instantons have been given in the literature. 

The solutions we present here correspond to principal fiber bundles characterized 

by a second Chern number C~_(P(m)) = 2m 2, where m is an integer, and result from 
treating S 2 x S 2 as a homogeneous base space, S 2 x  $ 2 = S U ( 2 ) x  SU(2)/ 

U( I )  x U(1), of  a principal fiber bundle with characteristic group SU(2). Further- 

more, the connections on the bundle are required to be SU(2) x SU(2)-invariant, 

so our solutions are a subset of  points in the total spaces of  instanton solutions. 

(For  example, for a second Chern number equal to 2, it has been shown by 
Donaldson that S 2 x S2-instanton solutions constitute a 10-parameter space). 

Before proceeding with our construction, we shall review, for self-consistency 
purposes, some basic preliminary results and notation (see, e.g., [3] for a detailed 
discussion on the subject). 

Let ~z: P ~ M denote a principal fiber bundle with base space M = S-" x S 2 and 
structure group G = SU(2). The symmetry group S = S U ( 2 ) x  SU(2) acts fiber 
transitively on P by means of  the bundle automorphism s (pg )  = ( sp )g  (where s E S, 
p e P, g e G) and it induces a well-defined transformation on M given by 
sty(p) = rc(sp). 

We shall say that a connection 1-form co is locally S-invariant at x0 if, for all 
s ~ S with sx  o e N c M,  there exists a connected neighborhood V(~) c M of  Xo, 
contained in N c ~ s  ~N, such that s*~o[t,~) = colv(~). 
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Consider now a point x o ~ M, and Poe P such that n(po )=  Xo. The isotropy 
group of S = SU(2) • SU(2) at Xo is 3~ o = U(1) • U(I).  For j ~ J~o, we have 

rc( jpo ) =jrc(p0) = jxo = Xo, 

sojpo is on the same fiber as Po and we can therefore write jp0 =PoP(J),  where # is 
a homomorphism of Lie groups, #: J,o ~ G. 

Furthermore, by virtue of Wang's theorem (see [4] and [5]), there is a bijective 
correspondence between S-invariant connections and linear transformations 
A : L ( S ) ~ L ( G )  of the associated Lie algebras given by A(X)=~Opo(X)p o, with 
~'po = d/dt(exp tX.  Po)[,=o, and such that the following conditions are satisfied: 

(A) A(Y) = ,t/po,(Y ), for Y in J~o, 
( l . l )  

(B) A(afj(X)) = af~o(j)(A)(X)), X ~ L(S),  j ~.1~o. 

Let now a~ : U~ --) P be a local section. Then, if s ~ S, x ~ U,, sx ~ U ,  the local 
action of S on P is given by 

sa~(x) = a~(sx)~o~(s), (1.2) 

where go~(s) ~ G is a differentiable function which describes how the action of S on 
U: has been lifted to the fibers. Moreover, since q)~(e)= e (the identity), the 
differential (r determines a linear function from L(S)  to L(G) (which is not 
necessarily a morphism of Lie algebras. In fact, r = q~(t)q)~(s). We thus have 
that x ~-~ Wx--  qLO, gives rise to a function from M to the space of  linear 
transformations from L(S)  to L(G). 

For X ~L(S ) ,  denote by X the vector field on M defined by ~ x =  
d/dt(exp tX 'x ) [ ,=0 .  It is then easy to show, making use of (1.2), that for xE  
U~, sx ~ U~, the relation between X~ and ~,p is given by 

s  (~ ) , :~x+  ~ * = [Wx(X)]~(x ), (1.3) 

where [Wx(X)],(,) is the fundamental field associated with W~(X) E L(G). Conse- 
quently, 

(~r*o~)~(R)~ = ~o~, (x) (s  - w % ( x ) .  

Moreover, using the S-invariance of  co, we have 
A 

(1.4) 

(1.5) 

and, since S acts transitively on M, we can set x = SXo, so substituting (1.5) in (1.4) 
yields 

A~(Xx) = (cr*og).~(~,x) = agq,.go(S) A(a6~. , X) - W~(X). (1.6) 

Now, in the case where the symmetry group S acts transitively on the base 
manifold, it is known [3, 6] that there is a one-to-one correspondence between the 
equivalence classes of  principal fiber bundles with gauge group G over M = S/J~o, 
admitting an S-action which projects on a given action of S on M, and the 
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conjugate classes of  homomorphisms g~: J~o ~ G. For  this situation, the inequiva- 
lent liftings of  the S-action are given by 

~p ~(s) = Itpo (~(sx)  - l s ~ ( x ) ) ,  (1.7) 
tl 

where r~ : U~ ~ S are local sections of  the bundle S , M( = S/J~o). 
Equations (1.6) and (1.7) are the basic tools that we need for our multi-instanton 

construction in the following section. 

2. Explicit Solutions 

Since for any two q~(s) mappings, given by (1.7), the resulting gauge fields will be 

related by a gauge transformation, all we require is to construct a specific one. This 
in turn implies a choice of  a local section ~(x)  on the bundle SU(2) • SU(2) , 
S ~ x S 2. 

Furthermore, since the base manifold is a product, our construction will consist 
of  two identical copies of  sections for each sector. Thus, using the space of  unit 
quaternions, we have 

SU(2) ~ S 3 = {x, + i x2+jx3  + kxalx~ + x~ + x3 2 + x 4 =  1}. 

where i , j ,  k satisfy the usual rules of multiplication for quaternions, and the Lie 
algebra L(SU(2)) can be identified with the quaternion vector subspace of  

Y~'~ = [xl + ix2 +jx3 +kx4} generated by 

Xl  ~ 1 "  ~, X2 ~', X3 = �89 

with X, (i = 1, 2, 3) satisfying the conmutation rules [X,, Xj] = e,j~ Xk. In particular, 
we shall assume that X~ generates the isotropy group J = U(1). 

A coordinate expression for the projection over S 2 can be obtained by means of  
n: S 3 ~ 4 ~ 2  = S 2 _  {co} given by 

( - -  NIX 3 -t- X2X 4 - -  XIX 4 - -  X2-"r 
(xl . . . . .  x4) ~ ..~---- 7 , - ~ - - - ; y  �9 (2.1) 

\ x~+x5 x i+x2 /I 

This projection has been chosen in such a way that it satisfies the requirement 
n( p J )  = n(p).  

Note that the coordinates 

- - X I X  3 "4- X 2 X  4 - - X l X  4 - -  X 2 X  3 

)q = x~ + x~, ' Y2 -- xl2 + xs" 

can be interpreted geometrically as the real and imaginary components of  the slopes 
(x3 + ix4)/( - x ~  + ix2) of the complex lines in ~2, intersecting at the origin, which 
we identify with S 2. 

If we choose bases 

1 
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for T R  4 and T R  2, respectively, then it is easy to verify that the differential of the 
projection map (1.8) is 

=, :< 'ay ,  

with 

637"/; t 
m 

- x 3 Q  - 2 x l (  - x l x 3  + X2X4) x 4 Q  - 2 x 2 (  - X l X 3  q- x2x4) - x l  x2 
Q2 Q2 Q Q 

- x 4 Q  -]- 2Xl  (Xl  X 4 -k- X 2 x 3 )  - x3 Q q- 2X2(Xl  X 4 -b X 2 x 3 )  -- X 2 --  X 1 
Q2 Q 2  Q Q 

(2.2) 

where Q = x 2 + x?,. 

Observe also that for 

p = xl  + ix,  + jx3  + k x 4  E S 3, 

the kernel of (2.2) is the left invariant vector field 

~I(P) = L p , X l  = 1  _ x  2 . . . [ _ X l y . . [ _ x 4 ~ _ . _ _ x  3 
0x2 0x 3 

so that {I(P) is vertical in TS  3 and is the fundamental vector field [X,]* gen- 
erated by Xl. Hence, X~ is indeed the generator of the isotropy subgroup 
2 = U(1). 

We can now choose the local section r~ : ~2 c S 2--+ S 3 c ~4  to be given by 

1 
% ( Y . ,  )'2) - ( 1 + 3,~ + y2) ''~- (1 - j y ,  - ky2). (2.3) 

Note, in fact, that G satisfies the requirements Ilz~(v,,),z)]lac4_=l and 
n c G = ida2. 

Furthermore, making use of the commutative diagram 

"r~(yl, )'2) ~ S r ~ ( y l , Y 2 )  

~1 1 ~ (2.4) s 

( Y l ,  Y2) ) ( Y / ,  Y2)  

and setting s = a + ib + j c  + kd  ~ iF,  we find 

- ( c  - ay, + by2)(a + cy, + dy2) + (d - by, - ay2)(b + dyt - cy2) t 
Y 1 - -  

(a + cy~ + dy2)  2 + (b + d),~ - c),'2) 2 

- ( d  - by~ --  a y 2 ) ( a  q- c y  1 .q- d y 2 )  - -  ( c  - -  a y  1 -Jr- bya)(b + dy~ - 0'2) 

(2.5) 

t 
Y 2 - -  (a + Oh + d y 2 )  2 + (b + dyl - cy2) 2 
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Consequently, 

%(Yl, y~) - I  . s �9 %(Yl, 3'2) 

I -I !,- 
= (a q- cy I + dy2) 2 4- (b + d l'l -- O'2)2J 
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x [(a + cy~ + dy2) + i(b + cly~ - cv2)], (2.6) 

follows from substituting (2.5) in (2.3) and a somewhat lengthy but which 
straightforward calculation with quaternions. 

In order to complete the calculation of ~G(s) in (1.7), we choose the morphism 
# : U ( 1 )  x U ( 1 ) ~ S U ( 2 )  to be given by # ( j l , j D = ( j l ) m ( j z )  ", where m, n are 
integers and (J~)"(J2)" denotes the usual product of  powers in the subgroup 
U(I)  c SU(2). Note that if m and n are different from zero, then /~ does not 
extend to a smooth morphism from S U ( 2 ) x  SU(2) to SU(2) and, thus, the 
bundle P,,,,,, associated to #, will be nontrivial (cf. Corollary 2.3 in [3]). Further- 
more, since every Abelian subgroup of  SU(2) is isomorphic to either U(1) or the 
trivial group, every morphism from J tO S U ( 2 )  is, up to  conjugation, as given by 

the It above. 
Therefore, using two copies of  the above chart for S 2 and of the section (2.3) 

we obtain 

1 
(p~(S)  = ( a  1 -l- C lT  ! 4- d l ) ' 2 )  2 4- (b!  4- do'1 - c0'2) z] x 

a2 + c2Y3 + d2Y4) 2 + (b2 + d2y3 - c2y4) 2 

x [(a t + cD'1 + do2,) + 2XI(bl + d!yl - co'2)] m x 

X [ (a  2 -.~ (?2)'3 -1- dD'4) + 2Xt ( b  2 4- ( ~ Y 3  - c2Y4)] ,  (2.7) 

where 

s = (st, s2) = (al + ibt +jc~ + kdt ,  a2 + ib2 + j c :  + kd2) e SU(2) x SU(2), 

and x = (Y l ,  Y2, 3'3, Y4) ~ ~2  x ~2.  
Note that for 

s =  c o s ~ + i s m ~ , l  ~ J  

we get ( ,  _;)m 
q~(s) = cos ~ + 2X~ sin 

SO 

W~(XI 0 O) = (rp ~) ,  (X1 �9 O) = mX,  (2.8) 
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Similarly, we find 

W~(X: |  = - n o ' 2 X ~ ,  W ~ ( ~ |  = my~s 

W ~ , ( O O X , )  = n X , ,  W ~ ( O G X z )  = - n y a X , ,  

(2.9) 

W ~ ( O ( ~  X 3 )  = n y 3 X l  . 

We now turn to the calculation of the remaining terms needed in (1.6). To this 
end, and with the explicit purpose of expressing the gauge potentials in terms of  the 
local Euclidean coordinates ( ) '1 , ) '~ . , ) '3 , ) '4 ) ,  we first need to write the coordinate 
basis 

8 8 8 8 }  

in terms of the vector fields (,'K,)x defined in Section 1. Furthermore, we already 
know that for the left invariant field ~j, we have that ~,~l  = 0, so our calculation 

can be simplified considerably if, instead of evaluating (1.6) relative to right 
invariant vector fields, we calculate the gauge fields using two copies of the 
left-invariant vector fields 

- - X  3 - -  , 
8.,-4 

( 8 8 (? + x~ 7 - ' ] ,  

- -  - -  + X 3 - -  - -  X~ + X I , ~3 - 2 - x 4  8x~ 8x ,  - 

as a basis for TS3G TS 3 and take 

(2.10) 

(~,~),- = (~ ,~ - , |  

(~, f ) ,  = ( 0 |  ~ ,~ : ) ,  

(R~)~ = ( ~ , ~ 3 |  0), 

(R~)~ = ( 0 |  

as the corresponding local basis in TS~@ TS  2. 

Thus, operating with ~z, on ~ and ~ 3 ,  and making use of (2.2) and of the fact 
that on r~ we have x, = 0, it immediately follows that 

(R~),_ = (~,~., | o) = -�89 +3,~ + 3 , ~ ) -  
8 

X 3 )  x = ( 7 [ , % 3 @ 0 )  = -�89 +y~+y?,) O 
8v~ ' 

8 
(~,~)~ = (0@7c,~2) = --�89 +Y_~ +Y4) 

8 y  3 ' 

(2.11) 

8 (~,~)~ = ( o |  ~ ,r  = -�89 + y ~  + y l )  - -  
8,1'4 " 
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To convert (1.6) to the corresponding relation for our left invariant vector fields, 
note that the point of isotropy on S ~ x S 2 is 

xo = ( ) = y_~ = 3'3 = Y~ = 0), 

SO 

(r=)i(0, 0) = 1, (TD,(0, 0) = i. 

It then follows from (2.3) that for x = sxo = (sl, s2)xo 

r~(x) ,= ((r~)1 x (T~),)(y~,)'e, )'3, Y~) 

= ( s , ,  s 2 ) ( ( ~ ) ,  x (~ )2 ) (0 .  0, 0, 0) = (sl,  s2). 

Hence 

s = (s,, s2) = \ ~  +~,~ + ~ V _ ~ ,  (1- . . . .  +Y,~ +Ya)-SST:5~2- - (2.12) 

Now, if X is one of the right-invariant vector fields defined in the previous 
section, and e~ is a locally S-invariant connection, then 

But  

d ~ L  
s*X~'~ =dtd (s.  exp tX.  r~(xo))l, =o = ~ (s.  z~(xo) exp tX)[, =o = ( X ) ~ , )  

Consequently, 

A(X) R L = c~ ~ , o ) "  (2 .13 )  

Moreover, since (1.4) also applies to left invariant fields, we get 

A~(R~) -= (~*o~),('X, L) = A(X) - W~(X). (2.14) 

Next, in order to solve the linear transformations A : L ( S U ( 2 ) x  SU(2))~  
L(SU(2)), we must apply Wang's theorem (cf. Eq. (1.1)), and impose on these 
solutions the additional constraints which result from the requirement of selfduality 
on the gauge fields. 

Consider first the selfduality conditions which can be derived by recalling that 

(r* f*)(~'~, ~L) 

= ~L[A~(~CL)] _ ~L[A=(~L)] _ A=([RL ~gL]) + [A=(,~*,), A~(~L)]. (2.15) 

Now using (2.14) and, as a basis for the gauge fields F~ -= z*fL the local basis 
r ~ L  ~(X2)~, (R{'),, (X{)~, (X~'), ] found before, and also observing that 

x ,  ] = - y ,  ~:~ + y ~ ,  ['Rf, '2~1 = - v ~  + y ~ f ,  

= = [ x 3 , ~ f ]  - "  = [ X , ,  R~'] = 0, 
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we obtain 

F~(X~, X~)~ 
= t a X i -  y2A(X2(90) + ylA(X3 (90) + [A(X2 (90), A(X3 (90)] - 

- [ w~ (x~ (9 o), A( X3 (9 0)] - [ A(X2 (9 0), W~ ( X3 (9 0)], 

F : ( ~ ,  ~ )~  

----- lTXl +y3A(0(gX 3) -- y4A(0(gX2) + [A(0 (9X2), A(0 (9 X3)] -- 

- [A(0(9 X2), W~(0 (9 X3)] - [W~(0 (9X2), A(0(gX3) ], 

F~(R~,R~')~ 

= [A(X2 (9 0), A(0 (9 X2)] - [A(X2 (9 0). W~(0 (9 X2)I - 

- [W~(X2 | 0), A(0 (9 X2)], (2.16) 

~L ~L F:~(X6, X3 ), 

= [A(0 (9 X3), A(X 3 (90)] - [A(0GX3), W~(X3(90)] - 

- [ W~ (0  (9 X3),  A( X3 (90)1,  

r~(~, ~4)~ 
= [A(X3 (90), A(0(gX2)] - [A(X3 (90), W~(0(gX2)] - -  

- [W](X 3 (90), A(0(9 X2)], 

r ~ ( ~ , ~ ) ,  
= [A(X2 (9 0), A(0 (9 X3)] - [A(X2 (9 0). W~(0(9 X3)] - 

-- [W~(X2 (90), A(0 (9 X3)]. 

Notice that SU(2)~  S 3 has a bi-invariant Riemann metric g which can be 
explicitly determined by means of the orthonormal left-invariant vector fields 
r ~_,, ~_3, given in (2.10). We thus have 

gu = <~,, ~ , ) = 6 , ,  i,j=1,2,3. 

In addition, since the section z~ is an immersion of S-' - {oo} in S 3, and since ~, is 
vertical in T S  3, w e  can use {~,. ~3} as a local frame for $ 2 =  SU(2)/U(1) with 
restricted metric 

(<~2,r <r162 diag(l, 1). (2.17) 
gISU(2)/U(') = ~<~3 '  ~2> <r ~ 3 > /  = 

This memc in turn induces a metrix g on N '2 defined by 

(rc*~)(~,, ~,) =g(~,, ~,), i,j =2,  3. (2.18) 
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N o w  tak ing  two copies  o f  the above  cons t ruc t ion ,  we have 

- ~ t  
g( 2, ~ )  = ~ ( ~ 3  ~, ~,~) - ~ = g ( s , X s )  g ( X 6  ~ , ~ 6  ~ ) = 1 ,  
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/~po,(X~ @0) = mX~ 

so ( 1.1 A)  yields 

A1 = m, At  = n, 

Jr, = 0 ,  ; # j .  

Consequent ly ,  the basis  (2.11) is o r t h o n o r m a l  with respect  to ~, and  we can use 

this fact together  with Equa t ion  (2.16) and the no ta t ion  A(X, O 0 ) = A ~ X j ,  

A ( 0 G X , )  = A~+ 3X s, to arr ive at  the fol lowing selfdual i ty  constra ints :  

2 3 3 " - y z A  / + ) h A  1 + (A2A ~ - A2A~) + m 

t I ~ ~ 3 2 = n -- y4A5 + y3A6 + (A~A6 - AsA6), 

"~ 3 1 - y z A ~ + y I A s + ( A s A ~ -  ~ 3 A2A3) - m y , A  3 - my t  A~ 
(2.20a) 

" . " n , - 3  n A 3 - ' ' 3 A  1 A I A  3" 
= - -  F 4 A g  -k- P 3 A g  - 3 4 l ~ . 6  - Y3 5 "1- t l ~ 5  6 - -  5 6- I,  

I 2 m y , A ~ + m v l A ;  _ v~A3 + y l A 3  + (A2A3 - 1 . _ _ - -  A ? A 3 )  + _ . . 

3 3 "~ "~ 1 2 2 I . = + (AsA6 - AsA6) ,  - y 4 A 5  + y3A~, + ny4A~, + ny3A? 

A2A 3 _ A3A5 = 

A3A~ - A~A~ + (2.20b) 

- - 

A3 A3 - A~A 2 = 

A3A~ - A~A 3 + (2,20c) 

A~A~ - A3A~ - 

Clearly,  since A~ are constants ,  Equa t ions  (2.20) can only be satisfied if  Aj = 0 for 

i = 2 , 3  and j = 2, 3, 5, 6, a n d m = n .  

Fu r the rmore ,  since #po(J) = cp,, ,(j),  it  fol lows f rom (2.8) and  (2.9) tha t  

and  /~po,(0 (~ Xl ) = r/Xl ,  

A 2 =  A 3 = A ] =  A ] = 0 .  

Final ly ,  note  that  a fairly s t ra igh t fo rward  ca lcula t ion  o f  ( 1.1 B) for an infinitesi- 

mal  j = (1 + 2~X1, 1 + 2fiX 1) yields 

( .m + jSn)elk, A~ = C~ellk A~, 

I (am + fin)elk, A~+ 3 = flEltk Ak + 3- 
(2.21) 

Therefore ,  A~ = A~ + 3 = 0, k = 2, 3. 

A 2 A 3  A 3 A  2 
6 ~ 3  - -  ~ x6~ x3~ 

nr4 A3 myrA 3 - -  A 3 A  1 A I A  3 __  . . . .  6,,3 - " 6 " , 3  myl  A 3 + ny3A 3, 

r/),4A 2 + my2A~ = A l ^ "  A~^ l  ~ �9 ,~,, "3 --* *g" ,3 + my1Ag - ny3A~; 

" 3 3 ") A_A 6 - AeAg , 

H I ' 4 A ~  "J~- m Y 1 A 3 "  = ,~2zxaA 3 A I  - A 1 A 3  ~ ~.2~ ~ 6 - -  ny3A3 - my2A6 3 , 

A I A 2  A 2 A I  9 n)',,A~ -- m)" I A~ = ,  ,2, T.6 - - '  t21 t6 ql_ ny3A 5 + my2A?,. 

and  (2.19) 
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In summary, the only S-invariant connection in Pro,,, which allows for instanton 
solutions is the canonical connection, defined by A~ = 0, where A~ is the restriction 
of A to r, and r is the subspace of the Lie algebra spanned by {X2| 
X3@O,O| 

In matrix notation, we have 

A = 

"m 0 0" 

0 0 0 

0 0 0 

m O O  

0 0 0 

0 0 0 

( 2 . 2 2 )  

The gauge potentials on S 2 • S -~ c ~4 for this case can now be readily obtained 

X l ,  

from (2.9), (2.11), (2.14) and (2.22). We thus arrive at 

- -  2"= X ~ ,  Ac, - -  , . 
A~ . ( l + y ~ + y ~ )  ._  ( l + y T + y 9  

(2.23) 
( ~ 1 3 )  - -  - -  2 ' n y 4  ,~ ( ~ )  - -  2 n ' y 3  X , .  

A~ ( l + y ~ + y . ~ ) X ~ ,  A~ . ( l + v ~ + v 3 ) `  . 

The corresponding nonvanishing local holonomic components of the gauge fields 
a r e  

4mXt 4mX~ 
(F=) ,2-(1  +y~+y_~)2,  (F~)34=(1 + y ~ + y 4 )  2. (2.24) 

To complete our discussion, we next calculate the second Chern class for our 
bundle P(m) ,=  P, ...... . This is given by [7] 

1 3 

C2(F~) = t6r~ 2 ~ F~ ^ F~". (2.25) 
a =  | 

Using the selfduality of F~ and the definition of the Hodge star operator, we 
have 

- -  r A @ a ~ a a F~ ^ F~ - F~ F~ = g(F~, F~)#, (2.26) 

where/t  is the volume element of S z x S z relative to the metric ~ given by (2.19), 
and 

~ a 1 - U - / t [  a r g(F~, F~) =~g g (F~),k(F~),,. 

Expressing (2.19) in terms of the holonomic basis 

(2.27) 

1 ' ~ ) ' : '  ~Y3 " 0 y  
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by means of (2.11), we get 

( i 4  4 4 4 )  
g , /=d i ag  l + y T + y _ ; ) -  ( l + y y + y ~ ) -  ( l+y~+) ' :~ )~  ( l + y ~ + y : O -  

(2.28) 

Hence, making use of (2.24), we obtain 

2m 2 
c2(F~) - 167z 2 #. (2.29) 

Noting that for the canonical Riemannian product metric we have that 4-volume 
of S 2 x  $ 2 =  [2-volume of $212= (4~2) 2, we finally arrive at the second Chern 
number 

7tl 2 f S  C2(P(m)) - It = + 2m 2, (2.30) 
8 ~  2 2 �9 $2 - -  

where the sign on the right side of the above result depends on the choice of 
orientation for the volume element of S 2 x S z. Moreover, since S 2 x S 2 admits an 
orientation reversing isometry, the self-dual and the anti-self-dual connections are 
equivalent. 

Clearly then, our solutions (2.23) correspond to multi-(anti)-instantons for our 
fiber bundle P(m),  characterized by the integer m associated to the morphism 

~r,o: U(I)  x U(1)-o  SU(2) given by t t(j ,  ,J2) = (J,) ' (J2)m. 
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