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Abstract. Making usc of the general theory of connections invariant under a symmetry group which acts
transitively on fibers, explicit solutions are derived for SU{2) x S1J(2) —symmetric multi-instantons over
82 % 8§, with SU(2) structure group. These multi-instantons correspond to a principal fiber bundle
characterized by a second Chern number given by 2m2, with m an integer.

Mathematics Subject Classifications (1991). 53C05, 53C10, 55R10.

1. Introduction

The existence of instantons over S* x S* follows from the work of Soberén-Chavez
[1] on the classification of stable complex bundles of rank 2 over $2 x §% and the
correspondence bhetween stable complex bundles and self-duality established by
Donaldson [2]. However, to the extent of our knowledge, no explicit solutions for
these instantons have been given in the literature.

The solutions we present here correspond to principal fiber bundles characterized
by a second Chern number C,(£(m)) = 2m?, where m is an integer, and result from
treating S° x S7 as a homogeneous base space, S? x 87 =SU(2) x SU(2)/
U1y x U(1), of a principal fiber bundle with characteristic group SU(2). Further-
more, the connections on the bundle are required to be SU(2) x SU(2)-invariant,
so our solutions are a subset of points in the total spaces of instanton solutions.
{For example, for a second Chern number equal to 2, it has been shown by
Donaldson that §2 x § -instanton solutions constitute a 10-parameter space).

Before proceeding with our construction, we shall review, for self-consistency
purposes, some basic preliminary results and notation (see, e.g., [3] for a detailed
discussion on the subject).

Let m: P — M denote a principal fiber bundle with base space M = §° x §” and
structure group G =S5U(2}. The symmetry group § = SU(2} x SU(2) acts fiber
transitively on P by means of the bundle automorphism s(pg) = (splg (where s € S,
peP, geG) and it induces a well-defined transformation on M given by
su(p) = a(sp).

We shall say that a connection 1-form « is locally S-invariant at x, if, for all
s €8 with sx,e N < M, there exists a connected neighborhood ¥V, « M of x,,
contained in N s 'N, such that s*w, = W,
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Consider now a point x, € M, and p, € P such that n(p,) = x,. The isotropy
group of § =8U(2) x SU(2) at x4 is J, = U(1) x U(l). For je J, , we have

7 fpo) =Jin{po) = jxg = Xy,

$0 jp, is on the same fiber as p, and we can therefore write jp; = pop( j), where u is
a homomorphism of Lie groups, u: J, —G.

Furthermore, by virtue of Wang's theorem (see [4] and [5]), there is a bijective
correspondence between S-invariant connections and linear transformations
A L(S) = L(G) of the associated Lie algebras given by A(X) =w, (X),,. with
f(pa =d/d1(exp X - py}|,— . and such that the foliowing conditions are satisfied:

(A) AY)=m, (Y). for YinJ,,

(B)  A8,(X)) = b, AXD, XeL(S) jely, D

Let now o,: U, — P be a local section. Then, if s € 8, x € U,, sx € U, the local
action of S on P is given by

53,(x) = 0, (sX)p (), (12)

where ¢2(s) € G is a differentiable function which describes how the action of § on
U, has been lifted to the fibers. Moreover, since ¢%(¢) = ¢ {(the identity), the
differential (¢*), determines a linear function from L(S}) to L(G) (which is not
necessarily a rhorphism of Lie algebras. In fact, ¢ {t5) = 02 ()¢p*(s). We thus have
that x — W7:=(p%), gives rise to a function from M to the space of linear
transformations from L{S) to L(G).

For XeL(S). denote by X the vector field on A defined by X, =
d/dr{exp (X - X)|,_,. It is then easy to show, making use of (1.2), that for xe
U,, sx € U,, the relation between X, and X, is given by

X, 0= 0),K, + [WHX)]5,, (1.3)

where [W2(X)]%,, is the fundamental field associated with W7(X) e L(G). Conse-
quently,

(@), (). = 000X, () — WIHX) (1.4)
Moreover, using the S-invariance of , we have
P
wnulxtn)(xna(_wo)) = aéw‘ﬂv(s)wam(tu)(aa‘s*'X)o‘z(wu) (15)

and, since S acts transilively on M, we can set x = sx,, 50 substituting (1.5) in (1.4)
vields

4,(X) =(0*w) (X,) = Bz Mad, 1 X) — Wi(X). (1.6)

Now, in the case where the symmetry group § acts transitively on the base
manifold, it 13 known [3, 6] that there is 4 one-to-one correspondence between the
equivalence classes of principal fiber bundles with gauge group G over M = §/J, o
admitiing an S-action which projects on a given action of § on M, and the
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conjugate classes of homomorphisms g, :J. — G. For this situation, the inequiva-
lent liftings of the S-action are given by

PR(S) = 1, (T, (5%) " '5T,(x)), (1.7)

wherc 1,: U, — § are local scctions of the bundle § - M(=5/J, )
Equations {1.6) and {1.7) are the basic tools that we need for our multi-instanton
construction in the following section.

2. Explicit Solutions

Since for any two @ {s) mappings, given by (1.7). the resulting gauge fields will be
related by a gauge transformation, all we require is to construct a specific one. Tl}is
in turn impligs a choice of a local section 7,{x) on the bundle SU(2) x SU(2) —>
St x 8

Furthermore, since the base manifold is a product, our construction will consist
of two identical copies of sections for each sector. Thus, using the space of unit
guaternions, we have

SU(2) & 8% = {x| + i+ jxa + kx|x] + x5+ 03+ x5 =1}

where i, j, k satisfy the usual rules of multiplication for quaternions, and the Lie
algebra L{SU{(2)) can be identified with the quaternion vector subspace of
H = {x, +ix, +jx; +kx,} generated by

X, = %i, X, = %J X;= %k»

with X, (i = 1, 2, 3) satisfying the conmutation rules [X,, X,] =¢,, X,. In particular,
we shall assume that X, generates the isotropy group J =U(1).

A coordinate expression for the projection over S° can be obtained by means of
n: 8 c R >R =5 - {ow} given by

(xl....,.mH( (2.1

—X Xy XaX, —X X4 X2 X,
9 s .
X+ x3 x?+4 x3

This projection has been chosen in such a way that it satisfies the requirement
a{pJd) = a(p).
Note that the coordinales

— X\ X3+ XX, , —X Xy T Xy Xy

= 3 B ¥ 2= )
X+ x3 xi 43

can be interpreted geometrically as the real and imaginary componenis of the slopes
{xy + ix,)/( =X, + ix;) of the complex lines in %7, intersecting at the origin, which
we identify with $7.

if we choose bases

LR AN
ox, T ox T lay, T or,
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for TR* and TR?, respectively, then it is easy to verify that the differential of the

projection map (1.8) is

0 on,
I — l
n*(’ﬁxj) ox,”

with
=X, Q0 = 2% (=X X3+ X3Xy) X Q —2%:(— X, x5+ X)) —X, X
om, _ 0 0’ 0 0
0x, — 40 + 20X+ %% Q200X+ N0X) X —x |
Q° o’ o 0
(2.2)

where O = x7 + x3.
Observe also that for

p=x +ixs+jx; +kxse S,

the kernel of (2.2) is the left invariant vector field
é 8 é ¢
Hp =L, Xi=3 a3 — o)
éx, 0x, CXx; x4
so that &,(p) is vertical in TS* and is the fundamental vector field [X,]* gen-
Hence, X, is indeed the pgenerator of the isotropy subgroup

erated by X,.
J=U(1).

We can now choose the local section 1,: #7 < $°— S = #* to be given by

(v )= ! (1—y kys) (2.3)

AV )2 (L+ 12 4y SV KYz) -

satisfies the requirements |t (y,1,)|:=1 and

Note, in fact, that <,

o T, =I1d,:.
Furthermore, making use of the commutative diagram

(¥, 1a) —§>sr,(y.,y;)
(2.4)

(3 32) — (P1y2)
and setting s =a + ih + je + kd € #, we find
,_—le—ay +bp)a + ey +dy) +(d — by, —ay )b +dy, — C}’z)
(a+epy,+dy)’+ (b +dy,—cp,)’

—{d — by, —ay.)a +cy, + dys) —(c — ay, + by,) (b + dy, — cys )

2= (a+ ey +dp) (b +dy,— o)t

(2.5)

Y=
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Consequently,

Ty ) s (v )

1 B2
B [(a +ev +d)+ (b +dr, — c’yl)z} *
% [(a + epy +dvy) + il + dyy — epa)) (2.6)

which foliows from substituting (2.5) in (2.3) and a somewhat lengthy but
straightforward calculation with quaternions,

In order to complete the calculation of ¢ (s) in (1.7), we choose the marphism
U < U() =SU2) to be given by u(ji. ) =(/)7(j2)". where m, n are
intcgers and (/,)7( ;)" denotes the usual product of powers in the subgroup
U(1) = SU(2). Note that if m and n are different from zero, then p does not
extend to a smooth morphism from SU(2) x SU(2) to SU(2) and, thus, the
bundle P, , associated to u. will be nontrivial (cf. Corollary 2.3 in [3]). Further-
more. since every Abelian subgroup of SU{2) is isomorphic 1o either U(1} or the
trivial group. every morphism from J to SU(2) is, up to conjugation, as given by
the u above.

Therefore, using two copies of the above chart for $7 and of the section (2.3)
we oblain

I v 2
s = 3 3 x
) [(‘1'1 +er Hdiy) (b +Hd - Cr)'z)']

X . : . T x

[(ag + Cal¥a + dj_V4)_ + (bg + dg}'\ — Cg}"cg)kir

X [y -+ oy +diy) +2X(h - d vy — e 2s)]™ X

X [y =+ vy +daya) + 2X, (b, 4+ dhyy — €214, (2.7

where
§ = (8, 8) = {a, +ib, +jo, + kd,, @y + ibs + je: + kda) € SU(2) x SU(2),

and x = (¥, 12, v5. 14} € A2 X A7,
Note that for

t. .t
s-—:(c055+151n5,1)eJ
we get
1(s) ={cos £ 1+ 2%, sin £}
@(s) = cos«z-»Jr ’Smi .

50

WX, @0) = (¢1) (X, ®0) =mX, (2.8)
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Stmilarly, we find
W (X,®0)=—ny,X,, W?(X},@O) =my, X, (29)
Wia X)) =nX,, W0@X,)=—-nX,, HWOSX)=nyX,.

We now turn to the calculation of the remaining terms needed in (1.6). To this
end, and with the explicit purpose of expressing the gauge potentials in terms of the
local Euclidean coordinates (yy, v». ya, ¥4), we first need to write the coerdinate
basis

¢ 8 ¢
Ay, " Ays T Ory vy

in terms of the vector fields (X,), defined in Section 1. Furthermore, we already
know that for the left invariant field ¢,. we have that n &, =0, so our calculation
can be simplified considerably if. instcad of evaluating (1.6) relative to right
invariant vector fields, we calculate the gauge fields using two copies of the
left-invariant vector fields

. é é ¢ ¢

q:zi 7.‘.‘3‘1—*:{4_’—‘*‘)(1 o +x2? . (2.10)
Cx éx, ax, dx,

o 2 o k.

e B e N I = Yot A Rl 3
x, £x, (X3 Cx4

as a basis for TS @ TS* and take
(X4), ==, 5@0. (X5, =(n,&80),
(XH, =(0®=r, &), (RO, =(0@n,¢)

as the corresponding local basis in TS @® TS
Thus, operating with =, on £, and £,, and making use of (2.2) and of the fact
that on r, we have x, =0, it immediately follows that

(R0, = (7,6 @0) = ~ (1 + 13 41D .
o

- i R o O
(XD), =(m, &0 = —5(1+ 37 +13)

P
- (2.11)

X 0

(,Xg)f:(O@n*g:):_%(1+}_§+u‘_5)%1

Vs

. Y
(D), = (0@ m,2) = =31+ ri+rD .

(431
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To convert (1.6) to the corresponding relation for our left invariant vector fields,
note that the point of isotropy on 87 x §? is

Xp={(r =y,=p;=ys=0)
50
{t 10,0 =1, (T, (0.0) = L.
It then follows from (2.3) that for x = sx, = (5, 5:)X

t(x) = ({0 X (1)) vy 3o Ve e
=5 i <A L HG 0,6, 0 = (5, 5.).

Hence

F—jv =k 1 —fy, —ky
s =l = (TR LT R ) (2.12)
(I4+ri+r) (T4 yy+m)'-

Now, if X is one of the right-invariant vector fields defined in the previous
section, and « is a locally S-invariant connection, then
w:,(xn‘)(xr,nn;) o (S*m)t,ém,)(xr,(tm) = U)r,(n(s*ﬁry(\'n))‘

But

" d d -
S*X'!x(l{)) = a (S ' cxp Ix : T'x('\:ﬂ))lf =0 a'; (S ' T'_z(xﬂ) exp [x)lt =0 (XL)H(V)

Consequently,
AX) = 0, (RE (1) (2.13)
Moreover, since {1.4} also applies to left invariant fields, we get
AAXD) = (13 0),(XD) = A(X) — WKX). (2.14)

Next, in order fo solve the lincar transformations A: L{SU(2) x SU(2)—
L{SU{2)), we must apply Wang's theorem (cf. Eq. (1.1}, and impose on these
solutions the additional constraints which result from the requirement of selfduality
on the gauge ficlds.

Consider first the selfduality conditions which can be derived by recalling that

(rr QK- ¥
= RUA(VE)] - VHALKH)] — A (RS VD +4(R9), 40¥8). (215)

Now using (2.14) and, as a basis for the gauge fields F, = ¥, the local basis
(XD, (XKD, (X5, found before, and also observing that

4

RE X = -3 XE+0RE [REKE) = - KE+ 0, XE

[R5, RE] = (X5 RE] = [RE. X8 = [R5, RE] =0,
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we obtain
F(X5.XD),
=mX, — A B0+ 3y AX. B0} + [AX. B 0), AX, B 0)] —
~ WX, @ 0), AX; D 0)] — [AX.DO), WX D O),
F (X X5,
=nX,+ 1 A0G X)) — R AGEX) H[A0BX,) A0E X)) —
—[A0@X,), WH0@ X)) — [0 @ X)), AD@X;)),

F (X5 Xh),
= {A(X.ﬁ.@ 0):. A{O@Xz)} - iA(Xz@O), Wi':e@xz)} -
~ WX ®0). AOD X, )],

(2.16)
F(X6, XD,
=[AQ0®X,), AX, 0] — [AOBX,), Wi(X, @0 —
~WHOBX,), AX. @ 0)],

F(X: XD,
=[A(X; @0, AN®X,)] — [AX; ©0), WH0DX,)] —
~ WX, ©0), AVDX,)],

X XD,
=[A(X, @ 0), A0 @ Xy)] — [AX, ©0), WH0DX,)] —
—~ WX, @0), AODX,)].

£,

td

—

Notice that SU(2) = S$* has a bi-invariant Riemann metric g which can be
explicitly determined by means of the orthonormal left-invariant vector fields
£, &a, &4, given in (2.10). We thus have

g, =<8.¢>=0,, Lj=1213

In addition, since the section , is an immersion of §% - {00} in §°, and since &, is
vertical in 7S°, we can use {&,. &} as a local frame for §7=SU{2)/U(1) with
restricted metric

(B (EnED
glsugz)mm B Exandar s 8D

This metric in turn induces a metrix § on #° defined hy

):diag(l, 1). (2.17)

(*8)&,. c,) =gl &) Lj=23. (2.18)
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Now taking two copies of the above construction, we have
#X5, X8 =2(XE, XD = #(X5, X0 =2R0. XD = 1,
and {219
XL X =0, i#)

Consequently, the basis {2.11) is orthonormal with respect to g, and we can use
this fact together with Equation (2.16) and the notation A(X @0)=A{X,
AO@X,)=A], X, to arrive at the lollowing selfduality constraints:

—PALE AL (AIAT - ASAD) +m
=1 = paAs + AL (ASAS — ATAD),

= 1AT+ 1 AT H(AIAT = A AS) - mya AT — mp A

) ) {2.20a)
= — A+ AL - nysAg — nys Ag + (AJAL — ALAD),

— 1AL+ p AT+ (ASAT — AZAS) + ey AT ey A
=~y AdF AL+ AL+ ay AL FIALAL — ASAL)
AAT - AJAT = ATAT — AAs,
AZAL — ASAL 4 v A — myy Al = AAL = ALAL — my Al 4+ nysAL (2.20B)
ALAT — ASAL — np A+ mys AL = ALAT — AZAL + miy AL — iy AT
ATAT - AJAZ = AJAT — AJAG,
AGAL— ALAL+ np A+ my Al = ASAL — ALAL — iy Al — my, AL (2.200)
ALAZ — AZAL — my Al —my A= ALAZ — ASAL + my A+ my, A7

Clearly, since A} are constants, Equations (2.20) can only be satisfied if A; =0 for
i=23andj=23,56,and m=n.
Furthermore, since u, (/) = ¢, (/). it follows from (2.8} and (2.9) that

(X @0 =mX, and pu, (0DX,)=nX,,
so (1.1A) yields
Al=m, Al=n Al=Al=Al=A}=0.

Finally, note that a fairly straightforward calculation of (1.1B) for an infinitesi-
mal j= {1+ 2aX,, | +28X,) vields
(o + ey, Af = ey A,
! (2.21)
(oo + Br)eg, Al s = Bep Aky 5

Therefore, Al =Al, =0, k=23,
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In summary, the only S-invariant connection in P,,, which allows for instanton
solutions is the canonical connection, defined by A, = 0, where A, is the resiriction
of A to r. and r is the subspace of the Lie algebra spanned by {X,®0,
X;®0,00X,, 08X,}.

In matrix notation, we have

(m 0 0
0O 0 0
0 0 0
A= 1, 0 o (2.22)
0 0 90
0 0 O,

The gauge potentials on §* x $7 < #* for this case can now be readily obtained
from (2.9), (2,11}, (2.14) and (2.22). We thus arrive at

RN _2 ) ol 2 s
a(D)= o o a(D)-Em
ery ) (L yi+r:) vy} (I+yi+yz)

J —2my d 2my
A=t X, A )= TR X
ays) (L+y3+r3) cve) {l+ryi+aa)

The corresponding nonvanishing local holonomic components of the gauge fields

(2.23)

are

4mX, 4mX,

T3 L .2, . 3von Fa T aa 2.24
(Y +yi+r3) (Fudsa (1+vi+r3)? (2.24)

(Fg}m -

To complete our discussion, we next calculate the second Chern class for our
bundle P(m):=P,,,,. This is given by [7]

3
3 K AL {2.25)

=1

CQ{Fa) = - }67’52

Using the selfduality of F, and the definition of the Hodge star operator, we
have

Fi A By =F5 A% T = 2(FL Fu, (2.26)

where g is the volume element of §* x §? relative to the metric § given by (2.19),
and

S(Fy, FY) = 15 8 (R4 F) (2.27)

Expressing (2.19) in terms of the holonomic basts

ERRNRAY.
6}‘1 ’ Ia}’: ’ 3)3 ’ 6}’4
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by means of (2.11), we get

- . 4 4 4 4
g, = diag I, 02 2 22 ERPENETS R ERPNCTEN &
(T+yi+p)” (D +pi+r3)7 (W y3+30)° (L+r3+r;
(2.28)
Hence, making use of (2.24), we obtain
2m*
" = — — . 2.2
:(F,) o2 H (2.29)

Noting that for the canonical Riemannian product metric we have that 4-volume
of §7x §*=[2-volume of $?]°= (47?3 we finally arrive at the second Chern
number

8x? 3

Co(P(m)) = —KJ. w= 2 (2.30)
51«8

where the sign on the right side of the above result depends on the choice of
orientation for the volume element of S° x S Moreover, since 5? x §° admits an
orientation reversing isometry, the self-dual and the anti-self-duat connections are
equivalent.

Clearly then, our solutions (2.23) correspond to multi-(anti)-instantons for our
fiber bundle P(m), characierized by the integer m associated to the morphism
s UCL) = UCDH = 8U(2) given by u(jy, ) = (j)"(ja}".
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