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Abstract

Connection 1-forms on principal fiber bundles with arbitrary characteristic groups are
considered, and a characterization of gauge-equivalent connections in terms of their associ-
ated holonomy groups is given. We then apply these results to group-invariant connections,
which gives us an algebraic procedure for obtaining solutions to the gauge field equations
and for classifying them into classes of equivalence. '

1. Introduction

Spacetime symmetries play an important role in the study of monopoles and instantons
in non-abelian gauge theories. These symmetries, given by a group of motions of an un-
derlying spacetime manifold M, are reflected in 2 gauge field A which is said to possess the
group of symmetries if a group transformation has the sole effect of a gauge transformation
on A (thus leaving “physical”, gauge-invariant quantities the same). In the language of fiber
bundles, this traduces into transformations leaving the connection 1-form w of a principal
fiber bundle P invariant. ‘ ’

If we let AUT(P) denote the group of automorphisms of P, and Aut(P) its normal
subgroup which contains the identity diffeomorphism of M, then the internal symmetry
group of w is given by '

1(P) = {F € Aut(P)/F*w = w}. .

The study of I, (P) is important not only because of the dimensional reduction of Lie
groups that it provides (note that if P is connected then I, (P) is finite-dimensional, while
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AUT,(P) = {F € AUT(P)/F*w = w} is in general infinite-dimensional, Fischer [1987]) but,
more importantly, because in Lagrangian field theories it is precisely I, (P) which generates
global internal conservation laws.

There is little hope that the action density be physically meaningful unless it is invariant
-under gauge transformations (i.e. base-preserving automorphisms of P). Besides, the gauge
potentials themselves are interpreted as various forms of radiation (photons, intermediate
vector bosons, gluons, etc.). Therefore, physically one is interested in studying the internal
symmetry group of gauge-equivalent classes of connections.

In this work, a gauge-equivalent characterization of connections, in terms of their asso-
ciated holonomy groups, is presented, as well as a study of the conditions which result from

_imposing the additional requirement that the two gauge-related connections should both.be

S-invariant, for 8 and arbitrary group with a given action on M. Only the results, both in
the local and global domains, will be presented here (due to restrictions of space), while the
details will be given elsewhere.

2. Gauge-Equivalence in terms of Holonomy.

Let P(M,G) denote a principal fiber bundle with structure group G and projection
operator 7 : P — M. Denote by C(P,G) the space of all maps 7 : P — G which satisfy
7(pg) = g~ 'r(p)g for all ¢ € G, p € P. This space is isomorphic to the space of sections of
the associated bundle P X¢ G — M with standard fiber G. A diffeomorphism f:P—-P
which satisfies f(pg) = f(p)g for all p € P,g € G, is called a fiber bundle automorphism.
Note that such an automorphism induces a diffeomorphism f: M — M given by f| (m(p)) =
7(f(p)). We define a gauge transformation to be an automorphism f : P — P such that
f = 1as, and shall denote the group of gauge transformations on P by GA(P) = Aut(P).

Now let w be a connection 1-form on P, and C(z,y) denote the collection of paths
in M from z to y. Thus, @ € C(z,2) is a loop based at z € M, ie. a(0) = a(l) =
z, and if &(t) denotes the w-horizontal lift of (t) which passes through p € 771(z)
then there exists an hj(a) € G such that &(1) = &(0)hg(a). The holonomy group
Holp(w) of w at p consists of all such elements for all possible loops based at z = 7(p),
ie. Holy(w) = {ky(a)]e € C(z,z);z = 7(p)}. In the next section we shall also make use
of the restricted holonomy group H olo(w) which is the subgroup of H olp(w) generated by
loops at z which are homotopic to the identity.

With the notation introduced above we can then prove the following
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Proposition 2.1: Let wi,w2 be two connections on a principal fiber bundle P(M,G).
Then @ gauge transformation-f with the property f*w, = wy exists if and only if at some
point p € P we have

hy? = uhy? ut (2.1)

with u € C(P,G) such that f(p) = pu(p). For a fixed p, and f such that f*w, = wy and
u(p) = u, f is unique.

This géneral result has as immediate corollaries two interesting results due to Fischer
(1987):

Corollary 2.2: Let p€ P be fixed, f € GA(P), and suppose that f*w = w. There then
“exists w = u(p) € Co(Holp(w)) with f(p) = pu: - Conversely, for. every u € Cg(Holp{w))
there exists a unique gauge transformation f : P — P such that f*w = w and f{p) = pu.
(Here, C(Hol,(w)) denotes the centralizer in G of the holonomy group of w with reference

point p.)

Corollary 2.3: f € GA(P) with associated function 7 € C(P,G). Then the following
conditions are equivalent: .
i) ffw=w.
ii) r is constant on each w-horizontal curve in P. '
iii) 7 is constant on the holonomy subbundle P (po) of P.

3.. S-invariant Connections

We shall here look at the following problem: given two connections, both required to be
invariant under certain group S, what are the conditions for them to be related by a gauge
transformation? The answer to this question will provide us with a means of classifying
our construction of symmetric gauge fields into classes modulo gauge-equivalence. We start
with two definitions:

-
Definition 8.1: Let U C M be an open subset of the base manifold and wi,w; two
connection 1-forms in P. We then say that ws is gauge-equivalent fo wy on U iff there

exists a gauge transformation f € GA(r~1(U)) such that Frwile-1@ywale—1@)-

Definition 3.2: Let W C M be an open set, £, € W, and A a connection defined on
7~1(W). We say that w is locally S—invariant at zo iff for all s € § with szg € W there
exists a connected neighborhood V; of zp contained in W N s7'W and such that ‘
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s*wly, = wly;.

Let W = {s € §/szo € W}. Clearly, we have Wxzy = W. Note also that given
any z € M, z = x(p), there exists a neighborhood Uy C M of z such that H. old(w) =
Holp(w)(x~1(Us)) = Holp(w) (r~*(V)) for any simply connected neighborhood V of z con-
tained in Us. In what follows we shall take neighborhoods V' of zy such that H ol (w) =
Holy, (1) (x=1(V)), for 20 = 7(po).

We may associate, to any given S—invariant connection w, a linear transformation A
defined as follows: if X € L(S) (the Lie algebra of §) then A(X) = [wi(X)],, where
X'p = dit (ezp tX - p)ls=o. It turns out that the answer to the question posed at the
.. beginning is more easily dealt with in terms of these associated linear transformations.
Indeed, if J C S denotes the isotropy group which fixes zg (g1ven the action of S on M),

and the action of j € J on any p € 771 (z) is expressed as jp = pr(s) with p(j) € G, then
it is easy to show that u(Jy,52) = p(s1)u(s2) (so that £ : J — G is a morphism of groups)
and one can prove the following

Proposition 3.3: Let w; and w; be two S-invariant connections, and let A; and A; be
their associated linear transformations espectively. Then an open set V, ¢ M containing
To exists, such that w; and w, are gauge-equivalent over 771(V,) if and only if there exists
u € G with the following properties:
1) p(@)en(f)e™t € Ce(Hold, (w)) for all j € J.
i) There exists a local section o : V; — Q,(po) = »~1 (V).
iii) There exists a function v : W — Cg(HolY, (w)) satisfying the following conditions:
Given z € V, and s € 8, with sz € V,, and writing so(z) = o(sz)p,(s) for some
v4(s) € G, then »

V(1) = 2y (6) " (P)pay (0(8), for r € W,t eV, 31
v(G) = p(i) tup(i)ut, for je J (3.2)
iv) A= u—f.(A} ol (3.3)

The local result obtained above may be extended to all of M. Indeed the global version
of Proposition 3.3 is
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Proposition 3.4: Let w; and w; be two S—invariant connection 1-forms and A, As their

‘respective associated linear transformations. Then w; and wy are gauge-equivalent iff there

exists u € G such that

1) p() tup(f)ut € Ca(Holy, (w)) forall j € J.

ii) there exists a map v : § — Cg(Holy, ()) such that v(st) = B()tv(s)@{t)v(t), where
B2(5) : M x 8§ — Ne(Holp, (w))/Holg, (w) satisfies @z (ts) = Psa(t)Pz(s), and one can
show that, for s € S and z,y € M, $(s) = #y(5) = B(s).

iii) v(5) = p(y) tup(f)ut for alljed.

iv) Ap = v {Ay +il)u.

When the connection 1-forms are generic, v, is a Lie algebra homomorphism from

-L(8) onto an abelian subgroup of L(G). I § or G aré simple, then in this casev—=-¢

and the necessary and sufficient conditions for gauge-equivalence of w1 and wy reduce to

A, = u~ Ay u, with u € Cg(u(J))-

4. An Integro-differential version.

The finding of u € G and v : W — Ce(H ol% (w)) with the properties required in
Proposition 3.3 may prove untractable in certain circunstances. Nevertheless, and alterna-
tive approach in terms of integro—differential conditions, which may prove more amenable
to actual calculations in such cases, can be obtained in the local domain. '

Let U C M be an open neighborhood of z,, and let X;,X; be any two elements
of a coordinate basis for B(U), the space of vector fields on U. (If U is a coordinate
neighborhood, with coordinates (z%,...,2"), then we may take X; = 892, etc.) Starting
at a point y; € U, move a distance € >0 along the integral curve of X; passing through
y1, Teaching a point y;. From there move a distance ¢ along the integral curve of Xj
passing through yo; and then back along X; and X; to form a “rectangle” which we call
~:[0,1] = U. Then, making use of Ado’s and Frobenius’ theorems we obtain, after a very
lengthy proof, the desired result: '

Proposition 4.1: Let wy and w; be two S-invariant connection 1-forms in ¢
Then w; and ws are locally gauge-equivalent iff there exists u € G such that, for 7(o(z)g) =
9104, (8)up s, (s) 1y, With o(z) a local section in the wy-holonomy subbundle and o{z)g €
a~1(U), one has

v).
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o mImG f ) ) + (0" Xy, (o) X =
=@ HIm(G § )0 0)) + (00X, (o) Kb (o),

i) r(o(z)) " r(o(2))so. X5 + oo (z))-1 w1 (0. Xx) —wsy (0:X%) € Co

(Hol,(,) (w2)), fork =
1,7.
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