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A fiber-bundle treatment for Kaluza-Klein-type geometric unification of gravitation with the bo-

sonic sector of the standard electroweak theory was presented by Rosenbaum et al. Here we show

that it admits spontaneously compactified solutions where the dimensions of the internal space are
of the order of the Planck length. Furthermore, the model is able to predict a numerical value for
the ratio of the SU(2) and U{1)coupling constants at the energy where both compactification and

the unification of gravitational with electroweak interactions would occur, and this value is in agree-
ment with that obtained from applying the renormalization group to the standard model.

I. INTRODUCTION

In a previous paper' (hereafter referred to as paper I)
we developed a fiber-bundle treatment for a Kaluza-
Klein-type geometric unification of gravitation and the
bosonic sector of the standard electroweak theory. By al-
lowing 6-invariant quadratic Lagrangians and a non-
Levi-Civita connection on the bundle of frames, we
showed that the torsion on the frame acquires dynamics
and acts a source for the scalar-field Lagrangian. It also
generates the symmetry-breaking potential.

The most general 6-invariant action resulting from our
theory is [cf. Eq. (3.41) in I]
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where everything has already been pulled down to the n-

dimensional base manifold M, Vl is the volume of the ex-
tra n —4 dimensions, and, except for the nonminimal
coupling term proportional to R4„4" (which has been
used on some inflationary models to induce
cosmological-constant damping), the remainder in (1.1)
has the usual interpretation. In particular, the Riemann
tensor R,zk is derived from a Levi-Civita connection, so
there are no torsion terms in the base manifold.

There has been some work reported in the literature '

on unified approaches to the Weinberg-Salam model
based on pure Yang-Mills theories in six dimensions,
where the components of the gauge fields in the extra di-
mensions play the role of the Higgs fields. By embedding

SU(2) XU(1) in a larger gauge group (appropriately
selected), both Fairlie and Manton have been able to
make predictions on some of the parameters of the elec-
troweak model, including the Weinberg angle. None of
these approaches, however, include gravitation, and in
fact the radius of the compactified two-sphere in
Manton's model turns out to be of the order of 10 ' cm,
which is far too large.

Also, although a fairly general existence theorem for
compactification of solutions to Einstein- Yang-Mills
equations was developed by Luciani working with linear
Lagrangians, and even if one could extend his proof to
theories with nonlinear Lagrangians, these solutions are
contingent on some constraints on the gauge and symme-
try groups which are not satisfied for SU(2) XU(1). Thus,
it is not at all obvious from that work that compact solu-
tions exist for the case under consideration.

Here we show that the Lagrangian (1.1) indeed admits
spontaneously compactified solutions where the dimen-
sions of the internal space are of the order of the Planck
length. Furthermore, our model is able to predict a nu-
merical value for the ratio of the SU(2) and U(1) coupling
constants at the energy where both compactification and
unification of gravity with the electroweak interactions
would occur (our model does not as yet include strong in-
teractions), and this value is in agreement with that pre-
dicted by the standard model via the renormalization
group.

Our procedure is substantially different from the one
followed in the papers mentioned above. First, the Higgs
scalars in our formalism stem from the torsion on the
fibers of the bundle (so they also have a geometric origin)
and not from the connections. In addition, the symmetry
group S of our homogeneous internal space is the same as
the gauge group G of the theory: S =G =SU(2) XU(1).
Following an approach based on the work by Wang and
Kobayashi and Nomizu we find a family of S-invariant
connections and S-symmetric Higgs fields, which, when
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p gag y (4)gg+g (n —4)gg (1.2)

so that the eigenvalues of g '" ' are observed in four di-
mensions as the particle's mass. One needs, then, to look
for zero modes of 9 '" ', and these will acquire the
small mass we see through the Higgs mechanism of

substituted into the field equations resulting from (1.1),
lead [as in the case of the original paper of Cremmer and
Scherk with gauge group SO(3)] to a system of algebraic
relations for the parameters of the metric of the internal
space, those of the gauge and Higgs fields, and the
remaining parameters in (1.1). It turns out that these
equations allow nontrivial solutions only if general quad-
ratic terms in the curvature are admitted in the Lagrang-
ian and, in this case, the range of permissible values for
the ratio of coupling constants is quite restricted, so that
the theory is predictive. Furthermore, as mentioned ear-
lier, the characteristic length parameters of the metric
must have a magnitude of the order of the Planck length.

Since terms quadratic in the curvature appear natural-
ly in the low-energy limit of superstring theories, the in-
vestigation of spontaneous compactification for such La-
grangians seems worthwhile. We need to stress, however,
that our analysis is at the classical level and should there-
fore be seen as intended to contribute to the semiquanti-
tative understanding of the spontaneous compactification
phenomenon, in the hope that such a mechanism will still
occur in the domain of whichever the correct finite
theory for quantum gravity will be.

Our formalism obtains all the gauge fields and neces-
sary Higgs bosons, which ultimately trigger the
SU(2) X U(1) breaking, as part of the metric tensor. Even
though for the purposes of spontaneous cornpact-
ification, i.e., the process of transforming the base mani-
fold into the form M XB (with 8 compact) induced by
the structure of the vacuum or ground state, fermion
fields do not contribute to the ground-state solution at
the classical level (due to Lorentz invariance), and it is
thus sufficient to consider only the bosonic sector of the
theory, ' a serious candidate model for describing nature
must eventually also include fermionic matter. This
would consist of essentially zero-mass leptons (extremely
light compared to the energy scale of gravitation), and
quarks if SU(3) were considered.

We should perhaps stress here that in ordinary
Kaluza-Klein theories one considers a principal fiber
bundle where the base manifold is taken to be the four-
dimensional space-time, each fiber is group isomorphic to
the gauge group, and the fibers themselves (as manifolds)
are compactified into what is called the internal space.
The Kaluza-Klein point of view, in its purest form, is to
attribute all interactions other than gravity, as well as the
spectrum of elementary particles, to the structure of this
internal manifold. In this framework, there are severe
obstructions to the incorporation of chiral metric fer-
mions. The problem stems from the fact that left-handed
fermions transform differently than right-handed ones.
In other words, ferrnions of given helicity form a complex
representation of the gauge group. One may write
Dirac's equation for a massless particle in n dimensions
as

SU(2) XU(1)-symmetry breaking. However, the Atiyah-
Hirzebruch' theorem states that for any continuous
symmetry group the Dirac zero modes form a real repre-
sentation. In multidimensional simple (N = 1) supergrav-
ity or in superstring theories there are no fundamental
spin -—,

' fields, but only the Rarita-Schwinger spin- —,
' field.

But Witten" has extended the result of Atiyah and Hir-
zebruch to show that, on homogeneous spaces, the
Rarita-Schwinger zero modes always lead to a real repre-
sentation. What happens for nonhomogeneous spaces we
do not know, but almost all of the work on Kaluza-Klein
theories has been done using homogeneous spaces,
presumably in response to a requirement of minimality,
and because they admit a structure of a real analytic
manifold. One could, of course, try to incorporate chiral
fermions using as internal manifold a nonhomogeneous
space, but from the work of Alvarez-Gaume and Witten'
in 11 dimensions one expects one-loop anomalies that
spoil general covariance and cannot be canceled.

The usual way out is to consider elementary (i.e., not
arising from components of the metric in n dimensions)
fermion fields. This may be done by the use of spin struc-
tures and the introduction of fermions as particle fields
which are naturally isornorphic to the space of sections of
an associated bundle. Such a procedure, however, not
only goes against the philosophy of Kaluza-Klein
theories, but is also a much less ambitious program: one
may no longer hope to unify (but only amalgamate) all in-
teractions in nature, nor to predict the observed values of
the coupling constants.

Another alternative for introducing massless fermions
in a theory is based on a modification of the spin connec-
tion to accommodate torsion in the internal manifold, as
was done in interesting works by Wu and Zee, ' and Or-
zalesi and co-workers. ' Unfortunately, for the group
manifolds they use, they obtain right- and left-handed
fermions in equal numbers. However, there are still some
possibilities of generalizing this approach, both by
analyzing appropriate quotient spaces and by using more
general forms of torsion (nonparallelizable).

The formalism on which this paper is based is different
from the "fiber-bundle —over spacetime" just described.
We build a fiber-bundle formalism, with fiber
6=SU(2) XU(1), over a base manifold which itself is of
the form M XB, with 8 a homogeneous compact space
of the form SU(2) XU(1)/I (here I is the isotropy group
for a certain action of 6 on 8). In other words, the inter
nal manifold is in some way another copy of the manifold
determined by the fibers. The gauge fields arise from a
connection in the bundle, but once pulled down to the
base manifold one ends up with fields defined over the en-
tire M XB, which may then be reduced to an effective
four-dimensional theory. In this way our fields do arise
from the geometry, but from the point of view of the
four-dimensional spacetime they are seen as "given", i.e.,
as elementary fields put in by hand in the higher-
dimensional M XB. It is possible that by such a pro-
cedure, either within the topology of the internal mani-
fold investigated in this paper or the alternative ones sug-
gested, the small oscillations of the ferrnion fields result-
ing from their interaction with the cornpactifying gauge
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fields may not only allow zero modes to exist for the
internal Dirac operator, but may also hopefully avoid the
no-go theorems of Atiyah-Hirzebruch and Witten de-
scribed above, by allowing the introduction of chiral fer-
mions in the model.

The paper is organized as follows: Section II deals
with the possible topologies for the base manifold M, and
contains an outline of a general procedure for obtaining
S-invariant connections. We then specialize the formal-
ism to the specific case S=SU(2)XU(1) in order to ar-
rive at a family of possible solutions for the gauge fields.
Making use of work already done in paper I, we also ob-
tain the SU(2}XU(1)-symmetric solutions for the Higgs
fields. Section III gives a presentation of the Einstein-
Yang-Mills-Higgs field equations in a coordinate-free
form. (This is most appropriate for the nonholonomic
basis of right-invariant vector fields that we use for our
calculations, as it leads to considerable simplifications. )

We next use the results from Sec. II to generate solutions
to the field equations which lead, in turn, to a system of
nonlinear coupled algebraic equations. This is solved in
Sec. IV, resulting in predictions for the numerical values
of the Yang-Mills coupling constants and the orders of
magnitude of the characteristic parameters of the
compactified internal space. Section V concludes with
some general remarks about fine-tuning, and observations
regarding some terms in our Lagrangian which also ap-
pear in other authors' works' ' as possible means to
approach the cosmological-constant problem. We also
give some additional remarks on how the inclusion of fer-
mions may be dealt with in future extensions of the
present work.

II. BASE-SPACE TOPOLOGY.
S-INVARIANT CONNECTIONS AND HIGGS FIELDS

As pointed out in the Introduction, the base space of
the fiber bundle [onto which the Lagrangian (1.1) has
been pulled down] is of topology M=A, XSr, where Si
is a compact manifold. One of the purposes of this section
is to construct a connection (gauge fields) on M. To this
end, consider the trivial principal fiber bundle
P=SU(2)X U(1)X Sr on mpXSr, with mpEJM, and

gauge group G=SU(2)XU(1). We will generate an S
symmetry (or S action) on P, with S=SU(2) XU(1), with
the property that our connection on P should be invari-
ant under this S symmetry. (Note that we are dealing
here with a situation where the symmetry group of the
compact base space is the same as the gauge group of the
bundle. ) Once the connection on mp XSr has been con-
structed, it is a trivial matter to extend it to the whole of
M.

Since the simplest of all possible actions are the transi-
tive ones, we choose the action of SU(2) XU(1) on S~ to
be of this type. In this case S~ turns out to be a homo-
geneous space of the form S/I(xp), where I(xp) is the
isotropy subgroup of S which fixes the point xo of Sz. In
particular, since all continuous Lie subgroups H of SU(2)
are isomorphic to U(1}, we have the following possibili-
ties for S/I(xp):

(1) SU(2) XU(1';/SU(2) =S',
(2) SU(2}X U(1)/H X U(1)=S
(3) SU(2) XU(1) /H =S XS',
(4) SU(2) XU(1)/U(1) =S

(5} SU(2) XU(1)/H=S

(6) SU(2)XU(1)/(.. [=S XS',

(2.1)

[X;,X ]= e;Ji, Xk . (2.2)

If we now define the right action on quaternions
IX,.

R,„~,x ~. &~A by R,„ i,x ~s=s e ', where the center
l

"dot" operation denotes multiplication of quaternions,
we have that, for s =x &+ix2+jx3+kx4, the left-
invariant vector fields g;(s) =(d/dr)(R, „Pi,x ~s ) ~ t =p

=L X; on S, are given by

g, =-,'( —x,a, +x,a, —x,a, +x,a,),
g, =-,'(x, a, +x,a, —x,a, —x,a,),

~( xiBi+xiBi+xg83 x3Bg)

(2.3)

(2.4)

(2.5)

Similarly, for the right-invariant vector fields
g;(s)=(d/dt)(I. ,„pi,x ~s)~, p=R +X; on S we get

2( xgBi x38p+xpB3+xiBg)

~ (x3Bi xgB2 x iB3+xpclg)

g, =-,'( —x,a, +x,a,—,a, +x,a, ) .

(2 6)

(2.7)

(2.8)

It follows from the general theory, or by direct calcula-
tion making use of (2.3)—(2.8), that

[0; k, ]=e„~4 i J «[1» 3]

N; C, ]=—
&;,krak

[g, ,j ]=0 .

(2.9)

(2.10)

(2.1 1)

where H= [(h, h ')ESU(2)XU(1)~h CH, h 'G U(1)
=H ], and e EU(1) is the identity.

Cases (1), (2), and (4) may be immediately discarded
since the quotients in these imply a trivial action of one
of the factors SU(2) or U(1). By further requiring that Sr
be of minimal dimension and of simplest homology, we
are left with case (5). In what follows we restrict our-
selves to this case, i.e., Sz will have the topology of the
three-sphere.

Next we identify S with the space of unitary quater-
nions in %:

S'= tx, +ix, +jx, +kx, ~x2i+x', +x', +x', = 1 j

=SU(2),

where i,j,k satisfy the usual multiplicative rules of
quaternions. Consequently, the Lie algebra su(2) of SU(2)
can be identified with the quaternion vector subspace of

[xi+ x2+ jx3+kx4] generated by Xl 2k +2
= —

—,
' j,X3= ,'i, with —X, (i=1,2,3} satisfying the commu-

tation rules
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x(p, h)=h x p for xFS (2.13)

It is obvious that the isotropy group of xo=e =(1,0,0,0)
is I(e)= [(h ', h )ESU(2) XU(1)~h EH I. Consequent-

ly, by case (5) of Eq. (2.1),

St =SU(2) XU(1)/I(e) =S (2.14)

Up to this point we have determined our compact
manifold St as the homogeneous space SU(2) X U(1)/I(e)
with the topology of a three-sphere, but without a given
shape. In order to give a metric g to SI, we note that we
want it to be SU(2) X U( 1) invariant, i.e., Iso( g )

=SU(2) XU(1), so that we can take g„g2, g3, g3, as Kil-
ling vector fields for the SU(2)XU(1) action on Sz and
obtain

We now associate the one-parameter subgroup H of
SU(2) with the left translations which generate the
integral curve of g3 which passes through e. That
1S,

H= [exp[t( —,'i)]) = [( cos ,'t, s—in—,'t, 0, 0)ES (t CA I .

Clearly, H is isomorphic to U(1).
For the construction of the S action on S, we make

the identification

S =SU(2)XU(1)= I(p, h)ipES, h EH I . (2.12)

Thus the transitive right action of S on S is given by

~(p)=x, and write xs=m(ps). Note that (2.16) guaran-
tees that xs does not depend on the location of p on the
fiber. We shall also say that S acts orbit transitively on P
if the induced action on the base space M is transitive.

Consider now a point xoEM, and a poEP such that
7l'(pp ) =xo. Let I (xo ) be the isotropy group of xo relative
to the action S. Then, for jEI(xo) we have

m(poj ')=n(po)j '=xoj '=xo. Consequently, poj
is on the same fiber as po, so that poj ' =pok, (j)
with l(.(j)EG. Observe that po(j2ji ) '=poj, 'j2 '

=Pa~(A }J2 POJ2 '~(ji)=Pa~(j2)~(ji)
A,(j2ji)=A,(j2)A,(j, ) so that l(, is a homomorphism of Lie
groups, I((,:I(xo)~G.

Now, according to Wang' (see also Ref. 6) there is a bi-
jective correspondence between S-invariant connections
and linear transformations A:S~9 of Lie algebras which
satisfy the following conditions:

(A) A( Y}=—
A. e( Y) for YES(xo)

[the Lie algebra of I(xo)],
(2.17)

(B} A[a5 (X)]=a52( ({A(X}}

for XES, jEI(xo) .

If m is the S-invariant connection corresponding to A,
we have

A(X)=co~ (X~ ) with 2 = (poe'x)~, 0, XES .

(pp)s =(ps)p for sES, pEG, pCP . (2.16)

The action of S on P induces an action of S on the base
space M as follows. For x EM choose pEP such that

g= ——((r '(8(o ') — (o 'e(r ') —— (o 'S o '),
4 4 4

(2.15)

where o '
(i =1,2, 3) are the one-forms dual to g;, and

p, ,p2 are paratneters with units of (length) . Indeed, it
can be readily verified that X& g=O for i =1,2, 3 and

I

X.- g=0.
S-invariant connections. In order to proceed with the

construction of the SU(2)XU(1)-invariant connections
on P, we shall first recall some results of a general charac-
ter.

Let m".P ~M denote a principal fiber bundle with struc-
ture group G. Let Sbe a Lie group and ((' its correspond-
ing Lie algebra. We say that S acts from the right on P if
S acts difFerentiably from the right on P and

(2.18)

We choose now a global section a:M ~P (i.e., we sup-'
pose that P is a trivial bundle) for the bundle n-.P~M,
that is, a morphism cr of manifolds with mo =idM. Asso-
ciated to the action of S On P and the section 0., we have
a differentiable function P:M XS~G such that if we let
P(x, s) =()I(„(s), then o (x)s =sr(xs)P, (s) For a fix. ed x, P„
is a function from S to G. In addition, ()(,(e)=e, so its
differential P„, determines a linear function from
4= T, (S) to T, (G) =0, though this function is not neces-
sarily a morphism of Lie algebras, because P„ is not
necessarily a morphism of Lie groups. We thus have that
W=P, :M~X(S,9)=linear transformations from
4 to Q. (Note that our W„ is minus the W„obtained by
Forgacs and Manton' in a somewhat different approach
to the problem. )

For XEI denote by X the vector field on M defined by
X =(d/dt)[ exxp(tX)]~ o.(The relation between X and

X, the corresponding field defined on P, is

X' („i=—[o(x) exp(tX)]~, 0=—[o{x exp(tX))$„(exp(tX))]~,—d d
t

[o (x.exp(tX)—)]~, o+ —[cr(x)@[exp(tX)]) I, =o
d

dt dt

=cr„(X„)+[ W (X)]*(„(,
where [W„(X)]' is the fundamental field associated with W„(X)C Q. Consequently,

(2.19)
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co[cr„(X„)]=(o*a)),(X„)=co („)(X („))—~, (X) .

Making now use of the S invariance of m, we have
—]Xs

~rr(x )(~)a(x ) ( ~)a(x )( )IT(x ) cr(x )s( a )a(x )s a(x )s a(x «

(2.20)

(2.21)

Moreover, from the property of connections under right translations, we also have [using (2.16)]

—1 —1

~[a(xo)s]a( X )[o(x&) ]sa ~[rr(xo)s]a [ a+( X )cr(xo)s ]

=a5 )cs) („) (s 'Xs) (, ), for a EG . (2.22)

On the other hand, since S acts transitively on M, we
have x =xos for some s ES, and o'(x) =cr(xmas)
= [o (xo)s]gx (s) '. Thus (2.21) and (2.22) imply

—1

~cr(xo)(~)a(xo) 5a~[a(xo)s]a( X )[a(xo)s]a

—1

( )
(rr(x)( X a'(x) (2.23)

after the identification a—:P„(s) '. It then follows from
0

(2.23) and (2.18) that

co („)(X') („)=a5~ (s)co („)(s 'Xs) („)

=a5& (,)A(a5, X) .
p

(2.24)

If we now write A =(cr'co)„, and substitute (2.4) in

(2.20), we finally get for our S-invariant gauge fields the
general expression

A (X )x =a 54, (,)A(a 5,X ) —W„(X) .
Xp

Explicit solutions. Our main objective in this section
has been to establish a topology for our base space and to
find S-invariant connections for S=SU(2) XU(1). How-
ever, in identifying S with the unitary quaternions we
have been using the Cartesian coordinates x], . . . , x4,
which are not the natural coordinates on the three-
dimensional sphere. Nonetheless, the use of these coordi-
nates facilitates the obtainment of solutions to (2.25) as
well as many of the calculations in the following sections.
Instead of S it therefore proves more convenient to
resort to the space of non-null quaternions&"=% &[OI, where x„.. . , x~ are the natural coordi-
nates.

If we further let S'=SU(2) XU(1)X%+, where %+ is
the set of positive real numbers, to be the group that
operates from the right on gf ",and we introduce in addi-
tion the transformtion f:& ~S such that
g(x) =x/~~x ~~, then we can identify the S-invariant con-
nections co on S with the S'-invariant connections on

which are of the type g'co.
In order to use the general theory described above, it is

desirable to treat %" as a homogeneous space. This may
be accomplished by letting S' act transitively on % ac-
cording to the rule q(s, h, r}=(h q.s)r, where, as before
the "centerdot" operation denotes multiplication of
quaternions. Taking q =e, the isotropy group of e turns

I

out to be I (e) = [ (h ', h, 1)
~
h EH ]. (Throughout we

will use the symbols e or 1 indistinctly to denote the
group identity. ) Consequently, %f" is the homogeneous
space %"=S'/I(e).

Now consider the trivial principal fiber bundle
A" XSU(2)XU(1) with base space Jf" and global sec-
tion o (x ) =(x, ( 1, 1 ) ). As we have seen in our general
considerations above, the action of S' on
%"XSU(2) XU(1) which induces the given action of S'
on % is determined by the corresponding transforma-
tions P . The analysis of possible choices for these trans-
formations and their implications in terms of the S-
invariant connections is beyond the scope of the present
paper and is the subject of work by the authors, on the
general theory, which will be published separately. Here
we shall make the following natural choice for P:S'—+G
=SU(2) XU(1):

ctp ( sh, r)=( s ', h ') . (2.26)

Since

o(q)(s, h, r) =o(q(s, h, r))P~(s, h, r)

=o(h q sr)P (s, h, r)

we have

(q, (l, l))(s, h, r)=(h q rs, (s ', h ')) .

(2.27)

(2.28)

On the trivial principal bundle S3 X SU(2) XU(1) we also
choose the section o given by cr(x) =(x(1,1)) and the S
action given by the transformations P„:G~G,
4„(s,h) =(s ', h ').

Thus, for our choice of action of S' on &"XS', the re-
sulting transformation (])) is an antihomomorphism
which maps each element of SU(2) X U(1) onto its inverse
and acts trivially on A+ by sending all elements to the
identity. It is important to remark here that the form of
the action (2.26), with the inverses of s and h occurring
on the right-hand side, is made necessary by the fact that

has to be an homomorphism of Lie groups.
qo I(e)

Indeed, note that if we let po=cr(qo) and recall that

poj '=poA(j) for j&I(e), then poj '=cr(qo)j
=o(qoj ')ct) (j ')=poP (j '). Consequently, A(j)

(j '). But j=(h ', h, 1} so A,(h ', h, l)
(h, h ', 1)=(h ', h) [by (2.26)]. Hence, A~i(, ) is the

identity and it clearly follows that A, (j, )A, (j2 ) = A, (ji jz ).
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W~(X)= —X, VXEsu(2)ei%,

W (Xs)=0 .

(2.29a)

(2.29b)

Note also that (Xs) =(dldt)[q exp(tXs)]~, 0=x, B,
+xz82+x383+x 8, with q =x&+ix2+ jx3+kx EJ4".
So (X& }& is a radial vector.

We are now ready to solve (2.25) for the particular case
under consideration. Choosing s =(s, e, e) C SU(2)
X U( 1 ) X%+ and making use of (2.26) we have

I

In order to describe WW ~X(S', 0) we note that
4'=su(2}eiASXPt, where su(2) is the Lie algebra of
SU(2}, i is the basis of the Lie algebra of U(1), and Xz is
the generator of the Lie algebra of %+. Since W~ =P, it
follows from (2.26) that

P„(s)=(s ', e). Hence

a5, 0 a5, 0
a5~ (,)=

0
a5, =

lA 0 I
where I is the identity in i%+XsA.

Furthermore, given XEsu(2)eiAsXsJ7 we can write
X=F+ V+Z, I'Esu(2), V EiA, Z EXP/, so that
a5,X=s.Y.s '+ V+Z. Similarly, for X'= Y+ V, Y
&su(2), V EiJ7, we have a5& I,g'=a5 &(I'}+V

0
=s .Y s+ V. A simple calculation with quaternions,
taking s=x~+ix2+ jx3+kx4ESU(2} and the basis [X, ]
for su(2) defined at the beginning of this section, yields
the following expression for the matrix corresponding to
a 5, relative to this basis:

T

x2 x2 x2+x2
1 2 3 4

a5, = —2(x3x4 —x,xz )

2(xzx4+x, x3)

—2(x3x4+x]x2) 2(xpx4 xtx3)

xf x2+x3 x4 2(x3x3+x)x4)

2(x3x3 x)x4) x)+x2 x3 x4

(2.30)

Before proceeding with the calculation of the matrix A
in (2.25) recall that we are actually interested in the S-
invariant connections of the trivial bundle
S XSU(2}XU(1) over S, where the action on
S XSU(2}XU(1}is given (as explained before) by the
functions P„. If we now define g:%"XSU(2)XU(1)
~S XSU(2)XU(1) by f(q, (h, s))=(f(q), (h, s)), with g
being the projection operator introduced above, then the
correspondence to~)'co gives a one-to-one relation be-
tween the S-invariant connections on S XSU(2)XU(1)
and the S'-invariant connections cu' on&"XSU(2) XU(1) with co'(Xs) =0. Then, from (2.25) it
follows that relative to the basis X„X2,X3,X4 =i+~ the
matrix representation of the linear transformation A:
4'~S has to be of the form

—P a

From the equality

0 A 0~001=0
we find

z co 0
0 0
0 0

(2.33)

A = (AO, O) where Ao:4—+4' . (2.31)

with h '=cost i sint fo—r some t CA. Setting x, =cost,
x2 = —sint, it readily follows from (2.30) that

According to Wang's theorem Ao must satisfy the con-
ditions (A) and (B) in (2.17). Moreover, in our case A, =id,
so by (B) Ao must commute with the matrix

a5„) 0 Consequently,

m 1+m
n n —1

(2.35}

We thus have all the ingredients needed to evaluate
(2.25), which by virtue of (2.28) and (2.29) reduces to

On the other hand, the generator of the Lie algebra of the
isotropy group I(e) is —X3+X4, so condition (A) of
(2.17) implies

L (2.34)

with

a5(pg)]

x) x2 2x)x2 0 0

2x)x2 x )
—x2 0 02 2

1 0
0 1

0
0 1

(2.32)

A (X, ) =a5, , AO(a 5+,g, )+X, (a = 1,2, 3,4),
(2.36)

where, for a =i =1,2, 3, X; =g; as given in (2.3)—(2.5),
and X4 =f3 [cf. Eq. (2.8)].

The calculation is simplified considerably if instead of
evaluating relative to the left invariant vector fields we
calculate the gauge fields using the right invariant fields
(X;)„=(dldt)(I.,„~~,x Ix)~, 0 as basis. In fact, taking

t
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x =xog(s ) with xo =e FS, one has

=(a5,
, ]X, ) . (2.37)

Substituting now (2.37) into (2.36) we get

A(X;)„=A(a5~
)

]X;)

tX,.
(X, }„=—[e ' g(s )]~, 0=—[f(s ) f(s ) .e '.P(s )] ~,

8]=2( —x~X] +x3X~ —x~X3+x]X5),
8~=2( —x3X, —x4X~+x]X3+xgX5),

83 =2(x~X]—x ]X~—x~X3+x3X5 ),
3 =2(x,X, + zXz+x3X3+x4X5) .

Note that

A5 = A (X5)=a5 ]A(a5,xs) —W(X5),

(2.41}

(2.42)

=a5, ]AD(a5~, ).a5, ]X;)

+a5, ]X; (2.38)

which, by (2.29) and (2.31) vanishes as required in
our construction. Hence, letting A (8, )—:A, Xb
(a, b = 1,2, 3,4},we obtain

=a5~
)
—](AD+ID)X.

From (2.33) and (2.35) it is evident that the matrix
Ap+Ip is of the form

Ap+Ip =

a b

2 2

2 2

0 0

0 0

0 0

0 0

2 2

C C

2 2

(2.39)

A ]=—,]a(x] —xz — x3+&x) b(x4x3 ——x]xz),

A, = —a(x3x4+x]xz )+T]b(x, —x &+x 3
—x ~ ),

A, =a(xzx4 —x,x3) b(xzx3+x—]x4)

A 1—=Bi=0,
A z= —

—,'b(x] —x~ —x3+x~)—a(x3x4 —x]x~),

Therefore, the components of A (X;)„relative to the
basis X1,X2,X3,X4, are given by the ith column of the
matrix a5 ](Ao+Io). A straightforward calculation us-

ing (2.30) and (2.39), and denoting the ath coordinate of
A (XJ) by A J (a =1,2, 3,4), leads to

A] =2( —x4A]+x3Ap XQA3)

A&=2( —x3A, —x4Az+x]A3) y

A3=2(xqA] —x] Aq —x4A3),

A~=2(x] A]+xzAz+x3A3) .

(2.43)

@A p(x )A @C (2.44)

where the p(X ) are matrix representations of the gen-
erators of SU(2}XU(1), and /&=(3. If we now note that
(2.3)—(2.5) and (2.8) can be written in terms of the p(X }
matrices as

Substituting the expressions given in (2.40) into (2.43)
gives the components A, of the gauge fields in the Eu-
clidean coordinate basis. Here we only remark the fact
that these calculations readily show that linear expres-
sions for A, in terms of the Euclidean coordinates [x, J

are obtained if and only if b =0 and a =e. For simplicity
we shall adopt this ansatz (b =O,a =e) in the following
sections, leaving extensions to the more general case to
future work.

S symmetr-ic Higgs jfelds. We conclude this section
with the corresponding analysis of the possible solutions
for the Higgs fields which display SU(2)XU(1) symme-
try. In this case the discussion will be facilitated consid-
erably by the fact that a large portion of the work has al-
ready been done in paper I.

Indeed, we showed in I [cf. Eqs. (4.11) and (2.49)] that
the Higgs fields 4„must satisfy the differential equation

A q=b(x3x4+x]xz)+ —,'a(x, —xz+x3 x4),
A ~= b(x~x4 —x,x—3)—a(x~x3 +x,x4),
A ~=8~=0, A3=e(x~x4+x]x3),4 1

(2.40)

g, = —x„p(X, )„'a,, g, =x„p(X,)„'a, ,

g = —x„p(X )„8, g = —x„p(X )„8
then (2.44) results in the set

(2.45)

A 3
—e(xzx3 x ]x4 }2=

A =—'e(x+x —x —x ) A —=8=——'c

To complete our discussion on S-invariant connections
for S=SU(2) XU(1), we evaluate the components of the
gauge fields in the Euclidean coordinate basis
x 'j x 2 x 3 x 4 To this end recall that
X,=x,a, +x232+x3'B3+x4'B4 Inverting this equation
simultaneously with (2.6)—(2.8) one gets

Ap(x] )A ~8@C P(x] }C @D

x„p(x, )„'a,e,= —p(x, ),De, ,

x„p(X,)„'a,e,=p(X, ), e, ,

xAp(X4}A 5B@c p(X4)c @D

(2.46}

If we require that 4„be nonsingular for all points in S,
and therefore write N„as a series in positive powers of
x„, then (2.46) implies that they have to be linear in the
Euclidean coordinates x„,and that they are of the form
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@)=x,1+x~f, 42=x,f x—2d,

43
=x 3d +x4f, (I)4 x 3f xgd

(2.47) (p Tr)( ),g(, )r, 4 =(pk)( )(J( )

' r, ) (3.2)

cd) +co2 M +
g(D~)+~z@A) B@

(3.la)

(p Tr)(5 '(F(, ))—J '(4"),r) }=0,

(p Tr)(5 '(F(2))—J"'(@"),r, }=0,

(3.1b)

(3.1c)

where 5:A "(P)OPz V)~A" '(P, oP2, V) is the covari-
ant codifferential relative to the connection co,

J '(4" ) E A '(P;, 9; ) is the current defined by

III. SOLUTIONS TO THE
EINSTEIN-YANG-MILLS-HIGGS FIELD EQUATIONS

In this section we shall derive the Einstein-Yang-
Mills-Higgs field equations for our Lagrangian (1.1), and
seek for solutions to this system in terms of the parame-
ters of the metric (2.15) and those of the connections and
the Higgs fields, as given by Eqs. (2.40) and (2.47), respec-
tively. Since the calculations are simplified considerably
when one uses the nonholonomic basis of right-invariant
vector fields (2.6)—(2.8), we begin by obtaining the field
equations in the language of forms (which is most suitable
for that purpose}.

Following the notation introduced in I, and resorting
to the results of Bleecker' (cf. chapters, 5, 7, and 9), the
Higgs and Yang-Mills field equations are given by

for all r, EA '(P;, 0;)( ), and F(, )
are the field strengths,

l

associated with co;, i.e., F(, ) =(1/g')d(o z coz) =d B,

F(~)=(1/g )(d(o;co) )+—,
) [o')co„cr')co,]}

=dW+ —,'g[W, W] .

Substitute the Lagrangian density from (1.1) into (3.1a)
to get

5 ' 'D ' '4"+m 4 —}(,(4 4 )4 +—'A,R4

=0, (3.3)

and recall that for any P E A "(P, V), the covariant
codifferential is defined by

2(y) —
( 1)P( 1)n(k+ ))eD ) &(ey) (3 4)

where (
—1)~=sign of det g, n =dimM, and the star

operator " which maps V-valued k-forms onto V-valued
(n —k)-forms vanishing on vertical vectors in the tangent
space T(p p )P&oPz, is a unique extension of the usual

Hodge star operator acting on A-valued forms. In our
case ( —1)~= 1 [signature of base-space metric is
(+, —,. . . ,

—}] and n =dimM=7, so that

(D q) )= —+D (+D ' (y ) Using
this in Eq. (3.3) and pulling down to M yields, after some
manipulations,

5d@a+5(gW p(X )~ 4c+g Bp(X4)~ 4'c} *t[gW p(Xa)a +g'Bp(X4)z ]A'dC) ]

—'[[gW p(X )„+g'Bp(X4)~ ]A "[gW p(Xp)c O'D+g'Bp(X~)c @D]}

+m 4„—A, (@s4 )4q +—,'kR 4q =0, (3.5)

where the matrices p(X ) and p(X4) are the same as
those defined in Eqs. (2.49) of paper I.

To calculate the currents in (3.1b) and (3.1c) we make
use of (3.2}. We have

Q)2
Similarly, for J ' we get

(pk)~, ( J(p', )(@),r2)

(pk) (J( ' )(4),r))=(p Tr} (D@,gr) C)),

and writing

(3.6)
=g 'Tr[p(D+ "p(X ) „@cp(X4), r~) ] . (3.9)

Substitution of (3.8) and (3.9) into (3.1b) and (3.1c), re-
spectively, and noting that ~& and ~2 are arbitrary, yields

r, =(r, )rp(X ), (r, ) rTr[r, p(X )], (3.7)

where p(Xr)=p(X ) '= —p(X ), we get
=(&))rp(Xr)z 4c. Consequently, (3.6) may be reex-
pressed as

and

5 (F())) =5F())+getup (W A FI')))

g(D 4")p(X )„—4c,

5 'F(2)=5dB= g'(DN")p(X4)„c@—c .

(3.10)

(3.11)

(pk)~ (J(p' )(@),&))

=gp"[D;N"p(X )„4c(r)),]
=g Tr[P(D+ "P(X )„(PcP(X ),z))] . (3.8)

Equations (3.5), (3.10), and (3.11) are the coordinate-
free expressions of the field equations for the Higgs and
Yang-Mills fields. They can be evaluated in terms of the
nonholonomic basis of right invariant g;, the calculation
being fairly straightforward. Equation (3.5) then becomes
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p'4;[D @A] p'(g@' p(X }A 4 [@c]+g'Bp(X4}A k, (~'c}}
—p' [[gW; p(X }A +g'B,p(X4)A ][gW~p(Xp}c sIsD+g'B, p(X4)c 4D]]

+ m 4A —A (4s4 )4A +—6kR Cs
A =0,

where 8;—:W (g; ), and B;=B(g; ). On the other hand, after pulling down to M, Eqs. (3.10) and (3.11) result in

(3.12)

2
X(gi[F ' ]eljky'"p"'+ge~p~F ' 8'ieijkp'"g"'+F "g'"p")ass = g(D—, C ")p(X~)A C', , (3.13)

and

&((i[F"]&;,k W'"e"'+F "P'"e"}&-

Consequently, R;,k&R
'j"'=4R „IR

"' R,—and (1.1)
reduces to

Rpj'kl Rl'k$"ji RapJ'k +RJIpi'k R

Y—($ il$jk Pik$ jl } (3.15)

g'(Di—@")p(X4)A 4c . (3.14)

In order to derive the Einstein field equations for the
Lagrangian (1.1) we note that the topology of the base
space is A, XS with metric given by

ds =g„„(x)dx"dx"—(pi/4)(cr 'incr ')

—(pl/4)(o 'o ') —(p, /4)(0 'j3 o ') .

The space-time components of the Riemann tensor there-
fore vanish, as well as those with mixed (space-time and
internal) indices. The calculation of the components rela-
tive to S is greatly simplified if we recall that, in a
three-dimensional space,

I= —vR+asR +a9R'JR, —
—,'F "F 'J

I
2

+ 2i (D; Cs
A }(D 'Cs" ) +

——(%AC&") + ,', A,R(4A—Cs") irA p—

(3.16)

def

a8=a1 —a2,
def

a =4a —,~A. —7a —
—,'a9 2 &~ 1 3 2' (3.17)

Varying (3.16) with respect to p;k one gets

where we have made use of the relation
a6= ——343s(, —7a, —

—,'a2 [cf. Eq. (3.44) in paper I], and
defined the new parameters a8 and a9 by

&( i R ms R ms)+& (
i R 2 ms 2RR ms+2R Imls 2 msR Ik)

+u (
—iR Rik ms+Rs R "m 3RRsm+ &R— sm —R ms Ii+Rs ml — msR" I"+R "m Is)

9 T—ik —$" —k- li

+ —,', A,(4,4")(—R '+ —,'Rp ') —
—,'«p '

PaliF ~ F ij iF F ij+ i(D q) )(D i(PA)+ q) (PA (@ (PA)2

+ i F am F sj+ i F m F sj 1 (D m@ }($s@A) 0 (3 lg)2 J & 2 J 2

Relative to the basis g&, $2, (3, the internal space metric is

simply
1 P2R 223 A4 P1

'2
1 P2

4 P1
R 323=—

p1 0 0

p,j—=p(g, , (j)=—— 0 p, 0

0 0 P2

(3.19)

and the only nonvanishing components of the Riemann
tensor are

1 P2
R =R =1——„——11 —22 2 P1

2
1 P2

R—33 2 P1
(3.21)

It follows, in turn, that the Ricci tensor components
and the curvature scalar are given by

2 3 P2R 1 ———
112 4 P1

3 P2—212R = 1 ———
P1 and

3 1 P2 1 1 P2
R R113 4 & —313 4P1 P1

2

(3.20)
2 P2R= ——4——

P1 P1
(3.22)
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Furthermore, in this basis Equations (3.19), (3.26), (3.27) and (3.28} lead in turn to

F,, =(,[&, l j—, [&,] &—([K ,g,. ]), (3.23)

and

F;,=g;[W;]—g, [W, ]+e,,„W„+g~.~, W,. W~,

(3.24)

D;4w =0'[~'A]+gW;p(X )a @c+g& p(X~)~c@c .

ScF lJ
lJ

P&

2
F-~ F-,.J 8a

lJ CK

P&

(D;@g )(D '4")=—

1+2 (1—
—,'ag)~,P]

P2

(d+f )
Pi

(3.29)

(3.30)

F)2 = ——,F)3 =F23 =0;
F ',2= —a(1 —

—,'ag)(x, x3+x2x4)

F ',3=a(1—
—,'ag)(x, xz —x3x4),

(3.26)

F '&3= —(1—
—,'ag)(xz+x3 —x, —x~),

F,2= —a (1—
—,'ag)(x, x~ —

xzx3 ),

(3.25)
We can now substitute, in the expressions above, the

S-invariant solutions for the connection and Higgs fields
as given in Eqs. (2.40) (identifying A; with W;) and
(2.47). We get

X 2(1—
—,'ag)2

+ (1—
—,'ag + —,

' cg' }
P1

P2

(3.31)
The field equations (3.12)—(3.14) and (3.18) may now

be solved using the results above and the expressions for
8';, 8;, and 4„. The four partial differential equations
(3.12) yield the unique algebraic condition

m' —l,(d'+ f') =—e(1 ——'ag+ —'cg')2 1

p
2 2

+2(1——'ag) +—'A, 4——1

2 3

F &3=a(1—
—,'ag)(x &xz+x3x4),

where
PiE'=
P2

(3.32)

(3.33)

F i3
— a (1—

—,
' ag)(x ix 4+x ex 3 )

F 23= —a(1 —
—,'ag)(x2x~ —x,x3);

D, C&, = D2@2=—
—,
'(—1 —

—,'ag)(x~d+x3f ),
D24, =D,42= —,'(1 ,'ag)(x3d x—4f—), —

D34, =—,'(1 ,'ag + —,'cg—')(—x,f x2d ), —

D3@z=—
—,'(1—

—,'ag+ —,'cg')(xz f+x,d ),
D, 4,=—,'(1 —

—,'ag)(x2d+x, f),
Dz@3=D,@~=—

—,'(1 ,'ag)(x, d——x2f ), —

D343 =
—,'(1—

—,'ag +—,'cg')(x 3f x4d ), —

D2@~=—
—,'(1 ,'ag)(x, f+xzd —),—

D344= —
—,'(1—

—,'ag+ ,'cg'}(x4f +x3d ) . —

(3.27)

(3.28)

The three differential equations (3.13} give rise to two
algebraic conditions relating the parameters of the gauge
and Higgs fields as follows

(f +d )= —[1—
—,'ag(1+@)],

p& f (3.34)

a(1—
—,'ag)(1 —

—,'ag — )

=
—,'g(1 —

—,'ag+ ,'cg')(f +d ) .—

Finally, Eq. (3.14) leads to the unique condition

(3.35)

= —
—,'g'e(1 —

—,'ag+ —,'cg')(d +f ) .
Pi

(3.36}

To obtain solutions to the Einstein equations we first
note that, due to the Cartesian product nature of our base
space M, Eq. (3.18) breaks up naturally into two sets.
One of these comes from taking the free indices as spare-
time indices, and results in the condition

1
4——

P) E

2 2

4 ——(d +f ) ,'aA 2(1—
—,'ag—) —(1+—2e)—

12 pj e '
p,

(d +f )[2(1—
—,'ag) +e(1——'ag+ 'cg'} ]+—'m (d —+f ) ,'A(d +f )——

4pi
2

2 1 1+
2 as 4—— +2a9 4——

~
=0. (3.37)
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The remaining set of equations comes from taking the free indices as internal coordinates; after substituting from
(3.19)—(3.31) they can be shown to reduce to the (final) algebraic conditions

2 2——+ (—d +f )+ ,'~p—,A+ (1—
—,'ag) (1+2»)+

e 12m ' '
p p]

+ —,'(d +f )[2(1—
—,'ag} +»(1—

—,'ag+ —,'cg') ]——,'m p, (d +f )+ 8iAp, —(d +f )

22
a (1—

—,'ag) (1+»)—
pt pi

'2
——'(1 ——'ag) (d +f ) ——as 4—— +2a9 4——2 2 2 1

2 2
pi E' g2

8 1 1+ 4—— 1 — (2as+ —,'a9)—
p) 6' 2E

16 1
a9 1—

p) 26

2

=0,

K(4» —3)+ —,
'—,A(4» —3)(d +f )+ ,'«Ap, »—

a 2 c 1
+pi» (1—

—,'ag) (1+2»)+ + (d +f )[2(1——'ag) +»(1 ——'ag+ —'cg') ]
p

'
(3.38)

—
—,'m (d +f }+—,')(,(d +f ) ——a» (1—

—,'ag) —
—,'» (1—

—,'ag+ ,'cg') (d —+f)
p]

2 1 1 4 1 4 1——» as 4—— +2a9 4—— +—4——(2as+ —',a9) — a9—=0 . (3.39)

The Einstein- Yang-Mills-Higgs system of field equa-
tions has thus been reduced to seven algebraic conditions
which relate the 13 parameters of the theory. At first
sight, this apparently large number of free parameters
would suggest an infinite set of possible solutions; howev-
er, as will be shown in the next section, because of the
high nonlinearity of the system the admissible solutions
are in fact extremely restricted, and this fact allows for
some very specific predictions on the values of some of
these parameters, including the coupling constants.

f~+d = [1—[1—ag(1+»)] ) .4

g'p, (1+»)

This immediately leads to the condition

(4.1)

themselves to numerical analysis, from where explicit
values for physically interesting parameters such as g/g'
can be predicted at energy scales of the order of the
Planck energy.

To this end note first that Eq. (3.34) may be written as

~1
—ag(1+»)~ &1, (4.2)

IV. SPONTANEOUS COMPACTIFICATION AND
COUPLING CONSTANTS

from where it clearly follows that a ~0, and (3.34) then
implies

O~ag ~
1+@

(4.3)

In the previous section the Euler-Lagrange equations
of our model were solved in terms of a system of seven
highly nonlinear coupled algebraic equations. Here we
wish to show that the system indeed admits solutions for
which the dimensions of the internal space spontaneously
compactify in a satisfactory manner.

Finding solutions for the algebraic system
(3.32)—(3.39) is a much more difficult procedure than
those required in Refs. 7 and 20, due to the fact that the
symmetry group considered here on the base manifold is
more complicated than the ones used in the above-
rnentioned papers, resulting in z greater number of pa-
rameters and equations. Furtnermore, as will be noted
later on, quadratic terms in the Lagrangian are essential
for the existence of nontrivial solutions, and thus must be
kept. However, even though he system of seven coupled
equations appears to be analytically untractable, one can
unfold it sufficiently to arrive at expressions which lend

On the other hand, note that assuming c)0 in (3.36)
gives (eg'/8)(l —

—,'ag+ —,'cg') (0, which contradicts (4.3).
Hence,

0~ —,'cg'~ —1 . (4.4)

Next substitute (3.36) into the right-hand side (RHS) of
(3.35) to get

a (1—
—,'ag)[1 —2»(1 —

—,'ag)] =c—, (4.5)

Equations (4.5) and (4.3) together with c ~ 0 imply

alternatively, substituting (3.34}into (3.35) yields

a (1—
—,'ag)(1+ —,'»ag)(1 ») = —

,',
»—p, cgg'(f +d ) . —

(4.6}
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» (p(1 (4.7)

1 &2e(1—
—,'ag) ~2e, with (4.6} implies e~ 1. Consequent-

ly,

So far we have only made use of the Yang-Mills equa-
tions to obtain constraints on the range of some of our
parameters. We can make further progress by resorting
to the Einstein equations. Multiplying (3.37) by p& and

adding to (3.38) results in

1 1 g2 C2
K 2 ———A, 2 ——(d +f ) — ( 1 ——'ag )~( 1+e)— ——'(1 'ag—)~(f~+d~ )12

'2
2 1 1, 2+ 4—— 2 ——(2as+ —', a9) — a9 2 —— =0 .

J

Similarly, multiplying (3.37) by ep, and adding to (3.39) gives

2 2

K —'l(d +f ) — (1——'ag) ——'e (1——'ag+ —'cg') (f +d )+ 4——(2as+ —'a9) —— =0 .2 2@a 2 2» 2 2 2 2 1, 2 9
12

p
2 4 2 2

pi E' p

(4.8)

(4.9)

The occurrence of the cosmological constant has been
eliminated in (4.8) and (4.9). Moreover, by multiplying
(4.9) by (2—1/e), substracting from (4.8), and making use
of (3.34), (3.36), and (4.5), we can also remove the depen-
dence on K, A, , and (f +d ) and arrive at

T

8a
(1 ,'ag ) (1 —e—)+2c——4a9—2 —— 1 ——1 1 1

E'

=0 . (4.10)
One more relation comes from combining (3.34} and

(3.36):

—A (1—e)(1+—,'eA )

e =—+16m GN,
1

(4.18)

+ A [2e(1——'A) —1][1——'A(l+e)]=0.
2G 2 2

(4.17)

So far we have treated e and 6 as independent parame-
ters. However, in the original five-dimensional Kaluza-
Klein theory the coupling constant is quantized accord-
ing to

~c~, + —,'eag'[1 —
—,'ag(1+e)]

—ea(1 —
—,'ag)[1 —

—,'ag(1+e)]=0 . (4.11)

(4.12)

(4.13)

Defining

def def def

A =ag, C= ~c~g, G= —, ,

Eqs. (4.5), (4.10), and (4.11) may be rewritten as

—2eA (1—
—,
' A ) + A (1—

—,
' A )+CG =0,

where Gz is here the universal gravitational constant,
and 2mB is the circumference of the compact fifth dimen-
sion. The dynamical mechanism responsible for spon-
taneous compactification thus imposes a relation between
the characteristic length of the internal space and the
electric charge. One should expect that in n-dimensional
Kaluza-Klein theories spontaneous compactification lead
also to similar relations between the coupling constants
and the characteristic lengths of the internal space. In
fact, Weinberg ' has shown that for semisimple groups
the coupling constants are given by

8A (1—
—,
' A ) (1—e)+2C

—4(a9g )—2 —— 1 ——=0, (4.14)
1 1 1

E'

2n "}/'16~GK

N;
(4.19)

A(1 —
—,'A) I8(1—e)+ [2e(1—

—,'A) —1] ]

and

—4a9g —2 —— —=0, (4.16)21 1 1

E' E' E'

CG+ A[1 —
—,
' A(1+e)]26

—eA(1 —
—,
' A )[1—

—,'A(1+e}]=0, (4.15)

and substituting C from (4.13) into (4.14)—(4. 15) yields
finally

= 1E=
Q2

(4.20)

where s; is the circumference of the compactified dimen-
son and N; is the winding number associated to the sym-
metry group. When U(l) subgroups of the symmetry
group are present, g; is obtained via a similar calculation
but considering a scalar field in the 4+n dimensions.
The important fact here is that the coupling constant
goes as the inverse of the radius of compactification, so
that if we want the relative strengths between the SU(2)
and U(1) forces to be refiected in the topology of the
compactified sector of the base manifold in our model, it
seems natural to set
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in agreement with the philosophy behind Kaluza-Klein
theories. [Recall that a=pi/pz, and p; (i=1,2) represent
the square of the radii of compactification. Winding
numbers and other numerical constants may be absorbed
in the definition of p;]. With this ansatz not only do the
Yang-Mills and Higgs fields have a geometric origin in
our theory, but so does the relative strength 6 of the
gauge fields, as it is determined, via (4.20), by the "eccen-
tricity" e of the hyperellipsoid into which the internal
space compactifies. Equations (4.16)—(4. 17) now read

A (1—
—,
' A ) [8(1—e)+2A m[2@(1—

—,
' A ) —1]z)

—4a9g —2 —— 1 ——=0, (4.21)21 1 1

E' E'

soid can indeed both be of the order of the Planck length.
To this purpose, substitute (3.34) into (4.8) and make

use of(4. 14) to get

pi= —3&A [1——'A(1+@)]+eA(1——'A )2
2

g K
2

T

—ga9 4——+——2gas 4
2 1

E E

(4.25)

For the range of values of A, 6, and g'a9 in our solutions,
this expression is positive provided g as ().084&
+0.35446, which can clearly be satisfied. In this case,

and
1

P&
Kg

(4.26)

—A (1—e)(1+—'eA )

+ ,'e A—[2e(1——,
' A }—1][1——,

' A(1+@)]=0, (4.22)

where the range of e is constrained to [cf. Eq. (4.7)]
—,
' & e & 1, while the domain of A is [cf. Eq. (4.3)]
0& A &2/(1+a).

There are two obvious solutions to the system (4.21)
and (4.22): (i} e= „A =0—; and (ii) e= 1, A =0, or A =1.
From Eqs. (4.5), (4.3), (4.6), and (4.1), it follows however
that

ds = (x )dx "dx "— (o ' o ) ——(o o' )$'p, v 4 4

(5 'so ') .Pz

4
(4.27)

We cannot, however, as yet identify a with the observ-
able gravitational constant tt4 which appears in the four-
dimensional efFective Lagrangian. To establish this rela-
tionship we examine perturbations to our solutions in-
duced by the metric

e= —,
' a=c=f +d =0 (g%0,g'%0) . (4 23) This implies

Clearly this solution is trivial, since both the gauge and
Higgs fields vanish. We therefore discard it. The subcase
e= 1, A =0 implies by (4.1), (4.5}, (3.34), and (3.35), that
either g =g'=0, i.e., no coupling of the gauge fields, or
a =c =d +f =0, i.e., no gauge nor Higgs fields present.
This solution is therefore also trivial, and we likewise dis-
card it. Finally, the subcase @=1, A =1 implies, also by
(4.1), (4.5), (3.34), and (3.35), that c =d +f =0. The
gauge fields for U(l} and the Higgs fields both disappear
in this case, so that this solution corresponds to a pure
SU(2)-gauge field with the spherical symmetry of the
three-dimensional internal space hypersphere (e= 1}.
Consequently, if we want to find nontrivial, nonlimiting
solutions to (4.21) and (4.22), we need to eliminate the
end points for e and A, i.e., we need to restrict our solu-
tions to the open intervals —,

' & e & 1 and 0 & A & 2/(1+ a).
With the above constraints on e and A, numerical

analysis shows that solutions to the system only exist for

R =R, —2

P&

1
4—— (4.28)

4a)
4——+—'A(d +f )12

p&

X gR 4x. (4.29)

Hence, the quantity to be identified with the inverse
square of the Planck length tt4 (=c /16MGtt=0. 762
X10 cm } is

a4=~+ 4———
—,', l(d +f ),4a&

(4.30)

where R is the ordinary space-time Ricci scalar, and the
only contributions to the perturbed action, linear in R„
are

6= —E(1,1.027) .1
(4.24)

[Within this range for 6, A decreases monotonically
from 0.920 (for 6 =1.001) to 0.300 (for 6=1.0266),
while a9g varies nonmonotonically from —0.925
(G= 1.001) to —0.935 (6 = 1.01) to —0.627
(6 = 1.0266).]

Spontaneous compactification We next use t.he range
of values obtained above for G, a9g, and A, to show that
spontaneous compactification of our base manifold can
actually occur, and that the two radii of the hyperellip-

which from (3.34), (4.25), and our previous results, is of
the same order as tt. Therefore, Eq. (4.26) just says that
p, is of the order of the square of the Planck length; and
since a= 1, so is p2.

It is remarkable that this model not only predicts a
value for the ratio of the SU(2)- and U(1)-coupling con-
stants at the energy where both compactification and the
unification of gravity with electro weak interactions
would occur, but that this is so close to 1, in agreement
with that predicted by the standard model when applying
the renormalization group to it.
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V. CONCLUSIONS

Based on a principal fiber-bundle approach to a
Kaluza-Klein-type theory for the unification of gravita-
tion with the bosonic sector of the standard electroweak
model, we have shown that there exist SU(2)XU(1)-
invariant connections which induce spontaneous
compactification of the original base space M to JK XS .
We have also shown that if the resulting gauge field com-
ponents in the internal space are required to be linear in
the Euclidean coordinates x„x2,x3,x4 of the A in
which S is immersed, then the existence of compactified
solutions requires that quadratic terms in the curvature
occur in the Lagrangian. On the other hand, this restric-
tion on the gauge fields together with the need for R-
type terms (i.e., quadratic in the curvature) in the La-
grangian, lead to very definite predictions for the value of
the ratio of the SU(2)- and U(1)-coupling constants at the
compactification energies (-Planck mass), which are in
close agreement with those resulting from applying the
renormalization group to the standard model. Further-
more, the dimensions of the characteristic parameters in
the metric for S3 turn out to be of the order of the Planck
length, so in this respect our formalism does not present
the inconsistencies which occur in other approaches in
the literature.

It is important to observe, however, that although hav-
ing quadratic Lagrangians is also an advantage from the
point of view of superstring theories, as these terms arise
naturally in the low-energy limit of such theories, the ap-
pearance of R -type terms may pose some problems when
carrying our results over to the quantum realm. Indeed,
it is well known that unless the R -type terms are of the
Gauss-Bonnet form: R&" 'R„„,—4R&"R„„+R,quan-
tum perturbation theory leads inevitably to the appear-
ance of ghosts. Even though it could be argued that we
need not worry about this problem at this stage, since
quantum gravity is nonrenormalizable anyhow, there
might be alternative ways within our formalism to cir-
cumvent the problem by seeking solutions compatible
with Gauss-Bonnet-type Lagrangians. This latter possi-
bility clearly exists, since we still have at our disposal the
more general solutions for the SU(2)XU(1)-invariant
connections found in Sec. II, as well as other options in
the choice of the form of the action of the symmetry
group on the fibers of our bundle space [cf. Eq. (2.26)], or
investigating other admissible topologies such as case (3)
in (2.1), or, lastly, a combination of these options. Work
along these lines is in progress.

As a final remark on the occurrence of Gauss-Bonnet
terms in the Lagrangian, we recall that for spaces of di-
mension ~4, such terms contribute at most with a total
derivative to the Lagrangian density, and may therefore
be dropped out in a variational principle. In our case,
where M=A( XS, requiring a Gauss-Bonnet condition
in the Lagrangian is tantamount to having only Einstein
gravity coupled to Yang-Mills and Higgs fields. More-
over, since we already know that no compactification is
possible in this ease with gauge field solutions linear in
the Euclidean coordinates, it becomes necessary to turn
to the alternatives described above to search for

compactified solutions. The situation is quite difFerent
when considering internal spaces with dimension )4,
such as is the case of Kaluza-Klein theories with grand
unification, where the smallest dimension of the compact
homogeneous space is 7. There the Gauss-Bonnet terms
in the Lagrangian are no longer a total derivative, and
may be determinant to the existence of solutions leading
to spontaneous compactification of an eleven-dimensional
base manifold.

To end this section, we shall make some remarks con-
cerning the cosmological constant. First note that multi-
plying (3.32) by ,'(d +—f) and substituting into (3.37),
yields

1 1 1 2 1 C4————aA — a 1 ——ag (1+2@)—
p) E' 2 p& 2 pl

+ (d2+f2)2
8

2 1 1+ as 4—— +2a9 4——
p2

J

=0. (5.1)

Also, dividing (4.9) by e and adding to (3.38) gives

1 2, 2 c
—,'vp&A — a (1—

—,'ag) (1+2')— ,'p~m (d——+f )
pi pi

+ p (d2+f 2)2
8 1

'2
2 1+ 4—— (a +—'a )=0.8 2 9 (5.2)

We can now combine these last two expressions as fol-
lows: multiply (5.1) by p, and subtract (5.2). The result is

A= 4——+— (d+f )+ 8 ——1 1 1m 2 z a9 5

p& e 4 mp&

(5.3)

It may be clearly seen from (5.3) and our previous re-
sults that A=O(a). Note, furthermore, that this A ap-
pears in the Lagrangian with negative sign and thus may
be used to cancel the positive contributions to the cosmo-
logical constant originating in the same Lagrangian from
changes in the vacuum energy due to phase transitions
from symmetry breaking at the difFerent energy scales, as
well as other contributions from quantum efFects. This
procedure, albeit conceptually unsatisfactory since it re-
quires extreme fine-tuning of the available parameters in
(5.3), ofFers at least a possibility to achieve the small
values required by observation for the "physical" A.

Related to the same subject, but as a difFerent approach
to it, note that the nonminimal coupling term
-R(@&4"),which appears in a natural way in the La-
grangian (1.1) as a result of the requirement of semisym-
metric torsion on the fibers of the bundle, is of the same
form as the one used on compensating field models for
the damping of the cosmological constant. Moreover, by
modifying the condition of semisymmetric torsion, our
formalism could also yield terms of the form
R„„U"U"4~4", which are also being considered for the
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same purpose. Although these models also pose some
so-far unresolved problems, it remains a suggestive fact
that the required terms in the Lagrangian appear natural-

ly in our theory, rather than in the ad hoc fashion by
means of which they are introduced in other ap-
proaches. '

In the Introduction we made some general remarks re-
garding the problems associated with the incorporation
of fermions in Kaluza-Klein-type theories. Though this
is beyond the scope of the present work, we nevertheless
wish to outline the general procedure that is currently be-
ing investigated by our group.

First, massless gravitinos are obtained from a locally
supersymmetrized version (N= 1) of the ground state of
the model described in paper I. These constitute a
Rarita-Sch winger spin- —,

' field %„(where
)(t=0, 1, . . . , n —1) is a vector index while a is a spinor
index). Upon compactification of the extra dimensions of
the base space, the p ~ 4 vector components would be-
come indices of an internal symmetry and would thus
carry spin zero, that is, from the point of view of the
four-dimensional spacetime the gravitino components

with )M=O, . . . , 3 are spin- —,
' fields, while the com-

ponents with p=4, . . . , n —1 are spin- —,
' fields. One

would then go on to dimensionally reduce the theory by
harmonically expanding the four-dimensional spin com-
ponents on the extra dimensions, i.e., by letting

y qt(cr+ )k(x ) U(ek)k(y)
ok

(5.4)
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where U' *)"(y) are spinor harmonics in the internal di-
mensions, while the coefficients )p( *'"(x) represent the
fermion fields in four-dimensional spacetime. The labels
in (5.4) are such that o specifies the representation of the
gauge group, k labels the components of the representa-
tion tr, and the superscripts (2) denote the chirality of
the states.

Be regarding the compactifying gauge fields, though
geometric in origin, as elementary fields in the base space,
one is free to consider small oscillations resulting from
their interaction with the dimensionally reduced fermion-
ic fields, and in particular search for the presence of zero
modes of the mass operator 8'" ' in a complex repre-
sentation, following an approach similar to that used by
Horvath et al.
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