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DYNAMICS OF SINGULAR COMPLEX ANALYTIC VECTOR FIELDS

WITH ESSENTIAL SINGULARITIES II

ALVARO ALVAREZ–PARRILLA AND JESÚS MUCIÑO–RAYMUNDO

Abstract. LetX be a singular complex analytic vector field on the Riemann sphere described
by two polynomials P (z), E(z) of degrees r and d respectively; in such way that X has poles

at the roots of P (z), an isolated essential singularity at infinity arising from the exponential

of E(z) and no zeros on the complex plane. These vector fields are transcendental of 1–order
d. We study the families of the above singular complex analytic vector fields X. For each

pair (r, d), with r + d ≥ 1, the family of these vector fields is an open complex manifold
of dimension r + d + 1. Our goal is the geometric description of the vector fields X, in

particular the behaviour of its singularity at infinity. We first exploit that each vector field

X has a canonical associated global singular analytic distinguished parameter (the function
determined by the integral of the corresponding 1–form of time). Secondly, we develop in full

detail the natural one to one correspondence between: vector fields, global singular analytic

distinguished parameters and the Riemann surfaces of these distinguished parameters. These
Riemann surfaces are biholomorphic to C and have d logarithmic branch points over infinity, d

logarithmic branch points over finite asymptotic values and r finitely ramified branch points.

As a valuable tool, we introduce (r, d)–configuration trees, which are weighted directed rooted
trees. An (r, d)–configuration tree completely encodes the Riemann surface of a vector field

X, including its associated singular flat metric.

Our main result states that the (r, d)–configuration trees provide local holomorphic pa-
rameters, for the corresponding family of vector fields. Explicit geometrical and dynamical

information is supplied by (r, d)–configuration trees. In fact, given a vector field in the family,
the phase portrait of the associated real vector field on the Riemann sphere is decomposed into

real flow invariant regions, half planes and strips. The structural stability (under perturbation

in the corresponding family) of the phase portrait of the real vector field, is characterized by
using (r, d)–configuration trees. The number of (orientation preserving) topologically classes

of real phase portraits is counted in terms of certain conditions of the discrete parameters

(r, d). The germ of the isolated essential singularity of the vector field X is described as a
combinatorial word consisting of hyperbolic, elliptic, parabolic and (suitable) entire angular

sectors at infinity. Our work has its roots in the seminal study of R. Nevanlinna.

1. Introduction

Motivated by the nature of meromorphic and essential singularities of complex analytic vector
fields on Riemann surfaces [36], [37], [25], [1], [2], we study the families

(1) E (r, d) =

{
X(z) =

1

P (z)
eE(z) ∂

∂z

∣∣∣ P,E ∈ C[z], P monic,
degP = r, degE = d, r + d ≥ 1

}
,

of vector fields on the Riemann sphere Ĉ, having r poles on C and an isolated essential singularity
at∞, for d ≥ 1. The appearance of poles is one of the main new features, respect to the previous
work in [1].
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Each X ∈ E (r, d) is provided with a global singular analytic distinguished parameter

(2) ΨX(z) =

∫ z

P (ζ)e−E(ζ)dζ : Cz −→ Ĉt,

which in turn has an associated Riemann surface

(3) RX = {(z,ΨX(z))},
whose origin can be traced back to the seminal work of R. Nevanlinna [39], [40].
There is a bijective correspondence, induced by ΨX , between

(4) X ∈ E (r, d) ←→


branched coverings π2 : RX −→

(
Ĉt, ∂∂t

)
having

d logarithmic branch points over ∞,
d logarithmic branch points over {aσ} ⊂ Ct,
0 ≤ n ≤ r finitely ramified branch points over {p̃ι} ⊂ Ct

 ,

where π2(z, t) = t. Along this work, (Ĉz, X) denotes a pair, Riemann sphere and a singular
complex analytic vector field;

(
(Cz, z0), X

)
denotes a germ of a singular analytic vector field X

on (Cz, z0). The work of M. Taniguchi [45], [46] is a keystone for understanding the right side
of (4). Analogous correspondences have been previously used in [1], [2], [3]. The function ΨX is
single valued and (ΨX)∗X = ∂

∂t provides a global flow box for X, see Lemma 2.4. There exists a

biholomorphism Cz ∼= RX . The Riemann surface RX is described by gluing half planes H2
and

finite height strips {0 ≤ Im (t) ≤ h}, see Lemma 5.9.
Three natural cases arise from the values (r, d):

• X ∈ E (r, 0) has r poles on Cz and ΨX is a polynomial map. See W. M. Boothby [15], [16] for
pioneering work and S. K. Lando et al. [30] chapters 1 and 5 for advances in the combinatorial
direction.

• X ∈ E (0, d) has an isolated essential singularity at ∞ ∈ Ĉz, no zeros or poles. ΨX is an
infinitely ramified covering map as in (4). See R. Nevanlinna [39] chapter XI, M. Taniguchi [45],
[46]; and [1].

• X ∈ E (r, d), r, d ≥ 1, has r poles on Cz and an isolated essential singularity at ∞ ∈ Ĉz. ΨX

is an infinitely ramified covering map as in (4).

Obviously, E (r, d) is an open complex submanifold of Cr+d+1, see [2]. However for the study
of analytical, geometrical and topological aspects of X and ΨX , “geometrical parameters” that
shed light on the description of the vector fields are desirable. Recall for instance the role of
the critical value map {f(z)c = z2 + c} 7→ c, as dynamical parameters for the Mandelbrot set of
the quadratic family; our search is for parameters with analogous properties. In our case, even
though the map{

coefficients of P (z), E(z) from X
}
7−→

{
critical and asymptotic values
{p̃ι} ∪ {aσ} ⊂ Ct of ΨX

}
is holomorphic, the critical and asymptotic values of ΨX are insufficient to completely describe
the family E (r, d). See Example 8.5, Figure 13 for an instance in E (0, 3) and Corollary 14.1.

The classical notion of divisor for X ∈ E (r, 0), as a meromorphic section of the tangent line

bundle T Ĉz, provides a finite collection of pairs; poles and zeros with their orders. The divisor
characterizes the vector field up to multiplicative factor, see Lemma 4.2. However, for d ≥ 1 the
essential singularity of X at∞ encodes the information related to the exponential. Following the
idea of divisor, for the transcendental case d ≥ 1, we introduce a non–Hausdorff compactification
of Cz with 2d copies of ∞. This allows us to obtain a finite collection of triplets; branch points
in (4) with their ramification index. The triplets play the role of the divisor for X ∈ E (r, d), see
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§4.2 and Definition 5.1. An advantage is that the information contained in the triplets includes
the poles of X, the critical and asymptotic values of ΨX .

Once again, the information contained in the triplets is not enough for a complete description
of X. With this in mind, in Definition 7.7, we introduce (r, d)–configuration trees ΛX which
are weighted directed rooted trees that completely encode the branched Riemann surfaces RX ,
for X ∈ E (r, d). They provided explicit “geometrical parameters”, which allows us to obtain a
complete global analytical and geometrical description for X.
The vertices of ΛX are the triplets associated to the branch points in RX , over Ct as in (4),
including their ramification index.
The weighted edges of ΛX provide us with the relative position of the branch points on RX , as
follows.
1) Each edge specifies which pair of branch points share the same sheet of RX .
2) The weight of the edge tells us the relative number of sheets of RX , we must go “up or down”
on the surface in order to find another sheet containing other branch points.

Letting

E (r, d)∗
.
=

{
X ∈ E (r, d)

∣∣∣ RX has at least two branch points over different
critical and asymptotic values of ΨX

}
,

we have the following result.

Main Theorem ((r, d)–configuration trees as parameters for E (r, d)).
For each pair (r, d), r + d ≥ 2, there is an isomorphism, as complex manifolds of dimension
r + d+ 1, between E (r, d)∗ and equivalence classes of (r, d)–configuration trees with at least two
vertices, i.e.

E (r, d)∗ ∼=
{[

ΛX
] ∣∣ ΛX is a (r, d)–configuration tree with at least two vertices

}
.

The vector fields avoided in E (r, d)∗ are of two kinds; those in E (0, 1) and those in E (r, 0)
with a unique pole. In §8 explicit examples of ΛX can be found, while in §6 a digression on
some of the difficulties encountered in the proof of the Main Theorem, are presented. Moreover,
these difficulties require the consideration of classes [ΛX ] of (r, d)–configuration trees. Roughly
speaking, the description of the classes originates from a re–labelling of the vertices of ΛX , see
Definition 9.5. The proof is presented in §9, with the description of the equivalence relation and
their classes [ · ] in §9.4. Our Main Theorem extends results of [1] §8.5 in the families E (0, d), to
the families E (r, d) with r + d ≥ 1.

We decode the information at ∞, that is we shall answer the following question:

How can we describe the essential singularity of X ∈ E (r, d) at ∞ ∈ Ĉz?

The classical idea is to look at the germ at infinity
(
(Ĉz,∞), X

)
and try to split into a finite

union of hyperbolic H, elliptic E, parabolic P and entire E angular sectors, this last based upon
ez ∂∂z at infinity; see Equation (104) and Figure 21. Thus obtaining a cyclic wordWX associated

to
(
(Ĉz,∞), X

)
. Recall the work of I. Bendixon, A. A. Andronov and F. Dumortier et al. (see

[4] p. 304, [5] p. 84 and theorem 5.1 in [1]).
For the essential singularity of X at ∞ the analytic/topological nature of the invariants of X

is certainly a novel aspect, see §14. Recall the following properties:
• The germ at infinity

(
(Ĉz,∞), X

)
is a local analytic invariant of X under biholomorphism

germs of (Ĉz,∞), and also under complex affine transformations Aut(C) ⊂ PSL(2,C) of Cz.
• The cyclic word WX = W1W2 · · ·Wk is a local topological invariant of the phase portrait of

Re (X) under local homeomorphisms of (Ĉz,∞) preserving the orientation.
The following theorem answers the above posed question, as well as the dynamical description
of X and its associated real vector field Re (X).
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Theorem (Dynamical applications). Let be X ∈ E (r, d).
1) The cyclic word WX associated to X at ∞ is recognized as

(5)
(
(Ĉz,∞),Re (X)

)
7−→ WX = W1W2 · · ·Wk, Wι ∈ {H,E, P, E},

with exactly 2d letters Wι = E.

2) The cyclic word WX is a topological invariant of the germ
(
(Ĉz,∞),Re (X)

)
.

3) Let
(
(Ĉz,∞), Y

)
be a singular complex analytic vector field germ, the following are equivalent:

• The germ
(
(Ĉz,∞), Y

)
is analytically equivalent to the restriction of a vector field X in

E (r, d) for d ≥ 1.

• The cyclic word WY of the germ
(
(Ĉz,∞),Re (Y )

)
satisfies that

i) the residue of the 1–form of time ωY of Y is Res(ωY ,∞) = 0,
ii) the Poincaré–Hopf index of Y is PH(Y, 0) = 2 + r,

iii) the word WY has exactly 2d ≥ 2 entire sectors E.
4) The phase portrait of Re (X) is structurally stable (under perturbations in E (r, d)) if and only

if
i) X has only simple poles,

ii) all edges of ΛX have non–zero imaginary component.
5) The number of (orientation preserving) topologically classes of phase portraits

{Re (X) | X ∈ E (r, d)} on Ĉz
is infinite if and only if

(r, d) ∈
{

(r ≥ 2, 1), (r ≥ 1, 2), (r ≥ 0, d ≥ 3)
}

.

For the accurate assertions and proofs, see Theorem 12.2, Theorem 11.2 and Theorem 11.3,
respectively. A stronger version of the decomposition of the phase portrait into Re (X)–invariant
components, can be found as Theorem 10.1.

Throughout this work, the objects previously described are related via the diagram

X ∈ E (r, d)

[ΛX ] (r, d)–soul
�
����

�	
-�
@

@@I@
@R

−→
(
(Ĉz,∞), X

)︸ ︷︷ ︸
local analytic

invariant of X at ∞

−→ WX = W1W2 · · ·Wk︸ ︷︷ ︸
local topological

invariant of Re (X) at ∞

.

The soul of X, Definition 9.7, is the smallest flat Riemann surface inside RX that encodes all the
combinatorial information of X. The analogous idea appears in Riemannian geometry [18] as
the soul, and in vector fields [37] §5.2 as the dynamical locus. Summing up, the Main Theorem

provides the global analytic bijection, on Ĉ, between

• a vector field X ∈ E (r, d),
• a class [ΛX ] of (r, d)–configuration trees, and
• an (r, d)–soul.

Clearly, the germ
(
(Ĉz,∞), X

)
, does not determine the class of X in E (r, d)/Aut(C), see

Remark 12.1.
For E (r, d), the topological classification of functions ΨX is coarser than the topological

classification of phase portraits of vector fields Re (X), see Remark 11.4. In particular, the

Riemann surface RX admits an infinite number of half planes H2
if and only if d ≥ 1. However,

following R. Nevanlinna, Example 13.2 provides a Riemann surface admitting a decomposition



DYNAMICS OF VECTOR FIELDS WITH ESSENTIAL SINGULARITIES II 5

in an infinite number of half planes, where the corresponding vector field does not belong to any
E (r, d).

The study of complex functions and vector fields under geometric tools, in our context combi-
natorial with complex weights, is possible due to the richness of their geometric structure. The
roots of which goes back to H. A. Schwarz [42] and F. Klein [28]. Our Main Theorem provides
a geometrical characterization of the vector fields X, functions ΨX and Riemann surfaces RX
originated from the families E (r, d). It enhances the work of A. Speiser [43], R. Nevanlinna
[39], [40] p. 291 and G. Elfving [20] on the classification, via line complexes, of simply con-
nected Riemann surfaces RX related to meromorphic functions ΨX . M. Taniguchi [45], [46] and
K. Biswas et al. [12], [13], [14] develop analytic aspects of the functions ΨX , for d ≥ 1. More
recently, the study of parameter spaces for complex analytic vector fields is a current subject of
interest; e.g. J. Muciño–Raymundo et al. [37], [36] in the rational case; B. Branner et al. [17],
M.–E. Fŕıas–Armenta et al. [23], K. Dias et al. [19], M. Kilmeš et al. [27] in the polynomial
case.

Some of the proofs presented are based upon technical results of [1]. The minimal previ-
ous results, evidence and examples are provided in this work for a self contained reading and
understanding.

In the combinatorial framework recall the fruitful ideas of Bely̆ı functions and dessin’s d’enfants,
promoted by A. Grothendieck; (r, d)–configuration trees follow this, see §13.4.1. The extension of
these ideas to E (r, d) will appear elsewhere. A clear topological description of RX as a ramified
covering, see (4), is missing for the more general vector fields Y (z) = (Q(z)/P (z))eE(z) ∂

∂z having
zeros, it remains for future projects. The possible construction of effective local parameters for
E (r, d), avoiding the equivalence classes in {[ΛX ]} are discussed in the Epilogue §14.

2. Different facets for singular analytic vector fields X ∈ E (r, d)

2.1. Vector fields, differential forms, orientable quadratic differentials, flat metrics,
distinguished parameters, Riemann surfaces. Let

(6) X(z) =
1

P (z)
eE(z) ∂

∂z
∈ E (r, d), degP = r, degE = d, r + d ≥ 1,

be a singular complex analytic vector field in the family (1). The polynomials describing it can
be expressed as

(7)
P (z) = (z − p1) · · · (z − pr) .

= zr + b1z
r−1 + · · ·+ br,

E(z) = µ (z − e1) · · · (z − ed) .
= µ

(
zd + c1z

d−1 + · · ·+ cd
)
, µ ∈ C∗.

Note that if d = 0 then P (z) is non-necessarily monic, so in this case, let

(8) λ
.
= eE(z) = eµc0 ∈ C∗.

We denote by

(9) P .
= {p1, . . . , pι, . . . , pr}

the set of poles of X, allowing repetitions.

A trajectory of X is a maximal z(τ) : (a, b) ⊆ R −→ Ĉz, where a, b ∈ R∪{±∞}, a < b, satisfying

that dz(τ)
dτ = Re (X(z(τ))). Equivalently, z(τ) is a trajectory of the associated real vector field

Re (X).
The associated singular analytic differential 1–form,

(10) ωX = P (z) e−E(z)dz,

is such that ωX(X) ≡ 1, also called the 1–form of time of X.
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A singular analytic quadratic differential Q on Ĉz is orientable if it is globally given as Q = ω⊗ω,

for some singular analytic differential form ω on Ĉz. In our case we have the quadratic differential,

(11) QX = ωX ⊗ ωX = P 2(z) e−2E(z)dz2.

The singular horizontal trajectories of QX on Cz\P are equivalent to the trajectories of the real
vector field Re (X), see for instance equation (2.2) of [1].
Since ωX is holomorphic on Cz, the local notion of distinguished parameter can be extended as
below (see [29], [44] for the local case).

Definition 2.1. Let X ∈ E (r, d), the map

ΨX(z) =
∫ z
z0
P (ζ) e−E(ζ)dζ : Cz −→ Ĉt

is a global distinguished parameter for X (note the dependence on z0 ∈ Cz).

The singular flat Riemannian metric gX with singular set P ⊂ Cz on Cz\P is defined as the
pullback under ΨX : (Cz\P, gX) → (Ct, δ), where δ is the usual flat Riemannian metric on Ct.
The singularities of gX at pι ∈ P are cone points with angle (2νι + 2)π, where −νι ≤ −1 is
the order of the pole pι of X. The trajectories of Re (X) and Im (X) are unitary geodesics in
(Cz\P, gX).
The graph of ΨX

RX = {(z, t) | t = ΨX(z)} ⊂ Cz × Ĉt
is a Riemann surface. Let π1 and π2 be the projections from RX to Cz and Ĉt, respectively.

The flat metric on
(
RX , π∗2( ∂∂t )

)
is induced by the usual metric on

(
Ĉ, δ

)
, equivalently

(
Ĉt, ∂∂t

)
,

via the projection of π2. Since π1, as in Diagram 12, is an isometry.

Lemma 2.2. The following diagram commutes

(12)

(
Ĉz, X

) (
RX , π∗2( ∂∂t )

)
�

π1

?
π2

HHH
HHH

HHj
ΨX (

Ĉt, ∂∂t
)
.

Moreover, ΨX is single valued, by removing ∞ ∈ Ĉz. The projection π1 is a biholomorphism
between (

RX , π∗2( ∂∂t )
)

and (Cz, X).
�

In what follows, we shall use the abbreviated form RX instead of the more cumbersome(
RX , π∗2

(
∂

∂t

))
,

see Figures 7, 8, 11 and 14.

In Diagram 12 we abuse notation slightly by saying that the domain of ΨX is Ĉz. This is a
delicate issue.

Remark 2.3. By integrating along asymptotic paths associated to asymptotic values of ΨX at

the essential singularity∞ ∈ Ĉz, the choice of initial z0 and end points z for the integral defining

ΨX can be relaxed to include ∞ ∈ Ĉz as end point, see Definition 3.4 and Figure 2.

Lemma 2.4. 1. The map ΨX is a global flow box of X, i.e.
(ΨX)∗X = ∂

∂t on the whole Cz.
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2. For fixed initial condition z0 ∈ Cz\P , the maximal (under analytic continuation) time
domain of the complex flow ϕ of X is provided by RX , that is

ϕ(z0, · ) : RX\ ∪pι∈P
{

(pι, p̃ι)
}
−→ Cz\P,

is a maximal complex trajectory solution.

Proof. For assertion 2, note that the punctured RX\ ∪pι∈P
{

(pι, p̃ι)
}

is a translation Riemann
surface, following [48] §3.3 and [35]. Moreover, RX is provided with singular horizontal and
vertical foliations Re

(
π∗2( ∂∂t )

)
, Im

(
π∗2( ∂∂t )

)
, of real and imaginary time. In the spirit of Riemann

surface theory, the complex trajectory ϕ(z0, · ) .
= π1( · ) is holomorphic and single valued function

of the variable in this punctured Riemann surface. �

2.2. The singular complex analytic dictionary.

Proposition 2.5 (Dictionary between the singular analytic objects originating fromX ∈ E (r, d),
[1] p. 137). The following diagram describes a canonical bijective correspondence between its
objects

X(z) = 1
P (z) eE(z) ∂

∂z

ωX(z) = P (z) e−E(z)dz ΨX(z) =
z∫
P (ζ) e−E(ζ)dζ

(
(C, gX),Re (X)

)
.

��	�
�� @@I@@R

@
@I@@R ��	�

��

QX = P 2(z) e−2E(z)dz2
(
RX , π∗2( ∂∂t )

)?

6

?

6
(13)

�

Remark 2.6. The correspondence (13) must be understood up to choice of initial point z0 for
the integral defining the global distinguished parameter. Thus, ΨX and ΨX + t0 are considered
the same object.

3. Analytic characteristics of X ∈ E (r, d)

3.1. Order of growth at a singular point of X. In the classic literature, the order of growth
or growth order at ∞ is defined for entire functions, these invariants extend for vector fields, see
[1] §4.1 and references therein. In the present work, we only require the use of the 1–order.
Let ψ : (C\{0}, 0)→ C be a germ of a complex analytic function with an isolated singularity at
z = 0; i.e. ψ has a pole or an isolated essential singularity at the origin. For ε > 0, let

Mε(ψ) = max|z|=ε{log |ψ(z)|}.
When the number ρ ∈ R determined by

ρ(ψ) = lim supε→0
log(Mε(ψ))
− log(ε)

exists, it is called the 1–order of growth of ψ at 0.

Definition 3.1. Let
(
(C, 0), X(z) = f(z) ∂∂z

)
be a germ of a singular analytic vector field, with

0 an isolated singularity of X. The 1–order of X at 0 is the corresponding 1–order of f , i.e.
ρ(X) := ρ(f). Analogously, if ω(z) = dz/f(z) is a germ of a differential form with an isolated
singularity at 0, then ω inherits the 1–order from that of the function 1/f .

Lemma 3.2 ([1] p. 144). If X = 1
P (z) eE(z) ∂

∂z ∈ E (r, d), then at z =∞,

X has 1–order ρ(X) = deg(E(z)) = d.
In this case the 1–order of ω and ΨX agree and is the negative of the 1–order of X. �
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3.2. Asymptotic values of ΨX . Asymptotic values for meromorphic functions in the classical
setting appear in many instances, see [26] p. 66, [39] pp. 298–303. We follow W. Bergweiler et
al. [10], essentially verbatim from Definition 3.3 to Definition 3.6, below.

Let Ψ : Cz −→ Ĉt be a meromorphic function, a priori not related to some vector field. The
inverse function Ψ−1 can be defined on a Riemann surface which is conformally equivalent to C
via Ψ−1. We want to study the singularities of Ψ−1. This can be done by adding to Cz some
ideal points and defining neighborhoods of these points.

Definition 3.3. Take a ∈ Ĉt and denote by D(a, ρ) the disk of radius ρ > 0 (in the spherical
metric) centred at a. For every ρ > 0, choose a component U(ρ) of Ψ−1(D(a, ρ)) in such a
way that ρ1 < ρ2 implies U(ρ1) ⊂ U(ρ2). Note that the function U : ρ → U(ρ) is completely
determined by its germ at 0.
Two possibilities can occur for the germ of U :
1) ∩ρ>0U(ρ) = {z0}, z0 ∈ Cz. In this case a = Ψ(z0).

Moreover, if a ∈ Ct and Ψ′(z0) 6= 0, or a =∞ and z0 is a simple pole of Ψ, then z0 is called
an ordinary point.
On the other hand, if a ∈ Ct and Ψ′(z0) = 0, or if a =∞ and z0 is a multiple pole of Ψ, then
z0 is called a critical point and a is called a critical value. We also say that the critical point
z0 lies over a.

2) ∩ρ>0U(ρ) = ∅. Then we say that our choice ρ → U(ρ) defines a transcendental singularity
of Ψ−1, and that the transcendental singularity U lies over a.
For every ρ > 0, the open set U(ρ) ⊂ Cz is called a neighborhood of the transcendental
singularity U . So for zk ∈ Cz, we say that zk → U if for every ρ > 0 there exists k0 such that
zk ∈ U(ρ) for k ≥ k0.

Definition 3.4. If U is a transcendental singularity of Ψ−1 then a is an asymptotic value of Ψ,
which means that there exists an asymptotic path α(τ) : (0,∞) −→ Cz tending to ∞ such that
limτ→∞Ψ(α(τ)) = a.

In particular, it follows that every neighborhood U(ρ) of a transcendental singularity U is un-
bounded.
If a is an asymptotic value of Ψ, then there is at least one transcendental singularity over a.
Certainly there can be many different transcendental singularities as well as critical and ordinary
points over the same point a.

Definition 3.5. A transcendental singularity U over a is called direct if there exists ρ > 0 such
that Ψ(z) 6= a for z ∈ U(ρ), this is also true for all smaller values of ρ.
Moreover, U is called indirect if it is not direct, i.e. for every ρ > 0 the function Ψ takes the
value a in U(ρ), in which case the function Ψ takes the value a infinitely often in U(ρ).

Definition 3.6. The transcendental singularity U is a logarithmic branch point of Ψ−1 over
a, if Ψ : U(ρ) −→ D(a, ρ)\{a} is a universal covering for some ρ > 0. The (unbounded)
neighborhoods U(ρ) are called exponential tracts.

The simplest case of a direct singularity is a logarithmic branch point, see Example 4.1.

3.3. Poles and zeros of X. When we apply the above definitions to germs of the distinguished
parameter ΨX , centered at the isolated singularities {p1, . . . , pr,∞} of X ∈ E (r, d), three cases
appear; poles, zeros and essential singularities. The local analytic normal forms of poles and
zeros of X are well known. Figure 1 shows their real phase portraits, for further details see [36],
[1] p. 133 and examples 4, 5 and 6 in [3].
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Remark 3.7. Analytic normal form for poles. Let pι ∈ P be a pole of X, having order1

−νι ≤ −1. This corresponds to a critical point of ΨX , thus a finite covering

ΨX : U(ρ) −→ D(p̃ι, ρ)\{p̃ι},
where

p̃ι = Ψ(pι) is the critical value.

Furthermore, because of the local analytic normal forms, up to local biholomorphism

(14) X(z) =
1

(z − pι)νι
∂

∂z
and ΨX(z) =

(z − pι)νι+1

νι + 1
on (C, pι).

The local phase portrait of Re (X) at pι has 2(νι + 1) hyperbolic sectors. See Figure 1.

Remark 3.8. Analytic normal form for zeros. The point ∞ ∈ Ĉz is a zero for X ∈ E (r, d) if
and only if r ≥ 1 and d = 0. In this case ∞ is the unique zero of X and has order s

.
= r+ 2 ≥ 3.

ΨX is a polynomial and ∞ is a pole of it. Using {w} as a local chart at ∞, the local analytic
normal forms of X and ΨX on (Cw, 0) are

(15) X(z) = ws
∂

∂w
and ΨX(z) =

w1−s

(1− s) , s ≥ 3.

The local phase portrait of Re (X) at ∞ has 2(s− 1) elliptic sectors. See Figure 1.

1

z2
∂

∂z

1

z3
∂

∂z

1

z

∂

∂z

z2

1 + λz

∂

∂z

z3

1 + λz2
∂

∂z

z

λ

∂

∂z

(λ) = 0 (λ) < 0

(λ) > 0Re

ReRe

Figure 1. Normal forms of X and phase portraits of Re (X) at poles or zeros
in z = 0. Top row: for a pole of order −νι ≤ −1, the phase portrait has 2(νι+1)
separatrices arriving or leaving the pole and 2(νι+1) hyperbolic sectors. Bottom
row: simple zeros and zeros of order s ≥ 2, here λ = Res(ωX , 0). For simple
zeros, the phase portrait is the pullback via ΨX(z) = λ log z of the constant
vector field Y (t) = ∂

∂t . For s ≥ 2 the trajectories of Re (X) form a flower with
2(s− 1) elliptic sectors. In our case X ∈ E (r, 0), note that λ = 0 and s ≥ 3.

1We convene that the order −νι of a pole pι is to be negative.
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Recalling (8) and summing up, we get the following.

Proposition 3.9 (Topological properties of X ∈ E (r, 0)). Let

X(z) =
λ

P (z)
∂
∂z ∈ E (r, 0), degP = r ≥ 1, λ ∈ C∗,

be a rational vector field, the following properties hold.

1) X has a zero of order r + 2 ≥ 3 at ∞ ∈ Ĉz.
2) The local phase portrait of Re (X) at ∞ has 2(r + 1) elliptic sectors.
3) X has a pole of order −νι at pι (a zero of P (z) of order νι).
4) The local phase portrait of Re (X) at pι has 2(νι + 1) hyperbolic sectors.
5) The global phase portrait of X has a decomposition into

• 2(r + 1) half planes (H2

±,
∂
∂t ) and

• M finite height horizontal strips of the form
(
{0 ≤ Im (t) ≤ h}, ∂∂t

)
, where 0 ≤ M ≤ r − 1

and each h > 0.

Proof. Assertion (5) follows by a topological description of the separatrices of Re (X) from the
saddle points pι; see Figure 10 for examples of the assertions (4)–(5), in the case of three simple
poles. More detail about the decomposition in (5), will be provided in Lemma 5.9. �

A simple example that will be used throughout follows.

Example 3.1. Consider the vector field

(16) X(z) =
λ

(z − p1)r
∂

∂z
∈ E (r, 0), r ≥ 1,

and its distinguished parameter

(17) ΨX(z) =
1

λ

z∫
z0

(ζ − p1)rdζ =
1

λ(r + 1)

(
(z − p1)r+1 − (z0 − p1)r+1

)
.

the pole p1 of X is the critical point of ΨX and its critical value is

(18) p̃1 = ΨX(p1) = − 1

λ(r + 1)
(z0 − p1)r+1.

See also Example 8.2. The vector field in Equation (16) is such that, RX has only one branch
point. Whence, the subfamily of these vector fields is in E (r, d)\E ∗(r, d), which are forbidden in
the Main Theorem.

4. Branch points of RX
4.1. Local ramification data for RX . For d ≥ 1, the point ∞ ∈ Ĉz is an isolated essential
singularity of

X(z) =
1

P (z)
eE(z) ∂

∂z
,

and the distinguished parameter ΨX , belongs to the family

(19) SFr,d =

{
ΨX(z) =

∫ z

z0

P (ζ) e−E(ζ)dζ
∣∣∣ P,E ∈ C[z], degP = r, degE = d

}
,

of structurally finite entire functions of type (r, d), see [45]. We recall the simplest object.
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Example 4.1. Consider the vector field

(20) X(z) = eµ(z+c1) ∂

∂z
∈ E (0, 1)

and its corresponding distinguished parameter

(21) ΨX(z) =
1

µ

∫ z

z0

e−µ(ζ+c1)dζ =
1

µ

(
e−µ(z0+c1) − e−µ(z+c1)

)
,

with µ ∈ C∗, c1 ∈ C as in (7). Of course ∞ ∈ Ĉz is an isolated essential singularity of both.
Moreover, ΨX has two asymptotic values

(22) a1 =
1

µ
e−µ(z0+c1) ∈ Ct and a2 =∞ ∈ Ĉt

with exponential tracts the half planes
U1(ρ) = {z ∈ Cz | Re (µz) > ρ} and U2(ρ) = {z ∈ Cz | Re (µz) < −ρ},

respectively. The multivalued function

Ψ−1
X (t) =

1

µ
log

(
− eµ(z0+c1)

t µ eµ(z0+c1) − 1

)
− c1

has two logarithmic branch points: one over the finite asymptotic value a1 and the other over
the asymptotic value a2 =∞. Note that Equation (20) defines a forbidden stratum in the whole
family E (r, d) of the Main Theorem.

In order to determine the Riemann surface RX precisely, one needs the knowledge of the
branch points under π2

(23) {(za, ta)} ⊂ RX , za ∈ {p1, p2, . . . , pn,∞}, ta
.
= ΨX(za), 0 ≤ n ≤ r.

The subindex a will be very useful in several constructions. The next result clearly explains the
singularities of Ψ−1

X .

Lemma 4.1 (The existence of finitely ramified and logarithmic branch points). Let

ΨX : Cz → Ĉt
be a structurally finite entire function of type (r, d). Then
1) ΨX has r critical values {p̃ι} ⊂ Ct (counted with multiplicity),
2) Ψ−1

X has d direct singularities corresponding to d logarithmic branch points over d finite
asymptotic values {aσ} ⊂ Ct of ΨX , and

3) Ψ−1
X has d direct singularities corresponding to d logarithmic branch points over ∞ ∈ Ĉt.

Furthermore, Ψ−1
X has no indirect singularities.

Proof. Case (r, d) with d ≥ 1 can be found as lemma 8.4 in [1] with a proof that relies heavily
on the work of M. Taniguchi [45], [46]. �

4.2. Branch point enumeration. As motivation, let T Ĉz be the holomorphic tangent bundle

of Ĉz. ForX ∈ E (r, 0), the divisor of the meromorphic section X : Ĉz −→ T Ĉz is the assignment2

(24) X 7−→ (∞, r + 2) ∪
{

(pι,−νι)
}n
ι=1

,

where
∑n
ι=1 νι = r and n ≤ r, the equality holds if and only if all the poles of X are simple.

The fact that zeros and poles determine a meromorphic vector field on Cz up to scalar factor

is a very useful result for meromorphic vector fields on Ĉz. It is a result from the Brill–Noether
theory in algebraic geometry, or the Poincaré–Hopf theory in differential equations.

2A formal sum of pairs (p, ν) denoting a point in Ĉz and its order in Z∗, positive for a zero of the vector field,

negative for a pole.
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Lemma 4.2. Let νj , νι ∈ N, a divisor{
(qj , νj)

}s
=1
∪
{

(pι,−νι)
}n
ι=1
⊂ Ĉz × Z∗

determines a non-empty family of meromorphic vector fields {λY | λ ∈ C∗} on Ĉz if and only if∑s
j=1 νj −

∑n
ι=1 νι = s− r = 2.

�

We would like to extend Lemma 4.2 to the case of X ∈ E (r, d), d ≥ 1. Of course the divisor

(24) is not well defined since X is not meromorphic on Ĉz.
In order to accomplish this, an accurate enumeration of the branch points {(za, ta)} ⊂ RX in
(23) is required. In what follows, the reader might find it helpful to follow along with Figures
7–8, 11–17 in §8.

For r ≥ 1, the point za is a pole pι ∈ Cz of X having order −νι ≤ −1 if and only if its image
p̃ι = ΨX(pι) ∈ Ct is a critical value of ΨX . Moreover (pι, p̃ι) ∈ RX is a finitely ramified branch
point (under π2) with ramification index νι + 1 ≥ 2. Recall (14).
Enlarging the pairs in the divisor, we enumerate the corresponding finitely ramified branch points
using triplets

(25)
{
ι
.
= (pι, p̃ι,−νι)

}n
ι=1
⊂ RX , with order − νι ≤ −1 and

n∑
ι=1

νι = r.

Abusing notation, we say that the triplets are in RX .

For d ≥ 1, after enumerating the poles as above, we also need to consider the logarithmic
branch points of Ψ−1

X in RX ⊂ Cz × Ct. We shall use two compactifications: the usual one for

Ct, namely the Riemann sphere Ĉt, and a non–Hausdorff one for Cz as follows.

Definition 4.3. The non–Hausdorff closure

(26) Cz
.
=
((

Ĉ× {1}
)
t
(
Ĉ× {2}

)
t · · · t

(
Ĉ× {2d}

))/
∼

is the sphere with 2d ≥ 2 infinities, that is the disjoint union of 2d copies of the Riemann sphere

Ĉ with the equivalence relation (z, σ) ∼ (z, η) for all σ, η ∈ {1, . . . , 2d} when z 6=∞.

The point ∞ ∈ Ĉz is an isolated essential singularity of X. Hence, we will denote the 2d
different infinities, referred to in (26) and Lemma 4.1, by

(27) {∞σ
.
= (∞, σ)}2dσ=1 ⊂ Cz.

In order to include the logarithmic branch points, RX extends to RX ⊂ Cz × Ĉt. By simplicity,
we shall use the same notation RX for this extension. Lemma 4.1 allows us to accurately denote
the distinct asymptotic values of ΨX by

(28)
{aj}mj=1 ⊂ Ct with multiplicities {mj ≥ 1}mj=1,

∑m
j=1 mj = d and

am+1 =∞ ∈ Ĉt with multiplicity d.

Thus, π−1
2 (aj) contains mj (resp. d) logarithmic branch points for each exponential tract Uσ(ρ)

associated to the asymptotic value aj , j = 1, . . . ,m (resp. j = m+ 1).
Recalling the multiplicities, the correspondence between indices is given by

(29)
σ ∈ 1, . . . , m1︸ ︷︷ ︸, m1 + 1 , . . . , m1 + m2︸ ︷︷ ︸, . . . , d− mm + 1, . . . , d︸ ︷︷ ︸, d+ 1, . . . , 2d︸ ︷︷ ︸,

j = j(σ) ∈ 1 , 2 , . . . , m , m+ 1 ,

where σ enumerates the logarithmic branch points, while j = j(σ) enumerates the distinct

asymptotic values aj ∈ Ĉt, in accordance with (28).
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Remark 4.4. 1. The asymptotic paths ασ(τ) lie in the non–Hausdorff closure Cz. If
ασ(τ) : (0,∞) −→ Cz is an asymptotic path approaching ∞σ ∈ Cz associated to the as-
ymptotic value aj(σ), then we may assume that ασ(τ) is restricted to one exponential tract (the

one containing ∞σ ∈ Cz). The actual choice of ασ(τ) inside the exponential tract Uσ(ρ) will be
made explicit in Proposition 4.8.4 and Remark 4.9.2.
2. Each asymptotic path ασ(τ) together with the distinguished parameter ΨX gives rise to the
asymptotic value

(30) aj(σ) = lim
z→∞σ
z∈ασ

ΨX(z) = lim
τ→∞

ασ(τ)∫
z0

P (ζ)e−E(ζ)dζ ∈ Ĉt.

3. Because of the multiplicity of aj(σ), when 1 ≤ j(σ) ≤ m there are exactly mj asymptotic paths
ασ(τ) and mj exponential tracts for each of the m distinct finite asymptotic values aj(σ) ∈ Ct, see
Figure 2. Moreover, there are d asymptotic paths and d exponential tracts for the asymptotic

value am+1 =∞ ∈ Ĉt.

Recalling that logarithmic branch points are infinitely ramified and using the notation provided
by Equation (27), we will denote the logarithmic branch points of Ψ−1

X over the asymptotic
values aj(σ) ∈ Ct of ΨX , as triplets

(31) n+σ
.
= (∞σ, aj(σ),−∞) ∈ RX , for σ ∈ {1, . . . , 2d}.

Abusing notation, we say that the triplets are in RX .
The above discussion proves the following.

Lemma 4.5. For X ∈ E (r, d), there is a bijective correspondence between:

· the 2d logarithmic branch points of Ψ−1
X , n+σ in RX ,

· the 2d asymptotic values aσ of ΨX (counted with multiplicities) in Ĉt,
· the 2d exponential tracts Uσ(ρ) in Ĉz and
· the 2d asymptotic paths ασ(τ) in Cz. �

Remark 4.6. 1. An immediate advantage of the correspondence in Lemma 4.5 is that the index
σ simultaneously enumerates all of the objects in question. In particular, from now on we agree
that

aσ is referring to aj(σ) ∈ Ĉt, as in (29).
For example the set {aj(σ)} corresponds to one point in Ct for σ = m1 + 1, . . . , m1 + m2.

2. In Ĉz, each exponential tract is an angular sector about ∞. Hence the exponential tracts

have a natural counterclockwise ordering about ∞ ∈ Ĉz arising from S1 = {eiθ}. The ordering
will be made explicit in Proposition 4.8.3; see also Figure 2 and the last row in Figure 3.

We have the following ad hoc notion, that expands the concept of divisor of X as a meromor-
phic section, Equation (24).

Definition 4.7. Let X ∈ E (r, d), d ≥ 1, the assignment

(32) X 7−→
{
ι =

(
pι, p̃ι,−νι

)}n
ι=1︸ ︷︷ ︸

pole vertices

∪
{
n+σ =

(
∞σ, aσ,−∞

)}d
σ=1︸ ︷︷ ︸

essential vertices

∪
{
n+σ =

(
∞σ,∞,−∞

)}2d

σ=d+1︸ ︷︷ ︸
vertices over ∞
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is the divisor of X.

The notation in Equation (32) will be useful at several stages of the proof of the main result.
The following section explains the equidistribution of the exponential tracts and thus provides
a natural ordering/enumeration for the asymptotic values.

4.3. Approximation of X ∈ E (r, d), d ≥ 1, via rational vector fields Xn. The vector fields
X ∈ E (r, d) for d ≥ 1 can be approximated by rational vector fields of the form Xn(z) = 1

Pn(z)
∂
∂z .

Analogous ideas for other differential equations are applied in [34]. Moreover, as will be shown,
the construction behaves nicely providing insight into de combinatorial/geometrical structure of
X, ΨX and RX .

Let X be as in (6) and recall Euler’s formula

(33) e−E(z) = lim
n→∞

(
1− E(z)

n

)n
.

Thus

(34) Xn(z) =
1

P (z)
(
1− E(z)

n

)n ∂

∂z
and Ψn(z) =

z∫
z0

P (ζ)
(

1− E(ζ)

n

)n
dζ

converge to

(35) X(z) =
1

P (z)
eE(z) ∂

∂z
and ΨX(z) =

∫ z

z0

P (ζ)e−E(ζ)dζ

uniformly on compact sets of Cz. Furthermore,
RXn

= {(z,Ψn(z)) | z ∈ Cz}
converges to RX , in the Caratheodory topology; see K. Biswas et al. [12], [13] for details on
Caratheodory convergence.
Because of the Dictionary Proposition 2.5 (see also Remarks 3.7 and 3.8), as n → ∞, the
successions {Xn}, {Ψn} and {RXn

} enjoy the following features.
Each Xn has:
• n poles at the roots {pι}nι=1 of P (z) with orders {−νι}, where r =

∑n
ι=1 νι,

• d poles at the roots {êσ = êσ(n)}dσ=1 of n− E(z), each of order −n and
• a zero of order r + dn + 2 at ∞ ∈ Ĉz.
In consequence, each Ψn has:
• n critical points {pι}nι=1 at the roots of P (z), with n critical values {p̃ι(n)

.
= Ψn(pι)}nι=1, where

r =
∑n
ι=1 νι,

• d critical points {êσ = êσ(n)}dσ=1 at the roots of n − E(z) with critical values
{ẽσ(n)

.
= Ψn(êσ)}dσ=1 and

• a pole of order −(r + dn + 2) at ∞ ∈ Ĉz.
Each RXn

has:
• n finitely ramified branch points {(pι, p̃ι(n),−νι)}nι=1 with ramification index corresponding to
νι + 1 where −νι is the order of the pole pι, where r =

∑n
ι=1 νι,

• d finite ramification points {(êσ(n), ẽσ(n),−n)}dι=1 with ramification index n + 1 and
• a finite ramification point (∞,∞, r + nd+ 2) with ramification index r + nd+ 3.

Clearly the critical points pι do not change as n → ∞; however the critical values
p̃ι(n) ∈ Ct do, but remain finite without changing their ramification index, thus each finitely
ramified branch point (pι, p̃ι(n),−νι) converges to the finitely ramified branch point

(pι, p̃ι,−νι) = (pι,ΨX(pι),−νι).
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As the critical points {êσ(n)} approach ∞ ∈ Ĉz, the corresponding critical values {ẽσ(n)}
converge to the finite asymptotic values {aσ} of ΨX , as follows.

In Ĉz, arguments (directions) and angular sectors at ∞ are well defined. The succession êσ(n)
converges to a ray with constant argument θσ starting at ∞ ∈ Cz. Moreover, the rays θσ and
θσ+1 are exactly 2π/d radians apart.

The careful examination of the phase portraits of the rational vector fields Re (Xn) shows the
following features:
i) the zero at∞ ofXn determines 2r+2nd+2 elliptic sectors, and the same number of separatrices,
ii) the d poles at êσ of Xn determine 2n+ 2 hyperbolic sectors, and the same number of separa-
trices.

The above is summarized in the following.

Proposition 4.8. Let d ≥ 1 and X ∈ E (r, d). Then, the sequence of polynomial distinguished
parameters ΨXn

given by (34), converges to ΨX . Furthermore:
1) Each of the r sequences of finitely ramified branch points (pι, p̃ι(n),−νι) ∈ RXn

converges to
the finitely ramified branch point (pι, p̃ι,−νι) ∈ RX .

2) Each of the d sequences of finitely ramified branch points (êσ(n), ẽσ(n),−n) ∈ RXn
converges

to the logarithmic branch point of Ψ−1
X , (∞σ, aσ,−∞) ∈ RX .

3) The 2d exponential tracts of ΨX are angular sectors of angle π/d about ∞ ∈ Ĉz and they
alternate so that each exponential tract corresponding to a finite asymptotic value is in between

two exponential tracts corresponding to the asymptotic value ∞ ∈ Ĉt.
4) There exist 2d asymptotic paths ασ(τ) associated to the asymptotic values {aσ}2dσ=1 of ΨX

which are angularly equidistributed about ∞ ∈ Ĉz. �

Remark 4.9. 1. Figure 2 shows the angular equidistribution of the exponential tracts around
∞ for X ∈ E (r, d).
2. By recalling that

E(z) = µ
(
zd + c1z

d−1 + · · ·+ cd
)

in (33),
a simple calculation shows that:
a) For the finite asymptotic values aσ ∈ Ct of ΨX , without loss of generality we can choose

asymptotic paths ασ(τ) arriving at ∞ ∈ Ĉz with angle θσ = Arg
(
µ1/d

)
+ 2π

d σ for σ = 1, . . . , d.

b) Likewise, the asymptotic paths ασ(τ) corresponding to the asymptotic value ∞ ∈ Ĉt arrive

at ∞ ∈ Ĉz with angle θσ = Arg
(
µ1/d

)
+ 2π

d (σ − d) + π
d for σ = d+ 1, . . . , 2d.

Example 4.2. Let

X(z) =
ez

d

zr
∂

∂z
∈ E (r, d), for d ≥ 1.

Euler’s formula provides the approximation of X by the vector fields

Xn(z) =
1

zr
(
1− zd

n

)n ∂

∂z
, for n ≥ 1,

so

Ψn(z) =

z∫
0

ζr
(
1− ζd

n

)n
dζ =

zr+1
2F1

(
−n, r+1

d ; r+1
d + 1; z

d

n

)
r + 1

,

where 2F1 is the classical Gauss’s hypergeometric function, see for instance [41] ch. 15.

The poles of Xn are 0, of order −r, and {êσ(n)
.
= e

2iπσ
d n1/d}dσ=1, of order −n. Of course the

poles of Xn are the critical points of Ψn,
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Figure 2. Angular equidistribution of the 2d exponential tracts about

∞ ∈ Ĉz, corresponding to the asymptotic values of ΨX(z) for X ∈ E (r, d),
d ≥ 1. Purple angular sectors represent exponential tracts corresponding to
finite asymptotic values aσ ∈ Ct, in yellow their asymptotic paths ασ(τ), for
σ = 1, . . . , d. Blue angular sectors represent exponential tracts corresponding

to the asymptotic value∞ ∈ Ĉt, in dark blue their asymptotic paths, ασ(τ), for
σ = d+ 1, . . . , 2d. Once again, the 2d asymptotic paths are equally distributed

about ∞ ∈ Ĉz. Note that for the family E (r, d) this equidistribution property
is independent of r.

On the other hand, the critical values of Ψn are given by Ψn(0) = 0 and

(36) ẽσ(n)
.
= Ψn(e

2iπσ
d n1/d) = e2iπσ

(r+1)
d

Γ
(
r+1
d + 1

)
(r + 1)

n(r+1)/d Γ(n + 1)

Γ
(
n + r+1

d + 1
) ,

for σ = 1, . . . , d.

Furthermore Xn has a unique zero at ∞ ∈ Ĉz of order r + nd+ 2.
Hence each Riemann surface

RXn
= {(z,Ψn(z)) | z ∈ Cz}

has (0, 0,−r) ∈ RX as a branch point with ramification index r + 1 and d branch points

(êσ(n), ẽσ(n,−n)) ∈ RX , for σ = 1, . . . , d,

with ramification index n + 1.
Letting n→∞ and since

lim
n→∞

Γ(n + 1) n
r+1
d

Γ
(
n + r+1

d + 1
) = 1,

we conclude that the critical values ẽσ(n) converge, along the asymptotic paths ασ(τ) = τe2iπσ/d

suggested by the sequence of critical points {êσ(n)}∞n=1, to the finite asymptotic values aσ of
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Figure 3. Phase portraits of Re (Xn) for n = 1, 10, 20, 50 converging to Re (X)
with X ∈ E (2, 3) as in Example 4.2. Left hand side portrays a neighborhood

of the origin, and the right hand side a neighborhood of ∞ ∈ Ĉz. Note that

by approaching∞ ∈ Ĉz along paths that avoid the poles {e 2iπσ
d n1/d}dσ=1 (green

dots), the value of Ψn(z) converges to ∞ ∈ Ĉt.
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ΨX(z) =
z∫
0

ζre−ζ
d

dζ, given by

(37) aσ = e2iπσ
(r+1)
d

Γ
(
r+1
d + 1

)
(r + 1)

∈ Ct, for σ = 1, . . . , d.

Furthermore, traveling along the asymptotic paths ασ(τ) = τe2iπ(σ−d)/deiπ/d, that arrive at

∞ ∈ Ĉz with angle 2π
d (σ− d) + π

d , for σ = d+ 1, . . . , 2d, we see that Ψn(z) converges to ∞ ∈ Ĉt.
Thus there are d (classes of) asymptotic paths that give rise to the asymptotic value ∞ ∈ Ĉt.
Using the techniques presented in [3], for r = 2, d = 3, we visualize the phase portraits of Re (Xn)

and Re (X). The poles {e 2iπσ
d n1/d}dσ=1 are portrayed as green dots. Note that at ∞ ∈ Ĉz there

is a zero of Xn of order exactly r + dn + 2 = 3n + 4. See Figure 3.

5. The geometry of the Riemann surface RX ; setup for the proof of Main
Theorem

The goals of this section are: to understand the geometry of the Riemann surface RX for
X ∈ E (r, d) and to set up the geometrical/combinatorial elements in order to define vertices,
edges and weights of the (r, d)–configuration trees.

5.1. Branch points of RX as vertices. Since the branch points of RX over ∞ ∈ Ĉt are
independent of X ∈ E (r, d), they will not enter the proof of the Main Theorem, thus the
following concept is natural.

Definition 5.1. For d ≥ 1, the reduced divisor of X ∈ E (r, d) is

(38) X 7−→
{
ι = (pι, p̃ι,−νι)

}n
ι=1︸ ︷︷ ︸

pole vertices

∪
{
n+σ = (∞σ, aσ,−∞)

}d
σ=1︸ ︷︷ ︸

essential vertices

=
{
a = (za, ta,−νa)

}n+d

a=1
.

Remark 5.2. The corresponding critical points of ΨX and transcendental singularities of Ψ−1
X

are

(39) za ∈ {p1, . . . , pι, . . . pn,∞1, . . . ,∞σ . . .∞d} ⊂ Cz

once again n ≤ r, with equality if and only if all the poles of X are simple. Recalling
Remark 4.6.2, the n+m critical and finite asymptotic values of ΨX are

(40) ta ∈ {p̃1, . . . , p̃ι, . . . , p̃n, a1, . . . , aj(σ), . . . , am} ⊂ Ct,

where m ≤ d, with equality if and only if all the finite asymptotic values of ΨX are of multiplicity
one.
The main features of a are summarized in Table 1.

5.2. The families of surfaces RX having only one vertex. We describe the families of
vector fields avoided in the Main Theorem, i.e. those having exactly one branch point over Ct.
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Table 1. Branch points of RX .

Branch point Vertex Notation in (r, d)–configuration trees;
(za, ta) ∈ RX a = (za, ta,−νa) meaning

Pole vertices when r ≥ 1;
(pι, p̃ι) ι = (pι, p̃ι,−νι) p̃ι = ΨX(pι) is a critical value of ΨX ,

pι is a pole of X having order −νι ≤ −1,
(25) hence (pι, p̃ι) is a branch point with

ramification index νι + 1 ≥ 2.

(∞,∞) (∞,∞, s) Zero vertex when d = 0, r ≥ 1 in which
case s = 2 + r;

∞ ∈ Ĉz is a zero of X having order s.

Essential vertices when d ≥ 1;

(∞σ, aσ) n+σ = (∞σ, aσ,−∞) ∞ ∈ Ĉz is an essential singularity of X,

aσ ∈ Ct being a finite asymptotic value
(31) of ΨX , with exponential tract Uσ(ρ), so

(∞σ, aσ,−∞) is a logarithmic branch

point of Ψ−1
X in RX ⊂ Cz × Ĉt.

Lemma 5.3. Let X ∈ E (r, d). The distinguished parameter ΨX has exactly one finite critical
or asymptotic value t1 ∈ Ct if and only if

(r, d) =


(r ≥ 1, 0) X has a unique pole of order − r,

in which case t1 is the finite critical value,

(0, 1) X has an isolated essential singularity at ∞ ∈ Ĉz,
in which case t1 is the finite asymptotic value.

Proof. (⇐) The case X has a unique pole of order −r, is obvious: the distinguished parameter
is given by Equation (17) and the unique finite critical value is given by Equation (18).
When (r, d) = (0, 1), the distinguished parameter is given by Equation (21) and the unique finite
asymptotic value is given by Equation (22).

(⇒) By Lemma 4.1, Ψ−1
X has d logarithmic branch points over d finite asymptotic values of ΨX ,

d logarithmic branch points over ∞ ∈ Ĉt and r critical values (counted with multiplicity).
Let {(za, t1)} ⊂ π−1

2 (t1) ⊂ RX be all the branch points over t1. The set {(za, t1)} consists of
• exactly d logarithmic branch points over t1 and
• n (≤ r) finitely ramified branch points (pι, t1) of ramification indices νι + 1 with r =

∑n≤r
ι=1 νι.

Note that there are d+ n ≥ 1 distinct branch points of RX .
Moreover, RX is a connected Riemann surface (it is the graph of ΨX). The restriction of the

second projection over the punctured plane
π2 : RX\{π−1

2 (t1)} −→ C\{t1}
is a holomorphic cover without ramification. The subgroups G of π1(C\{t1}) ∼= Z classify
topologically these covers.
For G = Zr+1 with r ≥ 1, the cover is finite cyclic and we can recognize that ΨX(z) is as in (17),
using Riemann’s removable singularity theorem. This implies X ∈ E (r, 0) has a unique pole as
in the first assertion.
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While for G = Z, using Lemma 4.1 assertion 3 we can recognize ΨX(z) as in (21), which in turn
provides the corresponding X ∈ E (0, 1).
The case G = id, gives ΨX(z) = 1

λ (z − p1) and the constant vector field X(z) = λ ∂
∂z , that does

not belong to E (r, d). �

5.3. Diagonals of RX as edges. According to Lemma 5.3 from now on, we assume that there
are two or more finite critical or asymptotic values ta ∈ Ct of ΨX .

In order to completely describe RX , we also require information of the relative position of
the branch points of the surface, recall Diagram 12. Let { a = (za, ta,−νa)}n+d

a=1 as in Equation
(38).

Consider the oriented straight line segment tatr ⊂ Ct. The inverse image
π−1

2

(
tatr
)

= {∆ϑar} ⊂ RX
is a set consisting of a finite (d = 0) or an infinite (d ≥ 1) number of copies of tatr. A priori, for
each segment ∆ϑar, the projection π1(∆ϑar) ⊂ Cz can have regular points at its end points.

Definition 5.4. 1. A segment ∆ϑar is a diagonal of RX when the interior of π1(∆ϑar) is in
Cz and the endpoints of π1(∆ϑar) are za, zr ∈ {p1, . . . , pn,∞1, . . . , ∞d} ⊂ Cz; critical points of
ΨX or transcendental singularities of Ψ−1

X .
2. A given diagonal

∆ϑar starts at a = (za, ta,−νa) and ends at r = (zr, tr,−νr).
We shall say that the branch points of π2, a and r , share the same sheet

C∆ϑar
\{suitable branch cuts}

in RX .

Remark 5.5. 1. By notational simplicity, if we drop the index ϑ from ∆ϑar, then we are
specifying the unique diagonal ∆ar. The following identification will be useful in the proof of
the Main Theorem

(41) ∆ar ⊂ RX with endpoints a , r︸ ︷︷ ︸
diagonal

←→ ∆ar︸︷︷︸
oriented
edge

.

2. Note that since ΨX is a single valued function, there can not be homoclinic trajectories of
Re (X) from a pole p to itself; i.e. there does not exist a diagonal ∆ικ whose endpoints are the
finitely ramified branch points (pι, p̃ι,−νι) and (pκ, p̃κ,−νκ), with π1(pι) = π1(pκ) = p.
3. The diagonals ∆ar can have endpoints as follows:
1) ∆ικ has as endpoints (pι, p̃ι,−νι) and (pκ, p̃κ,−νκ), ι 6= κ, i.e. two finitely ramified branch

points corresponding to pole vertices. For an example see Figure 8 in §8.
2) ∆ισ has as endpoints (pι, p̃ι,−νι) and (∞σ, aσ,−∞), i.e. a finitely ramified branch point

and a logarithmic branch pointof Ψ−1
X , corresponding to a pole and an essential vertex or

viceversa. For an example see Figure 14 in §8.
3) ∆σρ has as endpoints (∞σ, aσ,−∞) and (∞ρ, aρ,−∞), σ 6= ρ, where the subscripts are as

in (29), i.e. two logarithmic branch points of Ψ−1
X , corresponding to essential vertices, with

finite asymptotic values aσ, aρ and exponential tracts ασ, αρ. For an example see Figure 13
in §8.

Following the notation in [23], for ∆ar a diagonal the associated semi–residue is

(42) S(ωX , za, zr)
.
=

∫ zr

za

P (ζ)e−E(ζ)dζ = tr − ta.
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Lemma 5.6 (Existence of diagonals in RX). Suppose that there are at least two branch points{
a = (za, ta,−νa)

}n+d

a=1
⊂ RX . Then every branch point a is an endpoint of at least two

diagonals, an incoming diagonal and an outgoing diagonal.

Proof. Consider any branch point a = (za, ta,−νa) ∈ π−1
2 (ta), with ta as in Equation (40).

Suppose that there is no diagonal ∆ar with endpoint a . This implies that a does not share a
sheet, Ct\{suitable branch cuts}, with any other branch point r = (zr, tr,−νr) ∈ π−1

2 (tr), for
some finite asymptotic or critical value tr 6= ta (note that the existence of tr is guaranteed by
Lemma 5.3). In other words the only sheets, Ct\{suitable branch cuts}, of RX containing the
branch point a are of the form Ct\{La}, for La = [ta,∞). Hence by the same arguments as in
Lemma 5.3, the Riemann surface RX will have at least 2 connected components (one containing
a and the other containing r ), leading to a contradiction. �

5.4. Geometrical building blocks and the weights of edges. Our elementary building
blocks are pairs, Riemann surface and complex analytic vector fields, as follows.

Definition 5.7. The pair
(
H2

±,
∂
∂t

)
will be called a (closed) half plane; the closure of H2

± is
considered in C, hence its boundary is R.
Likewise,

(
{0 ≤ Im (t) ≤ h}, ∂∂t

)
will be called a (closed) finite height horizontal strip, where

h ≥ 0 is a parameter.

In the flat surface category, surgery tools are widely used, v.g. [44] p. 56 “welding of surfaces”,
[36], or [48] §3.2.–3.3 for general discussion.

Corollary 5.8 (Isometric glueing). Let (M0, gX), (N0, gY ) be two flat surfaces arising from
two singular complex analytic vector fields X and Y . Assume that both spaces M0, N0 have as
geodesic boundary components of the same length: the trajectories σ1(τ), σ2(τ) of Re (X) and
Re (Y ), τ ∈ I ⊂ R. The isometric glueing of them along these geodesic boundary, is well defined,
and provides a new flat surface on M0 ∪N0 arising from a new complex analytic vector field. �

Lemma 5.9. Let X ∈ E (r, d).
1) The Riemann surface RX can be constructed by isometric glueing of

• half planes (H2

±,
∂
∂t ) and

• finite height horizontal strips
(
{0 ≤ Im (t) ≤ h}, ∂∂t

)
, where h ≥ 0.

2) There exists a one–to–one correspondence{
finite height horizontal strips(
{0 ≤ Im (z) ≤ h}, ∂∂t

) }
←→

{
diagonals ∆ar with∣∣Im(∫ zr

za
ωX

)∣∣ = h ≥ 0

}
,

here a = (za, ta,−νa) and r = (zr, tr,−νr).
3) The case when Im

(∫ zr
za
ωX

)
= 0 corresponds to the finite height horizontal strip degenerating

into a segment of trajectory of Re (X) between the branch points a and r , i.e. a horizontal
diagonal ∆ar.

Proof. Assertion (1) follows by first recalling that π2, as in Lemma 2.2, is a branch cover over

Ĉt. Lemma 4.1 tell us which critical or asymptotic values provide a first decomposition of RX
into half planes or finite height horizontal strips. Finally the pullback under π2 of the vector
field ∂

∂t to RX determines the decomposition (the details are left to the reader).
Assertion (2) and (3) follow directly from Definition 5.4. �

Definitions 5.10, 5.12 below apply for singular flat Riemann surfaces (not necessarily of type
RX).
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Definition 5.10. Let {tk}rk=1 ⊂ Ct be a finite set of distinct points. A sheet is a copy of Ct
with r ≥ 1 branch cuts Lk; i.e. Ct is cut along horizontal right segments Lk = [tk,∞), remaining
connected. Explicitly,

(43) Ct\{Lk}rk=1
.
=
[
Ct\
(
∪rk=1 [tk,∞)

)]
∪rk=1 {[tk,∞)+, [tk,∞)−},

having 2r horizontal boundaries [tk,∞)±, where the subscripts ± refer to the obvious upper or
lower boundary using Im (t).

See Figure 4 for examples of sheets.

Remark 5.11. Note that branch cuts (and the corresponding boundaries) need not be to the
right, they could be more general simple paths, however for notational simplicity and ease of the
proofs we shall only use right cuts [tk,∞)± as in (43).

Definition 5.12. A diagonal of the sheet Ct\{Lk}rk=1 is an oriented straight line segment

(44) ∆ar = tatr ⊂ Ct\{Lk}rk=1,

starting at ta and ending at tr, here r, a are as in Equation (40).

The abuse of notation in Equations (41), (42), and (44), will be cleared in the proof of the
main Theorem. See Figures 4.b, 4.c and Figure 8 for examples of diagonals of sheets.

We introduce four non-elementary building blocks, pictured in Figure 4, their Definitions 5.13,
5.15, 5.17 include geometrical and combinatorial frameworks.

Recalling Example 4.1, we propose the following.

Definition 5.13. A semi–infinite helicoid is the Riemann surface of
z∫
z0

e−µ(ζ+c1)dζ − aσ = − 1

µ
e−µ(z+c1) : H2

± ⊂ Cz −→ Ct

having a horizontal boundary [aσ,∞)±, geometrically it is an infinite succession of half–planes((
H2

± ∪H2

∓ ∪ . . .
)
, ∂∂t

)
.

glued in the usual way, Corollary 5.8. See Figure 4.a.

Remark 5.14. In the combinatorial framework, for X ∈ E (r, d), each essential vertex

n+σ = (∞σ, aσ,−∞) has associated two semi–infinite helicoids, up and down, respectively.

Pictorically, we will represent each one by a small coil in our figures. However, the semi–infinite
helicoids and their coils do not appear in the (r, d)–configuration trees.

Geometric characteristics: a semi–infinite helicoid
• lies over the finite asymptotic value aσ ∈ Ct,
• has an infinite number of sheets,
• its horizontal boundary is coloured in orange,
• is up or down (resp. the domain of the integral in Definition 5.13 is H2

+ or H2

−).

Recalling Example 4.1, we have the following.

Definition 5.15. For K ∈ Z, a |K|–helicoid is the Riemann surface of
z∫
z0

e−µ(ζ+c1)dζ − aσ = − 1

µ
e−µ(z+c1) : D ⊂ Cz −→ Ct

where

D =

{
{0 ≤ Im (µz) ≤ 2π(K + 1)}, K ≥ 0

{2πK ≤ Im (µz) ≤ 2π}, K < 0,
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Figure 4. non-elementary building blocks as sheets with branch cuts glued
appropriately in RX , and combinatorially as a graph. (a) The semi–infinite (up
and down) helicoids. (b) A |K|–helicoid. (c) An (νι + 1)–cyclic helicoid, for
(νι + 1) ≥ 2. In cases (b) and (c) the red segments are diagonals.

having a finite number ` ≥ 2 of branch cuts {Lk}`k=2. Geometrically it is a succession of 2(|K|+1)
half–planes ((

H2

± ∪H2

∓ ∪ . . . ∪ H2

∓
)
, ∂∂t

)
glued in the usual way, with 2` horizontal boundaries.
In the combinatorial framework, for X ∈ E (r, d), the following objects are equivalent:
a |K|–helicoid,
a vertical tower of length |K|.
See Figure 4.b.

Remark 5.16. Each essential vertex n+σ = (∞σ, aσ,−∞) determines at least one |K(σ)|–
helicoid.

Geometric characteristics: a |K|–helicoid
• lies over the finite asymptotic value aσ ∈ Ct,
• has |K|+ 1 sheets and there are three sub cases.
If K > 0 or K < 0, the |K|–helicoid:
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• goes up or down depending on the sign of K 6= 0,
• has ` ≥ 2 diagonals with common extreme points over aσ ∈ Ct,
• in particular, there are always 2 diagonals present: one on the image of the strip

{0 ≤ Im (z) ≤ 2π},
and the other on the image of the strip

{2πK ≤ Im (z) ≤ 2π(K + 1)}
K sheets above/below,

• has 2` ≥ 4 horizontal boundaries (arising from diagonals, coloured green) and 2 horizontal
boundaries (orange).
If K = 0, the |K|–helicoid:
• has ` ≥ 0 diagonals having common extreme points over aσ ∈ Ct,
• has 2` ≥ 0 horizontal boundaries from diagonals (green) and 2 horizontal boundaries (orange).

Recalling the case of a pole, Example 3.1, we have the following.

Definition 5.17. A (νι + 1)–cyclic helicoid is the Riemann surface of

1
λ

z∫
z0

(ζ − pι)νι dζ + p̃ι = 1
λ

(z − pι)νι+1

νι + 1
: Cz −→ Ct

having a finite number {Lk}`k=0, ` ∈ N∪{0}, of branch cuts. Geometrically it is a finite succession
of 2νι + 2 half–planes ((

H2

± ∪H2

∓ ∪ . . . ∪ H2

∓
)
, ∂∂t

)
glued in the usual way, with 2` ≥ 0 horizontal boundaries.
In the combinatorial framework for X ∈ E (r, d), the following three objects are equivalent:
a (νι + 1)–cyclic helicoid,
a vertical cycle of length νι + 1,
a pole vertex ι = (pι, p̃ι,−νι).
See Figure 4.c.

Geometric characteristics: a (νι + 1)–cyclic helicoid
• lies over the finite critical value p̃ι ∈ Ct,
• has νι + 1 sheets,
• has ` ≥ 0 diagonals with common extreme points over p̃ι.

Remark 5.18 (Cut and paste of the different geometric pieces for X ∈ E (r, d)). The paste of a
semi–infinite helicoid and a cyclic helicoid is forbidden. The paste of two semi–infinite helicoids
will appear essentially only for X ∈ E (0, 1), as in Example 4.1.
Semi–infinite helicoids and |K|–helicoids are glued along their orange horizontal boundaries, see
Figure 4.

Remark 5.19 (The weights of the edges). 1. In order to construct the surface RX by glueing
the geometric pieces described in Lemma 5.9, we shall need to specify not only the branch points{
a = (za, ta,−νa)

}n+d

a=1
and the corresponding diagonals {∆ar} of the sheets, but also how many

sheets each geometric piece has.
2. In what follows, the term “vertical” refers to the z–direction in Cz×Ct. Let (za, ta,−νa) ∈ RX
be a fixed branch point, we consider the usual lifting

β(θ) = π−1
2

(
ta + ρ ei2πθ) ⊂ RX where θ ∈ [θmin, θmax] ⊂ R,

for appropriate θmin, θmax and small enough ρ > 0. Three cases appear:
i) Going around a branch point ta counterclockwise corresponds to going up on the ramified
surface RX and hence the number that separates the sheets is positive.
ii) Similarly going around the branch point clockwise corresponds to going down.
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iii) Furthermore, going K times around a finitely ramified branch point of RX of ramification
index ν is equivalent to going around it K (mod ν) times.
3. Whenever there are two (or more) diagonals sharing the same branch point, the number of
sheets that separate the diagonals in question can be counted on the Riemann surface RX as
number of planes traversed by a small enough circular path β(θ) around the common branch
point. In this way, by choosing a local zero level sheet for each branch point of RX , we will be
able to assign a weight to each edge/diagonal attached to the branch point (relative to the local
zero level sheet).

6. Why is the geometrical description of E (r, d) difficult?

In order to get an accurate combinatorial description of RX for the family E (r, d), we shall
need to specify two basic sets:
i) The vertices or branch points{

ι = (pι, p̃ι,−νι)
}n
ι=1
∪
{
n+σ = (∞σ, aσ,−∞)

}d
σ=1

=
{
a = (za, ta,−νa)

}n+d

a=1

of RX , i.e. the reduced divisor of X, Definition 5.1.
ii) A subset of the diagonals {∆ar}, Equation (41), connecting the branch points (in particular
it will be useful to know which branch points share specific sheets of RX).

The implicit combinatorial obstacles are:

D.1 No canonical choice for the initial integration point of ΨX(z) =
∫ z
z0
ωX can be given.

D.2 There is no preferred/canonical global zero level of RX , denoted (GZL),
C∆ar

\{suitable branch cuts} ⊂ RX ,
that is to be chosen to start the description of RX as a combinatorial object.

D.3 No canonical order can be given to the branch points
{
a = (za, ta,−νa)

}n+d

a=1
of RX .

D.4 A priori, the choice of a minimal subset of the diagonals required to describe RX is non-
canonical.

In particular, note that difficulty D.1 will have a repercussion on the labeling of the vertices
in Definition 7.7, while difficulties D.2 and D.3 are associated to the choice of a suitable root

vertex 1 in the reduced divisor. Difficulty D.4 will require a certain ordering of the subset of

the diagonals on each sheet of RX , as will appear in Definition 7.6.
The resolution of these choices/conventions motivates the notion of equivalence classes [ΛX ]

as in our Main Theorem, see §9.4.
There are also analytical obstructions/obstacles:

D.5 Not all the collections of vertices
{
ι = (pι, p̃ι,−νι)

}n
ι=1
∪
{
n+σ = (∞σ, aσ,−∞)

}d
σ=1

are

possible as branch points for RX , only those that are a solution to the system of transcen-
dental equations

(45)



ΨX(pι) = p̃ι

Ψ
(`)
X (pι) = 0 1 ≤ ` ≤ νι, ι = 1, . . . , n,

lim
τ→∞

ασ(τ) =∞σ

lim
τ→∞

ΨX

(
ασ(τ)

)
= aσ σ = 1, . . . , d.

The last two equalities are analytical expressions of the geometrical structure of Figure 2.
Difficulty D.5 motivates the following concept.

Definition 6.1. An abstract collection of n+ d vertices
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{
ι = (pι, p̃ι,−νι)

}n
ι=1
∪
{
n+σ = (∞σ, aσ,−∞)

}d
σ=1

is realizable if it is a solution of (45), for some ΨX , for X ∈ E (r, d).

7. Combinatorial objects: (r, d)–configuration trees

In order to make precise the choices required to resolve the issues D.1–5, we introduce the
following auxiliary concepts: weighted directed zero–rooted trees and (r, d)–configuration trees.
These can be understood as associated to some RX , even though they are abstract graphs, a
priori not necessarily associated to the Riemann surface RX .
To accomplish the above, we shall use some basic notions of graph theory, namely trees, oriented
or not, with and without roots and weights, see [30] pp. 46, 379 for standard concepts. It is
natural to use the branch points of RX , described by the reduced divisor, Definition 5.1,{

a = (za, ta,−νa)
}n+d

a=1
with za ∈ Cz, ta ∈ Ct and νa ∈ N ∪ {∞},

as vertices of our graphs, with a possible re–labelling when needed.
To resolve issue D.1, we introduce directed rooted trees which have one vertex designated as

the root % and oriented edges

(46) Λ =
{

1 , . . . , r , . . . , a , . . . , m︸ ︷︷ ︸
vertices

; %︸︷︷︸
root

; ∆ar, . . .︸ ︷︷ ︸
m−1

oriented edges

}
,

where m ≤ n + d. Note that not all vertices in Definition 5.1 are necessarily used. We shall
consider directed rooted trees that have an orientation away from the root and convene that ∆ar

denotes the edge starting at a and ending at r . The tree–order is the partial ordering on the

vertices of (46) such that, ι < r if and only if the unique path from the root % to r passes

through ι . The depth of the vertex r is the length of the path (number of edges) from the
root.

As noted in Remark 5.19, the building blocks provide weights for the edges of the directed
rooted trees.

Definition 7.1. Given a directed rooted tree as in (46), by assigning a weight K(a, r) ∈ Z to
each edge ∆ar, we obtain a weighted directed rooted tree{

1 , . . . , m︸ ︷︷ ︸
vertices

; %︸︷︷︸
root

; (∆ra,K(r, a)), . . .︸ ︷︷ ︸
m−1

weighted edges

}
.

A zero parent of a vertex a 6= % is the unique vertex r connected to a on the path to the

root, whose edge (∆ra,K(r, a)) has in addition K(r, a) = 0.

For some weighted directed rooted trees the root is not a zero parent.

Example 7.1. For the weighted directed rooted tree with all its weights equal to 1, namely{
1 , . . . , m ; % ; (∆1 2, 1), . . . , (∆m−1m, 1)

}
,

none of the vertices are zero parents.

Definition 7.2. A weighted directed rooted tree

(47) Λ % =
{

1 , . . . , m︸ ︷︷ ︸
vertices

; %︸︷︷︸
root

; (∆ra,K(r, a)), . . .︸ ︷︷ ︸
m−1

weighted edges

}
,
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whose root % is a zero parent is a weighted directed zero–rooted tree.

Definition 7.3. A zero child of a vertex r is a vertex a of which r is the zero parent. A zero
descendant of a vertex r is any vertex which is either the zero child of r or is (recursively) the
zero descendant of any of the zero children of r .

From the above definitions, we immediately obtain the following.

Lemma 7.4. Let Λ % be a weighted directed zero–rooted tree.

1. The zero descendants of the root % form the horizontal rooted subtree of the root, denoted

by ΛH(%). Note that the root of ΛH(%) is once again % .

2. Each weighted edge (∆ra,K(r, a)) with K(r, a) 6= 0, defines a horizontal rooted subtree

ΛH(r,a), with root r , of the incoming edge (∆ra,K(r, a)), vertices

VH(r,a) = { r , a } ∪ { ι | ι is a zero descendant of a }
and edges

EH(r,a) = {(∆ra,K(r, a))} ∪ {edges that end on the zero descendants of a }.
�

Note that, on each horizontal rooted subtree, the incoming edges are the only edges with
non–zero weight.

Example 7.2. Consider the weighted directed zero–rooted tree

(48) Λ 1 =
{

1 , . . . , 12 ; 1 ;

(∆1 2, 0), (∆2 4, 0), (∆4 7,−3), (∆7 12, 0), (∆7 11, 4),

(∆1 3, 1), (∆3 5, 0), (∆3 6, 0), (∆6 9, 0), (∆6 10, 0), (∆5 8, 1)
}
.

The root is 1 , and the incoming edges are ∆1 3, ∆4 7, ∆7 11 and ∆5 8. Then

Λ 1 = ΛH(1) ∪ ΛH(1,3) ∪ ΛH(4,7) ∪ ΛH(7,11) ∪ ΛH(5,8),

provides the decomposition into horizontal rooted subtrees as in Lemma 7.4.
In Figure 5, the horizontal rooted subtree of the root is coloured red; the horizontal rooted sub-
trees, corresponding to the incoming edges, are coloured orange, blue, green, purple respectively.
Note that the weight of each of the incoming edges could be any non–zero integer. The vertices
1 , 4 , 5 and 7 belong to more than one horizontal subtree.

Remark 7.5. The decomposition of Λ % , given by Lemma 7.4, provides a disjoint partition on

the set of edges. This relates to the fact that on RX , the diagonals between branch points are
partitioned into disjoint sets according to the sheet they share.

In order to overcome difficulty D.4, we shall need one more concept. Consider the linear
(weighted) directed tree

G = {V;E},
with m vertices

V = { a .
= (za, ta,−νa)}ma=1, za ∈ Cz, ta ∈ Ct, νa ∈ N ∪ {∞},

where {ta} are different points, labelled so that
Im (ta) ≥ Im (ta+1), Re (ta) ≤ Re (ta+1);

and m− 1 oriented weighted edges
E =

{(
∆(a−1) a,K(a− 1, a)

)}m
a=2

,

where ∆(a−1) a
.
= (ta − ta−1), and K(a− 1, a) ∈ Z.
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Figure 5. The decomposition into horizontal rooted subtrees of the weighted
directed rooted tree of Example 7.2. The weights are placed beside the corre-
sponding edges. The rooted subtree colored red is by definition the global zero
level subtree.

In particular, G can be understood as embedded in Cz × Ct.
Note that the vertices are connected from left to right and top to bottom; starting with the
top–&–left–most vertex and ending at the bottom–&–right–most vertex.

Definition 7.6. 1. The G constructed as above, is the left–right–top–bottom linear (weighted)
directed tree of the vertices V. The underlying undirected linear graph will be called the undi-
rected left–right–top–bottom linear (weighted) tree of the vertices V.
2. Moreover, for any choice of r ∈ V, the rooted tree

G r =
{
V; r ; Ê

}
where

Ê = {∆r r+1,∆r+1 r+2, . . . ,∆m−1m,∆r r−1,∆r−1 r−2, . . . ,∆2 1},
is called a linear (weighted) directed rooted tree with incoming vertex r .

Note that G and G r have the same vertices, however different oriented edges E and Ê.
Figure 6 provides an example with seven vertices.

Recalling Table 1, we are now ready to to introduce the particular weighted directed zero–
rooted trees that will encode the information needed to specify the Riemann surfaces RX . Issue
D.5 will be dealt with by condition (1) of the following definition.

Definition 7.7. For r+d ≥ 1, a (r, d)–configuration tree is a weighted directed zero–rooted tree

Λ =
{
V ; % ; E

}
with:
• n+ d vertices

V =
{
a = (za, ta,−νa)

}n+d

a=1
, za ∈ Cz, ta ∈ Ct and νa ∈ N ∪ {∞},

where
∑

−νa 6=−∞
νa = r;

• n+ d− 1 weighted oriented edges

E =
{

(∆ar,K(a, r)) | ∆ar starts at a and ends at r , K(a, r) ∈ Z
}
,

with the orientation of the edges being away from the root.
In addition, the following conditions must be satisfied:
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Figure 6. In (a), we have a directed graph with seven vertices
V = { 1 , . . . , 7 }. In (b) we have eliminated and added some edges to ob-
tain a left–right–top–bottom linear directed tree G of vertices V with edges
E = {∆1 2,∆2 3,∆3 4,∆4 5,∆5 6,∆6 7}. In (c) we have the linear directed rooted

tree G 5 where 5 is both the incoming vertex and the root, having edges

Ê = {∆5 6,∆6 7,∆5 4,∆4 3,∆3 2,∆2 1}, note the change of directions of the edges.

1) The set of vertices
{
a = (za, ta,−νa)

}n+d

a=1
must be realizable, i.e. they must satisfy the

system of equations (45).
2) Types of vertices. Concerning the position of the vertices in Cz; za ∈ Cz if and only if νa ∈ N.

Thus, the vertices are classified in two types

ι =
(
pι, p̃ι,−νι

)︸ ︷︷ ︸
pole vertex

∈ Cz and n+σ =
(
∞σ, aσ,−∞

)︸ ︷︷ ︸
essential vertex

.

3) If Λ consists of only one vertex, then

the (r, 0)–configuration trees are
{

1 =
(
p1, p̃1,−r

)
; 1 ; ∅

}
,

the (0, 1)–configuration trees are
{

1 =
(
∞1, a1,−∞

)
; 1 ; ∅

}
.

4) Root condition. If r = 0, then the root 1 is the essential vertex 1 =
(
∞1, a1,−∞

)
.
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If r 6= 0, then the root % is the pole vertex
(
p%, p̃%,−ν%

)
, whose z–coordinate is top

and left most: i.e. Im (p̃%) ≥ Im (p̃ι) and when equality is achieved it is required that
Re (p̃%) < Re (p̃ι) for 1 < ι ≤ n.

5) Equality of vertices. Given a = (za, ta,−νa) and r = (zr, tr,−νr), if za = zr then ta = tr
and νa = νr, i.e. necessarily a = r in Λ.

6) Existence of edges. There is no edge between the vertices a =
(
za, ta,−νa

)
and

r =
(
zr, tr,−νr

)
when ta = tr.

7) Horizontal subtree structure. We require that each of the horizontal rooted subtrees of Λ, be
a linear (weighted) directed rooted subtree G r with incoming vertex r , as in Definition 7.6.

Remark 7.8. Comments on Definition 7.7.
1. The root condition (4) allows us to make a canonical choice of the root vertex; see Remark 4.6.2.
2. Condition (5) is equivalent to saying that ta and νa are functions of za. For instance in
Examples 8.7 and 8.8, even though the finite asymptotic values of ΨX have multiplicity 3, we
can use za ∈ Cz to label the vertices of ΛX .
3. As will be seen in the proof of the Main Theorem, condition (7) provides, for each sheet of
RX , a choice of the diagonals that connect the branch points that share the same sheet. This
choice will enable us to define appropriately the class [ΛX ] of (r, d)–configuration trees.
4. In case that there is only one horizontal rooted subtree for Λ, Lemma 7.4 ensures that the
only horizontal rooted subtree is ΛH(ρ).
5. When r = 0, Definition 7.7 reduces to the definition of a d–configuration tree presented in [1]
§8.3. The equivalence becomes explicit by observing that the essential vertices
σ =

(
∞σ, aσ,−∞

)
of (0, d)–configuration trees correspond to the vertices (∞σ, aσ), pairs in

[1], of d–configuration trees.

8. Low degree significative examples, from X to ΛX

We provide examples of the correspondence from vector fields to Riemann surfaces and con-
figuration trees

X 7−→ RX 7−→ ΛX ,
using the basic geometric/combinatorial pieces described in Figure 4.

About the meaning of the different data of ΛX .
1) The vertices of ΛX are in bijection with the reduced divisor of X (recall Definition 5.1,

Table 1), and with the branch points of RX with respect to π2, restricted over Ct, recall
Diagram 12.

2) The edges correspond to a subset of the diagonals, connecting the branch points, necessary
to describe completely the Riemann surface RX , recall Definition 5.4.1.

3) The root vertex %
.
= (z%, t%,−ν%), as usual in graph theory, means the initial vertex in

order to construct a tree, as in (46). From the analytic and geometric point of view, the root
determines the initial point of ΨX(z) =

∫ z
z1
ωX .

4) The weights K(a, r) ∈ Z in Definition 7.7: If we can describe all the branch points of RX
using only one sheet (Definition 5.10), then K(a, r) = 0. If several sheets are required, the
weight of the edge K(a, r) ∈ Z\{0} tells us the relative number of sheets of RX , we must go
“up or down” on the surface in order to find another sheet containing other branch points.
Vector fields having K(a, r) 6= 0 appear in Example 8.7 and §8.1.1.
In particular, if there are only two branch points, then there is no need to go up or down at
the starting branch point, so the weight of the only edge is 0.
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5) The global zero level sheet denoted GZL (which is in general non-canonical), indicates a subset

of the branch points that share the same sheet as the root 1 .

Remark 8.1. The notion of skeleton associated to ΛX will be described in Definition 9.5 and
the notion of (r, d)–soul in Definition 9.7. They play an active role in the proof of the Main
Theorem.
• For X ∈ E (r, d), d ≥ 1, the (r, d)–soul is necessarily a flat Riemann surface with boundary, and
is obtained from RX by removing its semi–infinite helicoids.
• In the case X ∈ E (r, 0), the (r, d)–soul coincides with RX .

8.1. The vector field X ∈ E (r, 0) has r ≥ 1 poles on Cz and ΨX is a polynomial map.

Example 8.1. Consider the vector field of Example 3.1,

X(z) =
λ

(z − p1)r
∂

∂z
and recall the notion of (νι + 1)–cyclic helicoid Definition 5.17. The (r, 0)–configuration tree
consists of one pole vertex and no edges

ΛX =
{

1 = (p1, p̃1,−r); 1 ; ∅
}
,

where p̃1 as in (18) is the critical value. In Figure 7 the case r = 2 is pictured: On the left hand
side the phase portrait of X is shown. Clearly there are 6 hyperbolic sectors, each corresponding
to a half plane. On the second column the Riemann surface is shown. On the rightmost column
the combinatorial objects are portrayed. For the general case −r ≤ −1 see Figure 4.c.

Figure 7. Vector field X(z) =
1

(z − p1)2

∂

∂z
with a pole of order −2 at

p1 ∈ Cz. The surface RX consists of three sheets with a branch cut, glued
together to form a (2 + 1)–cyclic helicoid. On the right column, the (2, 0)–
configuration tree consisting of one vertex, and its corresponding (2, 0)–skeleton
are portrayed; see §9.2 and Definition 9.5.
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In the next examples, we shall consider (r, d)–configuration trees with two or more vertices,
hence weighted edges appear.

Example 8.2. Consider the vector field

(49) X(z) =
λ

(z − p1)ν1(z − p2)ν2
∂

∂z
∈ E (r, 0), ν1 + ν2 = r, ν1, ν2 ≥ 1,

and its distinguished parameter
ΨX(z) = 1

λ

∫ z
z0

(ζ − p1)ν1(ζ − p2)ν2dζ.

Without loss of generality, we assume that the critical values p̃j = ΨX(pj), j = 1, 2, satisfy
Im (p̃1) ≥ Im (p̃2). The (r, 0)–configuration tree has two pole vertices and one edge

ΛX =
{

1 = (p1, p̃1,−ν1), 2 = (p2, p̃2,−ν2); 1 ; (∆1 2, 0)
}
,

where the edge ∆1 2 is the semi–residue S(ωX , p1, p2, γ) = p̃2 − p̃1, which according to (42) is
equivalent to the diagonal with the same notation. The weight of the edge is 0, since ∆1 2 is in
the global zero level sheet. See Figure 8 and 4.c.
If Im (p̃1) > Im (p̃2), then the semi–residue ∆1 2 = S(ωX , p1, p2, γ) = p̃2 − p̃1 ∈ C\R, giving
origin to a finite height horizontal strip, see left drawing in Figure 8.
If Im (p̃1) = Im (p̃2), then the diagonal ∆1 2 up to orientation coincides with a saddle connection
of the real vector field Re (X).

Figure 8. Vector field X(z) =
λ

(z − p1)ν1(z − p2)ν2
∂
∂z with two poles pι of

order −νι. The diagonal ∆1 2 ⊂ RX associated to the finitely ramified branch
points and its projections via π1 and π2 are coloured red. The two branch points
are the endpoints of the diagonal ∆1 2 ⊂ RX on the global zero level sheet. The
phase portrait (left drawing) is the case with poles of orders −3 = −ν2 and
−5 = −ν1. See Example 8.2, and §9.2 for the drawing on the right.



DYNAMICS OF VECTOR FIELDS WITH ESSENTIAL SINGULARITIES II 33

8.1.1. Vector fields in E (3, 0) with three simple poles. Consider X ∈ E (3, 0) with simple poles,
• we fix two finite ramification values p̃1 = 0, p̃2 = 1, and
• leave free the third p̃3 in the twice punctured plane C\{0, 1}.
This gives origin to a suitable family of vector fields F. There is a strong analytical and com-
binatorial dependence on the choice of the ramification values of the distinguished parameters
ΨX .

Proposition 8.2. Let F be the family of vector fields defined by the map

(50)

X(p3, z) : (C\{0, 1/2, 1})× C −→ E (3, 0)

(p3, z) 7−→ 2p3 − 1

12z(z − 1)(z − p3)

∂

∂z
.

1) The corresponding distinguished parameters are the polynomials

(51) Ψ(p3, z) =
12

2p3 − 1

(1

4
z4 +

−p3 − 1

3
z3 +

p3

2
z2
)
∈ C[z].

2) The corresponding reduced divisors are

(52) X(p3, z) 7−→ (0, 0,−1) + (1, 1,−1) +
(
p3, p̃3 =

p3
3(2− p3)

2p3 − 1
,−1

)
.

3) The (3, 0)–configuration trees ΛX(p3,z) for X(p3, z) are given by Equations (58)–(76).

In simple words, each ΛX(p3,z) describes the relative position of the branch points

1 = (0, 0,−1), 2 = (1, 1,−1), 3 = (p3, p̃3,−1)
on the Riemann surface RX(p3,z).

Remark 8.3. Motivation for the family F. Let X ∈ E (r, d) be a vector field with at least two
different poles p1, p2. The choice of

(p1, p̃1) = (0, 0), (p2, p̃2) = (1, 1) ∈ C2

as in (49) and (52) can be justified as follows.
1. We consider the complex analytic action

(53) A : Aut(C)× E (r, d) −→ E (r, d), (T,X) 7−→ T ∗X,

of the affine transformation group Aut(C) corresponding to those T ∈ Aut(Ĉ) = PSL(2,C) that
fix ∞, see [2] for general theory. Using suitable T , we obtain p1 = 0 and p2 = 1. Note that the
affine group Aut(C) is the largest complex automorphism group that acts on E (r, d).
2. If ΨX(z) =

∫ z
p1=0

ωX , then ΨX(0) = 0 = p̃1.

3. Considering {λX | λ ∈ C∗} as a projective class, we normalize by a suitable λ0, thus∫ 1

0
1
λ0
ωX = 1 = p̃2.

In the particular case E (3, 0), we get Equation (50).

Proof. First step. A suitable tessellation for p3. The degree four rational map

(54) Cp3 −→ Cp̃3 , p3 7−→ p̃3 =
p3

3(2− p3)

2p3 − 1

determines the behaviour of the third branch point (p3, p̃3,−1) ∈ RX(p3,z). The rational map

(54) has critical points {0, 1, 1/2}, with critical values {0, 1,∞}. The inverse image p̃−1
3 (R) is

drawn in Figure 9 using black, blue and orange segments to represent the inverse images of
(−∞, 0), [0, 1] and (1,∞), respectively. There are eight open connected components

{Uj}8j=1 = Cp3\p̃−1
3 (R)
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determining a tessellation of Cp3 . The regions Uj with even index are coloured white and those
with odd index are coloured gray. They are the inverse image of the lower half plane H2

− and
the upper half plane H2

+, respectively.

Figure 9. The degree four rational map p3 7−→ p̃3 gives origin to eight open
regions Uj , forming a tessellation of Cp3 , see upper left figure. The points
0, 1, 1/2 ∈ Cp3 , coloured black, white, triangle vertices, correspond to the
preimages of 0, 1,∞ ∈ Cp̃3 , respectively. The upper right figure provides

a description of the lift of the red α and magenta β circles under p̃−1
3 . The blue

tree p̃−1
3

(
[0, 1]

)
is the dessin d’enfant of the map p̃3.

To understand the suitability of the tessellation in Cp3 we need the behaviour of p̃−1
3 along

topological loops α and β enclosing the other two critical values 0 and 1. The loops will be
chosen so that they are generators of the fundamental group π1(Cp̃3\{0, 1}).
1) The red circle α ⊂ Cp̃3 represents loops in Cp̃3 , enclosing the critical value 0 but not 1.
2) The magenta circle β ⊂ Cp̃3 represents loops in Cp̃3 enclosing both 0 and 1.
The lifts of the circles α, β are described in Figure 9.

In order to proceed with the proof, the idea is as follows. If we determine the (3, 0)–
configuration trees of X(p3, z) at one point p3 ∈ Uj , then by a continuity argument the analogous
configuration tree remains valid for all p3 ∈ Uj .

Second step. Computation of the (3, 0)–configuration trees.
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We shall need to consider the boundaries between the regions Uj , j = 1, . . . , 8. Let Ui and Uj
denote two adjacent regions with common boundary (as open segments)

∂Ui,j
.
= (Ui ∩ U j)\

{
p̃−1

3 ({0, 1,∞})
}

.
Moreover, we assign colors to the vertices and edges in Figure 10, as follows

1 = (0, 0,−1) in red, 2 = (1, 1,−1) in green, 3 = (p3, p̃3,−1) in blue,

∆1 2 = (0, 0,−1), (1, 1,−1), ∆2 1 = (1, 1,−1), (0, 0,−1) in dashed black line,

∆1 3 = (0, 0,−1), (p3, p̃3,−1), ∆3 1 = (p3, p̃3,−1), (0, 0,−1) in red,

∆2 3 = (1, 1,−1), (p3, p̃3,−1), ∆3 2 = (p3, p̃3,−1), (1, 1,−1) in green.

Because of Definition 7.7.4 there are two possible cases for the root.
1) If p̃3 ∈ H2

+ ∪ (−∞, 0) then the vertex 3 is the root, by Equation (54), this is equivalent to

(55) p3 ∈ U1 ∪ U3 ∪ U5 ∪ U7 ∪ ∂U3,4 ∪ ∂U5,6 ∪
(
∂U1,2 ∩ (0, 1/2)

)
∪
(
∂U7,8 ∩ (2,∞)

)
.

2) If p̃3 6∈ H2
+ ∪ (−∞, 0) then the vertex 1 is the root, once again by (54)

(56) p3 ∈ U2 ∪ U4 ∪ U6 ∪ U8

∪ ∂U2,3 ∪ ∂U1,6 ∪ ∂U4,5 ∪ ∂U3,8 ∪ ∂U6,7

∪
(
∂U1,2 ∩ (1/2, 1)

)
∪
(
∂U7,8 ∩ (1, 2)

)
.

In either case, the diagonals/edges satisfy

(57)
∆i j = −∆j i, i, j ∈ {1, 2, 3}, i 6= j,

∆1 2 + ∆2 3 + ∆3 1 = 0.

The (3, 0)–configuration trees can be deduced upon careful consideration of the phase portraits
portrayed in Figure 10.

Case (1), the root is 3 and colored blue. From Equation (55), when

• p3 ∈ U1, the (3, 0)–configuration tree is

(58) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 2, 0), (∆3 1, 1)
}
, with ∆3 2,∆3 1 ∈ H2

−;

• p3 ∈ U3, the (3, 0)–configuration tree is

(59) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 1, 0), (∆1 2, 0)
}
, with ∆1 2 = 1 and ∆3 1 ∈ H2

−;

• p3 ∈ U5, the (3, 0)–configuration tree is

(60) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 1, 0), (∆1 2, 1)
}
, with ∆1 2 = 1 and ∆3 1 ∈ H2

−;

• p3 ∈ U7, the (3, 0)–configuration tree is

(61) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 2, 0), (∆2 1, 1)
}
, with ∆2 1 = −1 and ∆3 2 ∈ H2

−;

• p3 ∈ ∂U1,2 ∩ (0, 1/2), the (3, 0)–configuration tree is

(62) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 1, 0), (∆3 2, 1)
}
, with ∆3 2 > 0 and ∆3 2 > 1;

• p3 ∈ ∂U7,8 ∩ (2,∞), the (3, 0)–configuration tree is

(63) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 2, 0), (∆2 1, 1)
}
, with ∆2 1 = −1 and ∆3 2 > 1;
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Figure 10. The plane Cp3 as vector field atlas of X(p3, z) and their corre-
sponding (3, 0)–skeletons of ΛX(p3,z). This provides a bifurcation diagram for
the phase portraits, there appear 12 (orientation preserving) topological classes
of phase portraits of Re (X(p3, z)). The shaded red and green areas represent
the half planes or segments where the diagonal corresponding to p̃3 can move,
its total winding number is 4 coinciding with the degree of the map p̃3 in (54).

• p3 ∈ ∂U3,4, the (3, 0)–configuration tree is

(64) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 1, 0), (∆1 2, 0)
}
, with ∆1 2 = 1 and ∆3 1 > 0;

• p3 ∈ ∂U5,6, the (3, 0)–configuration tree is

(65) ΛX(p3,z) =
{

1 , 2 , 3 ; 3 ; (∆3 1, 0), (∆1 2, 0)
}
, with ∆1 2 = 1 and ∆3 1 > 0.

Case (2), the root is 1 and colored red. From Equation (56), when

• p3 ∈ U2, the (3, 0)–configuration tree is

(66) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 3, 0), (∆3 2, 1)
}
, with ∆1 3,∆3 2 ∈ H2

−;

• p3 ∈ U4, the (3, 0)–configuration tree is

(67) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆1 3, 1)
}
, with ∆1 3 ∈ H2

−,∆3 2 ∈ H2
+;
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• p3 ∈ U6, the (3, 0)–configuration tree is

(68) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆2 3, 0)
}
, with ∆1 2 = 1 and ∆2 3 ∈ H2

−;

• p3 ∈ U8, the (3, 0)–configuration tree is

(69) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆2 3, 1)
}
, with ∆1 2 = 1 and ∆2 3 ∈ H2

−;

• p3 ∈ ∂U4,5, the (3, 0)–configuration tree is

(70) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆1 3, 1)
}
, with ∆1 2 = 1 and ∆1 3 > 0;

• p3 ∈ ∂U1,2 ∩ (1/2, 1), the (3, 0)–configuration tree is

(71) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 3, 0), (∆3 2, 1)
}
, with ∆1 3 > 1 and ∆3 2 < 0;

• p3 ∈ ∂U7,8 ∩ (1, 2), the (3, 0)–configuration tree is

(72) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆2 3, 1)
}
, with ∆1 2 = 1 and − 1 < ∆2 3 < 0;

• p3 ∈ ∂U1,6, the (3, 0)–configuration tree is

(73) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 3, 0), (∆3 2, 0)
}
, with 0 < ∆1 3 < 1 and 0 < ∆3 2 < 1;

• p3 ∈ ∂U3,8, the (3, 0)–configuration tree is

(74) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆2 3, 0)
}
, with ∆1 2 = 1 and ∆2 3 > 0;

• p3 ∈ ∂U2,3, the (3, 0)–configuration tree is

(75) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 3, 0), (∆3 2, 0)
}
, with 0 < ∆1 3 < 1 and ∆1 3 > 0;

• p3 ∈ ∂U6,7, the (3, 0)–configuration tree is

(76) ΛX(p3,z) =
{

1 , 2 , 3 ; 1 ; (∆1 2, 0), (∆2 3, 0)
}
, with ∆1 2 = 1 and ∆2 3 > 0.

�

As an advantage of Proposition (8.2), recalling the complex analytic action (53), then the
quotient map

Π : E (r, d) −→ E (r, d)

Aut(C)
X 7−→ [X]

determines the analytic classes of vector fields. In particular, E (3, 0)/Aut(C) is a complex
analytic space of complex dimension two, having singularities originated from the vector fields
in E (3, 0) with non-trivial isotropy group under the Aut(C)–action. See [2] for general theory on
E (r, d) and [23], [33] for the rational case. Hence the family F gives origin to a curve Π◦X(p2, z)
of Aut(C)–classes of vector fields.

Corollary 8.4. 1) The complex analytic curve

Π ◦X(p3, z) : C\{−1, 0, 1/2, 1, 2} −→ E (3, 0)

Aut(C)
is injective.

2) The parameter plane Cp3\{0, 1/2, 1} provides a bifurcation diagram. There appear 12 (orien-
tation preserving) topological classes of phase portraits of Re (X(p3, z)).
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The notions of topological equivalence and bifurcation appear as Definition 11.1. We shall
study the general problem of the number of topological classes of phase portraits of Re (X), for
X ∈ E (r, d), in §11, see Theorem 11.3.

Proof. In order to describe the Aut(C)–equivalent the vector fields X(p3, z), consider the action
(T,X(p3, z)) 7−→ T ∗X(p3, z). It lifts to the action on distinguished parameters, as

(T,Ψ(p3, z)) 7−→ T ∗Ψ(p3, z) = Ψ(p3, ) ◦ T−1(z).
The polynomial Ψ(p3, z) has branch points {(0, 0), (1, 1), (p3, p̃3)} ⊂ C2. For T 6= Id ∈ Aut(C),
the polynomial Ψ(p3, ) ◦ T−1(z) gives rise to a permutation of {(0, 0), (1, 1), (p2, p̃3)}. This is
possible if and only if p̃3 = 0 or 1. Using the definition of p̃3, Equation (54), we have p3 = −1
or 2. In fact the polynomials Ψ(−1, z) and Ψ(2, z) are Aut(C)–equivalent (using the translation
map T−1 that sends {−1, 0, 1} to {0, 1, 2} in Cz).

The assertion (2) uses careful inspection of Figure 10. We convene that ∼ means topologically
equivalence. For p3 the topologies are as follows:
• U1, . . . , U8 determine eight topological classes. Clearly the topology remains without change
for p3 on each open set. For example, U1, U2 determine two horizontal strip flows for the
corresponding Re (X(p3, z)), however the orientation of the flows are different.
• ∂U1,2 ∩ (0, 1/2) ∼ ∂U4,5, ∂U7,8 ∩ (1, 1/2) ∼ ∂U7,8 ∩ (2,∞) determine two topological classes.
In fact the corresponding Re (X(p3, z)) have two saddle connections, the orientation determines
two non-equivalent cases.
• ∂U3,4 ∼ ∂U1,6 ∼ ∂U3,8, ∂U5,6 ∼ ∂U2,3 ∼ ∂U6,7 determine two topological classes. The
corresponding Re (X(p3, z)) have two saddle connections that have a common half plane as
boundary (this is the difference with respect to the above case), and the orientation determines
two non-equivalent cases.
Hence we have 12 different topological classes of phase portraits. �

The general problem of of computing ΨX starting with a configuration of preassigned critical
values {p̃1, . . . , p̃r} is treated in §14, Corollary 14.1.

8.2. The vector field X ∈ E (0, d) has an isolated essential singularity at ∞ ∈ Ĉz,
no zeros or poles. The simplest example corresponds to a (0, 1)–configuration tree; only one
essential vertex and no edges.

Example 8.3. Consider once again Example 4.1, that is
X(z) = eµ(z+c1) ∂

∂z ∈ E (0, 1),

with µ ∈ C∗, c1 ∈ C as in (7). There is an isolated essential singularity at ∞ ∈ Ĉz with finite
asymptotic value a1 given by (22).
The (0, 1)–configuration tree consists of one essential vertex and no edges

ΛX =
{

1 = (∞1, a1,−∞); 1 ; ∅
}
.

See Figure 11 and 4.a. The vertices are branch points of the Riemann surface RX , and since
there is only one branch point/vertex, then no weighted edges appear. The soul of RX is a sheet,
recall Remark 8.1, and coincides with the global zero level. It is to be noted that the semi–infinite
helicoids, even though they are part of RX , are not necessary in the combinatorial description
of the surface. The complete RX is constructed by making the natural convention to glue two
semi–infinite helicoids to each vertical tower, one on the top and one on the bottom. Hence
the semi–infinite helicoids will have no counterpart in the combinatorial description as graphs.
However, to remind the reader of their existence in RX we have schematically represented them
in the figures by the “springs” or “coils” attached to the vertical towers.
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Figure 11. Vector field X(z) = eµ(z+c1) ∂
∂z with an essential singularity

at ∞ ∈ Ĉz. The surface RX is formed by two semi–infinite helicoids glued to
the global zero level sheet. This sheet is the soul, Definition 9.7, shaded blue.
See Example 8.3, and §9.2 for the combinatorial elements on the right column.

In the following example there are d ≥ 2 essential vertices and d − 1 edges, all sharing the
same sheet.

Example 8.4. Consider the vector field

X(z) = ez
d ∂
∂z ∈ E (0, d), for d ≥ 2.

If z0 = 0, the distinguished parameter is

ΨX(z) =
z∫
0

e−ζ
d

dζ.

Note that a1
.
=
∞∫
0

e−ζ
d

dζ ∈ R+. Moreover ΨX has d finite asymptotic values given by3 (see [39]

p. 168)
aσ = ei2π(σ−1)/da1 for σ = 1 . . . d,

each with multiplicity one, and a logarithmic branch point (∞σ, aσ,−∞) ∈ RX over each finite
asymptotic value. For each of the finite asymptotic values aσ, the exponential tracts Uσ(ρ) are
given by

Uσ(ρ) =
{
z ∈ Cz |

∣∣∣arg z − 2π(σ−1)
d

∣∣∣ < π
d , |z| < R(ρ)

}
, for σ = 1, . . . , d,

where R(ρ) > 0 is a suitable function of ρ.
Thus the (0, d)–configuration tree ΛX will have d essential vertices

VH = { σ = (∞σ, aσ,−∞)}dσ=1

with root 1 = (∞1, a1,−∞). Recalling Definition 7.6.1, the d− 1 edges EH are selected such

that we obtain a left–right–top–bottom linear directed tree of the vertices VH , where the index

3Our numbering of the indices σ differ from the ones in [39] so that they agree with the conventions outlined
in Remark 4.6.3.
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σ0 for the top and left most vertex will be given by the simple formula

σ0 =

⌈⌊
d

2

⌋
/2

⌉
+ 1,

where d·e and b·c are the ceiling and floor functions respectively. Recalling Definition 7.6.2, we
obtain ΛH, 1 the linear directed rooted tree with incoming vertex 1 . Moreover, all d branch

points share the same sheet in RX , hence by assigning weight 0 to each of the edges ∆ar ∈ ÊH
we obtain the (0, d)–configuration tree of X. In Figure 12 the case d = 9 is illustrated, the
(0, 9)–configuration tree is

(77) ΛX =
{

1 , . . . , 9 ; 1 ; (∆1 5, 0), (∆5 2, 0), (∆2 4, 0), (∆4 3, 0),

(∆1 6, 0), (∆6 9, 0), (∆9 7, 0), (∆7 8, 0)
}
.

3
4
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7
8

9

4

5

7
8

9

1

2

3

6

1

2

6

Figure 12. Vector field X(z) = ez
9 ∂
∂z with essential singularity at

∞ and no poles. In this case the top and left most vertex is σ0 with

σ0 = db9/2c/2e + 1 = 3. (a) Represents the left–right–top–bottom linear
directed tree of the vertices VH =

{
1 , . . . , 9

}
. (b) Represents the (0, 9)–

configuration tree ΛX where all the edges have weight 0. The soul, Definition
9.7, is shaded blue. The Riemann surface RX consists of gluing 18 semi–infinite
helicoids, one above and one below each logarithmic branch point/vertex. All
the branch points and diagonals belong to the global zero level sheet.

The soul of RX is a sheet and coincides with the global zero level.

The following example is a family of vector fields in E (0, 3) whose (0, 3)–configuration trees
have two edges, one of which can assume a non–zero weight. Recall that the weight of an edge
indicates the number of sheets one has to go up or down, at the starting branch point, in order
to reach the sheet that shares both the starting and ending branch point of the diagonal/edge
(i.e. the sheet containing the diagonal).

Example 8.5. Consider the vector field

(78) X(z) = 2πi exp

(
−1

3
z3 + c2z

)
∂

∂z
, c2 ∈ C.
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We shall need some background on Airy functions and integrals, for full details see [1], pp. 200–
203 and references therein. Let

Ai(p, z) =
1

2πi

∫
L(z)

e
1
3 ζ

3−pζdζ,

be the Airy integral, where A = {z ∈ C | arg(z) ∈ (π/6, 3π/6)} and L(z) := L(z, τ) : [0, 1] −→ A
is a simple C1 path starting at 0 and ending at z ∈ A. The relationship between the Airy
function Ai and the Airy integral is given by

(79) Ai(p) = Ai(p)− e−i2π/3Ai(e−i2π/3p), Ai(p) = lim
z→∞
z∈A
Ai(p, z).

Choosing z0 = 0, the distinguished parameter of X is

ΨX(z) =
z∫
0

ωX =
1

2πi

z∫
0

e
1
3 ζ

3−c2ζdζ,

so the 3 finite asymptotic values of ΨX(z) are given by

(80) aj+1(c2) = ηjAi(ηjc2), j = 0, 1, 2, η = ei2π/3,

with asymptotic paths ending in the exponential tracts

Uj(ρ) = ηjA ∩D
(
0, R(ρ)

)
,

for j = 0, 1 and 2 respectively, where R(ρ) is a suitable function of ρ.
The (0, 3)–configuration trees for X as in (78) are

(81) ΛX =
{

1 = (∞1, a1,−∞), 2 = (∞2, a2,−∞), 3 = (∞3, a3,−∞);

1 ; (∆1 2, 0), (∆1 3,K(1, 3))
}
,

where

(82)
∆1 2 = a2 − a1 = ηAi(η c2),

∆1 3 = a3 − a1 = −Ai(c2),

with K(1, 3) ∈ Z. See Figure 13. The dependency of ∆1 2 and ∆1 3 on c2 is clear from (82),
however the dependency of K(1, 3) on c2 is much more intricate, any K(1, 3) ∈ Z appears: for
a full description see [1] §8.6.1, particularly figure 14.

8.3. The vector field X ∈ E (r, d) has r ≥ 1 poles on Cz and an isolated essential

singularity at ∞ ∈ Ĉz. The next example shows a simple case where the soul is non–trivial:
it consists of more than one sheet.

Example 8.6. Consider the vector field

X(z) =
ez

(z − p1)(z − p2)

∂

∂z
∈ E (2, 1),

with p1 = 9iπ2 and p2 = −iπ2 . Its distinguished parameter is then

ΨX(z) =
z∫
z0

ωX = e−z
4

(
− 8− 9π2 + 16iπ(1 + z)− 4z(2 + z)

)
.

The vector field X has an isolated essential singularity at ∞ ∈ Ĉz and ΨX has one finite
asymptotic value

a1 = ΨX(∞) = 0
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Figure 13. Vector field X(z) = 2πi exp
(
− 1

3z
3 + c2z

)
∂
∂z ∈ E (0, 3) with

essential singularity at ∞ and no poles. In (a) we have the case when
K(1, 2) = K(1, 3) = 0 so the diagonals ∆1 2 and ∆1 3 share the same sheet of
RX . Case (b) is when K(1, 2) = 0 and K(1, 3) ∈ Z\{0}, thus the diagonals ∆1 2

and ∆1 3 lie on two different sheets of RX . We illustrate the case K(1, 3) < 0.
Note that the global zero level sheet is the one containing the diagonal ∆1 2.
When starting on the global zero level sheet and in order to reach the sheet
containing the diagonal ∆1 3, it is necesarry to go around the branch point
(∞1, a1,−∞) exactly K(1, 3) times (see Remark 5.19.3). For case (b) the global
zero level sheet is non-canonical: if we instead choose as the global zero level
sheet the one containing the diagonal ∆1 3, then the integer parameters would
be K(1, 3) = 0 and K(1, 2) > 0.

with asymptotic path inside the exponential tract {z ∈ Cz | Re (z) > 0}. The poles p1, p2 have
associated critical values p̃1 = −5π + 2i and p̃2 = −5π − 2i respectively.
According to the labelling conventions in Definition 7.7, the (2, 1)–configuration tree

(83) ΛX =
{

1 = (p1, p̃1,−1), 2 = (∞1, a1,−∞), 3 = (p2, p̃2,−1);

1 ; (∆1 2, 0), (∆2 3,−3)
}
,

has two pole vertices 1 , 3 , an essential vertex 2 , and two edges
∆1 2 = a1 − p̃1 = 5π − 2i with weight 0,

∆2 3 = p̃2 − a1 = −5π − 2i with weight −3.
In this case, the (2, 1)–soul of ΛX is a flat Riemann surface consisting of:
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• 12 half planes,
• 2 finite height horizontal strips,
• two cone points with cone angle 4π (equivalent to the two simple poles),
• a cone point with cone angle 8π (associated to the infinitely ramified branch point (∞1, a1,−∞))
and
• a horizontal branch cut starting at the branch point (∞1, a1,−∞).
See Figures 14 and 4.

(2, 1)–skeleton of ΛX

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

15

20

25

Figure 14. Vector field X(z) =
ez

(z − 9iπ2 )(z + iπ2 )
∂
∂z with essential sin-

gularity at ∞ and two simple poles at p1 = 9iπ2 and p2 = −iπ2 . The
Riemann surface RX consists of two semi–infinite helicoids, two (1 + 1)–cyclic
helicoids and a 3–helicoid. The soul, Definition 9.7, is shaded blue and consists
of the Riemann surface RX minus the semi–infinite helicoids. The boundary
(where the two semi–infinite helicoids should be glued) is coloured orange.
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The next examples present (r, d)–configuration trees with more than one weighted edge.

Example 8.7. Consider the vector field

X(z) = −ez
3

3z2

∂

∂z
∈ E (2, 3).

If z0 = 0 the distinguished parameter is

ΨX(z) = e−z
3 − 1.

Thus the pole p1 = 0 has order −ν1 = −2 and critical value p̃1 = 0, while the essential singularity

at∞ ∈ Ĉz has finite asymptotic value a1 = −1, with multiplicity 3. In order to distinguish each
of the three finite asymptotic values, one has to consider the asymptotic path associated to each
and see on which of the following exponential tracts each lies in

(84)
U1(ρ) = {z ∈ C | arg(z) ∈ (−π/6, π/6), |z| < R(ρ)},
U2(ρ) = {z ∈ C | arg(z) ∈ (π/2, 5π/6), |z| < R(ρ)},
U3(ρ) = {z ∈ C | arg(z) ∈ (7π/6, 3π/2), |z| < R(ρ)},

for suitable R(ρ) > 0. That is (∞1,−1,−∞), (∞2,−1,−∞), (∞3,−1,−∞) ∈ RX are 3 loga-
rithmic branch points corresponding to the above exponential tracts as in Definition 4.3.
The (2, 3)–configuration tree has three essential vertices, and one pole vertex. According to
Definition 7.7.4, since r 6= 0 the root must be the unique pole vertex, so we conveniently label
the vertices as follows

1 = (z1, t1,−ν1) = (p1, p̃1,−2), 2 = (z2, t2,−ν2) = (∞1, a1,−∞),

3 = (z3, t3,−ν3) = (∞2, a1,−∞), 4 = (z4, t4,−ν4) = (∞3, a1,−∞).

In this way the (2, 3)–configuration tree is

(85) ΛX =
{

1 , 2 , 3 , 4 ; 1 ; (∆1 2, 0), (∆1 3, 1), (∆1 4,−1)
}
.

Once again the edges ∆1 2, ∆1 3 and ∆1 4 correspond to the diagonals/semi–residues between the
branch points associated to the corresponding vertices:

(86)

∆1 2 =
∞1∫
p1

ωX = a1 − p̃1 = −1, ∆1 3 =
∞2∫
p1

ωX = a1 − p̃1 = −1,

∆1 4 =
∞3∫
p1

ωX = a1 − p̃1 = −1.

The weight K(1, 2) = 0 since the branch points corresponding to the root 1 and the vertex 2

share the same sheet in RX , K(1, 3) = 1 since in order to reach the diagonal ∆1 3 one has to go
up one sheet, at the branch point corresponding to 1 (i.e. ∆1 3 is one sheet above the diagonal
∆1 2 in RX), and K(1, 4) = −1 since in order to reach the diagonal ∆1 4 one has to go down one
sheet, at the branch point corresponding to 1 (i.e. ∆1 4 is one sheet below the diagonal ∆1 2 in
RX).
Recalling Remark 7.8.2 and the definition of semi–residues (42), note that it is possible to
calculate the weights K(a, r) by considering the phase portrait of X: the path of integration from
p1 to ∞1 stays on the same angular sector about p1 so K(1, 2) = 0, the path of integration from
∞1 to∞2 necessarily crosses two angular sectors going counterclockwise around p1 corresponding
to going up a sheet in RX so K(1, 3) = 1, and the path of integration from ∞1 to ∞3 crosses
two angular sectors going clockwise around p1 corresponding to going down a sheet in RX so
K(1, 4) = −1.
In this case the decomposition, provided by Lemma 7.4, into horizontal subtrees is

ΛX = ΛH(1) ∪ ΛH(1,3) ∪ ΛH(1,4),
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where

ΛH(1) =
{

1 , 2 ; 1 ; (∆1 2, 0)
}
, ΛH(1,3) =

{
1 , 3 ; 1 ; (∆1 3, 1)

}
,

ΛH(1,4) =
{

1 , 4 ; 1 ; (∆1 4,−1)
}
.

See Figure 15 and the left hand side of Figure 17.

Figure 15. Vector field X(z) = −ez
3

3z2
∂
∂z with an essential singularity

at ∞ and pole p1 = 0 of order −2. The diagonals ∆1 2, ∆1 3 and ∆1 4, and
their projections are shown as red segments. The Riemann surface RX is not
drawn. See Example 8.7, and §9.2 for the right drawing.

Example 8.8. In a similar vein as the previous example consider the vector field

X(z) =
ez

3

3z3 − 1

∂

∂z
∈ E (3, 3),

with simple poles at p1 =
1
3
√

3
, p2 =

ei2π/3
3
√

3
, p3 =

e−i2π/3
3
√

3
, and an essential singularity at

∞ ∈ Ĉz. Its distinguished parameter is

ΨX(z) =
z∫
0

ωX = −ze−z3 .
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Thus the critical values corresponding to the poles are

p̃1 = − 1
3
√

3e
, p̃2 = −ei2π/3

3
√

3e
and p̃3 = −e−i2π/3

3
√

3e
.

The essential singularity at ∞ has a1 = 0 as its finite asymptotic value with multiplicity 3,
once again with the same exponential tracts as the previous example, see equation (84), hence
(∞1, 0,−∞), (∞2, 0,−∞), (∞3, 0,−∞) ∈ RX are the 3 logarithmic branch points corresponding
to the mentioned exponential tracts.
The (3, 3)–configuration tree has three essential vertices and three pole vertices, which we label
as

(87)
1 = (z1, t1,−ν1) = (p2, p̃2,−1), 2 = (z2, t2,−ν2) = (p1, p̃1,−1),

3 = (z3, t3,−ν3) = (p3, p̃3,−1), 4 = (z4, t4,−ν4) = (∞1, a1,−∞),

5 = (z5, t5,−ν5) = (∞2, a1,−∞), 6 = (z6, t6,−ν6) = (∞3, a1,−∞).

Thus the (3, 3)–configuration tree (see Figure 16) is4

(88) ΛX =
{

1 , 2 , 3 , 4 , 5 , 6 ; 3 ; (∆3 6, 0), (∆3 2, 1), (∆2 4, 1), (∆4 1, 0), (∆1 5, 1)
}
,

with edges given by the diagonals/semi–residues

(89)

∆3 6 =
∞3∫
p3

ωX = a1 − p̃3 =
e−i2π/3

3
√

3e
,

∆3 2 =
p1∫
p3

ωX = (p̃1 − p̃3) = −
(1− e−i2π/3

3
√

3e

)
,

∆2 4 =
∞1∫
p1

ωX = a1 − p̃1 =
1

3
√

3e
,

∆4 1 =
p2∫
∞1

ωX = p̃2 − a1 = − 1
3
√

3e
ei2π/3,

∆1 5 =
∞2∫
p2

ωX = a1 − p̃2 =
ei2π/3

3
√

3e
,

and weights K(3, 6) = 0, K(3, 2) = 1, K(2, 4) = 1, K(4, 1) = 0, K(1, 5) = 1.
Once again it is instructive to examine in detail how these weights are calculated, Figures 16
and 17 will facilitate the discussion.
Consider the phase portrait of X: for the calculation of the weight K(3, 6) = 0, consider the
projection of the diagonal ∆3 6 onto Cz, clearly this path remains on one angular sector about
p3 (that corresponds to the exponential tract U3(ρ) containing ∞3 ∈ Cz). Thus the logarithmic
branch point (∞3, a1,−∞) and the finitely ramified branch point (p3, p̃3,−1) share the same
sheet on RX .
Now consider the projection onto Cz of the diagonals ∆3 6 and ∆3 2: the projection of ∆3 6 lies
on the exponential tract U3(ρ) associated to∞3 while the projection of the diagonal ∆3 2 lies on
the strip flow determined by p1 and p3. In order to go from the exponential tract U3(ρ) to the
strip flow just mentioned, one must go through three half planes about p3. This is equivalent to
going up (or down) one level on RX , hence K(3, 2) = 1.
Similarly, considering the projections of ∆3 2 and ∆2 4 we note that when coming from the pole

4The root is 3 so as to agree with the conventions of Definition 7.7.
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Figure 16. Vector field X(z) =
ez

3

3z3 − 1
∂
∂z with an essential singularity

at ∞ and 3 simple poles pι. The five diagonals and their projections are
shown in red. The Riemann surface RX is not drawn. See Example 8.8, and
§9.2 for the drawing on the right.

p3 to the pole p1 and then to∞1 contained in U1(ρ), we go around p1 and touch upon three half
planes (since ∞1 lies on the real axis), thus K(2, 4) = 1.

For K(2, 1) = 0, note that the projection of ∆4 1 lies entirely within the strip flow determined
by p1 and p2, thus the logarithmic branch point (∞1, a1,−∞) and the finitely ramified branch
point (p2, p̃2,−1) share the same sheet on RX .
Finally, by considering the projections of ∆4 1 and ∆1 5, we see that the projection of ∆1 5 lies
on the exponential tract associated to ∞2 while the projection of the diagonal ∆4 1 lies on the
exponential tract associated to ∞1. In order to go from one exponential tract to another one
must cross at least three angular sectors (but no more than four), this is equivalent to the fact
that one must go up or down one level on RX to get from the sheet containing ∆4 1 to the sheet
containing ∆1 5. Hence K(1, 5) = 1.
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Figure 17. Detail of vector fields in Examples 8.7 and 8.8. The left

hand side shows the vector field X(z) = −ez3
3z2

∂
∂z , the right hand side the vector

field X(z) = ez3
3z3−1

∂
∂z . Each angular sector around the poles corresponds to a

half plane on RX . Note that the dynamics of Re (X) in a neighbourhood of

∞ ∈ Ĉ are different. The images contain the information needed to construct
the corresponding (r, d)–configuration trees, as explained in the text.

In this case the decomposition, provided by Lemma 7.4, into horizontal subtrees is
ΛX = ΛH(3) ∪ ΛH(3,2) ∪ ΛH(2,4) ∪ ΛH(1,5),

where

ΛH(3) =
{

3 , 6 ; 3 ; (∆3 6, 0)
}
, ΛH(3,2) =

{
2 , 3 ; 3 ; (∆3 2, 1)

}
,

ΛH(2,4) =
{

1 , 2 , 4 ; 2 ; (∆2 4, 1)(∆4 1, 0)
}
, ΛH(1,5) =

{
1 , 5 ; 1 ; (∆1 5, 1)

}
.

Example 8.9. Recall Example 4.2, where the vector fields

X(z) = ezd
zr

∂
∂z ∈ E (r, d), for d ≥ 1,

are approximated by the rational vector fields

Xn(z) =
1

zr
(
1− zd

n

)n ∂
∂z ∈ E (r + nd, 0), for n ≥ 1.

We wish to explore (some of) the (r, d)–configuration trees for X and Xn.
First note that the answer will heavily depend on the parameters r and d. For instance, (37)

shows that there is only one finite asymptotic value a with multiplicity d (as in Example 8.7) if
and only if r = −1 (mod d), i.e. (r + 1)/d = k ∈ N.
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In this case the unique finite asymptotic value is a = (k − 1)!/d. Thus RX has a branch point
1 = (p1, p̃1,−ν1) = (0, 0,−r) of ramification index ν1 = r = kd − 1 and logarithmic branch

points 1+σ = (∞σ, a,−∞) ∈ RX , with asymptotic paths ασ(τ) = τei2πσ/d for σ = 1, . . . , d.

On the other hand the Riemann surfaces RXn
associated to Xn(z) have a branch point at

1 = (p1, p̃1,−r) = (0, 0,−r) of ramification index r + 1 = kd and branch points at

1+σ
n

=
(
êσ(n), ẽσ(n),−n

)
=
(
ei2πσ/dn1/d, a nkn!/(n + k)!,−n

)
of ramification index n + 1, for σ = 1, . . . , d. Hence by examining the corresponding phase
portraits we can see that the (r, d)–configuration trees are given by

(90) ΛXn
=
{

1 , 2 n, . . . , 1+σ
n
, . . . , 1+d

n
; 1 ;

(∆1 2, 0), (∆1 3, k), . . . ,
(
∆1 (1+σ), (σ − 1)k

)
, . . . ,

(
∆1 (1+d), (d− 1)k

)}
,

(91) ΛX =
{

1 , 2 , . . . , 1+σ , . . . , 1+d ; 1 ;

(∆1 2, 0), (∆1 3, k), . . . ,
(
∆1 (1+σ), (σ − 1)k

)
, . . . ,

(
∆1 (1+d), (d− 1)k

)}
,

whose skeletons are as in Figure 18.

Example 8.10. A prototypical (r, 4)–configuration tree. Consider a vector field

(92) X(z) =
eE(z)

(z − p1)ν1(z − p2)ν2
∂

∂z
, r = ν1 + ν2,

E(z) a polynomial of degree 4, and Im (p1) > Im (p2). The singularity at ∞ ∈ Ĉz has four
finite asymptotic values (∞1, a1), (∞2, a2), (∞3, a2) and (∞4, a3); note that two of them differ
exclusively by their exponential tract, sharing the asymptotic value a2 ∈ Cz. The existence of
such a polynomial E(z) will be proved in §9.3, in particular this involves solving the system of
equations (45).
The following (r, 4)–configuration tree ΛX , will be used to exemplify some constructions and
possible complexities that arise in the proof of the Main Theorem. Thus the (r, 4)–configuration
tree has three essential vertices and two pole vertices, which we label as follows

(93)
1 = (p1, p̃1,−ν1), 2 = (∞2, a2,−∞), 3 = (∞1, a1,−∞),

4 = (p2, p̃2,−ν2), 5 = (∞3, a2,−∞), 6 = (∞4, a3,−∞).

Let

(94) ΛX =
{

1 , 2 , 3 , 4 , 5 , 6 ; 1 ;

(∆1 2, 0),
(
∆1 5,−2),

(
∆2 3,K(2, 3)

)
,
(
∆2 4,K(2, 4)

)
,
(
∆2 6,K(2, 6)

))}
,

with edges given by the diagonals/semi–residues

(95)

∆1 2 =
∞2∫
p1

ωX = a2 − p̃1, ∆1 5 =
∞3∫
p1

ωX = a2 − p̃1,

∆2 3 =
∞1∫
∞2

ωX = a1 − a2, ∆2 4 =
p2∫
∞2

ωX = p̃2 − a2,

∆2 6 =
∞4∫
∞2

ωX = a3 − a2,
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Figure 18. Regarding Example 8.9; the top figures are the (r+nd, 0)–skeletons
for Xn ∈ E (r + nd, 0) approximating X ∈ E (r, d), when r = −1 (mod d).
Bottom figures are the (r, d)–skeletons for X ∈ E (r, d). Note that for Xn the
critical values are 0 and a nkn!/(n + k)! and for X the only critical value is
0 and the only finite asymptotic value is a = (k − 1)!/d. Further note that
k = (r+ 1)/d is the number of sheets that separate the different diagonals both
in RXn

and RX .

and weights K(1, 2) = 0, K(1, 5) = −2, K(2, 6) < K(2, 4) < K(2, 3) ≤ −1. Figure 19 shows the
(r, 4)–configuration tree ΛX together with the corresponding (r, 4)–skeleton. This figure will be
used as a guide in the proof of the Main Theorem.
In this case the decomposition, provided by Lemma 7.4, into horizontal subtrees is

ΛX = ΛH(1) ∪ ΛH(1,5) ∪ ΛH(2,3) ∪ ΛH(2,4) ∪ ΛH(2,6),
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where

ΛH(1) =
{

1 , 2 ; 1 ; (∆1 2, 0)
}
, ΛH(1,5) =

{
1 , 5 ; 1 ; (∆1 5,−2)

}
,

ΛH(2,3) =
{

2 , 3 ; 2 ; (∆2 3,K(2, 3))
}
, ΛH(2,4) =

{
2 , 4 ; 2 ; (∆2 4,K(2, 4))

}
,

ΛH(2,6) =
{

2 , 6 ; 2 ; (∆2 6,K(2, 6))
}
.

Figure 19. The (r, 4)–configuration tree ΛX and its (r, 4)–skeleton
corresponding to Example 8.10. The root is 1 , the weight K(1, 2) = 0
(hence the branch points 1 , 2 which are the endpoints of the diagonal
∆1 2 ⊂ RX , share the global zero level (GZL) sheet), K(1, 5) = −2 (mod ν1+1),
andK(2, 6) < K(2, 4) < K(2, 3) ≤ −1. The information about how many sheets
we have gone “up” or “down” on the Riemann surface is given by the weights.
The asymptotic value a2 has multiplicity 2.



52 ALVARO ALVAREZ–PARRILLA AND JESÚS MUCIÑO–RAYMUNDO

9. Proof of Main Theorem: description of the family E (r, d) via combinatorial
scheme

Plan for proof. Obviously E (r, d) is a complex manifold of dimension r + d + 1, see [2] for
more general discussion.

The proof of the bijection E (r, d) ∼=
{[

ΛX
]}

shall proceed as follows:
Note that our Dictionary Proposition 2.5 provides the correspondence between RX , ΨX and
X ∈ E (r, d).

1) In §9.1 starting from ΨX , we construct the (r, d)–configuration tree ΛX .
2) In §9.2, we start with an abstract (r, d)–configuration tree ΛX , Definition 7.7, and construct
the (r, d)–skeleton of ΛX (as an associated combinatorial object).
3) In §9.3 from the (r, d)–skeleton of ΛX , we proceed to construct a Riemann surface RX in
E (r, d).
4) The suitable equivalence class [ΛX ] of (r, d)–configuration trees ΛX will be explained in §9.4.

9.1. From X ∈ E (r, d) to an (r, d)–configuration tree ΛX .
Recalling Definition 7.7 of (r, d)–configuration tree, we have:
• The trivial case: ΨX has exactly one finite asymptotic or critical value:
From Lemma 5.3, only the following two cases are possible,
1) X(z) = µ

(z−p1)r
∂
∂z , i.e. (r, d) = (r, 0), or

2) X(z) = µ−1ez ∂∂z , i.e. (r, d) = (0, 1),
where p1 ∈ Cz and µ 6= 0.

For (1), ΛX =
{

1 = (p1, p̃1,−r); 1 ; ∅
}

, see Example 8.1.

For (2), ΛX =
{

1 = (∞1, a1,−∞); 1 ; ∅
}

, see Example 8.3.

• The non–trivial case: ΨX has two or more finite asymptotic or critical values, i.e. d+ n ≥ 2:
Considering the surface RX , recall Equation (31) and the reduced divisor, Definition 5.1.

1. Vertices of ΛX . Let the vertices be those obtained from the reduced divisor of X,

(96) V =
{
ι =

(
pι, p̃ι,−νι

)}n
ι=1
∪
{
n+σ =

(
∞σ, aσ,−∞

)}d
σ=1

=
{
a =

(
za, ta,−νa

)}n+d

a=1
.

There are n+ d vertices.

Note that the essential vertices n+σ are labelled as in Remark 4.6.2, that is according to the

natural counterclockwise cyclic order of the exponential tracts in a small circle about ∞ ∈ Ĉz.
Root choice:
If r = 0 let the root be %

.
= 1 =

(
∞1, a1,−∞

)
.

If r 6= 0 let the vertex
(
p%, p̃%,−ν%

)
be such that Im (p̃%) ≥ Im (p̃ι) and Re (p̃%) ≤ Re (p̃ι) for

1 ≤ ι ≤ n; i.e. p̃% ∈ Ct is the top & left–most critical value, following the root condition in

Definition 7.7. In this case, choose the root to be %
.
=
(
p%, p̃%,−ν%

)
.

2. Edges of ΛX . From Definition 5.4, the diagonals, associated to different pairs ta, tr of finite
asymptotic or critical values, are oriented segments

∆ar = (za, ta,−νa)(zr, tr,−νr) in RX ,
whose endpoints project down, via π2, to the finite asymptotic or critical values ta, tr. From
Lemma 5.6 it follows that there are at least two5 diagonals associated to each finite asymptotic

5This is so because diagonals are oriented.
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or critical value. As a first step, we ignore orientation and consider the diagonals as undirected
edges6, which without loss of generality we shall simply denote by E = {∆ar}. In this way we
obtain a connected graph, say G = {V ;E}.
A subgraph formed by the set of vertices associated to branch points that share the same sheet
in RX will be called a horizontal subgraph. Note that each horizontal subgraph, consisting of
the vertices (branch points) sharing a same sheet of RX , say { ` = (z`, t`,−ν`)}s`=1 together
with the corresponding set of edges (undirected diagonals) on the same sheet, forms a complete
graph Ks with s(s−1) edges. Moreover, by eliminating appropriate edges from Ks we can always

obtain an (undirected) left–right–top–bottom linear tree of vertices { ` = (z`, t`,−ν`)}s`=1, recall
Definition 7.6.
Now replace each of the horizontal subgraphs of G by the corresponding (undirected) left–right–
top–bottom linear tree. As a consequence, the diagonals ∆ar and finite height horizontal strips({

Im (ta) ≤ Im (t) ≤ Im (tr)
}
, ∂∂t
)
⊂ RX

are in bijective correspondence, as in Lemma 5.9.2–3.
This produces a connected (undirected) graph ΛX whose horizontal subgraphs are (undi-

rected) left–right–top–bottom linear subtrees. The next lemma shows its shape.

Lemma 9.1. If X ∈ E (r, d) then the graph ΛX is a tree.

Proof. Recall the decomposition of Cz in half planes and finite height horizontal strips,
Lemma 5.9.
Assume that all the asymptotic and critical values ta, associated to the branch points (za, ta),
lie on different horizontal trajectories of (Ct, ∂∂t ) (we leave the general case for the interested
reader, see for instance the discussion preceding Proposition 9.9).
Note that the intersection of the interior of any two finite height horizontal strips is empty.
Since Cz is simply connected and each diagonal determines a finite height horizontal strip, there
is no loop/cycle of diagonals. �

Finally, assign an orientation to ΛX by choosing the appropriate orientation so that the edges
point away from the root vertex % .

We thus obtain a non–weighted, directed rooted tree

(97)
{{

a =
(
za, ta,−νa

)}d+n

a=1
; % ;

{
∆ar

}}
,

satisfying conditions (1–6) of Definition 7.7.
By simple inspection, it is clear that each diagonal in (97) falls into one of the cases mentioned
in Remark 5.5.

3. Weights of ΛX . At this point of the description of the surface RX , branch points and the
diagonals between them are in correspondence with vertices of a non–weighted tree and its edges,
respectively. However, as mentioned in Remark 5.19, an important part of the description of
the Riemann surface RX as a pasting of geometric pieces, corresponds to the number of sheets
in RX that separate the diagonals (pairwise). Recalling that in a rooted tree there is a unique
(simple) path from each vertex to the root, allows us to assign a weight to each edge/diagonal
of the tree.
As an aid, the reader can follow the construction by considering Example 8.10. [We will include
such references inside square brackets.]
For the assignment of weights {K(a, r)} to the edges {∆ar} we shall proceed by induction on
the depth of the vertices as follows.

6We agree to leave only one undirected edge for each pair of oriented edges.
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a) We start by considering the vertices contiguous to the root % (i.e. vertices of depth 1 in

(97)), say { z }. Since all the branch points corresponding to { z } share a sheet with the

branch point corresponding to the root % , any of the corresponding edges can be assigned

a weight zero. Choose one, say z0 , and assign the weight K(%, z0) = 0 to the edge ∆%z0 and

call this sheet in RX the global zero level (GZL) sheet.
If there are more vertices in { z } whose branch points share the global zero level sheet, then
the corresponding edges are also assigned the weight 0.
[Referring to Example 8.10, our first edge is ∆1 2 with weight K(1, 2) = 0; note that the
diagonal is as in case (3) of Remark 5.5. Moreover, there are no more vertices sharing the
GZL sheet.]

b) Now consider the vertices of depth 1 that do not share the GZL sheet, say { r } ⊂ { z }. For
each of these vertices consider their edge ∆%r: we assign the weight K(%, r) such that

2πK(%, r) is the argument between the sheets containing ∆%z0 and ∆%r.

[Referring to Example 8.10, the vertex of depth 1 not sharing the GZL sheet is 5 . In this
case the weight K(1, 5) = −2 (mod ν1 + 1).]

If (97) has only vertices contiguous to the root % , then we have completed the construction

of ΛX .
c) We now consider the set of vertices of depth 2. Of course there is an edge from a vertex of

depth 1, say z to a vertex of depth 2, say a . The associated weight for the edge ∆za is
defined as K(z, a) such that

2πK(z, a) is the argument between the sheets containing ∆1z and ∆za.

d) Continue the assignment of weights as in (c) for all the edges that contain vertices of depth
2.
[Referring to Example 8.10, the weight K(2, 3) ≤ −1 since on RX the diagonal ∆2 3 is
|K(2, 3)| sheets below the diagonal ∆1 2; similarly the weight K(2, 4) ≤ −2, since on RX the
diagonal ∆2 4 is |K(2, 4)| sheets below the diagonal ∆1 2.]

e) Repeat (c) and (d) with vertices of depth ≥ 3, assigning the weights until all the vertices
are exhausted.
[Referring to Example 8.10, the last edge to be considered is ∆3 5 with corresponding weight
K(3, 5) = −2.]

We have thus constructed an (r, d)–configuration tree

(98) ΛX =
{{

a =
(
za, ta,−νa

)}d+n

a=1
; % ;

{
(∆ar, K(a, r))

}}
associated to ΨX .

Remark 9.2. [Remark 5.19 revisited.] The integer weight K(a, r) associated to the edge ∆ar

can be incorporated into a continuous “edge” by considering

∆̃ar
.
= ∆arei2πK(a,r) ∈ C̃∗,

where C̃∗ = {|z| ei arg(z)} is the universal cover of C∗ and arg(z) is the multivalued argument.
This will provide the compatibility of “continuous coordinates/parameters” for the manifold
structure of E (r, d).

9.2. From an (r, d)–configuration tree ΛX to the (r, d)–skeleton of ΛX . Let ΛX be an
abstract (r, d)–configuration tree as in Definition 7.7. We want to show the existence of a vector
field X. In order to achieve this goal, we construct the (r, d)–skeleton of ΛX (as a certain
“blow–up” of ΛX , see Definition 9.5).

The (r, d)–skeleton of ΛX will contain the same information as ΛX .
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a) With the disadvantage of being more cumbersome to express.
b) With the advantage that it will enable us to identify the equivalence classes of ΛX in §9.4.
c) Also note that the (r, d)–skeleton of ΛX describes the “embedding” of ΛX in Cz × Ct.

Figure 19 presents a particular example that will help the reader follow the construction.

A priori, ΛX has two types of vertices: essential vertices n+σ = (∞σ, aσ,−∞) and pole

vertices ι = (pι, p̃ι,−νι).
Before proceeding to the construction of the (r, d)–skeleton of ΛX , we shall need the following

two definitions/constructions.

Associated to the pole vertices, recalling Definition 5.17, the following construction is natural.
See right hand side of Figures 4.c, 7, 8 and the blow up of vertices 1 and 4 in Figure 19.

Remark 9.3. For each pole vertex ι = (pι, p̃ι,−νι) of ΛX , the
vertical cycle of length νι + 1 associated to ι

is a cyclic graph consisting of exactly νι+ 1 copies of the vertex ι joined by νι+ 1 vertical edges
(without weights). The vertices on the vertical cycle are also assigned a local level: in this case
arithmetic modulo (νι + 1) is to be used.
The vertical cycle of length νι + 1 will only have vertices of valence 2. Once again, call one
direction of the vertical cycle up and the other direction down. To be precise, up corresponds to
the anti–clockwise direction of β(θ) = π−1

2

(
ta + ρ ei2πθ) considered in Remark 5.19.2.

Similarly, associated to essential vertices, recalling Definition 5.15, the following construction
is natural.

Remark 9.4. For each essential vertex n+σ = (∞σ, aσ,−∞), of ΛX , let

Kmax(σ) = max
r
{0,K(σ, r)} and Kmin(σ) = min

r
{0,K(σ, r)},

where the maximum and minimum are taken over all the edges that start at n+σ and end at

the respective { r }. Then by letting
K(σ)

.
= Kmax(σ)−Kmin(σ)

we shall say that the

vertical tower of length K(σ) associated to n+σ

is a linear graph consisting of exactly K(σ) + 1 ≥ 1 copies of the vertex n+σ joined by K(σ)

vertical edges (without weights). Each of the vertices of the vertical tower will have a local level
assigned to it: the local level assigned to the first vertex of the vertical tower will be Kmin(σ),
the local level assigned to the second vertex of the vertical tower will be Kmin(σ) + 1, continuing
in this way the local level assigned to the last vertex of the vertical tower will be Kmax(σ). We
shall call the increasing direction, using β(θ) = π−1

2

(
ta + ρ ei2πθ), of the local level up and the

decreasing direction down.
The vertical tower will have vertices of valence 1 at the extreme local levelsKmin(σ) and Kmax(σ),
otherwise of valence 2.

On the right hand side of Figure 4.b a simple example of a vertical tower is presented. However
in Example 8.10 and Figure 19 a more complex (r, 4)–skeleton is shown: vertex 2 ∈ ΛX blows
up into the vertical tower of length −K(2, 6). Moreover,
the local zero level is assigned to the vertex where the edge ∆1 2 is attached;
the local K(2, 3) ≤ −1 level is assigned to the vertex where the edge ∆2 3 is attached;
the local K(2, 4) ≤ −2 level is assigned to the vertex where the edge ∆2 4 is attached; and
the local K(2, 6) ≤ −3 level is assigned to the vertex where the edge ∆2 6 is attached.
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We can now define the associated combinatorial object.

Definition 9.5. Let ΛX be an (r, d)–configuration tree. The (r, d)–skeleton of ΛX is the undi-
rected graph obtained by:
a) Replacing each essential and pole vertices a = (za, ta,−νa) ∈ ΛX , with their associated

vertical tower or vertical cycle respectively.
b) For each directed weighted edge, (∆ar,K(a, r)) ∈ ΛX , eliminate the weight and consider it

an undirected horizontal edge ±∆ar.
c) The undirected ±∆ar edge is to have as its ends the local level 0 vertex of the vertical tower

or vertical cycle associated to r , and the local level K(a, r) vertex of the vertical tower or
vertical cycle associated to a ; noting that if a is a pole vertex, modular arithmetic is to
be used.

Remark 9.6. The (r, d)–skeleton of ΛX has the following properties (also see Diagram 99):
1. The edges of the (r, d)–skeleton of ΛX are divided in two sets:
• the vertical edges (alluded to in Definitions 9.4 and 9.3 above), and
• the horizontal edges ±∆ar, which form a finite set of connected subtrees, that correspond
precisely to the horizontal subtrees of the (r, d)–configuration tree ΛX (recall Definition 7.7.7).

2. Consider two horizontal edges ∆za and ∆ar in the (r, d)–skeleton of ΛX that share the vertex
a in the original (r, d)–configuration tree ΛX . We shall say that:

In the (r, d)–skeleton of ΛX , the (horizontal) edge ∆ar, relative to

the (horizontal) edge ∆za, is

at the same (global) level if K(a, r) = 0,
K(a, r) levels up if K(a, r) > 0,
K(a, r) levels down if K(a, r) < 0.

Hence, using geometry and combinatorics, K(a, r) can be recognized as
• the number of sheets in RX separating the diagonals ∆za and ∆ar, or equivalently
• the number of levels in the (r, d)–skeleton of ΛX separating the edges ∆za and ∆ar.

3. Note that even though one can recognize which is the global zero level (GZL) sheet on the
(r, d)–skeleton of ΛX , this is a property inherited from ΛX : it is not intrinsic to the (r, d)–
skeleton.

4. Roughly speaking, the (r, d)–configuration tree ΛX is a blow–down of the (r, d)–skeleton of
ΛX , see Diagram 99 and Figure 19 for an example.

9.3. From the (r, d)–skeleton of ΛX to a Riemann surface RX . We proceed in two steps:
In the first step, from the (r, d)–skeleton of ΛX we will construct a connected Riemann surface
with boundary, the (r, d)–soul of ΛX (see Definition 9.7).
As the second and final step, we shall glue 2d semi-infinite helicoids on the boundaries of the
(r, d)–soul of ΛX to obtain the simply connected Riemann surface RX (without boundary).

Definition 9.7. Given an (r, d)–skeleton of ΛX as above, the associated (r, d)–soul of ΛX is a
flat Riemann surface
1) constructed from the gluing of half planes (H2

±,
∂
∂t ) and finite height horizontal strips(

{0 < Im (z) < h}, ∂
∂t

)
,

2) having two families of cone points:
a) the first with n conic points {(pι, p̃ι)}nι=1 each with cone angle 2(νι + 1)π and r =

∑
ι νι,

b) the second with d conic points {(zσ, aσ)}dσ=1 each with cone angle 2
(
K(σ) + 1

)
π, K(σ) ≥ 0,

3) d horizontal branch cuts starting at the cone points of the second family.
The branch cuts determine the boundary of the (r, d)–soul, 2d horizontal boundaries, recall
Equation (43).
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Remark 9.8. For X ∈ E (r, d), the (r, d)–soul of ΛX is a simply connected Riemann surface
with boundary. The boundary consists of the 2d horizontal segments {[aσ,∞)− ∪ [aσ,∞)+}.
Furthermore, it has two families of cone points:
a) n cone points {(pι, p̃ι)}nι=1 with cone angles {2(νι + 1)π}nι=1. Each of these cone point

corresponds to a vertical cycle of the (r, d)–skeleton. Hence each of these cone points is
equivalent to a pole pι of X of order −νι.

b) d cone points {(∞σ, aσ)}dσ=1 each with cone angle 2
(
K(σ) + 1

)
π. Each of these cone points

corresponds to a vertical tower of the (r, d)–skeleton. These cone points are associated to X
via the logarithmic branch points of Ψ−1

X .

1. Construction of the (r, d)–soul of ΛX from the (r, d)–skeleton of ΛX .
From Remark 9.6.2, we see that the (r, d)–skeleton of ΛX has two types of vertices: those that

do not share horizontal edges and those that share horizontal edges (the vertices that belong to
a horizontal subtree).

Generic horizontal subtrees assumption. For simplicity, let us first assume that on any given
horizontal subtree the asymptotic and critical values, associated to the vertices of the hori-
zontal subtree, all lie on different horizontal trajectories of (Ct, ∂∂t ). Figure 12 illustrates this
assumption.

Starting from the (r, d)–skeleton of ΛX consider the following construction.
a) Replace each vertex7 of the (r, d)–skeleton of ΛX that does not share a horizontal edge with

a sheet Ct\La.
b) Given a horizontal subtree with s vertices, say

{
a1 , . . . , as

}
, replace the given horizontal

subtree with a sheet
Ct\{La`}s`=1,

where each La` is the horizontal branch cut associated to the vertex a` , recall Equation (43).

By the generic horizontal subtrees assumption, all the values {ta`} lie on different horizontal
trajectories of ∂

∂t , then none of the horizontal branch cuts La` intersect in Ct.
Continue this replacement process for every horizontal subtree.
Note that we obtain stacked copies of Ct\La and Ct\{La`}s`=1, but they retain their relative
position respect to the (r, d)–skeleton of ΛX , by the fact that we still have not removed the
vertical edges of the d–skeleton of ΛX .

c) We now replace the vertical towers and vertical cycles in the (r, d)–skeleton of ΛX with
|K|–helicoids or (ν + 1)–cyclic helicoids respectively (recall Definitions 5.15 and 5.17). On
each vertical tower or vertical cycle, say the one associated to the vertex a , apply Corollary
5.8 to glue the horizontal branch cuts by alternating the boundaries of Ct\La; so as to form
finite helicoids or cyclic helicoids over the vertex a , making sure that all the finite helicoids
go up when turning counter–clockwise around the vertex.
In the case where a vertical tower is involved, the finite helicoid has two boundaries consisting
of [ta,∞)+ and [ta,∞)−; in the case where a vertical cycle is involved we obtain a cyclic
helicoid, that is a finite helicoid whose boundaries have been identified/glued.

Non–generic (degenerate) horizontal subtrees. We now turn our attention to the particu-
lar case when on some horizontal subtree there are at least two asymptotic or critical values
{ta}d+n

a=1 ⊂ (C, ∂∂t ) arising from the vertices a , that lie on the same horizontal trajectory of ∂
∂t .

Since there are only a finite set of asymptotic or critical values, then for any small enough angle

7Recall that all the vertices of the (r, d)–skeleton of ΛX are either the vertices a of the original (r, d)–
configuration tree ΛX , or copies of them. Thus any vertex in the (r, d)–skeleton of ΛX projects to a unique

vertex on ΛX .
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θ > 0, the set of values {ta} ⊂ (C, eiθ ∂∂t ) lie on m+ n different trajectories of the rotated vector

field Re
(
eiθ ∂∂t

)
. Proceed with the construction (a)–(e) as above but using eiθLa instead of La for

the construction. Note that for small enough θ > 0 all the surfaces obtained are homeomorphic.
Finally let θ → 0+ and consider the limiting surface.

According to Definition 9.7 we have:

Proposition 9.9. Every ΛX has a canonically associated (r, d)–soul.

Proof. The (r, d)–soul of the (r, d)–configuration tree ΛX is the Riemann surface with boundary,
described by (a)–(c) above. �

Example 9.1. The (r, d)–soul is shaded blue in all the figures.
1) X ∈ E (r, 0), so ΨX is a polynomial, in which case the (r, 0)–soul of ΛX is RX . See Figure 8.
2) X(z) = ez ∂∂z ∈ E (0, 1), so ΨX is an exponential, in which case the (0, 1)–soul of ΛX consists
of Ct\L1, a single sheet with exactly one branch cut. See Figure 11 and figure 11.a in [1].

3) X(z) = ez
2 ∂
∂z ∈ E (0, 2), so ΨX is the error function, in which case the (0, 2)–soul of ΛX

consists of Ct\(L1 ∪ L2), a single sheet with exactly two branch cuts. See Figure 22 and figure
11.b in [1].
4) An (r, d)–configuration tree has all K(a, r) ≡ 0 if and only if on the corresponding Riemann

surface RX all the diagonals share the same sheet Ct\{La}d+n
a=1 . In this case the (r, d)–soul of

ΛX is this sheet. See Figure 12.b.

2. Construction of RX from the (r, d)–soul of ΛX . To each of the 2d boundaries of the
(r, d)–soul of ΛX , glue a semi–infinite helicoid to obtain a simply connected Riemann surface
RX . This surface has exactly:
d logarithmic branch points of Ψ−1

X over d finite asymptotic values of ΨX , and
n finitely ramified branch points with ramification indices that add up to r + n.

We can recognize that our isometric glueing Corollary 5.8 in the above cases coincides with
the Maskit surgery as is defined by M. Taniguchi [45] p. 68, [46] p. 110–115. In fact, RX is
realized via Maskit surgeries with
• d exp–blocks (in our language 2d semi–infinite helicoids) and
• r quadratic blocks,
hence following8 [45] theorem 1 and [46] theorem 2.14, there exist polynomials E(z) of degree d
and P (z) of degree r arising from RX , which characterize the function

ΨX ∈ SFr,d =

{∫ z

z0

P (ζ) e−E(ζ)dζ + b
∣∣∣ P,E ∈ C[z], degP = r, degE = d

}
.

Alternatively9, since RX is a log–Riemann surface with d logarithmic branch points over d finite
asymptotic values and n finitely ramified branch points with ramification indices that add up
to r + n whose finite completion is simply connected, by theorem 1.1 of [13], it follows that
ΨX ∈ SFr,d.

Finally assign to RX a flat metric
(
RX , π∗2( ∂∂t )

)
induced by π2. By the dictionary in

Proposition 2.5, our sought after vector field is
X(z) = Ψ∗X( ∂∂t )(z) = 1

P (z) eE(z) ∂
∂z ∈ E (r, d)

as required.
We have essentially proved the following.

8It is to be noted that in the case of X ∈ E (r, 0), r ≥ 1, there is no need to use M. Taniguchi’s results involving
exponential blocks.

9Note that these results are classical, in particular R. Nevanlinna [39], [40] and G. Elfving [20] essentially
proved the correspondence between RX and ΨX .
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Proposition 9.10. Consider the following set of (r, d)–configuration trees{
ΛX has at least two branch points
over different values in Ct

}
,

then the (r, d)–soul of ΛX determines a unique vector field X ∈ E (r, d).

Proof. If ΛX has only one ramification value in Ct, then by simple inspection it is

ΛX =
{

1 = (p1, p̃1,−r); 1 ; ∅
}

or ΛX =
{

1 = (∞1, a1,−∞); 1 ; ∅
}

,

see Examples 8.1, 8.3. The corresponding vector fields
X(z) = µ

(z−p1)r
∂
∂z ∈ E (r, 0) and X(z) = µ−1ez ∂∂z ∈ E (0, 1),

are not uniquely determined, since µ 6= 0 is not unique.
On the other hand, if ΛX has at least two branch points over different values, say t1, t2 ∈ Ct,

then the diagonal ∆1 2 satisfies the Equation (42),∫ z2
z1
P (ζ)e−E(ζ)dζ = t2 − t1.

It allows us the computation of the factors λ, µ in Equation (8), obtaining the uniqness of P (z)
and E(z). �

Remark 9.11. Note that the (r, d)–configuration tree ΛX has an embedding as a subset of

Cz × Ĉt. However, it does not have an embedding in RX , since the logarithmic branch points

of Ψ−1
X are not in fact part of the surface RX ⊂ Cz × Ĉt (see also Definition 4.3). On the other

hand, on the (r, d)–skeleton of ΛX , the branch points of RX are replaced by a vertical tower or
vertical cycle during the blow–up process of ΛX (the vertical edges of the (r, d)–skeleton of ΛX
indicate how many sheets separate the diagonals).
In this sense, both the (r, d)–configuration tree ΛX and the (r, d)–skeleton of ΛX project to a
graph π2(ΛX) ⊂ Ct. See Figures 8–16 and 19, in particular π2(ΛX) need not be a tree as in
Figure 16. This is represented by the diagram:

(99)

(r, d)–skeleton of ΛX

?
blow–down6blow–up

Ĉz × Ĉt ←↩ RX “←↩ ” (r, d)–configuration tree ΛX ↪→ Cz × Ĉt

?
π2

π2(ΛX) ⊂ Ct.
9.4. The equivalence relation on (r, d)–configuration trees.

Remark 9.12. Non–uniqueness of (r, d)–configuration trees ΛX associated to ΨX .

1. Even though condition (4) of Definition 7.7 provides a clear choice for the root % of Λ(r, d);

if the branch point corresponding to the root shares more than one sheet with other branch
points, then each of these sheets could be the global zero level sheet. Hence each choice provides
a different global zero level subtree and thus a different (r, d)–configuration tree ΛX .
2. When considering an edge that connects a pole vertex with any other type of vertex, the choice
of the weight is not unique because of the modular arithmetic involved. For instance, if we have
a weighted edge (∆ιr,K(ι, r)) connecting a pole vertex ι = (pι, p̃ι,−νι) to any other vertex r ,
then changing K(ι, r) to K(ι, r) + `ν for ` ∈ Z, will give rise to a different (r, d)–configuration
tree associated to the same ΨX .
3. However, recalling Remark 9.6.2–3, it is to be noted that for fixed X ∈ E (r, d), even though
there are choices in the construction of ΛX , up to re–labelling of the vertices, the (r, d)–skeletons
associated to each choice will be the same as undirected graphs.
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Following is an example that illustrates (1)–(3).

Example 9.2 (Example 8.8 revisited). Let us consider once again

X(z) =
ez

3

3z3 − 1

∂

∂z
∈ E (3, 3).

However we shall now re–label the vertices, choose a different global zero level and assign different
weights to some edges.

(100)
1 = (z1, t1, ν1) = (p2, p̃2,−1), 4 = (z4, t4, ν4) = (p1, p̃1,−1),

5 = (z5, t5, ν5) = (p3, p̃3,−1), 2 = (z2, t2, ν2) = (∞1, a1,−∞),

3 = (z3, t3, ν3) = (∞2, a1,−∞), 6 = (z6, t6, ν6) = (∞3, a1,−∞).

Thus the (3, 3)–configuration tree (see Figure 20) is

(101) ΛX =
{

1 , 2 , 3 , 4 , 5 , 6 ; 5 ;

(∆5 4, 0), (∆5 6,−5), (∆4 2,−1), (∆2 1, 0), (∆1 3,−1)
}
,

with edges given by the diagonals/semi–residues

(102)

∆5 4 =
p1∫
p3

ωX = p̃1 − p̃3 = −
(1− e−i2π/3

3
√

3e

)
,

∆5 6 =
∞3∫
p3

ωX = a1 − p̃3 =
e−i2π/3

3
√

3e
,

∆4 2 =
∞1∫
p1

ωX = a1 − p̃1 =
1

3
√

3e
,

∆2 1 =
p2∫
∞1

ωX = p̃2 − a1 = − 1
3
√

3e
ei2π/3,

∆1 3 =
∞2∫
p2

ωX = a1 − p̃2 =
ei2π/3

3
√

3e
,

and weights K(5, 4) = 0, K(5, 6) = −5, K(4, 2) = −1, K(2, 1) = 0, K(1, 3) = −1.

Of course this (3, 3)–configuration tree is different from the one of Example 8.8; however their
corresponding (3, 3)–skeletons are the same up to re-labelling the vertices. Compare Figures 16
and 20.

Summarizing, the following choices and/or conventions have been made for the (r, d)–skeleton
of ΛX .
1) Because of condition (4) of Definition 7.7 and Remark 4.6.3 the root % is unique.

2) The choice of z0 ∈ Cz as the initial point of integration of ΨX(z) =
z∫
z0

ωX , allows the critical

and asymptotic values to be well defined (and thus the vertices of the (r, d)–skeleton of ΛX).
3) Condition (7) of Definition 7.7 provides a unique choice of the subset of diagonals needed to
specify the (r, d)–skeleton of ΛX .
4) The “blow–up” of the pole and essential vertices (of the (r, d)–configuration tree ΛX) into
vertical cycles and vertical towers (of the (r, d)–skeleton of ΛX) respectively, eliminates the
weights K(a, r) for each diagonal ∆a r on the (r, d)–skeleton of ΛX .
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Figure 20. Vector field ez3
3z3−1

∂
∂z with an essential singularity at ∞ and

3 simple poles pι. The five diagonals and their projections are shown in red.
The Riemann surface RX is not drawn. See Example 9.2.

Thus, as stated in Remark 9.12.3, an immediate consequence is the following.

Definition 9.13. Two (r, d)–configuration trees Λ1 and Λ2 are equivalent if their corresponding
(r, d)–skeletons are the same up to re–labelling of the vertices.

This finishes the proof of the Main Theorem. �

10. Decomposition of the phase portraits into invariant components

Recall Lemma 5.9 providing a decomposition in half planes and finite height horizontal strips
related to Re (X). The interior of these pieces are invariant open components under the real
vector field Re (X).
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Theorem 10.1. Let X ∈ E (r, d), its phase portrait decomposes into Re (X)–invariant compo-
nents as follows

(103)
(
Cz, X

)
=

(
H2

±,
∂

∂z

)
∪ . . . ∪

(
H2

∓,
∂

∂z

)
︸ ︷︷ ︸

2(r+1)≤Np≤4r⋃
aσ

[({
0 ≤ |Im (z)| ≤ 2π(Kσ + 1)

}
, ez

∂

∂z

)
aσ

∪
(
H2

±, e
z ∂

∂z

)
aσ,upper

∪
(
H2

±, e
z ∂

∂z

)
aσ,lower

]
M≤∞⋃
`

({
0 ≤ Im (z) ≤ h`

}
,
∂

∂z

)
,

where {aσ} are the finite asymptotic values of ΨX , Np is the number of half planes associated
to the poles of X (equivalently the number of hyperbolic sectors around the poles of X) and M
is the number of diagonals (equivalently the number of finite height strips in the phase portrait
of Re (X)).

There are an infinite number of half planes
(
H2

±,
∂
∂z

)
in the decomposition if and only if d ≥ 1.

Proof. Decomposition (103) follows by recalling Definition 5.7, the biholomorphism π1 presented
in Diagram 5 and the fine structure of the (r, d)–skeleton of ΛX . It is an accurate description of
the phase portrait decomposition of Re (X):
The first row depicts the, at least 2(r+ 1) and at most 4r, half planes associated to the r poles.
On the second row are the d finite helicoids arising from the d finite asymptotic values {aσ},
where it is to be noticed that this can be an empty collection.
On the third row are the 2d semi–infinite helicoids.
Finally, on the fourth row the finite height strips associated to the diagonals in RX . �

Definition 10.2. An incomplete trajectory z(τ) of X is such that its maximal domain is a strict
subset of R.

Corollary 10.3. Let X ∈ E (r, d), d ≥ 1. Then, the incomplete trajectories of Re (X) in Ĉz are

infinite, numerable and have Lebesgue measure zero in Ĉz. �

Obviously, the number of incomplete trajectories is finite if and only if r ≥ 1 and d = 0.
Compare with [32] and [31].

11. On the topology of Re (X)

Consider the group of orientation preserving homeomorphisms of C,

Homeo(C)+ = {h : Ĉz → Ĉz | preserving orientation and fixing ∞ ∈ Ĉ}.
Definition 11.1. 1. Let X1, X2 ∈ E (r, d) be two singular analytic vector fields.
They are topologically equivalent or the phase portraits of Re (X1), Re (X2) determine the same
(orientation preserving) topological class if there exists h ∈ Homeo(C)+ which takes the trajec-
tories of Re (X1) to trajectories of Re (X2), preserving real time orientation, but not necessarily
the parametrization.
2. A bifurcation for Re (X1) occurs, when its phase portrait topologically changes under small
deformation of X1 in the family E (r, d), otherwise Re (X1) is structurally stable in E (r, d).
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Let ΛX =
{{

a =
(
za, ta,−νa

)}d+n

σ=1
; % ;

{
(∆ar,K(a, r))

}}
be a (r, d)–configuration tree.

By simple inspection we have

Theorem 11.2 (Structural stability of Re (X) for X ∈ E (r, d)).
The real vector field Re (X) is structurally stable in E (r, d) if and only if
1) X has only simple poles and
2) Im (∆ar) 6= 0 for all the weighted edges of ΛX .

Proof. Recall that, a diagonal ∆ar has Im (∆ar) = 0 and poles of X at its two extreme points,
if and only if ∆ar determines a saddle connection of Re (X), see Lemma 5.9.3. If in addition, X
has only simple poles, then this is the unique bifurcation scenario for Re (X).
We leave the converse implication to the reader. �

Recall that an (r, d)–skeleton of ΛX is a graph embedded in Cz ×Ct, with a specific complex
parameter associated to each edge and having horizontal and vertical attributes. As a direct
consequence of the structure of the (r, d)–skeleton of ΛX we have:

Theorem 11.3 (Number of (orientation preserving) topological classes of phase portraits of
Re (X), for X ∈ E (r, d)). Given a fixed pair (r, d):
1) The number of topological classes of Re (X) is infinite when

(r, d) ∈
{

(r ≥ 2, 1), (r ≥ 1, 2), (r ≥ 0, d ≥ 3)
}

.
2) The number of topological classes is

a) one when (r, d) = (0, 1), (1, 0);
b) two when (r, d) = (0, 2), (1, 1);
c) finite when (r, 0).

For X ∈ E (r, 0), the phase portrait Re (X) on Cz only has a finite number n ≤ r of multiple
saddle points. These phase portraits were first studied by W. M. Boothby [15], [16], showing
that they appear as the real part of certain harmonic functions (non-necessarily polynomials);
in our framework, the imaginary part of ΨX(z) =

∫ z
P (ζ)e−E(ζ)dζ.

Proof. Let (r, d) be as in assertion (1). There will be at least one X ∈ E (r, d) such that the
(r, d)–skeleton of ΛX has at least one vertical tower with two horizontal subgraphs attached to
the same vertical tower. These horizontal subgraphs are vertically separated from each other by
an integer number K(σ, ρ), of degree 2 vertices on the vertical tower. Hence there are an infinite
number of different ways, described by {K(σ, ρ) ≥ 1}, we can attach these two subgraphs to the
vertical tower; each of which represents a different configuration in RX .

The remaining cases are (r, d) ∈
{

(0, 1), (0, 2), (1, 1), (r ≥ 1, 0)
}

.
The cases (0, 1), (1, 0) are trivial by Lemma 5.3. For cases (0, 2) and (1, 1): RX has two branch
points hence they must share the same sheet. Thus each one of these cases have exactly two
topologies. Case (0,2) is illustrated in Figure 22. Case (r ≥ 2, 0) corresponds to ΨX being a
polynomial, hence the number of topological classes is finite. �

Table 2 presents a summary of the non-topologically equivalent vector fields Re (X), for
X ∈ E (r, d), that arise for different pairs (r, d).

Remark 11.4. For ΨX and X in E (r, d), Theorem 11.3 and Proposition 8.2 show that the topo-
logical classification of functions is coarser than the topological classification of phase portraits
of vector fields.
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Table 2. Topologies of Re (X) for different pairs (r, d).

r d # of topologies (r, d)–configuration trees ΛX
of Re (X) chosen as a representative for the topological class

1 0 1 ΛX = {(p1, p̃1,−1);∅}

0 1 1 ΛX = {(∞1, a1,−∞);∅}

0 2 2 ΛX = {(∞1, a1,−∞), (∞1, a2,−∞);
(
∆1 2,K(1, 2)

)
},

with ∆1 2 ∈ C∗, two topologies: ∆1 2 ∈ R,∆1 2 6∈ R

1 1 2 ΛX = {(∞1, a1,−∞), (p1, p̃1,−1);
(
∆1 2,K(1 2)

)
},

with ∆1 2 ∈ C∗, two topologies: ∆1 2 ∈ R,∆1 2 6∈ R

2 0 3 ΛX = {(p1, p̃1,−2);∅}, gives rise to one topology.
ΛX = {(p1, p̃1,−1), (p2, p̃2,−1);

(
∆1 2,K(1 2)

)
},

with ∆1 2 ∈ C∗, two topologies: ∆1 2 ∈ R,∆1 2 6∈ R

r ≥ 3 0 finite ΛX =
{

(p1, p̃1,−ν1), . . . , (pn, p̃n,−νn);

{
(
∆ικ,K(ι, κ)

)
| ι, κ ∈ {1, . . . , n− 1}}

}
,

1 ≤ n ≤ r being the number of distinct poles

r ≥ 2 1 infinite ΛX =
{

(∞1, a1,−∞),

(p1, p̃1,−ν1), . . . , (pn, p̃n,−νn);

{
(
∆ar,K(a, r)

)
| a, r ∈ {1, . . . , n+ 1}}

}
,

1 ≤ n ≤ r being the number of distinct poles

r ≥ 1 2 infinite ΛX =
{

(∞1, a1,−∞), (∞2, a2,−∞),

(p1, p̃1,−ν1), . . . , (pn, p̃n,−νn);

{
(
∆ar,K(a, r)

)
| a, r ∈ {1, . . . , n+ 2}}

}
,

1 ≤ n ≤ r being the number of distinct poles

r ≥ 0 d ≥ 3 infinite ΛX =
{

(∞1, a1,−∞), (∞2, a2,−∞),

(∞3, a3,−∞), . . . , (∞d, ad,−∞),
(p1, p̃1,−ν1), . . . , (pn, p̃n,−νn);

{
(
∆ar,K(a, r)

)
| a, r ∈ {1, . . . , d+ n}}

}
,

0 ≤ n ≤ r being the number of distinct poles

12. The essential singularity at ∞
Our naive question in the introduction;

how can we describe the essential singularity of X ∈ E (r, d) at ∞ ∈ Ĉz?
is answered in this section. The available tools are as follows. In [1] §5, germs of singular
analytic vector fields X are studied; the Poincaré–Hopf index theory and a certain version of the
decomposition in angular sectors for essential isolated singularities are established for the phase
portrait of Re (X).
In fact, starting with a simple closed anticlockwise orientated path γ enclosing

zϑ ∈ {p1, . . . , pr,∞} ⊂ Ĉz
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a pole, zero or essential singularity, of X, the notion of an admissible cyclic word WX in the
alphabet {H,E, P, E} is well defined,

(104)
(
(Ĉ, zϑ),Re (X)

)
7−→ WX .

The letters in the alphabet are the usual angular sectors for vector fields as follows: hyperbolic
H, elliptic E, parabolic P (see [4] p. 304, [5] p. 86). Moreover, a class 1 entire sector E based
upon ez ∂∂z at infinity, see Figure 21. Recalling Diagram 12, E can be thought as the image under
π1 of a semi–infinite helicoid contained in RX , see Example 8.3, Figures 4.a and 11. For full
details see [1] p. 151.

EH

···

P

···

E H

∼

γ γ γ γ γ

Figure 21. Hyperbolic H, elliptic E, parabolic P and entire E sectors at a

singular point (Ĉz, zϑ) of a vector field Re (X). The point zϑ is green, the path
γ is shown in red. The equivalence relation E ∼ EEH is illustrated on the right.

Specific attributions encoded by the word WX in (104) are as follows.
1) Equivalence classes. The word WX is well defined up to the relations

EEH ∼ E and HEE ∼ E ,
according to [1] pp. 166–167. Under this equivalence the word becomes independent of the
choice of the path γ enclosing the singularity.

2) Poincaré–Hopf index. If the number of letters H, E and E that appear in a word WX at zϑ,
is denoted by h, e and ε respectively, then the Poincaré–Hopf index formula is

(105) PH(X, zϑ) = 1 +
e− h+ ε

2
.

Furthermore, in theorem A p. 130 and §6 of [1], the Poincaré–Hopf index theorem

(106) χ(Ĉ) =
∑
z

PH(X, z)

is extended to include germs of singular analytic vector fields X that determine an admissible
cyclic word.

3) Displacement of parabolic sectors. As matter of record, each parabolic sector Pν of WX has
a displacement number ν ∈ C\R, see [1] pp. 149–150.

4) The residue. The residue of the vector field germ is
Res(ωX)

.
= Res(X, zϑ) = 1

2πi

∫
γ
ωX ,

recall that ωX(X) = 1, also see [1] p. 167.
In fact, for X ∈ E (r, d) all the residues are zero, since ωX = P (z)e−E(z)dz is holomorphic on
Cz.

Clearly, for each singularity zϑ ∈ {p1, . . . , pr,∞} of X, the germ
(
(Ĉz, zϑ), X(z)

)
is

• a local analytic invariant (under the local biholomorphisms of (Ĉz, zϑ), and
• an analytic invariant under the action of Aut(C),

A : Aut(C)× E (r, d) −→ E (r, r), (T,X) 7−→ T ∗X.
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Example 12.1 (Cyclic words at poles). For X(z) = 1
(z−pι)νι

∂
∂z , the cyclic word WX consists of

exactly 2(νι + 1) hyperbolic sectors H, see Figure 1:

(107)
(

(Cz, pι),Re (X)
)
7−→ WX = HH · · ·HH︸ ︷︷ ︸

2(νι+1)

.

The Poincaré–Hopf index is PH(X, pι) = −νι.
Example 12.2 (A cyclic word at ∞, from a zero of X). Recall the rational vector field

X(z) =
1

(z − p1)ν1(z − p1)ν2
∂

∂z

in Example 8.2, in our language the description of the singularity at infinity is

(108)
(

(Ĉz,∞),Re (X)
)
7−→ WX = EE · · ·EE︸ ︷︷ ︸

ν1+ν2+2

.

The Poincaré–Hopf index is PH(X,∞) = ν1 + ν2 + 2, also see Figure 1.

Example 12.3 (The cyclic word at ∞ of the exponential vector field has two entire sectors).
Recall the exponential vector field X(z) = ez ∂∂z in Example 8.3 and Figure 11, we have

(109)
(

(Ĉz,∞),Re (X)
)
7−→ WX = EEHE ∼ EE.

The Poincaré–Hopf index of X at ∞ is 2.

Example 12.4 (The error function). The vector field

X(z) = µ
√
π

4 ez
2 ∂
∂z , µ ∈ C∗,

has associated the error function
Ψ(z) = µ−1 2√

π

∫ z
0

e−ζ
2

dζ.

Case µ = 1, the logarithmic branch points are
{(∞1,−1,−∞), (∞2, 1,−∞), (∞3,∞,−∞), (∞4,∞,−∞)},

using the notation in equations (31), and the Re (X)–invariant decomposition is

(Ĉz, X) =
⋃∞
σ=1

(
H2

σ,
∂
∂z

)
.

The cyclic word is (
(Ĉz,∞),Re (X)

)
7−→ WX = EEHHEEEHHE.

See Figure 22.
Case µ = i, the logarithmic branch points are

{(∞1,−i,−∞), (∞2, i,−∞), (∞3,∞,−∞), (∞4,∞,−∞)},
and the Re (X)–invariant decomposition is

(Ĉz, X) =
(⋃∞

σ=1

(
H2

σ,
∂
∂z

))
∪
(
{−1 ≤ Im (z) ≤ 1}, ∂∂z

)
.

The cyclic word is (
(Ĉz,∞),Re (X)

)
7−→ WX = EEHHEP2iEEHHEP−2i,

note that the appearance of two opposite parabolic sectors having displacements ±2i is due the
horizontal strip in the decomposition. See Figure 22.
In both cases the Poincaré–Hopf index of X at ∞ is 2.

Remark 12.1. The singularity at infinity does not determine the analytic class of X. 1. For

X ∈ E (3, 0) having simple zeros, all the germs
(
(Ĉz,∞), X

)
are analytically equivalent. Thus

the singularity at infinity does not determine the analytic class of X even in E (3, 0)/Aut(C).
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··
·

··
·

··
·

··
·

··
·

··
·

1

i

−i

··
·

··
·

souls1− Γ

Γ

a) b)

Figure 22. The Riemann surfaces of X and eiπ/2X for X ∈ E (0, 2). In (a)

is the one associated to the error function ΨX1
(z) = 2√

π

∫ z
0

e−ζ
2

dζ, having a

diagonal ∆1 2 which determines a homoclinic trajectory of Re (X). In (b) is

the one corresponding to ΨX2
(z) = 2i√

π

∫ z
0

e−ζ
2

dζ. The red curves represent

taut Γ̃’s that allow the recognition of the words. The global topologies of the
corresponding Re (X), X ∈ E (0, 2), are described in the third row of Table 2,
and the germ of singularities at ∞ in Example 12.4.

2. We further note that the vector field

X̃(p3, z) = µ
2p3 − 1

12z(z − 1)(z − p3)
ez

4 ∂

∂z
∈ E (3, 4),

has the same behaviour in {z ∈ C | |z| < R} ⊂ Cz, for adequate choices of µ ∈ C∗ and R > 0,
as X(p3, z) given by (51), hence the singularity at infinity does not determine the analytic class
of X in E (3, 4)/Aut(C), see [1] §9 and §10.

Thus, for vector fields in E (r, d), r + d ≥ 3, the Aut(C)–equivalence notion from (53) is very
rigid.

We now have that for the essential singularity:

Theorem 12.2.
1) Let X ∈ E (r, d), the cyclic word WX at ∞ is recognized as

(110)
(
(Ĉz,∞),Re (X)

)
7−→ WX = W1W2 · · ·Wk, Wι ∈ {H,E, P, E},

with exactly ε = 2d letters Wι = E.
Moreover, h− e = 2(d− r − 1).
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2) The word WX is a local topological invariant of the germ
(
(Ĉz,∞),Re (X)

)
.

3) Conversely, a germ of a singular complex analytic vector field
(
(C, 0), Y

)
is the restriction of

an X ∈ E (r, d) at ∞ if and only if the point 0 is an isolated essential singularity of Y and
satisfies that
i) the residue of ωY is zero,
ii) the Poincaré–Hopf index of the word PH(Y, 0) = 2 + r,
iii) WY is an admissible cyclic word having exactly 2d entire sectors E.

Proof. The proof of statement (1) follows the arguments in §5, §9 and §10 of [1].

Step 1: Take a simple path γ ⊂ (Ĉz,∞) enclosing only ∞ (γ does not enclose any pole of X).

Step 2: Lift γ to Γ
.
= π−1

1 (γ) in RX ⊂ Ĉz × Ĉt. Note that a priori, Γ does not lie completely in
the soul of RX , recall Definition 9.7.
Step 3: The singularity at ∞ of X has a certain self–similarity (as the examples in §8 show),
hence in order to recognize a simple word describing it, an appropriate choice of Γ is required.

That is, we deform Γ to a taut deformation Γ̃ in the soul of RX . For examples of a taut

deformation Γ̃ see Figures 22 and 25. For the appropriate technical definitions and another
example see pp. 211–212 of [1], in particular figure 17.

The taut deformation Γ̃ recognizes letters Wι at ∞ as follows:
• letters P when Γ̃ crosses finite height strip flows,
• letters H when Γ̃ makes a half circle around a branch point of RX ,
• letters E when Γ̃ makes a half circle around (the branch point at) ∞ on a sheet of RX ,
• letters E when Γ̃ touches a component of the boundary of the soul; see Figures 21 and 22.

As for the difference h−e between the number of sectors H and E appearing in the cyclic word
WX at ∞, we shall use the Poincaré–Hopf index theory extended to these kinds of singularities

(theorem A in §6 of [1] with M = Ĉz).
From the fact that X ∈ E (r, d) has exactly r poles (counted with order) in Cz and since
PH(X, pι) = −νι for a pole pι of order −νι, then equation (6.6) of [1] gives us

(111) 2 = χ(Ĉ) = PH(X,∞) +
∑
pι∈P

PH(X, pι) = PH(X,∞)− r.

On the other hand from equation (6.5) of [1]
PH(X,∞) = 1 + e−h+2d

2 ,
the result follows.

Assertion (2) is clear. by simple inspection.
For assertion (3), use a slight modification of corollary 10.1 of [1]. The only change arises

from the fact that X ∈ E (r, d) has exactly r poles (counted with order) in Cz. Once again, by
(111) the result follows. �

Example 12.5 (Cyclic words at ∞). 1. Recall the vector field in Example 8.6

X(z) =
ez

(z − 9iπ2 )(z + iπ2 )

∂

∂z
.

Figure 14 shows the (2, 1)–skeleton of ΛX together with the soul of ΛX . Here we also show a

taut curve Γ̃1 ∪ · · · ∪ Γ̃10 = Γ̃(τ) =
(
γ(τ), (ΨX ◦γ)(τ)

)
⊂ RX where γ(τ) is a simple closed curve

enclosing ∞ ∈ Ĉz with p1 = 9iπ2 and p2 = −iπ2 lying in its exterior. As shown in [1] §9.1, we
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can read the admissible cyclic word

(112) WX = EE︸︷︷︸
Γ̃1

P︸︷︷︸
Γ̃2

EE︸︷︷︸
Γ̃3

EE︸︷︷︸
Γ̃4

P︸︷︷︸
Γ̃5

EE︸︷︷︸
Γ̃6

EPEEHH︸ ︷︷ ︸
Γ̃7

HH︸︷︷︸
Γ̃8

HH︸︷︷︸
Γ̃9

HHEEPE︸ ︷︷ ︸
Γ̃10

,

so that the number of elliptic, hyperbolic and entire sectors are e = 12, h = 8 and ε = 2
respectively. The Poincaré–Hopf index at ∞, in this case turns out to be

PH(X,∞) = 1 +
e− h+ ε

2
= 1 + 3 = 4.

2. Recall the vector field X(z) = −ez3
3z2

∂
∂z in Example 8.7,

(113)
(

(Ĉz,∞),Re (X)
)
7−→ WX = EEEEEE

The Poincaré–Hopf index of X at ∞ is 4.

3. Recall the vector field X(z) = ez3
3z3−1

∂
∂z in Example 8.8,

(114)
(

(Ĉz,∞),Re (X)
)
7−→ WX = EEEEEEEE.

The Poincaré–Hopf index of X at ∞ is 5.

In the next example we show that it is possible to calculate, among other things, the Poincaré–
Hopf index.

Example 12.6. [Example 8.10 revisited.] Considering Example 8.10 once again, Figure 23
shows the (r, 4)–skeleton of ΛX together with the soul of ΛX . Here we also show a taut curve

Γ̃(τ) =
(
γ(τ), (ΨX ◦ γ)(τ)

)
⊂ RX where γ(τ) is a simple closed curve enclosing ∞ ∈ Ĉz with p1

and p2 lying in its exterior. As shown in [1] §9.1 and §6, we can read the admissible cyclic word

(115) WX = EE︸︷︷︸
Γ̃1

PEHHEEPE︸ ︷︷ ︸
Γ̃2

EE︸︷︷︸
Γ̃3

(ν1−2)
copies

P︸︷︷︸
Γ̃4

EE︸︷︷︸
Γ̃5

−K(2,3)−1
copies

PEHHEEPE︸ ︷︷ ︸
Γ̃6

EE︸︷︷︸
Γ̃7

−K(2,4)+K(2,3)−1
copies

P︸︷︷︸
Γ̃8

EE︸︷︷︸
Γ̃9
ν2

copies

EPE︸ ︷︷ ︸
Γ̃10

EE︸︷︷︸
Γ̃11

−K(2,6)+K(2,4)−1
copies

PEHHEEPEEHH︸ ︷︷ ︸
Γ̃12

HH︸︷︷︸
Γ̃13

−K(2,6)+K(2,4)−1
copies

HH︸︷︷︸
Γ̃14

HH︸︷︷︸
Γ̃15

−K(2,4)+K(2,3)−1
copies

HH︸︷︷︸
Γ̃16

HH︸︷︷︸
Γ̃17

−K(2,3)−1
copies

HHEEPE︸ ︷︷ ︸
Γ̃18

,

and thus calculate the Poincaré–Hopf index at ∞, which in this particular case turns out to be

PH(X,∞) = 1 +
1

2

(
2
(
ν1 + ν2 −K(2, 6) + 1

)
− 2
(
−K(2, 6) + 4

)
+ 8
)

= 2 + ν1 + ν2.

13. Relations with other works

13.1. The case that all critical and asymptotic values are real. Recall the following
result.

Theorem (Eremenko et al., [21], [22]). If all critical points of a rational function Q
P (z) are real,

then it is equivalent to a real rational function.
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Figure 23. The soul of ΛX and the cyclic word WX . The left hand side
shows the (r, 4)–skeleton of ΛX of Example 8.10, in the middle the corresponding

soul together with the curve Γ̃ decomposed into the corresponding Γ̃ι on each
sheet of the soul. On the right hand side are the corresponding syllables of the

cyclic word WX around ∞ ∈ Ĉz. See Example 12.6.

This immediately implies that for such a rational function all the critical values are also real.
Motivated by the above, we have.

Corollary 13.1 (Real critical and asymptotic values).
1) If all critical and asymptotic values of ΨX for X ∈ E (r, d) are in R, then the following

assertions hold.
a) RX , as in (103), is the union of half planes.

b) ΨX : U ⊂ Ĉ −→ H2 is a Schwarz–Christoffel map, for each half plane U .
c) All the diagonals ∆ar of ΛX satisfy Im (∆ar) = 0.
d) X is structurally unstable in E (r, d), thus a bifurcation for Re (X) occurs.

2) The critical and asymptotic values are in R if and only if the family of rotated vector fields
{Re

(
eiθX

)
| θ ∈ R/2πn} bifurcates exactly at θ = nπ for n ∈ Z.

�
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13.2. Relations with Bely̆ı’s functions. Recall that a rational function Q
P (z) is Bely̆ı if it

has only three critical values {0, 1,∞}, the original source is [6], see [30] Ch. 2 for current
developments. Recently Ch. J. Bishop [11] develops analogous combinatorial and analytic ideas
for entire functions.

The construction of a certain ΨX(z) having three asymptotic values, say at {0, 1,∞} set
theoretically, as in Bely̆ı’s theory, is possible. It is natural to call these functions Transcendental
Bely̆ı.

Example 13.1. Let X(z) =
√
π

4 ez
2 ∂
∂z be as in Example 12.4, having associated the error

function Ψ(z) = 2√
π

∫ z
0

e−ζ
2

dζ with logarithmic branch points of Ψ−1
X ,

{(∞1,−1,−∞), (∞2, 1,−∞), (∞3,∞,−∞), (∞4,∞,−∞)},
using the notation in Equations (31) and Definition 5.1. In set theoretically language, its as-
ymptotic values are {−1, 1,∞}, hence it is a Transcendental Bely̆ı function.

Example 13.2. A transcendental Bely̆ı function that does not belong to the family ΨX , for
X ∈ E (r, d). With the present techniques, we can describe the following vector field arising
from a transcendental Bely̆ı function. Let R be the Riemann surface that consists of half a

Riemann sphere (cut along the extended real line R ∪ {∞} ⊂ Ĉ) glued to three semi–infinite

towers of copies of Ĉ\(a, b] where (a, b] ∈ {(−∞, 0], (0, 1], (1,∞]}, as in Figure 25. The general

version of the dictionary ([1] lemma 2.6) shows that a transcendental function Υ(z) : Cz −→ Ĉt
and a vector field X(z) = 1

Υ′(z)
∂
∂z are associated to R.

The logarithmic branch points of Υ−1 are
{(∞1, 0), (∞2, 1), (∞3,∞)}.

Compare also with the description using line complexes, as in p. 292 of [39].
The cyclic word is (

(Ĉz,∞),Re (X)
)
7−→ WX = HEEEHT .

Note the appearance of a new kind of angular sector T having an accumulation point of double
zeros of X: the phase portrait of Re (X) is obtained by considering the pullback of Re

(
∂
∂t

)
via

Υ, see Figure 24.c. The 1–order of X is finite and at least 1.

13.3. Relation with complex correspondence principle in mechanics. C. Bender et al.
studies the relation between classical and quantum mechanics using a C complex framework, see
[7], [8] and [9]. Motivated by the correspondence principle, asserting that quantum mechanics
resembles classical mechanics in the high–quantum–number limit. These works introduce the
concept of a local quantum probability density ρ(z) in the complex plane. C. Bender proposes
the novel approach of constructing a complex contour C on which ρ(z)dz is an infinitesimal
probability measure. Thus, C must satisfy

condition I: Im (ρ(z)dz) = 0,
condition II: Re (ρ(z)dz) > 0,

condition III:
∫
C
ρ(z)dz = 1,

see [7]. In our language, we consider ρ(z)dz as an entire 1–form on C. By using the singular com-
plex analytic Dictionary Proposition 2.5 and conditions I–II, we have that C can be interpreted
as a trajectory of

Re
(

1
ρ(z)

∂
∂z

)
, where 1

ρ(z)
∂
∂z ∈ E (r, 2),

condition III is a certain normalization. The works of C. Bender et al. illustrate the application

of the corresponding trajectory structures of Re
(

1
ρ(z)

∂
∂z

)
.
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Figure 24. The cyclic words (a)–(b) appearing in Examples 12.4 and (c) in
13.2. Numerical models for (a)–(b) appeared as figures 15 and 16 in [1].

13.4. Future work.

13.4.1. Relations with Dessin’s d’enfants. In the combinatorial framework, dessin’s d’enfants
are well known plane bipartite trees associated to Bely̆ı functions; in their modern form were
promoted and named by A. Grothendieck. Among other things, they have been used to study
the action of the absolute Galois group of Q, see [24].

By the singular complex analytic Dictionary Proposition 2.5, we may consider a polynomial
Bely̆ı function ΨX as the distinguished parameter of the associated vector field X ∈ E (r, 0),
r ≥ 2. That is, up to action of Aut(C) on the target, we assume that the critical values of ΨX

are {0, 1,∞}. By assigning the color black to the vertices associated to the critical value 0 and
the color white to the vertices associated to the critical value 1, we see that ΛX is a bipartite
graph, as in the usual theory.

The extension of the theory for ΨX , X ∈ E (r, d) with r ≥ 1 is possible and is an interesting
subject. In fact, (r, d)–configuration trees ΛX that lie over exactly three critical or asymptotic
values are a natural extension of dessins d’enfant of the structurally finite Bely̆ı functions ΨX .

13.4.2. Topological classification of Re (X) for X ∈ E (r, d). As suggested by the results of §11;
a careful study of the (r, d)–skeleton of ΛX allows for a global topological classification of Re (X)
for X ∈ E (r, d), in terms of the placement of the critical and asymptotic values. This study is in
progress, however the technical language needed to provide a clear exposition would require too
much space, thus it has been left for a future work. A particularly interesting case is the bound
for the number of topological classes {Re (X) | E (r, 0)}, for r ≥ 3.
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∞

1

0

10
··
·

Υ

1

0∞
Γsoul

Figure 25. Riemann surface corresponding to a transcendental Bely̆ı function

Υ. The path Γ̃ is a taut deformation of Γ = (ΨX ◦γ) originated by a γ bounding

the singularity
(
(Ĉ,∞), XΥ

)
. Note that topologically this is the only possible

surface with exactly three logarithmic branch points. Compare with Lemma 4.1
and note that the singularities in the central column are topologically different
from semi–infinite helicoids in Figure 4.

13.4.3. Dynamical coordinates for other families of vector fields. As Example 13.2 suggests,
there are other families of vector fields where the construction of the dynamical coordinates ΛX
is certainly possible.

For instance, when considering the family

E (s, r, d) =

{
X(z) =

Q(z)

P (z)
eE(z) ∂

∂z

∣∣∣ Q, P, E ∈ C[z],
degQ = s, degP = r, degE = d

}
,

as in [2], we are presented with two intrinsically different cases:
1) If ΨX is single valued (this is equivalent to requiring that the associated 1–form ωX have all
its residues zero), then vertices (qι,∞, νι) with νι ≥ 1, corresponding to the zeros Z = {qι}sι=1

of X, need to be added to the description of ΛX .

2) If ΨX is multivalued (there appear at least two non-zero residues for ωX), then extra structure
will be required. This is so because of the appearance of logarithmic branch points of Ψ−1

X , over
those qι ∈ Cz where the associated 1–form has non–zero residue.

13.4.4. On cyclic words.
Cyclic words as topological or analytical invariants for germs. The word WX (as in

Theorem 12.2), is a local topological invariant of a germ
(
(Ĉz,∞),Re (X)

)
, X ∈ E (r, d).
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Moreover, the word WX in general, is not a global topological invariant of X ∈ E (r, d). For
example all the vector fields X ∈ E (r, 0), r ≥ 3, with all critical and asymptotic values in R,
have the same word WX = EE · · ·EE︸ ︷︷ ︸

2r+2

at ∞.

However, it is possible to modify the definitions of angular sectors Pν , E and E so that in fact
the corresponding WX is a global analytic invariant of X modulo Aut(C). This is left for a
future project.
Other angular sectors as letters for cyclic words. As shown in Example 13.2 and in
examples 5.9, 5.12 and figures 2, 5 of [1]; there are certainly other possible angular sectors that
can be used as letters for cyclic words. In this context and considering the above examples, it
is clear that there are an infinite number of topologically different angular sectors (letters) that
can appear in a cyclic word associated to an essential singularity for a vector field X.
However, it is not immediately clear how many topologically different letters there are when we
specify the p–order of X, that is the coarse analytic invariant of functions and vector fields. For
instance, by once again considering Example 13.2, X(z) = Υ∗( ∂∂t )(z) = 1

Υ′(z)
∂
∂z ; we may also

consider Y (z) = Υ∗(µt ∂∂t )(z) = µ Υ(z)
Υ′(z)

∂
∂z which provides a (very) different vector field.

14. Epilogue: parameters for families of vector fields

The second part of the proof of the Main Theorem provides a proof of the following result of
independent interest. Recalling Equations (25), (28), (39) and (40) we have.

Corollary 14.1. Given r + d values

p̃1, . . . , p̃r, a1, . . . , ad ∈ Ct,
possibly repeated, with the exception that if d ≥ 1 there are at least two non–repeated values.
Then there exists a (non-unique) vector field X ∈ E (r, d) having these r+ d ramification values,
i.e. a collection of n+ d realizable vertices, see (45),

{(pι, p̃ι,−νι)}nι=1 ∪ {(∞σ, aσ,−∞)}da=1

for the corresponding ΨX .

Remark 14.2. In our case, the complete collection of ramification values are

{p̃1, . . . , p̃r, a1, . . . , ad,∞, . . . ,∞︸ ︷︷ ︸
d

} ⊂ Ĉt.

Moreover, the use of ramification values ta provides information of the moduli space of ΨX .

Recalling the classical Riemann’s idea that for ramified cover maps over Ĉt with n ≥ 4 ramifica-
tion values, we can specify three of them, and the other n−3 determine holomorphic deformations
of the cover maps π2.

Because of the singular complex analytic Dictionary Proposition 2.5, the works of R. Thom
[47] and J. Mycielski [38], describes the situation for polynomials ΨX , i.e. the case d = 0.
However the answer is not unique, that is given a set of preassigned critical values {p̃1, . . . , p̃r}
there are a finite number of polynomials ΨX with the above set as critical values, namely

Theorem (Mycielski–Thom). Given r points p̃1, . . . , p̃r ∈ Ct, there exist r points p1, . . . , pr ∈ Cz
such that the (monic) polynomial of degree r + 1

Ψ(z) = (r + 1)
∫ z r∏

ι=1
(ζ − pι)dζ

satisfies
1) Ψ(pι) = p̃ι and Ψ′(pι) = 0, for ι = 1, . . . , r.
2) If β occurs k times in the collection p1, . . . , pr then (z − β)k+1 divides Ψ(z)−Ψ(β). �
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Proof of Corollary 14.1. Recalling Equation (45), we want to show that there exists:

a) r points p1, . . . , pr ∈ Cz, determining a (monic) polynomial P (z) =
r∏
ι=1

(z − pι),
b) a polynomial E(z) of degree d,

c) d asymptotic paths ασ(τ),

such that the distinguished parameter ΨX(z) =
∫ z
P (ζ)e−E(ζ) dζ satisfies

i) ΨX(pι) = p̃ι and Ψ
(`)
X (pι) = 0, for 1 ≤ ` ≤ νι = 1,

ii) lim
τ→∞

ΨX(ασ(τ)) = aσ, for σ = 1, . . . , d.

Furthermore, the polynomials P (z) and E(z) are non–unique.

Note that the geometrical construction carried out in §9.2 (the second part of the proof of
the Main Theorem) can be carried out by only specifying the critical and asymptotic values and
the corresponding K(a, r) of the (r, d)–configuration tree, this uses Lemma 5.3 actively.

That is we can construct a Riemann surface R by glueing sheets Ct with branch cuts starting
at {p̃1, . . . , p̃r, a1, . . . , ad}. As before, R is recognized as a simply connected Riemann sur-
face RX corresponding to some X ∈ E (r, d). Thus showing that for every possible choice of
(p̃1, . . . , p̃r, a1, . . . , ad) ∈ Cr+d there are polynomials P (z) and E(z) of degrees r and d respec-
tively such that ΨX has precisely {p̃1, . . . , p̃r, a1, . . . , ad} as critical and asymptotic values.

For the non–uniqueness of the polynomials P (z) and E(z) note that: when d = 0 generically,
by Bezout’s Theorem, there are (r + 1)r solutions of the system (45). For the case r = 3, d = 0
see Equation (52).
For r = 0, d = 3, recall Example 8.5 where there are an infinite number of solutions for each
vertex of finite asymptotic values a1, a2, a3 ∈ Ct: each parameter K(1, 3) ∈ Z provides a different
X ∈ E (0, 3).
The general case now follows easily from the above examples. �

Remark 14.3. 1. Corollary 14.1 gives rise to a complex analytic set in C r+d

z ×Cr+dt consisting
of the sets of branch points that determine RX with X ∈ E (r, d).

2. Corollary 14.1 can be interpreted as saying that the map from C[z]=r ×C[z]=d to Cr+dt given
by the Equation (45) is surjective.

Recalling (6) and (7), there are two obvious ways of parametrizing E (r, d):

1) Specifying the coefficients of P (z) and E(z).

2) Specifying the roots of P (z) and E(z) together with the non-zero coefficient µ.

Noting that the roots of P (z) correspond to the poles of X, equivalently to the critical points of
ΨX . In the case d = 0, the usual geometrical/dynamical interpretation of (2) arises. However,
we are not aware of a geometrical/dynamical interpretation of the roots of E(z); compare with
[2] where a study of the discrete symmetries of X is provided.

3) A third kind of “parametrization” is given by Corollary 14.1: given a set of critical and
asymptotic values {p̃1, . . . , p̃r, a1, . . . , ad}, there are non–unique X ∈ E (r, d) such that the above
set are precisely the critical and asymptotic values of ΨX .

Note that the non–uniqueness arises from the solution of the system of transcendental equations
(45).
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Recalling Diagram 12, parametrization (3) can be represented by specifying the bottom row of
Diagram 116.

(116)

Cz ⊃ {p1, . . . pn,∞1, . . . ,∞d}
{

(pι, p̃ι,−νι)
}n
ι=1
∪
{

(∞σ, aσ,−∞)
}d
σ=1
⊂ RX�

π1

?
π2

PPPPPPPPPPq
ΨX

{p̃1, . . . , p̃r, a1, . . . , ad} ⊂ Ct.

Is there another way of parametrizing X ∈ E (r, d)?
Striving for a unique geometrical/dynamical solution in the general case r, d ≥ 1, (r, d)–

configuration trees provide a “mixed approach”. Further study of the above question and effective
parameters from Diagram 116 is the goal of a future project.
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