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Abstract
We provided a detailed study of the Schur–Cohn stability algorithm for Schur stable
polynomials of one complex variable. Firstly, a real analytic principal C × S

1-bundle
structure in the family ofSchur stable polynomials of degreen is constructed. Secondly,
we consider holomorphic C-actions A on the space of polynomials of degree n. For
each orbit {s · P(z) | s ∈ C} ofA , we study the dynamical problem of the existence of a
complex rational vector fieldX(z) onC such that its holomorphic s-time describes the
geometric change of the n-root configurations of the orbit {s · P(z) = 0}. Regarding
the above C-action coming from the C × S

1-bundle structure, we prove the existence
of a complex rational vector field X(z) on C, which describes the geometric change of
the n-root configuration in the unitary diskD of aC-orbit of Schur stable polynomials.
We obtain parallel results in the framework of anti-Schur polynomials, which have all
their roots in C\D, by constructing a principal C∗ ×S

1-bundle structure in this family
of polynomials. As an application for a cohort population model, a study of the Schur
stability and a criterion of the loss of Schur stability are described.
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1 Introduction

The space of complex polynomials C[z]=n = {P(z) = cnzn + · · · + c0 | cn �= 0}
of degree n admits two natural parameterizations: coefficient coordinates Cn =
{(cn, . . . , c0)} and root coordinates Rn = {(cn, [z1, . . . , zn])} determined by
unordered n-root configurations [z1, . . . , zn] ∈ C

n/Sym(n) and the coefficient cn .
The Viète map Vn : Rn −→ Cn given by the elementary symmetric functions is a
natural translator. The non-triviality of V −1

n was performed by N. H. Abel and É.
Galois.

A polynomial P(z) is called Schur stable (respectively, anti-Schur) if all its roots lie
in the unitary disk D (respectively, in C\D). A classical problem in control theory and
algebraic/analytic theory of polynomials is the construction of algorithms that from
information in Cn decide when a polynomial is Schur stable, which is a conclusion in
Rn .

We regard the seminal work of Schur [29] and Cohn [11], currently known as the
Schur–Cohn stability algorithm; see [27], Theorem 11.5.3; [8], Sect. 1.4 for modern
reviews and [15] for computational aspects. The algorithm allows us to determine the
number of roots of a polynomial P(z) of degree n in the unitary disk D, the boundary
∂D and the complementC\D. In differential topology language, the algorithmdepends
on four real polynomial maps on Cn , denoted as {Rα,n}4α=1. The first two maps

R1,n : D1,n = { |cn| < |c0| } ⊂ C[z]=n −→ C[z]≤n−1,

R2,n : D2,n = { |cn| > |c0| } ⊂ C[z]=n −→ C[z]=n−1 (1)

deal with anti-Schur and Schur stable polynomials, respectively, enjoying the follow-
ing crucial properties (see [8,27]):
P(z) is anti-Schur if and only if R1,n(P(z)) is also anti-Schur, and
P(z) is Schur stable if and only if R2,n(P(z)) is also Schur stable.

A very remarkable/rare fact is the existence of maps {Rα,n} in coefficient coordi-
nates Cn that enjoy the following two characteristics. Under Rα,n the degree of P(z)
decreases and the position (with respect to D) of the roots of Rα,n(P(z)) is preserved.
Thus, the Schur–Cohn stability algorithm provides us with conclusions for the root
coordinates Rn .

Let us introduce C, C
∗ and S

1 the additive, multiplicative and circle Lie groups.
In Aguirre-Hernández et al. [2,3], introduce a vector bundle structure on the space of
monic Schur stable polynomials of degree n. Our starting result enlarged this geometric
structure as follows (Theorem 2 in the text).

Theorem A For α = 1, 2, the maps Rα,n are real analytic submersions and determine
trivial principal G-bundles

C
∗ × S

1
C × S

1� �D1,n D2,n

� �
R1,n R2,n

C
n−1 × R

+
R

+ × C
n−1 (2)
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(a) (b)

CS
1 ⊂ C

C C

Fig. 1 Two families of polynomials: a a family over the circle S
1 and b a family over the additive group C.

Note that a key fact is the use of s as the target variable for P(z). The phase portraits sketched in C describe
the n-root configuration dynamics, respectively

with structural Lie groups G = C
∗ × S

1 and C × S
1, respectively.

What is themeaning in root coordinatesRn of these principalG-bundle geometries?
We generalize the framework as follows. Let G be the Lie group C or C

∗, and
consider

A : G × C[z]=n −→ C[z]=n,
(
g, P(z)

) �−→ g · P(z)

any holomorphic (respectively, real analytic) G-action. Each orbit

{g · P(z) | g ∈ G}

determines a holomorphic (respectively, real analytic) Weierstrass polynomial, in the
sense of Hansen [19,20]; see Remark 5.

We consider the following prototype dynamics. Let A
(
s, P(z)

) = P(z) − s be a
holomorphic action by translations, here by simplicity, P(z) is a monic polynomial of
degree n, and consider {P(z) = 0} = [z1, . . . , zn] its unordered n-root configuration.
The dynamical problem is as follows.

How canwe describe the geometric change of the n-root configurations
{P(z) − s = 0} = [z1(s), . . . , zn(s)], for s ∈ C?

See Fig. 1b. Two key points are as follows:
{P(z) − s | s ∈ C} is one orbit of the above Lie group C-action A , and each root

zι(s) depends on the variable s of the additive Lie group C.
Obviously, the topology of the n-root configurations changes when s crosses a

critical value of P(z). In a very rough analogy with the n-body problem we say
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that [z1(s), . . . , zn(s)] determines the n-root dynamics, where s plays the role of the
complex time.

Our assertion is that the complex analytic vector field X(z) = (P(z)′)−1 ∂
∂z describes

the n-root configuration dynamics. In this case, the diagram

[ϕ(s, z1), . . . , ϕ(s, zn)] �

A (s, )

V −1
n

�
ϕ(s, )

P(z) − s = zn + · · · + c1z + (c0 − s)

�Vn[z1, . . . , zn]

�

P(z) = zn + · · · + c1z − c0

(3)

commutes, whenever the holomorphic flow

ϕ(s, z) = z(s) of X(z)

is well defined. Diagram (3) is the prototype dynamics. See Definition 2 and Lemma
1 (where the commutativity property of (3) using the flow of X(z) has been proven).

Given a Schur polynomial P(z), the dynamical problem is the description of the
n-root configurations of the polynomials in its orbit {s · P(z) | s ∈ C}, which originates
from the real analytic Lie group C-action in the bundle omitting the S

1-action; see the
right diagram in (2). In an analogous way, given an anti-Schur polynomial P(z), the
dynamical problem makes sense. In other words, we are asking for new versions of
diagram (3).

Since the Lie group C is simply connected, the Schur case is simpler than the
anti-Schur case requiring C

∗. Our main dynamical result for Schur and anti-Schur
polynomials is as follows (Theorems 3 and 4 in the text).

Theorem B (n-root configuration dynamics of Schur C-orbits and anti-Schur C
∗-

orbits)

1. Let P(z) be a Schur stable polynomial and consider {s · P(s) | s ∈ C} its
orbit in the corresponding principal C-bundle from (2). There exists a complex
rational vector field X(z) on C describing the n-root configuration dynamics
of

{s · P(z) = 0},

up to a suitable reparameterization of its complex time.
2. Let P(z) be an anti-Schur polynomial and consider {w · P(s) | w ∈ C

∗} its
orbit in the corresponding principal C

∗-bundle from (2). There exists a complex
rational vector field Y(z) on C describing the n-root configuration dynamics
of

{w · P(z) = 0},

up to a suitable reparametrization of its complex time.
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For accurate statements and proofs see Theorems 3 and 4 in Sects. 8 and 9, respec-
tively. Also in Sect. 8, Fig. 5a–d provides numerical examples of phase portraits of
suitable vector fields X(z) on D; Fig. 5e and f provide sketches of phase portraits of
Y(z) on C\D. A complete explanation of the suitable reparametrization of complex
time is in Eqs. (51) and (59) for Schur stable and anti-Schur, respectively.

The analogous versions of Theorems A and B remain true for Hurwitz polynomials,
considering the Möbius transformation T that sends D on to the left half-plane H =
{Im(z) < 0}.

In order to describe the content of the work, the following diagram should provide
a logical guideline for the major themes in it:

G-action a G-orbit or its n-root configurations a vector field describing
on C[z]=n a Weierstrass polynomial these configuration dynamics

A ��� g · P(z) = P(g, z) ��� {P(g, z) = 0} ��� X(z) .

(4)

Note that the G-actions and orbits are given in coefficient coordinates Cn , whereas the
configurations and vectors fields belong to the root coefficient Rn realm.

Section 2 describes the Schur, anti-Schur and other useful families of degree n
polynomials, according to the position of their roots. In Sect. 3, the Schur–Cohn
stability algorithm is reviewed. The proof of Theorem A is given in Sect. 4, this
provide us with the natural actions (orbits) of the Lie groups G = C

∗ ×S
1 and C×S

1

on C[z]=n . The general notion of Lie group actions on the space of polynomials of
degree n, G-orbits, their associatedWeierstrass polynomials (see Definition 1) and the
proof of the prototype dynamics (Lemma 1) are done in section Sect. 5. The complex
dynamics of singular complex analytic vector fields X(z) and their application to
our dynamical problem are given in Sect. 6. A dictionary between singular points of
vector fields and n-root configuration dynamics is in Definition 3, and several simple
examples are provided. Section 7 explores complex rational vector fields that arose
fromC andC

∗ Lie group actions onC[z]≤n . In Sect. 8, TheoremB for the case of Schur
stable polynomials has been proven; see Theorem 3. Furthermore, a certain criterion
of the loss of Schur stability is given in Proposition 4. The assertion of Theorem B for
the anti-Schur case is done in Sect. 9; see Theorem 4. Finally in Sect. 10, we apply
Theorems A and B to study the Schur stability of a cohort population model; Theorem
B and the criterion of the loss of Schur stability are computed for precise parameter
values, see Example 16.

The authors are grateful to the anonymous referees for detailed comments that
improve the exposition.

2 Families of polynomials

Let C[z]≤n = {P(z) = cnzn + · · · + c0} be the space of complex polynomials of
degree at most n. Let C[z]=n = {P(z) = cnzn + · · · + c0 | cn �= 0} be the subset
of complex polynomials of degree n. We introduce root coordinates, Rn , on C[z]=n

using the coefficient {cn} and the unordered roots {[z1, . . . zn]} for each polynomial
P(z), as follows:
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C
∗ × C

n −→ C
∗ × C

n

Sym(n)

V n−−→ C[z]=n

V −1
n←−−−

(cn, z1, . . . , zn) �−→ (cn, [z1, . . . , zn]) �−→ (cn, cn−1, . . . , c0)

=
(

cn,−cn(z1 + · · · + zn), . . . , (−1)ncn(z1 · · · zn)
)
,

(5)

where the symmetric group of order n, Sym(n), acts on the roots and [. . .] means a
class under this action.

Vn is then degreeViètemapand the inversemapessentiallyV −1
n sends a polynomial

to its roots; see [1,23].

Remark 1 By abusing notation in several places, we identify the polynomial P(z) =
cnzn + · · · + c0 with the vector (cn, . . . , c0), whence also the identification between
C[z]≤n and C

n+1 is used.

Let D := {z ∈ C | |z| < 1} be the unitary disk, having boundary ∂D := {z ∈
C | |z| = 1}. Itwill be useful to consider families of polynomials of degreen, depending
on the numbers of roots p,s,q in D, ∂D and C\D, respectively (n = p + s + q).

The natural motivation is as follows. Let F be a holomorphic germ map on (Cn, 0)
anddet(DF(0)) = P(z)be its Jacobian polynomial having eigenvalues [z1, . . . , zn]. It
is well known that generically under the iteration of F , there appear stable, central and
unstable local manifolds at the origin 0 ∈ C

n of dimensions p, s and q, respectively.
Other extensive references that include interesting information about Schur stable
polynomials are [4,10,14,22].

We describe the families for C[z]=n in the Table 1, considering on three attributes:
the position of the roots, some inequality on the coefficients and the Schur–Cohn map
required by the stability algorithm. Note that |cn| > 0.

• Schur1 is the family of polynomials that have all their roots in the open unitary
disk.

• Anti-Schur is the family of polynomials that have all their roots in the exterior of
the unitary disk (following the usual name [8], p. 115, [21], p. 341).

• Semi-Schur is the topological closure of the Schur family, i.e., the family of
polynomials that have all their roots in the closed unitary disk D.

• Semianti-Schur is the topological closure of the anti-Schur family.
• Saddle polynomials, the The term comes from the existence of non-empty local
stable and unstable manifolds under the iteration of F , as we remark above. Type
1 or 2 depends on the respective Schur–Cohn map that will be required.

• We define that P(z) is self-inverse when P(z) = σ P∗(z), for some point in
{|σ | = 1} = S

1, and

( )∗ : C[z]=n −→ C[z]=n

P(z) = (cn, cn−1, . . . , c0) �−→ P(z)∗ = zn P
(
1
z

)
= (c0, . . . , cn−1, cn),

(6)

here z denotes the conjugate. Each root z� �= 0 of P(z) comes with its reciprocal
conjugate 1/z�; see [27], p. 375, [31], p. 109, [6,9].

1 We simplify Schur stable to say only Schur.
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Table 1 Families of polynomials according to roots {p,s,q} and coefficients {|cn |, |c0|}
D ∂D C\D Required Schur–Cohn map
p s q

Schur Sn p = n 0 0 |cn | > |c0| R2,n

Semi-Schur sSn p ≥ 1 s ≥ 1 0

Saddle polynomials type 2 us2Sn p ≥ 1 s q ≥ 1

Anti-Schur aSn 0 0 q = n |cn | < |c0| R1,n

Semianti-Schur saSn 0 s ≥ 1 q ≥ 1

Saddle polynomials type 1 us1Sn p ≥ 1 s q ≥ 1

Balanced Bn p ≥ 1 s q ≥ 1 |cn | = |c0| R3,n

Self-inverse Cn p ≥ 0 s ≥ 0 q = p |cn | = |c0| R4,n

Remark 2 1. The operator ( )∗ in (6) is an involution.
2. The polynomial P(z)∗ is Schur if and only if P(z) is anti-Schur.

• We define that P(z) is balanced when |cn| = |c0| and it is not self-inverse.

Looking at the eight families in Table 1, the intersection of two of them is empty.
Recall that {|cn| > |c0|} is a necessary but no sufficient condition in order to

characterize Schur polynomials. Following the fifth column in Table 1, let

Σn = {P(z) | |cn| = |c0|} ⊂ C[z]=n (7)

be a real hypersurface. Σn determines two open and connected domains

D1,n = {P(z) | |cn| < |c0|}, D2,n = {P(z) | |cn| > |c0|} (8)

of C[z]=n . In addition, we define

D4,n = {P(z) | |cn| = |c0|}, P(z) = σ P∗(z) for σ ∈ S
1}, D3,n = Σn\D4,n,

(9)
whence

C[z]=n = D1,n ∪ · · · ∪ D4,n .

Moreover, {Dα,n}4α=1 will be the domain of the Schur–Cohn maps Rα,n , as we will
show in the next section.

3 The Schur–Cohnmaps

We recall the Schur–Cohn maps for polynomial map families of degree n. In order to
avoid double subindexes at the target, which is the space of polynomials of degree at
most n − 1, we use the notation
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C[z]≤n−1 = {bn−1zn−1 + · · · + b0} = {(bn−1, . . . , b0)}

and the contention R
+ ⊂ C as usual. Moreover, we follow the enumeration of Schur–

Cohn maps as in [27], p. 375.
When P(z) ∈ D1,n ∪ D2,n , which is an open and dense set of the polynomials of

degree n, the maps are defined as follows.
The Schur–Cohn map 1 is

R1,n : D1,n ⊂ C[z]=n −→ (Cn−1 × R
+) ⊂ C[z]≤n−1

(cn, . . . , c0) �−→ (cn−1c0 − c1cn, cn−2c0 − c2cn, . . . , c1c0
−cn−1cn, |c0|2 − |cn|2) = (bn−1, . . . , b0).

(10)

The Schur–Cohn map 2 is

R2,n : D2,n ⊂ C[z]=n −→ (R+ × C
n−1) ⊂ C[z]=n−1

(cn, . . . , c0) �−→ (|cn|2 − |c0|2, cn−1cn − c0c1, . . . , c2cn

−c0cn−2, c1cn − c0cn−1) = (bn−1, . . . , b0).
(11)

Now consider the nongeneric case P(z) ∈ Σn = {|c0| = |cn|}. In fact, |cn| = |c0|
if and only if cn − σc0 = 0 for some σ ∈ S

1 = {|σ | = 1}. Case i. If σcn−k − ck =
0 for every k ∈ 1, . . . , n, then we apply Schur–Cohn rule 4 below, in particular
|c0|2 − |cn|2 = 0 holds. Case ii. If there exists k0 such that σcn−k0 − ck0 �= 0, let
k1 = min{k0} be for some 0 < k0 < n, then we have the following.
The Schur–Cohn map 3 is

R3,n : D3,n ⊂ C[z]=n −→ C[z]=n−1

P(z) �−→ P1(z) = 1
z

[
g∗
1(0)g1(z) − g1(0)g∗

1(z)
]
,

(12)

with

g(z) =
(

zk + 2b

b

)
P(z), g1(z) = g(0)g(z) − g∗(0)g∗(z), b = cn−k − σck

cn
.

Example 1 For degree two, the map is

R3,2 : D3,2 ⊂ C[z]=2 −→ C[z]=1

P(z) �−→ P1(z) =
⎛

⎝

∣
∣∣∣∣
2c0bc1

|b| + 4c0c2 − c2c0 − 2c2c1
b

|b0|

∣
∣∣∣∣

2

−
∣∣
∣4|c0|2 − |c2|2

∣∣
∣
2
)

z

+
(
2|c0|2b

|b| + 4c0c1 − c2c1 − 2|c2|2b

|b|

)
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(
2c0bc1

|b| + 4c0c2 − c2c0 − 2c2c1b

|b|
)

−
(
4|c0|2 − |c2|2

)(2|c0|2b

|b| + 4c0c1

−c2c1 − 2|c2|2b

|b|
)

,

where b = c1c2 − c0c1
|c2|2 �= 0.

The Schur–Cohn map 4 is

R4,n : D4,n ⊂ C[z]=n −→ C[z]≤n−1
(cn, . . . , c0) �−→ (cn−1, 2cn−2, 3cn−3, . . . , (n − 1)c1, nc0)

= (bn−1, . . . , b0).
(13)

The precise statement for the Schur–Cohn algorithm is stated in Theorem 1. The
original sources are [11,29], modern versions can be found in [8], p. 55, [21], pp. 355,
368 and [27], pp. 375, 395, our redaction follows verbatim from the latter.

Theorem 1 (Schur–Cohn stability algorithm) Let P(z) be a polynomial of degree n,
having zeros p,s,q as in Table 1, and consider its image under the Schur–Cohn
stability algorithm; thus

P1(z) = Rα,n(P(z)),

where α ∈ {1, . . . , 4} is determined by P(z) ∈ Dα,n, as in Eqs. (8) and (9).
Let p1,s1,q1 be the corresponding zeros of P1(z) in D, ∂D, C\D.

1. If |c0| > |cn|, then P1(z) = c0P(z) − cn P∗(z) is not identically zero and we have
degP1 < degP. In this case

p1 = p,s1 = s and 0 ≤ q1 < q.

2. If |c0| < |cn|, then P1(z) = (cn P(z)− c0P∗(z))/z is of degree n − 1. In this case

p1 = p − 1,s1 = s and q1 = q.

3. If there is an nonnegative integer k ≤ n/2 such that

c0 = σcn, c1 = σcn−1, . . . , ck−1 = σcn−k+1, ck �= σcn−k with |σ | = 1

(equivalently P(z) ∈ D3,n, since |σ | = 1 imply |cn| = |c0|), then define b =
(cn−k − σck)/cn,

g(z) =
(

zk + 2b

b

)
P(z), g1(z) = g(0)g(z) − g∗(0)g∗(z)
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and

P1(z) = 1

z

[
g∗
1(0)g1(z) − g1(0)g

∗
1(z)

]
,

which yields that P1 is of degree n − 1. In detail,

p1 = p − 1,s1 = s, and q1 = q.

4. If P(z) is self-inversive (equivalently P(z) ∈ D4,n), then P1(z) = n P(z)− z P ′(z)
is not identically zero, and we have deg P1 < deg P and

p1 = p,s = n − 2p,s1 + q1 < s + q.


�
Remark 3 A qualitative root description of the Schur–Cohn maps is as follows.

• If P(z) ∈ D1,n has p, s, q roots in D, ∂D, C\D, then the map R1,n removes � ≥ 1
from the original q roots and relocates p roots in D, s roots in ∂D, q − � roots in
C\D.

• If P(z) ∈ D2,n has p, s, q roots, then the map R2,n removes one of the original p
roots and relocates p − 1 roots in D, s roots in ∂D, q roots in C\D.

• If P(z) ∈ D3,n hasp,s,q roots, then R3,n removes one of theq roots and relocates
p roots in D, s roots in ∂D, q − 1 roots in C\D.

• R4,n acts on the roots as in the fourth assertion, and it is the restriction of a linear
submersion.

Remark 4 1. Rα,n are real analytic maps in coefficient coordinates {(cn, . . . , c0)}, for
α = 1, . . . , 4.

2. For n ≥ 2, the Schur polynomials Sn ⊂ D2,n = {|cn| > |c0|} determine an open
but not dense subset in this component.
Similar properties are fulfilled by the anti-Schur aSn, polynomials in D2,n =
{|cn| > |c0|}.
The set usS is open and has two connected components coming from {|cn | > |c0|}
and {|cn| < |c0|}.

3. The topological boundary ∂Sn ofSn has the following property; the intersection
∂Sn ∩ {cn = 0} is only the polynomial P(z) ≡ 0. On the whole C[z]=n , we have

∂Sn = sSn ∪ {polynomials with all roots in the unitary circle}.

4 Geometry of Schur–Cohnmaps in coefficient coordinates

Our first goal is the study of Rα,n, α ∈ 1, 2, in the domain where they are nonsingular
maps. This domain of regular points corresponds to Dα,n in C[z]=n\Σn , where we
get associated G-bundle structures.
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Let us consider C, C
∗ and S

1 the additive, multiplicative and circle Lie groups,
respectively.

In Aguirre-Hernández et al. [2,3], introduce a vector bundle structure on the space
of monic Schur polynomials of n degree. This geometric structure is enlarged on
C[z]=n\Σn as follows.

Theorem 2 1. The map

R1,n : D1,n ⊂ C[z]=n −→ C
n−1 × R

+ (14)

is a submersion and determines a trivial principal C
∗ × S

1-bundle.
2. The map

R2,n : D2,n ⊂ C[z]=n −→ R
+ × C

n−1 (15)

is a submersion and determines a trivial principal (C × S
1)-bundle.

These submersions and G-bundle structures are in the real analytic category.
An interesting point is that the submersion R2,n in (15) is well defined in the whole

component D2,n , even when Schur polynomials Sn are strictly proper subsets for
n ≥ 3, similarly for anti-Schur polynomials aSn � D1,n in (14).

Proof Firstly, we study the map R2,n in full detail.
Step 1 R2,n is a submersion in the domain D2,n . By simple inspection, using (11) we
note that

R2,n(D2,n) = R
+ × C

n−1
� D2,n−1.

For a description of polynomials of type P(z) ∈ D2,2\S2, see Example 13. We
introduce the following map:

Ξ2,n : C × S
1 × R

+ × C
n−1 −→ D2,n

(s, eiθ , bn−1, bn−2, . . . , b0) �−→ (cn, . . . , c0)

=
(√

bn−1 + |s|2eiθ ,

√
bn−1+|s|2eiθ bn−2

bn−1

+ b0s
bn−1

, . . . ,

√
bn−1+|s|2eiθ b0

bn−1
+ bn−2s

bn−1
, s

)

= eiθ

bn−1

√
bn−1 + |s|2

(
bn−1, bn−2, . . . , b0, 0

)

+ s
bn−1

(
0, b0, . . . , bn−2, bn−1

)

(16)
by assumption bn−1 ∈ R

+. Note that the condition |cn| > |c0| matches in the last line
above.

Thus, Ξ2,n is a real analytic map, having inverse

Ξ−1
2,n : D2,n −→ C × S

1 × R
+ × C

n−1

(cn, . . . , c0) �−→ (
c0, eiθn , bn−1, . . . , b1, b0

)

= (
c0, eiθn , |cn|2 − |c0|2, cn−1cn − c0c1, . . . , c2cn

−c0cn−2, c1cn − c0cn−1) ,

(17)
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here we use the retraction

ρ : C\{0} −→ S
1, cn �−→ cn

|cn| = eiθn . (18)

Observe that Ξ−1
2,n restricted to the last n coordinates coincides with R2,n . In fact,

Ξ−1
2,n ◦ Ξ2,n = I d, Ξ2,n ◦ Ξ−1

2,n = I d. (19)

We compute the first composition as follows:

Ξ−1
2,n ◦ Ξ2,n(s, eiθ , bn−1, bn−2, . . . , b1, b0)

= Ξ−1
2,n

(√
bn−1 + |s|2eiθ ,

√
bn−1 + |s|2eiθ bn−2

bn−1

+ b0
bn−1

s, . . . ,

√
bn−1 + |s|2eiθ b0

bn−1
+ bn−2

bn−1
s, s

)

=
(

s, eiθ , bn−1,

[√
bn−1 + |s|2eiθ bn−2

bn−1
+ b0

bn−1
s

]√
bn−1 + |s|2e−iθ

− s

[√
bn−1 + |s|2e−iθ b0

bn−1
+ bn−2

bn−1
s

]

, . . . ,

[√
bn−1 + |s|2eiθ b0

bn−1
+ bn−2

bn−1
s

]√
bn−1 + |s|2e−iθ

−s

[√
bn−1 + |s|2e−iθ bn−2

bn−1
+ b0

bn−1
s

])

=
(

s, eiθ , bn−1,
bn−2

bn−1
(bn−1|s|2)bn−2

bn−1
|s|2, . . . , b0

bn−1
(bn−1 + |s|2) − b0

bn−1
|s|2

)

= (s, eiθ , bn−1, bn−2, . . . , b1, b0).

Looking at the other composition, we observe

Ξ2,n ◦ Ξ−1
2,n (cn, cn−1, . . . , c0)

= Ξn(s, e
iθn , |cn|2 − |c0|2, cn−1cn − c0c1, cn−2cn − c0c2, . . . , c1cn − c0cn−1)

=
(
√

|cn|2 − |c0|2 + |s|2eiθn ,

√|cn|2 − |c0|2 + |s|2eiθn (cn−1cn − c0c1)

|cn|2 − |c0|2

+ c1cn − c0cn−1

|cn|2 − |c0|2 s,

√|cn|2 − |c0|2 + |s|2eiθn (cn−2cn − c0c2)

|cn|2 − |c0|2 + c2cn − c0cn−2

|cn|2 − |c0|2 s, . . . , s

)
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=
(

|cn|eiθ ,
|cn|eiθn (cn−1cn − c0c1)

|cn|2 − |c0|2 + (c1cn − c0cn−1)c0
|cn|2 − |c0|2 , . . . , s

)

=
(

cn,
cn−1|cn|2 − |c0|2cn−1

|cn|2 − |c0|2 ,
cn−2|cn|2 − |c0|2cn−2

|cn|2 − |c0|2 , . . . , s

)

= (cn, cn−1, . . . , c0).

Step 2 Each preimage R−1
2,n(bn−1, . . . , b0) of (11) is diffeomorphic to the Lie group

C × S
1 and it is provided with a natural action. Let P(z) ∈ D2,n be a polynomial, we

recall that by definition P1(z) = R2,n(P(z)) and bn−1 = |cn|2 − |c0|2. By using (6),
(18), (19) and the identification in Remark 1, we get the following decomposition:

P(z) = cnzn + · · · + c1z + c0 = (cn, . . . , c0)

= eiθn

bn−1

√
bn−1 + |c0|2

(
|cn|2 − |c0|2, cn−1cn − c0c1, . . . , c1cn − c0cn−1, 0

)

+ c0
bn−1

(
0, c1cn − c0cn−1, . . . , cn−1cn − c0, c1, |cn|2 − |c0|2

)

= eiθn

bn−1

√
bn−1 + |c0|2z P1(z) + c0

bn−1
P∗
1 (z),

here ( )∗ is the operator in Eq. (6). The inverse image of P1(z) = bn−1zn−1+· · ·+b0 ∈
R

+ × C
n−1 is

R−1
2,n(bn−1, . . . , b0)=

{
eiθn

bn−1

√
bn−1+|s|2z P1(z) + s

bn−1
P∗
1 (z)

∣∣∣∣ s ∈ C, eiθn ∈ S
1
}

.

(20)
Moreover, new coordinates on D2,n are as follows:

D2,n =
{

P(z) = eiθn

bn−1

√
bn−1 + |c0|2z P1(z) + c0

bn−1
P∗
1 (z)

∣∣
∣∣ c0 ∈ C, eθn ∈ S

1,

P1(z) ∈ R
+ × C

n−1
}

. (21)

On these coordinates, the Lie group action admits a plain expression

A2,n : C × S
1 × D2,n −→ D2,n(

s, eiθ , eiθn

bn−1

√
bn−1 + |c0|2z P1(z) + c0

bn−1
P∗
1 (z)

)
�−→ ei(θn+θ)

bn−1

√
bn−1 + |c0 + scn |2z P1(z)

+ c0+scn
bn−1

P∗
1 (z),

(22)
where eiθn = cn/|cn|. Recalling that P1(z) = R2,n(P(z)), for any s1, s2 ∈ C and
eiθ1 , eiθ2 ∈ S

1, the associative rule of A2,n is as follows:

(
s1 + s2, e

iθ1+iθ2 ,
eiθn

bn−1

√
bn−1 + |c0|2z P1(z) + c0

bn−1
P∗
1 (z)

)
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�−→ ei(θn+θ1+θ2)

bn−1

√
bn−1 + |c0 + (s1 + s2)cn|2z P1(z) + c0 + (s1 + s2)cn

bn−1
P∗
1 (z)

=
(

s2, e
iθ2 ,

ei(θn+θ1)

bn−1

√
bn−1 + |c0 + s1cn|2z P1(z) + c0 + s1cn

bn−1
P∗
1 (z)

)

.

There exists a global section

Ξ2,n : R
+ × C

n−1 −→ D2,n,

Ξ2,n(0, 1, bn−1, . . . , b0) =
(√

bn−1,
bn−2√
bn−1

, . . . ,
b0√
bn−1

, 0

)
.

By using the identification of Remark 1, the map Ξ2,n(0, 1, . . . , b0) determines a
section of the bundle. Hence, the principal C × S

1-bundle in (15) is trivial.
In coefficient coordinates of D2,n � C[z]=n , the action A2,n is

(s, eiθ , cn, cn−1, . . . , c0) =
(√

|cn|2 − |c0|2 + |(c0 + scn)|2 cn

|cn|e
iθ ,

cn

|cn|
√|cn|2 − |c0|2 + |(c0 + scn)|2eiθ (cn−1cn − c0c1)

|cn|2 − |c0|2

+ c1cn − c0cn−1

|cn|2 − |c0|2 (c0 + scn),

cn

|cn|

√|cn|2 − |c0|2 + |(c0 + scn)|2eiθ (cn−2cn − c0c2)

|cn|2 − |c0|2

+ c2cn − c0cn−2

|cn|2 − |c0|2 (c0 + scn),

× cn

|cn|

√|cn|2 − |c0|2 + |(c0 + scn)|2eiθ (c1cn − c0cn−1)

|cn|2 − |c0|2

+ cn−1cn − c0c1
|cn|2 − |c0|2 (c0 + scn), (c0 + scn)

)
.

Step 3 The description of R1,n in the first assertion 1 of Theorem 2 follows the analo-
gous steps. In order to show that R1,n is a submersion on the domainD1,n , we introduce
the following map:

Ξ1,n : C
∗ × S

1 × R
+ × C

n−1 −→ D1,n

(w, eiθ , bn−1, . . . , b0) �−→ (cn, . . . , c0)

=
(

w, wb1
b0

+
√

b0+|w|2eiθ bn−1
b0

, . . . ,
wb�

b0

+
√

b0+|w|2eiθ bn−�

b0
, . . . ,

√
b0 + |w|2eiθ

)
,

(23)
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Two observations are in order;w coincides with the leader term coefficient cnzn of the
resulting polynomial P(z) ∈ D1,n , and by assumption (b0 + |w|2) ∈ R

+. It follows
that Ξ1,n is a real analytic map.

Recall that by definition P1(z) = R1,n(P(z)). The inverse image of P1(z) =
bn−1zn−1 + · · · + b0 ∈ C

n−1 × R
+ is

R−1
1,n(bn−1, . . . , b0) =

{
w

b0
z P∗

1 (z) + eiθ0

b0

√
b0 + |w|2P1(z)

∣
∣∣∣ w ∈ C

∗, eiθ0 ∈ S
1
}

.

(24)
Moreover, new coordinates on D1,n are as follows:

D1,n =
{

P(z) = cn

b0
z P∗

1 (z) + eiθ0
√

b0 + |cn|2
b0

P1(z)

∣
∣∣∣ cn ∈ C

∗, eiθ0 ∈ S
1,

P1(z) ∈ C
n−1 × R

+} . (25)

A straightforward computation shows that the coefficient of zn in P(z) is cn .
By requiring Lie group variables w and eiθ , the C

∗ × S
1-action can be recognized

as

A1,n : C
∗ × S

1 × D1,n −→ D1,n(
w, eiθ ,

cn
b0

z P∗
1 (z) + eiθ0

√
b0+|cn |2
b0

P1(z)

)
�−→ wcn

b0
z P∗

1 (z) + ei(θ0+θ)
√

b0+|wcn |2
b0

P1(z),

(26)
the computation follows as above. The trivial principal C

∗ × S
1-bundle in Eq. (14) is

done. 
�
Corollary 1 1. Let P(z) ∈ D2,n be a polynomial, the following assertions are equiv-

alent.
(i) The C × S

1-orbit of P(z)

{
ei(θn+θ)

bn−1

√
bn−1 + |c0 + scn|2z P1(z) + c0 + scn

bn−1
P∗
1 (z)

∣∣∣ s ∈ C, eiθ ∈ S
1

}

(27)

is contained in the Schur stable polynomials.
(ii) The polynomial P(z) is Schur stable.
(iii) The polynomial P1(z) is Schur stable.
2. The analogous assertions are true for anti-Schur polynomials considering P(z) ∈

D1,n and its C
∗ × S

1-orbit

{
wcn

b0
z P∗

1 (z) + ei(θ0+θ)
√

b0 + |wcn|2
b0

P1(z)
∣∣∣ w ∈ C

∗, eiθ ∈ S
1

}

. (28)

Proof The orbit (27) comes from the action A2,n in (22). Similarly, the orbit (28)
originates from the action A1,n in (26). 
�
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The geometrical meaning of the orbits (27) shows a certain weak notion of convex-
ity, since the Schur stable set Sn and D2,n are filled by C × S

1-orbits.

5 Lie group actions and n-root configurations: a prototype

Our goal in this section is to explore Lie group actions on the space of complex
polynomials of n degree, regarding the respective n-root configuration dynamics. We
consider two ingredients in order to construct our main Definition 2.

5.1 Lie group actions and n-root configurations

Let G be a real (respectively, complex) Lie group; we are mainly interested when G
is S

1, C and C
∗. Let

A : G × C[z]≤n −→ C[z]≤n

(g, P) �−→ g · P(z)
(29)

be a real (respectively, complex) analytic action of G on the complex manifold of
polynomials of degree at most n. The associated principal G-bundle is

G �i
D0 ⊆ C[z]≤n

�
Π

D0/G,

here D0 is the open manifold whereA is proper and free from fixed points, see [13],
Theorem 1.11.4, Chapter 1. Now we look at the orbits of the G-bundle

{g · P(z) | g ∈ G}.

The Weierstrass preparation theorem [18], p. 8 and the work of Hansen [19,20] give
origin to the following concept for each G-orbit.

Definition 1 1. A Weierstrass polynomial of degree n ≥ 1 over a Lie group G is a
map

P(g, z) = cn(g)zn + · · · + c0(g) : G × C −→ C, (30)

where cι(g) : G → C are real analytic functions, ι ∈ {0, . . . , n}, and cn(g) is
nonidentically zero.2 Furthermore, if G is a complex Lie group, then we require
cι(g) to be complex analytic.

2. For a fixed g0 ∈ G, the n-root configuration of P(g0, z) is

{P(g0, z) = 0} = [z1(g0), . . . , zn(g0)] ∈ C
n

Sym(n)
. (31)

2 For simplicity, here we use degree n; however, the case ≤ n is also useful.
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3. The set of all the n-root configurations of P(g, z) is

Z = {P(g, z) = 0 | ∀ (g, z)} ⊂ G × C. (32)

Example 2 (a) Let

P(θ, z) = z3 − eiθ : S
1 × C −→ C

be a Weierstrass polynomial of degree 3 over a Lie group S
1. If eiθ varies over the

whole circle, then the 3-root configurations of {P(θ, z) = 0 | eiθ ∈ S
1} describe three

arcs of angle 2π/3 in C. Considering the embedding of {eiθ } into C the target of the
polynomial, we get Fig. 1a. See [28] for a general study of these kinds of knots and
braids in C × C.

(b) Consider P(z) a complex polynomial of degree n ≥ 2, and let

{P(s, z) = P(z) − s : C × C −→ C} (33)

be a Weierstrass polynomial of degree n ≥ 1 over the additive Lie group C. Consid-
ering the embedding of s in the target C of P(z), we get the following behavior. If s1
varies in a neighborhood of regular values of P(z), then the n-root configurations of
{P(z)−s1 = 0} do not change topologically. If s1 varies in a neighborhood of a critical
value s0 of P(z), then the n-root configuration of {P(z) − s1 = 0} changes topolog-
ically at s0. See Fig. 1b. for an sketch. We will describe both situations accurately in
Lemma 1 and Fig. 4a.

Remark 5 Throughout this work, we identify each orbit of a G-action A to a Weier-
strass polynomial over G

{g · P(z) | g ∈ G} = {P(g, z) = cn(g)zn + · · · + c0(g) : G × C −→ C}, (34)

in the sense of (30). Clearly the converse is not true; a Weierstrass polynomial over G
as in (30) does not always come from the orbit of a suitable G-action.

As in [19,20], the induced n-fold branched polynomial covering map Π is

G

Z

�
���Π

⊂ �

�
���

G × C
I

proj1

� C
proj2

(35)

here I is the natural embedding and proj1, proj2 are the two natural projections.

Example 3 Let P(z) be a polynomial of degree n ≥ 1. The set of all the n-root
configurations

Z = {P(s, z) = P(z) − s = 0} ⊂ C × C
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is essentially the graph of P(z).

The second ingredient is the dynamics of vector fields. Let

X(z) = f (z)
∂

∂z

be a singular complex analytic vector field on the plane C or the Riemann sphere
Ĉ = C ∪ {∞}, here the adjective singular means that f (z) can admits as singularities
zeros, poles and isolated essential singularities; denoted as Sing(X(z)), see [5]. In the
domain where X(z) is holomorphic, the vector field X(z) determines an a priori local
holomorphic flow:

ϕ : D
2((s0, z0), ε

) ⊂ (
C × C\(Sing(X(z)))

) −→ C, (s, z) �−→ ϕ(s, z), (36)

where s is the complex time, D2
(
(s0, z0), ε

)
is an open two-dimensional disk centered

at (s0, z0) with radius ε > 0.
Given a continuous time path γ (τ) : [0, 1] −→ C such that ϕ(γ (0), z0) = z0 ∈

C\{Sing(X(z))}, we consider the analytic continuation of the flow ϕ(γ (τ), z0) starting
at the initial condition z0. Depending on the path and the initial condition, the analytic
continuation of ϕ( , z0) can be well defined or not.

In summary, ϕ(s, z) is called the flow3 of X(z) over the maximal domain under the
analytic continuation process.

Now we explain the guideline diagram (4).
The coupling between the G-action A , their G-orbits as Weierstrass polynomials

P(s, z) : G ×C −→ C and the flow ϕ(s, ) of a vector field X(z) is given essentially
by the Viète map as follows.

Definition 2 Consider A : G × C[z]=n −→ C[z]=n an additive C-action. Let
P(g, z) be a Weierstrass polynomial coming from A and having

{
P(0, z) = 0

} =
[z1, . . . , zn] as n-root configuration. A complex analytic vector field X(z) on C

describes the n-root configuration dynamics of P(s, z) if

P(s, z) = cn(s)
(
z − ϕ(s, z1)

) · · · (z − ϕ(s, zn)
)

(37)

holds whenever the flow ϕ(s, ) of X(z) is well defined for a suitable function cn(s).
For the case of a multiplicative C

∗-action, in (37) use the variable w = es ∈ C
∗.

Remark 6 The use of s, the variable of the Lie group C, as the time of the flow ϕ(s, )

of X(z) is a key trick in (37).

3 As a matter of record, a Lie group action on a manifold, G × M −→ M is well defined for all the pairs
{(g, p)}, whereas a local action is defined only for a certain open subset of pairs {(g, p)}; here we agree
that flows can be local or global C-actions.
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In the case of C-actions, Definition 2 is equivalent to the fact that the diagram

[ϕ(s, z1), . . . , ϕ(s, zn)] �

A (s, )

V −1
n

�
ϕ(s, )

P(s, z) = cn(s)zn + · · · + c0(s)

�Vn[z1, . . . , zn]

�

P(0, z) = cn(0)zn + · · · + c0(0)

(38)

commutes. Here, Vn is the Viète map and the n-root configuration {P(0, z) = 0} =
[z1, . . . , zn] is considered as the initial condition for ϕ(s, ) (or {P(1, z) = 0} =
[z1, . . . , zn] in the case of C

∗-actions). The diagram (3) is a particular case.
Recall that in the domain where X(z) = (u(z) + iv(z)) ∂

∂z is holomorphic, X(z) is
equivalent to two real analytic commuting vector fields

Re (X(z)) = u(z)
∂

∂x
+ v(z)

∂

∂ y
and Im(X(z)) = −v(z)

∂

∂x
+ u(z)

∂

∂ y
,

see [25], p. 1213 and [26], p. 234. Hence, the complex flow ϕ(g, ) in diagram (38)
is equivalent to the two real commuting flows (of the above pair of vector fields); one
for pure real time and the second for pure imaginary time.

5.2 The prototype

By reviewing Example 2b and Definition 2, we want to show that each arbitrary n-
point configuration [z1, . . . , zn] ⊂ C determines the n-root configuration dynamics
of a suitable Weierstrass polynomial P(s, z).

Lemma 1 (The prototype) Let

A : C × C[z]=n −→ C[z]=n

(s, cnzn + · · · + c1z + c0) �−→ cnzn + · · · + c1z + (c0 − s)
(39)

be a holomorphic action of the additive group C. For each orbit

P(s, z) = cnzn + · · · + c1z + (c0 − s) : C × C −→ C,

the rational vector field

X(z) = 1

P(z)′
∂

∂z
on C

describes the n-root configuration dynamics of P(s, z).

Proof The key idea is to look at any polynomial

P(z) = cnΠn
ι=1(z − zι) : C −→ C
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determined by a configuration of simple roots [z1, . . . , zn] and cn ∈ C
∗, by construc-

tion 0 is a regular value of P(z).
Let {P(s, z) = 0} = {P(z) + s = 0} be the n-root configurations of the orbit of

P(z) under A .
We associate with P(z) a polynomial 1-form and a complex rational vector field,

as follows:

P(z) ←→ ω(z) = P ′(z)dz ←→ X(z) = 1

P ′(z)
∂

∂z
.

In addition, ω(z) and X(z) enjoy the two (equivalent) properties

ω(z)
(
X(z)

) ≡ 1 and P∗
(
X(z)

) = ∂

∂s
,

where P∗ denotes the pushforward and s is the time of the associated ordinary differ-
ential equation dz

ds = (P ′(z))−1.
Consider n open disks D(zι, ε) ⊂ C with center at zι and a small enough radius

ε > 0, ι ∈ {1, . . . , n} such that

P(z) : D(zι, ε) ⊂ C −→ C

are local biholomorphisms. The local flows {ϕ(s, zι) | ι ∈ 1, . . . , n} of X(z), for
complex time {s ∣∣ |s| < ε}, are well defined. Using ω(X) ≡ 1, it follows that

P(ϕ(s, zι)) = s for all ι ∈ {1, . . . , n}.

The diagram (38) commutes whenever the analytic continuation of ϕ(s, ) is well
defined. 
�
Example 4 Figure 2 shows phase portraits of vector fields X(z) = (P ′(z))−1 ∂

∂z
describing the 3-root dynamics of Schur polynomials inC ofP(s, z) = z(z−1/2)(z−
(1+ i)/2) − s andQ(s, z) = z(2z − 1)2 + 2(z − 2)2 − s. In Fig. 2, the lines of flow
with arrows come from the real part of the vector field Re (X(z)) and the orthogonal
lines originate from Im (X(z)).

Let us recall a principal C-bundle interpretation of the prototype. Given the Lie
group action A in (39), the associated holomorphic trivial principal C-bundle is

C
�I

C[z]=n

�
Π

C
n = {(cn, . . . , c1)},

where Π : (cn, . . . , c0) �−→ (cn, . . . , c1) and I denotes the embedding of an orbit in
the total space.
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Fig. 2 Phase portraits a andb of vector fieldsX(z) inC describing 3-root configuration dynamics correspond
to P(s, z) and Q(s, z) in Example 4. The green points correspond to {P(0, z) = 0} and {Q(s, z) = 0};
the red points show the poles of the respective vector fields. Each color island originates from the complex
flow of X(z) using a root (one green point) as an initial condition. The color islands show that any point z0
can appear as a root of {P(s0, z) = 0}, for suitable complex time s0

6 Rational vector fields and n-root configuration dynamics

6.1 Complex rational vector fields on the Riemann spherêC

We enlarge the description of X(z) in the prototype in order to consider rational vector
fields. Let

X(z) = P(z)

Q(z)

∂

∂z
= λ(z − p1)μ1 · · · (z − pν)

μν

(z − q1)κ1 · · · (z − qm)κm

∂

∂z
on Ĉ = C ∪ {∞} (40)

be a rational vector field; here, P(z), Q(z) are polynomials without common factors
and κ, μ ≤ 0 their respective degrees. The vector field X(z) extends rationally to the
whole Riemann sphere Ĉ. Moreover, a simple calculation shows that

μ1 + · · · + μν − κ1 − · · · − κm = μ − κ = 2

on Ĉ. This is equivalent to the fact that the point∞ ∈ Ĉ is ofmultiplicity 2−κ+μ ∈ Z

for X(z); by definition the multiplicity of poles of X(z) is negative.
Following [7], p. 579, a singular complex analytic (probably multivalued) function

ψ : C −→ Ĉ is called additively automorphic if dψ is an univalued singular complex
analytic 1-form on C: i.e., for ψα , ψβ any two branches of ψ ,

ψα(z) = ψβ(z) + aαβ, aαβ ∈ C.

A concrete example is ψ(z) = ln(z).
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Lemma 2 [25,26,30] On the Riemann sphere Ĉ = C ∪ {∞}, there are canonical
correspondences between the following:

1. Complex analytic vector fields X(z).
2. Complex analytic 1-forms ω(z).
3. Multivalued additively automorphic complex analytic functions Ψ (z) with a ratio-

nal derivative.
4. Weierstrass polynomials P(s, z) = ψ(z) − s.

Proof By using (40), we define Ψ (z) = ∫ z
z0

ω : Ĉ\{pι}νι=1 −→ C. Diagrammatically,
we have

ω(z) = P(z)
Q(z)dz �� Ψ (z) = ∫ z P(ζ )

Q(ζ )
dζ

�
�	

��
{Ψ (z) = s}.��

X(z) = P(z)
Q(z)

∂
∂z

�
�


��

(41)

Obviously, s is the time parameter of X(z). 
�

Recall that Ψ (z) = ln(z) provides an example with rational X(z) = z ∂
∂z . Hence,

the enlarged hypothesis within multivalued additively automorphic complex analytic
functions for Ψ (z) is useful.

A singular complex analytic vector field X(z) on C is complete when its flow is
well defined for all initial conditions and for all complex time s. It is a very restrictive
condition; as is well known, X(z) is complete on C if and only if X(z) = (bz + c) ∂

∂z ;
see [24]. Moreover, the comprehension of rational vector fields (and their flows) at
poles is required.

Proposition 1 (Complex analytic normal forms at poles and zeros of vector fields) Let
X(z) be a rational vector field germ on (C, 0).

1. If 0 is a pole of order −κ ≤ −1 for X(z), then it is holomorphically equivalent to
z−κ ∂

∂z .

2. If 0 is a zero of order one for X(z), then it is holomorphically equivalent to λz ∂
∂z ,

where λ = X
′(0).

3. If 0 is a zero of order μ ≥ 2 for X(z), then it is holomorphically equivalent to
zμ

1+λzμ−1
∂
∂z , here λ ∈ C is the residue of the associated rational differential 1-form

ω(z) at 0.

Proof The result is well known see [16,17,30]. The phase portraits are in Fig. 3. 
�

Nowwe introduce how the flow singularities of a rational vector fieldX(z) on Ĉ can
be related to the n-root configuration dynamics of a Weierstrass polynomialP(s, z).
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1
z2

∂

∂z

z2

1 + λz

∂

∂z

z3

1 + λz2
∂

∂z

1
z3

∂

∂z

1
z

∂

∂z

λz
∂

∂z

Re(λ) < 0

Re(λ) > 0

Re(λ) = 0

Fig. 3 Topological phase portraits ofRe (X(z)) = u(z) ∂
∂x +v(z) ∂

∂ y for the complex analytic normal forms

of poles and zeros of X(z) = (
u(z) + iv(z) ∂

∂x

)

6.2 A dictionary between singular points of vector fields and n-root configuration
dynamics

Definition 3 Let X(z) be a complex analytic vector field on the Riemann sphere Ĉ =
C ∪ {∞} describing the n-root configuration dynamics of a Weierstrass polynomial
P(s, z) of degree at most n.

1. A fixed root of {P(s, z) = 0} is a finite zero p ∈ C of X(z) such that it is root of
{P(s0, p) = 0} for a s0.

2. An unattainable root of {P(s, z) = 0} is a finite zero p ∈ C of X(z) such that
P(s0, p) �= 0 for all s0 ∈ C.

3. A collision of (κ +1)-roots of {P(s, z) = 0} is a finite pole q ∈ C of X(z) having
order −κ ≤ −1.

4. ∞ ∈ Ĉ a regular point (κ = 0) or a pole of order −κ ≤ −1 of X(z) determines a
1 + κ reduction of the degree of {P(s, z) = 0}.
The four concepts in Definition 3 are justified by using the normal forms of X(z)

as follows.
Let [z1(s0), . . . , zn(s0)] ⊂ C be the zeros of {P(s0, z) = 0} for a value s0. Assume

that p is a zero of X(z): if it is a zero of {P(s0, z) = 0}, then p is fixed under the flow
of X(z).

Let [z1(s0), . . . , zn(s0)] ⊂ C be the zeros of {P(s0, z) = 0} for a value s0. Assume
that p is a zero of X(z) and does not a zero of {P(s0, z) = 0}. Clearly for all initial
conditions z0 /∈ {z1, . . . , zn}, we have that
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ϕ(s1, z0) �= p

for every analytic continuation of the flow of X(z) along a continuous time path
γ (τ) : [0, 1] −→ C with γ (0) = z.

Hence, p� is an unattainable root of {P(s, z) = 0}.
The last two items inDefinition 3 require an accurate theoretical study.LetP(g, z) :

G × C −→ C be Weierstrass polynomial.
When does a complex analytic vector field X(z) exists on C describing the

n-root configurations ofP(g, z)?
The following result gives an answer.

Corollary 2 Let P(s, z) : C × C −→ C be a holomorphic Weierstrass polynomial
over the complex additive Lie group C. If the set all the n-roots configurations Z =
{P(s, z) = 0} ⊂ C × C, Eqs. (32) and (35), can be described as the graph of a
rational function

s = Ψ (z) : C −→ C,

then there exists a rational vector field X(z) on C that describes the n-root configura-
tion dynamics of P(s, z), even if the flow of X(z) is non holomorphic.

Proof Starting with s = Ψ (z), the correspondence (41) provides a vector field X(z)
that is not necessarily holomorphic.

For the study at the poles of X(z) using local holomorphic coordinates (C, 0) pro-
vided by the local normal forms,we can assume that locally theWeierstrass polynomial
isP(s, z) = zn − s. By using the correspondence (41) (which is well defined up to a
change of coordinates), we have

X(z) = 1

nzn−1

∂

∂z
←→ ω(z) = nzn−1dz ←→ Ψ (z) = zn . (42)

The n-th roots of the unity [e2π i/n, e4π i/n, . . . , e2nπ i/n = 1] collide at z0 for complex
time s0 = ∫ 0

1 nζ n−1dζ .
In fact, despite the non-holomorphicity of the vector field X(z) and its flow in (42),

the Weierstrass polynomial P(s, z) is holomorphic on both variables. It follows that
the n-root dynamics is well described by X(z). See Fig. 4. 
�

Recall that the study of collisions in the n-body problem is a hard subject; in flat
billiards, the trajectories arriving to the singularities are usually removed, since they
have zero measure. In our case, root collisions are natural and easy to describe.

Example 5 Let

A : C × C[z]=2 −→ C[z]=2, (s, c2z2 + c1z + c0) �−→ c2z2 + (c1 + s)z + c0
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(a) (b) (c)

Fig. 4 Let ϕ(s, z) be the holomorphic flow of X(z) = 1
3z2

∂
∂z . a The 3-root configuration

[−1, e5π i/3, e2π i/6] from {z3 − 1 = 0} collides at z0 = 0 for real positive time s0 = 1 under ϕ(s, )

of X(z), and the polynomialP(s, z) = ∏
(z − ϕ(s, zi )) is holomorphic for all complex time s ∈ C. b For

only one starting point z1 = −1, the flow ϕ(s, ) and the respective polynomial (z − ϕ(s, z1) do not make
sense for real time s > 1. c) For three starting points in arbitrary positions (different from 0), the resulting
polynomial

∏
(z − ϕ(s, zi )) is not well defined for certain time values {s j } ⊂ C

be a holomorphic action. Consider the orbit {P(s, z) = z2 − sz + 1}. We apply the
correspondence (41);

X(z) = z2

z2 − 1

∂

∂z
←→ ω(z) = z2 − 1

z2
dz ←→ Ψ (z) = z2 + 1

z
= s.

This vector field describes the 2-root configuration dynamics of {P(s, z) = 0}.
The point z1 = 0 is an unattainable root of {P(s, z) = 0}.
Two collisions of 2-root appear at z = 1,−1; they correspond to the poles of X(z).
The point ∞ is a double zero of X(z), the degree of {P(s, z) = 0} remains 2 for

all complex time s.
On the other hand, if we consider the orbit {P(s, z) = z2 − sz}. Then, the vector

field X(z) = ∂
∂z describes the 2-root configuration dynamics of it; z1 = 0 is a fixed

root and the second root z2 = s0 moves linearly with respect to the s-time flow of
X(z).

Let X be a vector field describing the n-root configuration dynamics of a Weierstrass
polynomial. Recall Fig. 3, in a small enough neighborhood of a pole q of order −κ of
X , there are {z1, . . . , zκ+1} roots (i.e., initial conditions) such that

ϕ(s0, z1) = · · · = ϕ(s0, zk+1) = q for a suitable time s0 ∈ C,

whence the pole determines the collision of (κ + 1)-roots of {P(s, z) = 0}. In other
words, κ + 1 simple roots give an origin to a root of multiplicity κ + 1.

Example 6 AWeierstrass polynomial (coming from a holomorphic Lie group action)
that does not possess a complex analytic vector field X(z) describing its roots. The
Weierstrass polynomial {es z + s = 0} is an orbit of the additive Lie group action

A : C × C[z]=1 −→ C[z]=1
(s, c1, c0) �−→ (e−sc1, c0 − s).

123



570 Mathematics of Control, Signals, and Systems (2019) 31:545–587

The set of all the n-root configurations of orbit of (c1, c0) = (1, 0) is

Z = {e−s z − s = 0} = {ses − z = 0},

which is the graph of the multivalued nonadditively automorphic Lambert W function
s = W (z). We would want to settle W (z) = Ψ (z); see Corless et al. [12]. The
hypothesis in Proposition 2 does not hold, since

dW

dz
= W (z)

z(1 + W (z))
for z /∈ 0, −1/e.

The diagram (41) produces a multivalued complex analytic 1-form ω(z) = dψ(z),
whence the vector field X(z) on C shares the mutivaluedness.

Example 7 (Transcendental functions s = Ψ (z)).

1. The Weierstrass polynomial P(s, z) = es z + e−s = 0 : C × C −→ C comes
from an additive action on C[z]=1. Moreover, by using correspondence (41), there
exists a complex analytic vector field X(z) = −2z ∂

∂z on C, which describes its
roots dynamics of {es z + e−s = 0}.

2. Let s = Ψ (z) = ln(z) be a multivalued additively complex analytic function. By
using the correspondence (41), the rational vector field is X(z) = z ∂

∂z and the
Weierstrass polynomial is P(s, z) = es − z : C × C −→ C.

See Proposition 3 for a generalization of both examples.

7 Vector fields describing n-root dynamics from Lie group actions of
C and C

∗

Suitable tools for the study of Schur and anti-Schur polynomials are given in the
following two subsections.

7.1 Actions onC[z]≤n by translations

Proposition 2 (Action on C[z]≤n by translations) Let Q ∈ C[z]≤n be a polynomial.
There exists a correspondence between the following objects.

1. A holomorphic Lie group action

A : C × C[z]≤n −→ C[z]≤n(
s, P(z)

) �−→ P(z) − s Q(z).

2. A family of Weierstrass polynomials (obits of A )

P(s, z) = P(z) − s Q(z) : C × C −→ C (43)

over the complex additive Lie group.
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3. A family of rational maps

{
Ψ (z) = P

Q
(z) − s : C −→ C

∣∣∣ P(z) ∈ C[z]=n, s ∈ C

}
.

4. A family of rational vector fields

{
X(z) = Q2(z)

P ′(z)Q(z) − Q′(z)P(z)

∂

∂z

∣∣∣ P(z) ∈ C[z]=n

}
on Ĉz . (44)

Proof Each polynomial P(z) ∈ C[z]≤n must be considered as the initial condition
for an orbit {P(z) − s Q(z) | s ∈ C} of the action. The key point is the definition of
the rational functions Ψ (z) = P

Q (z); it follows that { P
Q (z) − s = 0 | s ∈ C} and the

diagram (41) provides the correspondence (2)–(4). 
�

Note that a rational vector field X(z) on Ĉ in (44) has a flow ϕ : Ω × Ĉ −→ Ĉ

such that

Πι(z − ϕ(s, zι(s)))

Q(z)
= P(z)

Q(z)
= s.

Recall Definition 3, the zeros {Q(z) = 0} are fixed points under the flow of X(z).

Example 8 Given the polynomial Q(z) = z2, let us consider the action

A : C × C[z]≤2 −→ C[z]≤2, (s, c2z2 + c1z + c0) �−→ (c2 + s)z2 + c1z + c0.

For each polynomial P(z) = c2z2 + c1z as initial condition, the actionA gives origin
to the Weierstrass polynomial P(s, z) = P(z) + s Q(z) = (c2 + s)z2 + c1z. The
associated vector field is

X = z2

c1

∂

∂z
.

Note that z1 = 0 is a fixed root of all {P(s, z) = 0}. For s = −c2, the second root
z2 = −c1/(c2 + s) escapes to infinity.

7.2 Linear actions onC[z]≤n

Let us consider a linear action A of C on C[z]≤n = {(cn, . . . , c1, c0)}, with
{zn, . . . , z, 1} as a basis such that its infinitesimal generator is the linear holomor-
phic vector field

n∑

j=0

λ j c j
∂

∂c j
, λ j ∈ {λα, λβ} ⊂ C, (45)
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which has two different eigenvalues, at least one of them nonzero. Each polynomial
P(z) ∈ C[z]≤n can be written as

P(z) =
n∑

j=0

c j z
j =

∑

j

c j(α)z
j(α) −

∑

j

c j(β)z
j(β) = R(z) − Q(z),

by definition R(z), Q(z) belong to the eigenspaces of λ1 and λ2. Under (45), each
C-orbit is {eλαs R(z) − eλβ s Q(z)

∣∣ s ∈ C}. Moreover, if λα = λβ or one of them are
zero, then we get a C

∗-orbit.

Proposition 3 (Linear actions with two different nonzero eigenvalues) The following
objects are equivalent.

1. A holomorphic Lie group action

A : C × C[z]≤n −→ C[z]≤n
(
s, P(z)

) �−→ eλαs R(z) − eλβ s Q(z),

with an infinitesimal generator as in (45).
2. Weierstrass polynomials

PR,Q(s, z) = eλαs R(z) − eλβ s Q(z) : C × C −→ C

over the complex additive Lie group.
3. Families of multivalued additively automorphic functions

{
ΨR,Q(z) = 1

λα − λβ

ln
( R(z)

Q(z)

) ∣∣∣ s ∈ C, Q(z), R(z) ∈ C[z]≤n

}
.

4. A family of rational vector fields

{
Y(z) = R(z)Q(z)

Q′(z)R(z) − R′(z)Q(z)

∂

∂z
on C

∣∣∣ R(z), Q(z) ∈ C[z]≤n

}
.

Proof For each multivalued additively automorphic function ΨR,Q(z), we have the
diagram

(46)


�
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Example 9 Let λα = 1 and λβ = 0 be eigenvalues in (45). The families of Weierstrass
polynomials are

P(s, z) = es R(z) + Q(z) : C
∗ × C −→ C,

where es = w ∈ C
∗, and the family of vector fields is

Y(z) = R(z)Q(z)

Q′(z)R(z) − R′(z)Q(z)

∂

∂z
on C. (47)

Assume that there are points in {R(z) = 0} ∩ {Q(z) = 0} ⊂ C, they are then
fixed under the flow of Y(z) and roots of the Weierstrass polynomial. The points
{R(z) = 0} ∪ {Q(z) = 0}\({R(z) = 0} ∩ {Q(z) = 0}) ⊂ C are invariant under the
flow of Y(z). They are unattainable roots under the analytic extension of the flow of
Y(z).

8 Schur–Cohnmap 2 in root coordinates

Recall the additive C-action A2,n(0, 1, P(z)) = P(z) in (22), where s = 0 and
eiθ = 1. We obtain a reduced version

A2,n : C × D2,n −→ D2,n

(s, P(z)) �−→ eiθn

bn−1

√
bn−1 + |c0 + scn|2z P1(z) + c0+scn

bn−1
P∗
1 (z),

(48)

here eiθn = cn/|cn| and R2,n(P(z)) = P1(z). Note that by abuse of notation, the above
A2,n is denoted as in (22). The associated principal C-bundle is

C
�i

D2,n ⊂ C[z]=n

�
R2,n

R
+ × C

n−1
� D2,n−1.

For each polynomial P(z) ∈ D2,n , the action A2,n in (48)

P(s, z) = Ξ2,n(s, P1(z)) : C × C −→ C

provides a C-orbit

{s · P(z) | s ∈ C} =
{
P(s, z) = eiθn

bn−1

√
bn−1 + |c0 + scn|2z P1(z)

+c0 + scn

bn−1
P∗
1 (z)

∣∣∣ s ∈ C

}
. (49)

In fact, for the identity element s = 0 ∈ C in (48), we recover P(z) = P(0, z).
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A very useful expression for zeros of the C-orbit is given by

Z =
{
P(s, z) = eiθn

bn−1

√
bn−1 + |c0 + scn|2z P1(z)

+c0 + scn

bn−1
P∗
1 (z) = 0

∣∣∣ s ∈ C

}
⊂ C × D. (50)

For each P(s, z), we require the change of time parameter

ε : C −→ D ⊂ C, s �−→ c0 + scn
cn|cn |
√

bn−1 + |c0 + scn|2 = t, (51)

which is a real analytic diffeomorphism. Consider Eq. (50); if we divide by the coef-
ficient of z P1(z), then the equation of all the n-roots configurations Z assumes the
form

Z = {P(s, z) = 0 | s ∈ C} = {
P̂(t, z) = z P1(z) + t P∗

1 (z) = 0
∣∣ t ∈ D

}
. (52)

By Proposition (2), we recognize P̂(t, z) as aWeierstrass polynomial overC (a priori
only for t ∈ D). As an advantage, we have constructed a new {P̂(t, z)}, which is a
holomorhicC-orbit with respect to t . It enjoys the following property; for each s0 ∈ C,
there exists a time t0 ∈ D such that

{P(s0, z)} = {P̂(t0, z) = 0}.

If we add as a hypothesis that P(z) is Schur stable, then we distinguish three cases.

Proposition 4 (The loss of Schur stability for t-time) Let P(z) = P̂(0, z) be a Schur
stable polynomial and consider the associated zeros of the C-orbit {P̂(t, z) | t ∈ C}
as in (52).

1. For |t0| < 1, the polynomial P̂(t0, z) is Schur stable.
2. For |t0| = 1, the polynomial P̂(t, z) has all its zeros in the unitary circle ∂D.
3. For |t0| > 1, the polynomial P̂(t0, z) is anti-Schur.

Proof For |t0| < 1, we recall that {P̂(t0, z) = 0} already appeared in Eq. (21), so the
assertion follows.

For |t0| > 1, note that by Eq. (52),P(t, z) = z P1(z) + t P∗
1 (z) is Schur for t ∈ D.

We use coefficient coordinates, if P1(z) = bn−1zn−1 + bn−2zn−2 + . . . b1z + b0 then

(z P1(z) + t P∗
1 (z))∗ = (

z(bn−1zn−1 + bn−2zn−2 + . . . b1z + b0)
+ t(b0zn−1 + b1zn−2 + . . . bn−2z + bn−1)

)∗

= (
(bn−1z + bn−2z + . . . b1zn−2 + b0zn−1)

+ t z(b0 + b1z + . . . bn−2zn−2 + bn−1zn−1)
)

= t z P1(z) + P∗
1 (z).
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Since z P1(z) + t P∗
1 (z) is Schur for t ∈ D, by Remark 2 we have that (z P1(z) +

t P∗
1 (z))∗ = t z P1(z) + P∗

1 (z) is anti-Schur for t ∈ D and z P1(z) + (1/t)P∗
1 (z) is

anti-Schur for t ∈ D\{0}.
Finally z P1(z) + t P∗

1 (z) is anti-Schur for suitable t ∈ C\D, we have assertion 3.
For |t0| = 1, the assertion follows by a continuity argument and the assertions 1

and 3. 
�
Summing up, we have obtained the following.

Theorem 3 (n-root configuration dynamics of Schur stable polynomials) Let

A2,n : C × D2,n −→ D2,n

be the real analytic action (48) from the principal C-bundle defined by the Schur–Cohn
map R2,n, and let P(z) ∈ A2,n be a Schur stable polynomial. For the respective orbit

{
P(s, z) = eiθn

bn−1

√
bn−1 + |c0 + scn|2z P1(z) + c0 + scn

bn−1
P∗
1 (z)

∣∣
∣ s ∈ C

}
, (53)

the rational vector field

X(z) = P∗2
1 (z)

z P1(z)P∗′
1 (z) − (z P ′

1(z) + P1(z))P∗
1 (z)

∂

∂z
(54)

describes the n-root configuration dynamics of P(s, z) on D. In particular

ϕ(t, z1), . . . , ϕ(t, zn) ∈ D for t ∈ D, (55)

by using {P(z) = P(0, z) = 0} = [z1, . . . , zn] as initial conditions and t as in (51).

Equation (55) is a geometrical expression of Eqs. (35) and (52).

Proof Let P(z) be a Schur stable polynomial.
We recognize that the Weierstrass polynomialP(s, z), in (53), produces a second

Weierstrass polynomial P̂(t, z) that fills up the conditions in Proposition 2, Eqs. (43)
and (52), where t plays the role of the time in Eq. (43). Hence, following Eq. (44), the
vector field X(z) in (54) is well defined.

By Proposition 2, the flow of the vector field X(z) for time t ∈ D describes the
n-root configuration dynamics of

{
P(0, z) = 0

}
. In fact, we can interchange the set

of all the n-root configurations {P(t, z) = 0} by {P̂(s, z) = 0}, hence the equation

P̂(t, z) = cn(t)
(
z − ϕ(t, z1)

) · · · (z − ϕ(t, zn)
)

holds true whenever the flow ϕ(t, ) is well defined, as in Definition 2. 
�
An advantage of X(z) in (54) is that it is rational having an explicit expression in

term of P1(z) and P∗
1 (z). The next result describes the dynamics of X(z) in the sense

of Definition 3.
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Corollary 3 1. The unattainable points of {P(s, z) = 0} are {P∗
1 (z) = 0} ⊂ C\D.

2. The poles of X(z) are 2n −2 counted with multiplicity, and there are at most n −1
inside D, which produce collisions of the roots of {P(s, z) = 0}.

Proof For assertion 1, we note that the zeros of X(z) are in C\D and by Lemma 4,
it follows that {P(t, z) = 0} has its unattainable points outside of the closed unitary
disk.

For 2, Recall that the vector field (54) has an anti-Schur numerator and a self-inverse
denominator. In fact,

z P1(z)P∗′
1 (z) − (z P ′

1(z) + P1(z))P∗
1 (z)

= b0bn−1z2n−2 + · · · +
(

n−3∑

k=0
(n − 2 − 2k)bn−(k+3)bn−(k+1)

)
zn+1

+
(

n−2∑

k=0
(n − 1 − 2k)bn−(k+2)bn−(k+1)

)
zn

+
(

n−1∑

k=0
(n − 2k)|bn−(k+1)|

)
zn−1 +

(
n−2∑

k=0
(n − 1 − 2k)bn−(k+2)bn−(k+1)

)
zn−2

+
(

n−3∑

k=0
(n − 2 − 2k)bn−(k+3)bn−(k+1)

)
zn+1 + · · · + b0bn−1

is self-inverse by using [27] Definition 11.5.1, pp. 375. The vector field X(z) has at
most n − 1 poles inside of D. 
�

The following examples and Fig. 5 illustrate these facts.

Example 10 Let

P(z) = z3

be a Schur polynomial. Its associated polynomials are P1(z) = R2,n(P(z)) = z2 and
P∗
1 (z) = 1. By Theorem A (equivalently Theorem 2) and Eq. (49), the respective

C-orbit is
{
P(s, z) =

√
1 + |s|2z3 + s

∣∣∣ s ∈ C

}
.

The change of time parameter (51) determines the set of all the 3-root configurations

{
P̂(t, z) = t + z3 = 0

∣∣∣ t ∈ D

}
.

By Theorem B (equivalently Theorem 3) and Eq. (54), the vector field

X(z) = −1

3z2
∂

∂z

describes the 3-root configuration dynamics of {P(s, z) = 0} over C. The 3-root
configurations are inside D and there is a triple collision in z = 0; see Fig. 5a. Hence,
a triple pole appears at z = 0.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Phase portraits a, b and c of suitable vector fields X(z) describing the 3-root dynamics of Schur
polynomials in D for time {s | |s| < 1} correspond to Examples 10, 11 and 12; they illustrate Eq. (55).
d Phase portrait of a vector field X(z) describing the 2-root dynamics of a polynomial in D2,2, not Schur
or anti-Schur, see Example 13. Phase portraits e–f of vector fields Y(z) describing the 3-root dynamics of
anti-Schur polynomals inC\D for time {w | 0.1 ≤ |w| ≤ 0.8, 0 ≤ Arg(w) ≤ 2π} correspond to Examples
14 and 15; they illustrate Eq. (63). Each color island originates from the complex flow of X(z) or Y(Z)

using a root of {P(z) = 0} (one green point) as initial condition
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Example 11 Let

P(z) = z(z − 1/2)(z − (1 + i)/2)

be a Schur polynomial. Its associated polynomial is P1(z) = R2,3(P(z)) = (z −
1/2)(z − (1 + i)/2) and the respective anti-Schur polynomial is P∗

1 (z) = 1−i
4 z2 −

(1− i/2)z + 1. By Theorem A (equivalently Theorem 2) and Eq. (49), the respective
C-orbit is

{
P(s, z) =

√
1 + |s|2z

(
z − 1

2

)(
z − 1 + i

2

)

+s
(1 − i

4
(z − 2)(z − (1 + i))

) ∣∣∣ s ∈ C

}
.

The changeof the timeparameter (51) determines the set of all the 3-root configurations
{
P̂(t, z) = z

(
z − 1

2

)(
z − 1 + i

2

)
+ t

(1 − i

4
(z − 2)(z − (1 + i))

)
= 0

∣
∣∣ t ∈ D

}
.

By Theorem B (equivalently Theorem 3) and Eq. (54), the vector field

X(z) = −
(
(2 + 2i) − (3 + i)z + z2

)2

(−2 + 2i) + (8 − 16i)z + 33i z2 − (8 + 16i)z3 + (2 + 2i)z4
∂

∂z

describes the 3-root configuration dynamics of {P(s, z) = 0} over C. The number of
poles of X is four. The root collisions appear in z1 = 0.25+0.03i , z2 = 0.42+0.32i ,
z3 = 1.48 + 1.14i and z4 = 3.83 + 0.49i , but only z1 and z2 are in the unitary disk,
so the other collisions appear in C\D. See Fig. 5b.

Furthermore, we verify numerically Proposition 4.3; for t ∈ D: if |t | → 1 then the
orbit P̂(t, z) loss of Schur stability.

Example 12 Let

P(z) = (−1 + i) − 2i z + 8z3

be a Schur polynomial. Its associated polynomial is P1(z) = R2,n(P(z)) =
−16i + (2 + 2i)z + 62z2 and the respective anti-Schur polynomial is P∗

1 (z) =
62 + (2 − 2i)z + 16i z2. By Theorem A (equivalently Theorem 2) and Eq. (49),
the respective C-orbit is

{
P(s, z) = 1

62
((−1 + i) + 8s)

(
62 + (2 − 2i)z + 16i z2

)

+ 1

62
z
(
−16i + (2 + 2i)z + 62z2

)√
62 + |(−1 + i) + 8s|2

∣
∣∣ s ∈ C

}
.

The changeof the timeparameter (51) determines the set of all the 3-root configurations
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{
P̂(t, z) = t(

1 − i

4
(z − 2)(z − (1 + i)))+z(z − 1/2)(z − (1 + i)/2) = 0

∣∣
∣ t ∈ D

}
.

By Theorem B (equivalently Theorem 3) and Eq. (54), the vector field

X(z) = − i
(
31i + (1 + i)z − 8z2

)2

31
(−8 + (2 − 2i)z − 91i z2 − (2 + 2i)z3 + 8z4

)
∂

∂z

describes the 3-root configuration dynamics of {P(s, z) = 0} over C. The number of
poles of X is four. The root collisions appear in z1 = 0.2+ 0.2i , z2 = −0.22− 0.22i ,
z3 = 2.24 − 2.24i and z4 = 2.51 + 2.51i , but only z1 and z2 are in the unitary disk,
so the other collisions appear in C\D. See Fig. 5c.

Example 13 Let
P(z) = z(z − (1 + i)) ∈ D2,2\S2 (56)

be a non-Schur polynomial, but in the domainD2,2 of R2,2. Its associated polynomials
are

P1(z) = R2,2(P(z)) = z − (1 + i) /∈ D2,1 and P∗
1 (z) = (−1 + i)z + 1.

By Theorem A (equivalently Theorem 2) and Eq. (49), the respective C-orbit is

{
P(s, z) =

√
1 + |s|2z(z − (1 + i)) + s((−1 + i)z + 1)

∣∣∣ s ∈ C

}
.

The change of the time parameter (51) determines the set of all the 3-root configura-
tions

{
P̂(t, z) = z(z − (1 + i)) + t((−1 + i)z + 1) = 0

∣∣
∣ t ∈ C

}
.

By Theorem B (equivalently Theorem 3) and Eq. (54), the vector field

X(z) = (2 − 2i)(z − 1+i
2 )2

2(z − 1)(z − i)

∂

∂z

describes the 2-root configuration dynamics of {P(s, z) = 0} overC. Since the initial
P(z) is not Schur, for |t | = 1 the roots {P̂(t, z) = 0} do not belong necessarily to the
unitary circle ∂D. See Fig. 5d.

9 Schur–Cohnmap 1 in root coordinates

Recall the multiplicative C
∗-action A1,n

(
1, 0, P(z)

) = P(z) in (26), where w = 1
and eiθ = 1. We obtain a reduced version
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A1,n : C × D1,n −→ D1,n
(

w, cn
b0

z P∗
1 (z) + eiθ0

√
b0+|cn |2
b0

P1(z)

)
�−→ wcn

b0
z P∗

1 (z) + eiθ0
√

b0+|cnw|2
b0

P1(z),

(57)
where eiθ0 = c0/|c0| and R1,n(P(z)) = P1(z). Note that by abuse of notation, the
above A1,n is denoted as in (26). The associated principal C

∗-bundle is

C
∗ �i

D1,n ⊂ C[z]=n

�
R1,n

C
n−1 × R

+
� D1,n−1.

For each polynomial P(z) ∈ D1,n , the action A1,n provides a Weierstrass polyno-
mial of degree at most n:

P(w, z) = Ξ1,n(w, P1(z)) : C
∗ × C −→ C,

over the multiplicative Lie groupC
∗. Note that since we are interested in the dynamics

of the roots without loss of generality we can start with P1(z) = R1,n(P(z)) having
b0 ∈ R

+.
A very useful expression for theC

∗-orbit of the bundle defined by R1,n and its zeros
is given by

Z =
{

P(w, z) = wcn

b0
z P∗

1 (z) + eiθ0
√

b0 + |wcn |2
b0

P1(z) = 0
∣∣
∣ w ∈ C

∗
}

⊂ C\D, (58)

where θ0 = c0/|c0| is given as in (18).
For each P(s, z), we require the change of time parameter

ε : C
∗ −→ C\D, w �−→ eiθ0

√
b0 + |wcn|2
wcn

= et , (59)

where b0 ∈ R
+ and Re (t) > 0; the change is a real analytic diffeomorphism.

Consider Eq. (58), if we divide by the coefficient of
(
wcn

)
/b0, then the equation

of all the n-roots configurations Z assumes the form

Z = {P(w, z) = 0 | w ∈ C
∗} =

{
P̂(et , z) = z P∗

1 (z) + et P1(z) = 0 | et ∈ C\D

}
. (60)

As in Proposition 3, we recognize the right side as a the set of all the n-roots configu-
rations of the Weierstrass polynomial P̂(et , z) over C

∗.
Recall the two properties below:
By using the identity element 1 ∈ C

∗ by (57) and (58), we recover P(z) = P(1, z).
For each w0 ∈ C

∗, there exists t0 ∈ D such that {P(w0, z) = 0} = {P̂(et0 , z)
= 0}.

We assume that P(z) is anti-Schur.
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Lemma 3 Let P(z) be an anti-Schur polynomial and consider the associated Weier-
strass polynomial, P̂(t, z) as in (60).

1. For et0 ∈ C\D, the polynomial P̂(t0, z) is anti-Schur.
2. For et0 ∈ S

1, the polynomial P̂(t0, z) has all its zeros in the unitary circle ∂D.
3. For et0 ∈ D, the polynomial P̂(t0, z) is Schur.

Proof It is analogous to the proof in Lemma 4. 
�
By using Proposition 3, we have an auxiliary rational vector field Y(z) on Ĉ,

associated with the family (60).
In summary

Theorem 4 (n-root configuration dynamics of anti-Schur stable polynomials) Let

A1,n : C
∗ × D1,n −→ D1,n

be the real analytic action (57) from the principal C∗-bundle defined by the Schur-Cohn
map R1,n, and let P(z) be an anti-Schur polynomial. For the respective orbit

{

P(w, z) = wcn

b0
z P∗

1 (z) + eiθ0
√

b0 + |wcn|2
b0

P1(z)
∣∣∣ w ∈ C

∗
}

, (61)

the rational vector field

Y(z) = − z P1(z)P∗
1 (z)

(P∗
1 (z) + z P∗′

1 (z))P1(z) − z P∗
1 (z)P ′

1(z)

∂

∂z
on Ĉ (62)

describes the n-root configuration dynamics of P(w, z) in C\D. In particular

ϕ(t, z1), . . . , ϕ(t, zn) ∈ C\D for all et ∈ C\D, (63)

by using {P(z) = P(1, z) = 0} = [z1, . . . , zn] as initial conditions. 
�
The next result describes the dynamics of Y(z) in the sense of Definition 3.

Corollary 4 Consider the vector field Y(z) in (62).

1. The unattainable points are the roots of z P∗
1 (z)P1(z), and there are n−1 unattain-

able points in C\D.
2. The poles of Y(z) are at most 2n − 2 counted with multiplicity, and there are at

most n − 1 in C\D, which produce root collisions of P(w, z).

Proof It is analogous to the proof for Corollary 3. 
�
Example 14 Let

P(z) = z(2z − 1)2 + 2(z − 2)2

123



582 Mathematics of Control, Signals, and Systems (2019) 31:545–587

be an anti-Schur polynomial. Its associated polynomials are P1(z) = R1,n(P(z)) =
12(z − 2)2 and P∗

1 (z) = 12(2z − 1)2. By Theorem A (equivalently Theorem 2) and
Eq. (61), the respective C

∗-orbit is
{

P(w, z) = 4w

48
12z(2z − 1)2 +

√
48 + |4w|2

48
12(z − 2)2

∣∣
∣ w ∈ C

∗
}

.

The change of the time parameter (59) determines the set of all the n-root configura-
tions

{
P̂(et , z) = z(2z − 1)2 + et12(z − 2)2

∣
∣∣ et ∈ C\D

}
.

By Theorem B (equivalently Theorem 4) and Eq. (62), the vector field

Y(z) = − (−2 + z)z(−1 + 2z)

2 − 11z + 2z2
∂

∂z

describes the 4-root configuration dynamics of {P(w, z) = 0} overC
∗. InC\D, there

is a collision of 2-roots at z = 5.31, and z = 2 is an unattainable root. See Fig. 5e.

Example 15 Let

P(z) = −6i z3 + 3i z2 − (3 + 6i)z + 12i

be an anti-Schur polynomial. Its associated polynomial is P1(z) = −18i(z − 2)(z −
3i), which is an anti-Schur polynomial, the associated Schur polynomial is P∗

1 (z) =
108z2 − (54 + 36i)z + 18i . By Theorem A (equivalently Theorem 2) and Eq. (61),
the respective C-orbit is

{
P(w, z) =

{−6iw

108
z(108z2 − (54 + 36i)z + 18i)

+ i
√
108 + | − 6iw|2

108
(−18i)(z − 2)(z − 3i)

∣∣∣ w ∈ C
∗
}

.

The change of the time parameter (59) determines the set of all the n-root configura-
tions

{
P̂(et , z) = {z(108z2 − (54 + 36i)z + 18i) + et (−18i)(z − 2)(z − 3i)

∣∣
∣ et ∈ C\D

}
.

By Theorem B (equivalently Theorem 4) and Eq. (62), the vector field

Y(z) = z
(
6i − (2 + 3i)z + z2

) (
i − (3 + 2i)z + 6z2

)

6
(−1 + (4 − 6i)z + 20i z2 − (4 + 6i)z3 + z4

)
∂

∂z

describes the root dynamics of {P(w, z) = 0}. The roots belong to C\D, and there
is a collision of 2-roots in z1 = 0.55 + 5.47i , z2 = 3.11 + 0.31i . The Weierstrass
polynomial P(w, z) has unattainable roots in 0 and 3i . See Fig. 5f.
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10 Theorems A and B and loss of Schur stability of a cohort
populationmodel

In this section, we use the ideas of Theorems A and B, trying to attract the interest of
specialists in control theory to use them in Schur stability problems. Let us consider
a cohort population model presented in [21], p. 356, as follows

x(T + 1) =

⎡

⎢⎢
⎢⎢⎢
⎣

α0 α1 α2 · · · αn−1 αn

β0 0 0 · · · 0 0
0 β1 0 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · βn−1 0

⎤

⎥⎥
⎥⎥⎥
⎦

x(T ),

having characteristic polynomial

P(z) = zn+1 − α0zn − α1β0zn−1 − α2β0β1zn−2 − · · · − αnβ0β1 · · · βn−1, (64)

where αi ≥ 0 for i = 0, 1, . . . , n and 0 ≤ βi ≤ 1 for i = 0, 1, . . . , n − 1.
The model describes the evolution of the age distribution of a given population

depending on the time. The coordinate xi (T ) represents the number of the i-th age
group at time period T .

The number of the youngest age group at time T + 1 is given by x0(T + 1) =
α0x0(T ) + · · · + αn xn(T ), where αi is the constant birth rate of the i-th age group
with i = 0, . . . , n.

The (i+1)-th and i-th age groups are related to the equation xi+1(T +1) = βi xi (T ),
i = 0, 1, . . . , n − 1, T ∈ N, where βi is the constant survival rate of the i-th age
group.

For illustrating the application of Theorem B, we consider n = 2. The system

x(T + 1) =
⎡

⎣
α0 α1 α2
β0 0 0
0 β1 0

⎤

⎦ x(T )

has characteristic polynomial P(z) = z3 − α0z2 − α1β0z − α2β0β1.

Example 16 For α0 = 1/4, α1 = 3/4, α2 = 0, β0 = 1/2, we get the characteristic
Schur stable polynomial

P(z) = z3 − 1

4
z2 − 3

8
z = z

(
z − 3

4

)(
z + 1

2

)
.

Its associated polynomials are

P1(z) = R2,3(P(z)) = z2 − 1

4
z − 3

8
and P∗

1 (z) = −3

8
z2 − 1

4
z + 1.
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By Theorem A (equivalently Theorem 2) and Eq. (49), the respective C-orbit is

{
P(s, z) =

√
1 + |s|2z

(
z2 − 1

4
z − 3

8

)
+ s

(
− 3

8
z2 − 1

4
z + 1

) ∣∣
∣ s ∈ C

}
.

The change of the time parameter (51) determines the set of all the 3-root configura-
tions

{
P̂(t, z) = z

(
z2 − 1

4
z − 3

8

)
+ t

(
− 3

8
z2 − 1

4
z + 1

)
= 0

∣∣∣ t ∈ D

}
.

By Theorem B (equivalently Theorem 3) and Eq. (54), the vector field

X(z) = (2 + z)2(−4 + 3z)2

24 + 32z − 187z2 + 32z3 + 24z4
∂

∂z

describes the 3-root configuration dynamics of P(t, z) over C.
The implications of Theorem B are shown in Fig. 6a.
For |t | < 1 the resulting polynomial P̂(t, z) remains Schur stable.
The loss of stability is shown in Fig. 6b.
For |t | ≥ 1 the resulting polynomial P̂(t, z) lose Schur stability, since the 3-root

configurations belong toC\D. Figure 6b shows the behavior of the three original roots
{−1/2, 0, 3/4} of P(z), under the complex flow ϕ(t, ) of X(z) for the choice of two
segments of complex time

t0 ∈ {τ + iτ | − 1 < τ < 1} ∪ {τ − iτ | − 1 < τ < 1} ⊂ C,

where τ is real. Each segment of time gives origin to a trajectory of roots {P̂(t0, z) =
0} starting at one of the original roots. Note that the loss of Schur stability P̂(t, z)
occurs at |t | = 1, equivalently to |τ | = √

2/2.

Example 17 For α0 = 1, α1 = 92, α2 = 640, β0 = 1/2, β1 = 1/4, we get the
characteristic anti-Schur polynomial

P(z) = z3 − z2 − 46z − 80 = (z + 5)(z + 2)(z − 8).

Its associated polynomials are

P1(z) = R1,3(P(z)) = 3

8
z2 + 1

4
z − 1 and P∗

1 (z) = −z2 + 1

4
z + 3

8
.

By Theorem A (equivalently Theorem 2) and Eq. (61), the respective C
∗-orbit is

{
P(w, z) = −wz

(
− z2 + 1

4
z + 3

8

)
+
√

−1 + |w|2
(3
8

z2 + 1

4
z − 1

) ∣∣∣ w ∈ C
∗
}

.
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Fig. 6 Phase portraits a, c, d describing the 3-root configuration dynamics of a cohort population model,
correspond to Examples 16, 17 and 18, respectively. Furthermore, b describes the behavior of the initial
roots [0, 3/4,−1/2] under the complex flow of X(z) corresponding to Example 16 for two segments of
complex time; when the segments leave the unitary disk, then the polynomials P̂(t, z) = z

(
z2 − 1

4 z −
3
8
) + t

( − 3
8 z2 − 1

4 z + 1
)
lose Schur stability (the trajectories of roots scape from the unitary disk D)

The change of the time parameter (59) determines all the 3-root configurations

{
P̂(et , z) = z

(
− z2 + 1

4
z + 3

8

)
+ et

(3
8

z2 + 1

4
z − 1

) ∣∣
∣ et ∈ C\D

}
.

By Theorem B (equivalently Theorem 4) and Eq. (62), the vector field is

Y(z) = (−z2 + 1
4 z + 3

8 )(
−3
8 z3 − 1

4 z2 + z)
3
8 z4 + 13

16 z3 − 17
4 z2 − 3

16 z + 3
8

.
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The implications of Theorem B are shown in Fig. 6c.

Example 18 For α0 = 5/4, α1 = 3, α2 = 0, β0 = 1/2, we get the characteristic
polynomial

P(z) = z3 − 5

4
z2 − 3

2
z = z

(
z + 3

4

)(
z − 2

)
.

Its associated polynomials are

P1(z) = R2,3(P(z)) = z2 − 5

4
z − 3

2
and P∗

1 (z) = −3

2
z2 − 5

4
z + 1.

By Theorem A (equivalently Theorem 2) and Eq. (49), the respective C-orbit is

{
P(s, z) =

√
1 + |s|2z

(
z2 − 5

4
z − 3

2

)
+ s

(
− 3

2
z2 − 5

4
z + 1

) ∣∣∣ s ∈ C

}
.

The change of the time parameter (51) determines all the 3-root configurations

{
P̂(t, z) = z

(
z2 − 5

4
z − 3

2

)
+ t

(
− 3

2
z2 − 5

4
z + 1

)
= 0

∣∣∣ t ∈ D

}
.

By Theorem B (equivalently Theorem 3) and Eq. (54), the vector field

X(z) = (−1 + 2z)2(4 + 3z)2

24 + 40z − 37z2 + 40z3 + 24z4
∂

∂z
,

which is neither Schur polynomial nor anti-Schur polynomial. The implications of
Theorem B are shown in Fig. 6d.
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