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Abstract. We tackle the problem of understanding the geometry and dy-
namics of singular complex analytic vector fields X with essential singularities
on a Riemann surface M (compact or not). Two basic techniques are used.
(a) In the complex analytic category on M , we exploit the correspondence
between singular vector fields X, differential forms ωX (with ωX(X) ≡ 1),
orientable quadratic differentials ωX ⊗ ωX , global distinguished parameters

ΨX(z) =
∫ z ωX , and the Riemann surfaces RX of the above parameters.

(b) We use the fact that all singular complex analytic vector fields can be
expressed as the global pullback via certain maps of the holomorphic vector
fields on the Riemann sphere, in particular, via their respective ΨX .

We show that under certain analytical conditions on ΨX , the germ of a
singular complex analytic vector field determines a decomposition in angular
sectors; center C, hyperbolic H, elliptic E, parabolic P sectors but with the
addition of suitable copies of a new type of entire angular sector E , stemming
from X(z) = ez ∂

∂z
. This extends the classical theorems of A. A. Andronov et

al. on the decomposition in angular sectors of real analytic vector field germs.
The Poincaré–Hopf index theory for Re (X) local and global on compact

Riemann surfaces, is extended so as to include the case of suitable isolated
essential singularities.

The inverse problem: determining which cyclic words WX , comprised of
hyperbolic, elliptic, parabolic and entire angular sectors, it is possible to obtain
from germs of singular analytic vector fields, is also answered in terms of local
analytical invariants.

We also study the problem of when and how a germ of a singular complex
analytic vector field having an essential singularity (not necessarily isolated)
can be extended to a suitable compact Riemann surface.

Considering the family of entire vector fields E(d) = {X(z) = λeP (z) ∂
∂z

}
on the Riemann sphere, where P (z) is a polynomial of degree d and λ ∈ C∗,
we completely characterize the local and global dynamics of this class of vector
fields, compute analytic normal forms for d = 1, 2, 3, and show that for d ≥ 3
there are an infinite number of topological (phase portrait) classes ofRe(X), for
X ∈ E(d). These results are based on the work of R. Nevanlinna, A. Speisser
and M. Taniguchi on entire functions ΨX .

Finally, on the topological decomposition of real vector fields into cano-
nical regions, we extend the results of L. Markus and H. E. Benzinger to

meromorphic on C vector fields X, with an essential singularity at ∞ ∈ Ĉ,
whose Ψ−1

X have d logarithmic branch points over d finite asymptotic values
and d logarithmic branch points over ∞.
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1. Introduction

We consider singular complex analytic vector fields X, having local expressions
{fj(z) ∂

∂z} on a Riemann surface M (compact or not), admitting a singular set SX .
The singular set SX consists of:

• zeros, poles, isolated essential singularities and
• accumulation points of the above kind of points on M , for the sake of simplicity
we will call these essential singularities.

As brief terminology, analytic means complex analytic.
In order to describe the global structure of the real trajectory solutions of X,

consider the following naive question:
How explicitly can we globally describe a singular analytic vector field X on a Rie-
mann surface M?

We use two main techniques. The first technique is the one-to-one correspon-
dence on M (respectively on (C, 0) in the case of germs) between:

1) Singular analytic vector fields X.
2) Singular analytic differential forms ωX , where ωX(X) ≡ 1.
3) Singular analytic orientable quadratic differentials ωX ⊗ ωX .
4) Flat metrics gX associated to the quadratic differentials ωX ⊗ωX , with suitable

singularities, provided with a real geodesic vector field.
5) Global singular analytic (additively automorphic, probably multivalued) distin-

guished parameters

ΨX(z) =

∫ z

ωX .

6) The Riemann surfaces RX associated to the maps ΨX .

Which enables us to transfer results from one area to the others; see Lemma 2.6
for the detailed correspondence statement.

As far as we know, unifying (1)–(5) came from the idea of (local) distinguished
parameters of ωX ⊗ ωX , see K. Strebel [66], pp. 20–21, where many of the geo-
metric and dynamical aspects encoded in meromorphic quadratic differentials are
described. The brothers Nevanlinna [53], pp. 298–303, A. Speiser [64] and M.
Taniguchi [67], [68] have studied the relationship between (5) and (6) for entire and
meromorphic functions. We look at the larger family of singular analytic objects,
where the study of the global nature of (5) and (6) brings new insight into the
description of vector fields.

The second technique is presented §3. We follow Riemann’s idea: “every compact
hyperelliptic Riemann surface M can be described as a ramified covering on the

sphere Ĉ, where the placings and orders of the ramification values determine M”;
see [51], Lecture I for this synthesis in the general case. Our assertion is:

“Every singular analytic vector field X on M (respectively on (C, 0)) can be
expressed as the pullback, via certain singular analytic probably multivalued maps
ΨX and ΦX , of the simplest analytic vector fields ∂

∂t or −w ∂
∂w on the Riemann

sphere Ĉ.”
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As a concrete answer to the naive question, one has that the following commutative
diagram holds true:

(1.1) (
Ĉ, ∂

∂t

)
�

exp(−t)

(
Ĉ,−w ∂

∂w

)
,

ΦX�
��

(M,X)
ΨX �

��

where ΦX = exp ◦(−ΨX); see §3.2, in particular Remark 3.6 for the accurate state-
ment of the diagram. In the language of differential equations:

• X = Ψ∗
X( ∂

∂t ) means that X has a global flow–box, i.e. the local rectificability can
be analytically continued to M minus the singular set SX .

• X = Φ∗
X(−w ∂

∂w ) states that X is the global Newton vector field of ΦX . The
usual interest stems from the fact that Newton vector fields X have sinks exactly
at the zeros of ΦX , and sources exactly at the poles of ΦX .

Even in the case of univalued maps, by Picard’s Theorem, in the vicinity of an
isolated essential singularity of X the (a priori) local maps ΨX and ΦX cover

Ĉ minus two points. Hence, the local complexity of X at an isolated essential
singularity on (C, 0) must be studied using the global maps ΨX and ΦX . This can

be readily seen in the example of X(z) = ez
d ∂
∂z where the essential singularity is

at ∞ ∈ Ĉ.
Given a germ

(
(C, 0), X

)
of a singular analytic vector field with an isolated es-

sential singularity at 0, roughly speaking, we have the following analytic invariants
of X:

• class p, taking values in N ∪ {0,∞},
• p–order, with values in R ∪ {∞},
• residue and semi–residues (of the respective ωX), taking values in C,
• configurations of critical and asymptotic values (of the respective ΨX),

see §4 and Corollary 4.18.
We study local topological/analytical invariants of

(
(C, 0), X

)
in §5. We convene

that the real trajectories of the associated real analytic vector field Re (X) are to be
called trajectories of the singular analytic vector field X (the phase portraits of X
and Re (X) coincide). Recall that a germ of a real analytic vector field Z on (R2, 0)
having one isolated zero, admits a decomposition in angular sectors: hyperbolic,
elliptic, and parabolic (see §5.1), thanks to a classical theorem of A. A. Andronov
et al. (see [8], pp. 86, [37], pp. 144).

We propose complex analytic angular sectors; center C, hyperbolic H, elliptic
E, parabolic P and a new type of entire angular sector E (see Figure 3) based upon

the entire vector field X(z) = ez ∂
∂z at the point ∞ ∈ Ĉ. Using these new sectors,

a large family of germs of singular analytic vector fields X on (C, 0), with 0 an
isolated essential singularity, admit a similar decomposition. Roughly speaking, a
germ X determines an admissible word whenever it has an associated cyclic word
WX in the alphabet C,H,E, P, E, arising from the topology of the trajectories of
X at the singularity, diagrammatically (see (5.15)):(

(C, 0), X
)
�−→ WX = W1W2 · · ·Wk, Wι ∈ {C,H,E, P, E}.
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Essentially WX is well defined modulo the relation EEH ∼ E (see Remark 5.18).
The relation arises from to the ambiguity in the choice of representative for the
germ of X.

As a concrete example, recall that
(
(C, 0), X

)
having a pole, a simple zero with

pure imaginary linear part or a multiple zero with zero residue determine the words

1

zk
∂

∂z
�−→ H · · ·H︸ ︷︷ ︸

2k+2

, iz
∂

∂z
�−→ C, zs

∂

∂z
�−→ E · · ·E︸ ︷︷ ︸

2s−2

s ≥ 2.

An accurate description in the meromorphic case is in Table 2, §5. An example

with an isolated essential singularity on (Ĉ,∞) is

ez
d

d zd−1

∂

∂z
�−→ E · · · E︸ ︷︷ ︸

2d

for d ≥ 1;

see Example 5.15.2.
Let h, e, p, ε denote the number of hyperbolic H, elliptic E, parabolic

P and entire E angular sectors, respectively, in an admissible word WX . In §6
the Poincaré–Hopf index theory for Re (X) is extended, starting from the classic
formula of I. Bendixson, to vector fields with isolated essential singularities.

Theorem (A) (Local and global Poincaré–Hopf theory).

1) Let
(
(C, 0), X

)
be a germ of a singular analytic vector field with an isolated

singularity at 0 and further suppose that X determines an admissible word WX .
Then the Poincaré–Hopf index of X at 0 is

PH(X, 0) = 1 +
e− h+ ε

2
.

2) Let X be a singular analytic vector field on a compact M having a discrete set
of poles, zeros and isolated essential singularities determining admissible words
at each singularity, then

χ(M) =
∑
q∈M

PH(X, q).

Exploration of the conditions under which a germ of a singular analytic vector
field can be extended to a compact Riemann surface yields the following result.

Theorem (B) (Extension of vector field germs to compact Riemann surfaces).
Let

(
(C, 0), X

)
be a germ of a singular analytic vector field having a nonnecessarily

isolated singularity at 0.

1) There exists an extended singular analytic vector field X̃ on a compact Riemann
surface Mg, for each genus g ≥ 0, such that:

the germ of X̃ at some p ∈ M is holomorphically equivalent to the germ X, with

X̃ having an additional finite number of zeros and poles.
2) If, in addition, X determines an admissible word WX , then there exists an

extended X̃ on Ĉ, having at most an additional pole and a finite number of
simple zeros.

3) If, in addition, X determines an admissible word WX , having Poincaré–Hopf
index PH(X, 0) = 2−2g, for g ∈ N∪{0}, and residue Res(ωX , 0) = 0, then there

exists an extended X̃ on a compact Riemann surface Mg, of genus g, having

a) no other singularities on Mg = Ĉ, when g = 0,
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b) two new simple poles and no other singularities on Mg, when g ≥ 1.

Where assertions (1), (2) and (3) correspond to Theorem 7.1, Corollary 7.3 and
Corollary 10.3, respectively.

In §8, we provide a complete answer to the problem, which was originally con-
sidered by K. Hockett and S. Ramamurti [34], of describing the families of vector

fields on Ĉ,

E(d) =
{
X(z) = λeP (z) ∂

∂z

∣∣∣ P (z) a polynomial of degree d ≥ 1, λ ∈ C
∗
}
.

Explicit examples of X ∈ E(d) are presented in Figures 1, 3, 15, 16 and 19.
It is natural to hope that vector fields in the family E(d) should have a description

as admissible words at (Ĉ,∞). In order to answer this, and to also analytically
classify the family E(d), in §8.3, we introduce the main global combinatorial object:
the d–configuration tree ΛX associated to X ∈ E(d).

Very roughly speaking, d–configuration trees are weighted trees with complex
parameters as their weights; compare with [65] and [54]. They provide an accurate

description of the Riemann surface RX , as a ramified covering πX,2 : RX → (Ĉ, ∂
∂t )

(see diagram (2.6)), by encoding the placement and ramification index of the ram-
ification points of RX . The main results of this section are incorporated, without
all the technical details; see the following.

Theorem (C) (Analytical and topological classification of E(d)).
1) Singular analytic vector fields in E(d) are in one-to-one correspondence with

classes of d–configuration trees, i.e.

E(d) ∼=
{[
ΛX

] ∣∣ ΛX is a d–configuration tree
}
.

2) The normal forms in E(d)/Aut(C), for d ≤ 3, can be given as follows:

For d=1, ez
∂

∂z
.

For d=2, μ ez
2 ∂

∂z
, μ ∈ C∗.

For d=3, μ e(−
1
3 z

3+pz) ∂

∂z
, μ ∈ C∗, p ∈ C,

and in particular, the geometry of E(3)/Aut(C) is related to Airy’s function.

3) For d = 1, 2, there are exactly d topological classes of Re (X) for X ∈ E(d).
4) For each d ≥ 3, there are an infinite number of topological classes of Re (X) for

X ∈ E(d).
5) A germ

(
(Ĉ,∞), X

)
is the restriction of X ∈ E(d) if and only if ∞ ∈ Ĉ is an

isolated essential singularity and the admissible word WX satisfies that
1) the residue of the word Res(WX) = 0,
2) the Poincaré–Hopf index of the word PH(WX) = 2,
3) it has exactly ε = 2d class 1 entire sectors E.

The correspondence of (1) through (5) and the text being: (1) with Theorem
8.16, (2) with Theorem 8.24 and §8.6.1, (3) and (4) with Theorem 8.31, and (5)
with Corollary 10.1.
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From Theorem (C.5) it follows that not all admissible words arise from singular
analytic vector fields in E(d). Roughly speaking, the relationship between a germ
of a singular analytic vector field and the admissible word is that: half the number
ε of class 1 entire sectors E in the admissible word WX corresponds to the 1–order
of the distinguished parameter ΨX . This is the contents of Theorems 9.1 and 9.8.

Theorem (D) (Local realization and recognition of analytical invariants from
admissible words).

1) A germ
(
(C, 0), X

)
of a singular analytic vector field having an isolated essential

singularity at 0, and whose distinguished parameter ΨX satisfies that Ψ−1
X has as

unique singularities d logarithmic branch points over d finite asymptotic values
{aj} ⊂ Ct and d logarithmic branch points over ∞, determines an admissible
word WX composed of sectors of type H, E, P and E. In particular, there are
ε = 2d sectors of type E.

2) Every admissible word WX in the alphabet C, H, E, P , E comes from a germ(
(C, 0), X

)
of an isolated essential singularity of a complex analytic vector field.

For ε ≥ 2, the distinguished parameter ΨX satisfies that Ψ−1
X has ε/2 logarith-

mic branch points over ε/2 finite asymptotic values and ε/2 logarithmic branch
points over ∞.

In §11 Appendix, we recall that the topological decomposition of the phase por-
trait for real vector fields into canonical regions (spiral, annulus and strips), essen-
tially provided by L. Markus [47] for C1 plane vector fields, has been enhanced by
H. E. Benzinger [10] to include the rational category. We extend these results to

the case of meromorphic vector fields on C with an essential singularity at ∞ ∈ Ĉ,
whose Ψ−1

X have d logarithmic branch points over d finite asymptotic values and d
logarithmic branch points over ∞. See Corollary 11.3. The reader is encouraged to
consult Table 3 in §11; it provides a quick reference to the canonical regions used
coherently throughout the work.

Naturally, the space of singular analytic vector fields, on Ĉ, with an essential
singularity is extremely complex. As an example of this complexity, we look at
the class 2 vector field X(z) = eze−e

z ∂
∂z (see Figures 2 and 5) which also has an

isolated essential singularity at ∞ ∈ Ĉ. With this example in mind, a new family
of angular sectors can be constructed. The theory presented here is not enough to
completely understand the class 2 case, except Theorem (B.1) which does apply and
Theorem (A) which applies with minor modifications. This could be the subject of
a further study.

The different categories in which we work: Our approach to singular analytic
vector fields uses different techniques. As an attempt to clarify where things are
going, let us recall that we are working in: the complex analytic category (X,
ωX , ΨX); the flat singular surfaces category (gX on M); the combinatorial and
topological categories (d–configuration trees ΛX , admissible words WX , topologi-
cal phase portraits classes of Re (X)).

In particular, for the family E(d), diagram (1.2) shows some of the main rela-
tions between the combinatorial, analytical, topological and geometrical categories.
Here, {d–configuration trees [ΛX ]} means the space of classes of d–configura-
tion trees; the normal forms are E(d)/Aut(C); the quotient E(d)/Aut(C)× S1

means the space of classes of flat metrics {gX} up to orientation preserving isome-
tries; and the quotient E(d)/Homeo(C)+ means the space of phase portrait classes
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of Re (X) up to orientation preserving homeomorphisms (see Definition 3.1.1).

(1.2)

E(d) �π1 E(d)
Aut(C)

�π3 E(d)
Aut(C)×S1

∼=

⎧⎨⎩ flat
metrics
gX

⎫⎬⎭
�

∼=
�

∼=
�

�
�

�
�

�	

π2

{
d–configuration

trees [ΛX ]

} {
normal
forms

} E(d)
Homeo(C)+

∼=

⎧⎨⎩ vector
fields
Re (X)

⎫⎬⎭.

The following sources provided us enlightenment on many of the topics consi-
dered in the present work. We apologize in advance for our extremely brief and
necessarily incomplete list.

As far as we are aware, the roots of the geometrical study of differential forms
started in 1857 with B. Riemann: he distinguished differentials of the 1st kind
(holomorphic), 2nd kind (meromorphic, zero residues) and 3rd kind (meromorphic,
nonzero residues); see [58] pp. 96–97. Later on F. Klein implicitly described the
geometrical behaviour of trajectories of ωX , see [43] pp. 1–9.

Modern treatises focusing on the trajectory structure of quadratic differentials:
J. A. Jenkins [39], K. Strebel [66].

Transcendental singularities of meromorphic functions and Riemann surfaces: R.
Nevanlinna [53], [54], M. Taniguchi [67], [68], W. Bergweiler et al. [12].

The point of view of differential equations (meromorphic vector fields): J. Gregor
[26], [27], O. Hájek [31], [32], [33], N. A. Lukashevich [46], L. Brickman et al. [14],
M. Sabatini [59], J. Muciño–Raymundo et al. [50], D. J. Needhan et al. [52], E. P.
Volokitin et al. [70], A. Alvarez–Parrilla et al. [4], A. Garijo et al. [24], B. Branner
et al. [13], E. Fŕıas–Armenta et al. [23].

Partial versions of the correspondence (1)–(6): J. Muciño–Raymundo et al. [50],
J. Muciño–Raymundo [49], A. Bustinduy et al. [17], [18].

Modern explicit proofs of the normal forms for zeros and poles of vector fields
and quadratic differentials: J. A. Jenkins [39] ch. 3, J. Gregor [26], [27], L. V.
Ahlfors [1] pp. 111, L. Brickman et al. [14], K. Strebel [66] ch. III, A. Garijo et al.
[24].

The case of singularities for entire vector fields: K. Hockett et al. [34], A. Garijo
et al. [25].

Relations with discrete dynamical systems: S. Smale [63], M. Shub et al. [61],
H. E. Benzinger [10], H. T. Jonger et al. [40], A. Douady et al. [19], X. Buff et al.
[16].

Flat metrics: K. Strebel [66], R. Peretz [57], J. Muciño–Raymundo et al. [50],
H. Masur et al. [48], J. Muciño–Raymundo [49], M. Kontsevich et al. [44], J. P.
Bowman et al. [15].

Graphs associated to global analytic functions: A. Speiser [65], R. Nevanlinna
[54], G. Elfving [22], M. Shub et al. [61], H. T. Jongen et al. [40].

Acknowledgment. The authors are grateful to the referee for detailed comments
and suggestions that greatly improved the exposition.
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2. The basic correspondences

2.1. Notation and conventions. The material covered in this section can be
found, for the meromorphic category, in [66], [50], [49]. Our present contribution is
to consider essential singularities.

Ĉ = C ∪ {∞} is the Riemann sphere.
M denotes a connected Riemann surface, not necessarily compact.
Let {φj : Vj ⊂ M → C | j ∈ J } be a holomorphic atlas for M .
We use the canonical orientation of the Riemann surface, in particular, all maps

between surfaces preserve orientation and paths that enclose points will have coun-
terclockwise orientation.

Let M be a C∞ compact, oriented two manifold without boundary and let
q ∈ M be a point. Consider a Riemann surface structure M on M\{q}. Then, q
is a conformal puncture of M when there exists a neighborhood V ⊂ M of q and
a biholomorphism ϕ : V \{q} → {0 < |z| < 1} ⊂ C such that limp→q ϕ(p) = 0; or a
conformal hole when ϕ : V \{q} → {0 < ε < |z| < 1}.

Definition 2.1. A singular analytic vector field on M ,

X =

{
fj(z)

∂

∂z

∣∣ z ∈ φj(Vj)

}
,

is a holomorphic vector field X (on M\SX), with singular set S = SX consisting of:
zeros denoted by Z; poles denoted by P; isolated essential singularities denoted by
E; and accumulation points in M of zeros, poles and isolated essential singularities
of X, so

SX = (Z ∪ P ∪E) ⊂ M.

Recall that ( ) denotes the closure in M , and every q ∈ SX determines a conformal
puncture of M . We will define by

M� = M\E, M0 = M\SX ,

M
′
= M\(Z ∪ E), M∗ = M\(P ∪E).

(M,X) denotes a pair, Riemann surface and singular analytic vector field.
((M, q), X) denotes a germ of X at q ∈ M .

Sometimes it will be convenient to consider germs at a conformal puncture, thus
((M\{q}, q), X) denotes a germ of singular analytic vector field X with q ∈ M
removed.

Remark 2.2. Due to the fact that the zeros of a vector field X on M are part of
the singular set of X, we will require that an isolated essential singularity of X be
a point q ∈ M where X is holomorphic at a conformal punctured neighborhood
V \{q} and q is not an accumulation point of zeros.

Example 2.3. 1. Let X(z) = sin(1/z) ∂
∂z be a singular analytic vector field on Ĉ.

Then, 0 ∈ Ĉ is not an isolated essential singularity of X, even though it is an
isolated essential singularity of the function f(z) = sin(1/z).

2. A natural example of a singular analytic vector field determining a conformal
hole is

X(z) =

( ∞∑
ν=0

z2
ν

)
∂

∂z
on D(0, 1) = {|z| < 1}.
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The associated function f(z) converges on D(0, 1) and diverges at the 2n–th
roots of unity.

From the local coordinate expression in Definition 2.1, as usual the complex
structure J on M is the automorphism of the real smooth tangent bundle TRM ,
locally given by

J

(
∂

∂x

)
=

∂

∂y
, J

(
∂

∂y

)
= − ∂

∂x
on φj(Vj).

T ′M denotes the holomorphic tangent line bundle of the Riemann surface M . If we
provide TRM with the complex structure from J , then we obtain an isomorphism
of line bundles (having fibers C) locally as

(2.1) I : TRM −→ T ′M,
∂

∂x
�−→ ∂

∂z
on φj(Vj);

see [42], ch. IX, [28], pp. 16–17, [71], pp. 70–72. Following the naming in [41], pp.
93 theorem 4.3, we have the real and imaginary parts of X:

(2.2) Re (X) := uj(x, y)
∂

∂x
+ vj(x, y)

∂

∂y
, Im (X) := −vj(x, y)

∂

∂x
+ uj(x, y)

∂

∂y
.

Convention. By trajectories of a singular analytic vector field X, we understand
the real maximal trajectory solutions

{z(τ ) : (τmin, τmax) ⊂ R −→ M0} of ż(τ ) = Re (X)(z(τ )).

2.2. Vector fields, differential forms, orientable quadratic differentials,
flat metrics, distinguished parameters, Riemann surfaces. Let X = {fj(z)
∂
∂z } be a singular analytic vector field onM . The associated singular analytic differ-
ential form ωX is such that ωX(X) ≡ 1. Furthermore, a geometrical interpretation
is as follows. Slightly abusing notation1, for every simply connected Vj ⊂ M ′,

(2.3) ΨX,j(z) =

∫ z

z0

ωX : Vj ⊂ M ′ −→ Ct

sends small rectangles in Vj whose sides are trajectories of Re (X) and Im (X), to
euclidean rectangles in Ct, whose sides are segments of horizontal and vertical lines,
respectively. One also notices that on Vj ∩ Vk, ΨX,j(z) = ΨX,k(z) + ajk for some
ajk ∈ C.

A holomorphic analytic quadratic differentialQ onM is orientable if it is globally
given as ω ⊗ ω, for some singular analytic differential form ω on M . We say
that QX = ωX ⊗ ωX is a singular analytic orientable quadratic differential arising
from X, and hence obtain a holomorphic atlas {(Vj,ΨX,j)} for M0 as above. The

real foliation of ∂
∂x on Ct defines a horizontal foliation FQX

on M0, whose leaves
correspond to the trajectories of Re (X).

Let gX be the flat Riemannian metric on M0 defined as the pullback under ΨX,j

of the usual flat metric on Ct, i.e. ΨX,j : (Vj, gX) → (Ct, δ) are isometries. The
trajectories of Re (X) and Im (X) are orthonormal unitary geodesics in (M0, gX).
By abuse of language, we will say in many places that (M0, gX) is induced by(
Ĉ, ∂

∂t

)
or

(
C, ∂

∂t

)
.

1Formally z, z0 ∈ φj(Vj) so we should be using p = φ−1
j (z) and p0 = φ−1

j (z0) in (2.3). However,

since in most cases M = Ĉ we use z and z0.
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In quadratic differentials theory, ΨX,j is a distinguished parameter near a regular
point for QX = {dz2/(fj(z))2}; see [66] pp. 20.

It is to be noted that the distinguished parameter ΨX,j has the following joyful
properties: For z1 and z2 in a sufficiently small disk where ωX is holomorphic,
(2.4)

ΨX,j(z2)−ΨX,j(z1) =

∫ z2

z1

ωX =

{
complex time to travel from z1 to z2

under the local holomorphic flow of X.

Moreover, if z1 and z2 belong to the same real trajectory of Re (X), then

(2.5) gX–length(z1z2) =

∫
z1z2

ωX =

{
real time to travel from z1 to z2

under the local real flow of X,

where z1z2 means the geodesic segment in (M0, gX).
A natural concept when considering multivalued functions is the following.

Definition 2.4. 1. A global analytic function Ξ is a collection of function elements
{Ξj : Vj ⊂ M → Ct}, which are related by direct analytic continuation (see [2]
pp. 284).

2. Let Ξ : M → Ct be a global analytic function with a nondense countable singular
set S(Ξ) ⊂ M , we say that Ξ is additively automorphic (see [11], pp. 579) if given
two branches one has Ξj(z) = Ξk(z) + ajk, for ajk ∈ Ct.

Since we are interested in working with global analytic functions with singular-
ities we shall emphasize this by using the term global singular analytic function
(map) Ξ, i.e. the function elements {(Vj,Ξj)} of Ξ which are holomorphic, a priori
do not determine an open cover of the whole M . When we need to emphasize the
singular set of Ξ, we shall denote it by S(Ξ).

Definition 2.5. The global distinguished parameter of X is the global singular
analytic additively automorphic function ΨX , obtained from direct analytic con-
tinuation of a fixed function element ΨX,ι in {ΨX,j | j ∈ J }, as in (2.3).

The relationship between S(ΨX), the singular set of the distinguished parameter,
and SX , the singular set of the vector field X, will be discussed in §4.3, Table 1.

Moreover, the graph of ΨX ,

RX = {(z, t) | t = ΨX(z)} ⊂ M0 × Ĉt,

is the flat Riemann surface, obtained by analytic continuation. Note that the flat

metric
(
RX , π∗

X,2(
∂
∂t )

)
is induced by

(
Ĉ, ∂

∂t

)
via the projection πX,2 in the following

diagram:

(2.6)

(M,X)
(
RX , π∗

X,2(
∂
∂t )

)

πX,1

�
πX,2

��������
ΨX (

Ĉ, ∂
∂t

)
.

Summing up we get the following result (first introduced for (1–4) in [50], [49],
for (5) in the rational case [17], [18] and now expanded to cover (6)).
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Lemma 2.6 (Basic correspondence). On any Riemann surface M there is a canon-
ical one-to-one correspondence between:

1) Singular analytic vector fields X, having singularities at SX .
2) Singular analytic differential forms ωX .
3) Singular analytic orientable quadratic differentials QX .
4) Flat metrics gX , with singularities on a nondense countable set S ⊂ M , trivial

holonomy in M\S and a (real) geodesic unitary vector field WX with singulari-
ties exactly on S. In fact, it must be true that S ⊆ SX and WX = Re (X).

5) Global singular analytic additively automorphic functions

(2.7) ΨX(z) =

∫ z

z0

ωX : M� −→ Ĉt,

where z0 ∈ M ′ and z ∈ M�.
6) The flat Riemann surface RX associated to the global analytic additively auto-

morphic function ΨX .

We will omit the sub–index X, when the context is clear.

Proof. (1)⇔(2)⇔(3). The correspondence follows from

fj(z)
∂

∂z
←→ dz

fj(z)
←→ dz2

f2
j (z)

z ∈ φj(Vj) for Vj ⊂ M\SX ;

see [50] and [49]. The above determine holomorphic sections, on M\SX : of the
holomorphic tangent line bundle T ′M ([28], pp. 16); the canonical line bundle KM

([28], pp. 146); and the line bundle of quadratic differentials KM⊗KM , respectively.

(2)⇔(5). Follows directly from the fundamental theorem of calculus: If ΨX(z) =∫ z

z0
ωX is a singular analytic additively automorphic function on M�, then ωX is

holomorphic on M∗. However, for Ψ not additively automorphic the pullback of ∂
∂t

via Ψ will not result in a well-defined vector field (and thus ω = dΨ will not be a
well-defined differential form).

Note that ΨX is well defined on M�. Furthermore, a pole z0 of X determines a
holomorphic critical point of ΨX .

(1)⇒(4). Let X be a holomorphic section of T ′(M\SX) the holomorphic tangent
line bundle of M on the punctured M\SX . Using I−1 in (2.1), we recover the
real vector field WX := Re (X) as a section of the real smooth tangent bundle
TR(M\SX). WX is a unitary geodesic vector field for the metric gX .

(4)⇒(1). We can reformulate the initial flat surface data in (4) as (M0\S0, g0,W0)
where M0 is a smooth oriented surface, S0 ⊂ M0 is a numerable set such that at
each p ∈ S0, M0 is locally diffeomorphic to R

2\{0}, g0 is a smooth flat metric on
M0\S0, and W0 is a unitary geodesic vector field on M0\S0.

Since the flat metric has trivial holonomy and M0 is oriented, there exists a
well-defined counterclockwise π/2 rotation map, say

Jp : TR,pM0 −→ TR,pM0, p ∈ M0\S0,

on the real smooth tangent bundle of TRM0, satisfying Jp ◦ Jp = −Id. Using this
smooth complex structure, we have that (M0\S0, J) is a Riemann surface.

Moreover, J allows us to recognize the points in S0 = S ∪ H ⊂ M0, where S
denotes the conformal punctures and H the conformal holes.
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We recover the Riemann surface M in (1), by defining

M = (M0 ∪ S, J);
thus we disregard H. In particular, if H �= ∅, then M is necessarily noncompact.
In order to obtain a singular analytic vector field, recall (2.1),

I : TR(M0 ∪ S) −→ T ′M

is a C–linear isomorphism, [71] pp. 70–72. That is, in local coordinates the vector
field

Wj = uj(x, y)
∂

∂x
+ vj(x, y)

∂

∂y
z ∈ φj(Vj) for Vj ⊂ M0\S,

considered as a smooth section of the real tangent bundle TRM0, corresponds to

Xj = fj(z)
∂

∂z
= (uj(x, y) +

√
−1vj(x, y))

(
1

2

(
∂

∂x
−
√
−1

∂

∂y

))
.

Hence,Xj is a holomorphic section of the holomorphic tangent line bundle T ′(M\S);
see [28], pp. 17, [42], pp. 129, and proposition 2.11.

Finally let SX = S and WX = Re (X) = W0.

(5)⇔(6). Follows from the usual construction ([2] pp. 288) via direct analytic
continuation of ΨX and diagram (2.6). �

A key observation that follows directly from diagram (2.6) is:

Lemma 2.7. The following assertions are equivalent for X a singular analytic
vector field.

1) πX,1 is a biholomorphism between
(
RX , π∗

X,2(
∂
∂t )

)
and (M0, X).

2) ΨX : M� → Ĉt is univalued.
3) The residues and periods of ωX are zero, i.e.

(2.8)

∫
γ

ωX = 0 for every [γ] ∈ H1(M
′,Z).

3. Vector fields under local and global maps

3.1. Pullback of vector fields by singular analytic maps.

Definition 3.1. Let X(z) = f(z) ∂
∂z and Y (z) = g(z) ∂

∂z be two germs of singular
analytic vector fields on (C, 0), let ϕf (t, z) and ϕg(t, z) be their local holomorphic
flows, t ∈ C.

1. X and Y are topologically equivalent (i.e. have topologically equivalent phase
portraits) if there exists an orientation preserving homeomorphism Υ : (C, 0) →
(C, 0) which takes trajectories of Re (X) to trajectories of Re (Y ) preserving
their orientation but not necessarily the real time parametrization.

2. X and Y are holomorphically equivalent if in addition Υ is a biholomorphism
such that

(3.1) Υ(ϕf (t, z)) = ϕg(t,Υ(z)),

whenever both sides are well defined.

The global concepts (admitting singularities as in definition 2.1) are analogous.

Under the assumption that Υ is a biholomorphism, (3.1) is equivalent to X = Υ∗Y .
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Remark 3.2. On Riemann surfaces, the following assertions are equivalent:

1. The singular analytic vector fields (M,X) and (N, Y ) are holomorphically equiv-
alent via a biholomorphism Υ : M → N .

2. There is an orientation preserving isometry Υ : (M0, gX) → (N0, gY ) that takes
geodesic trajectories of Re (X) to geodesic trajectories of Re (Y ) preserving their
real time orientation.

Lemma 3.3. Given a singular analytic vector field Y = {gk(t) ∂
∂t} on N and a

nonconstant, univalued, singular analytic map Υ : M → N, the pullback vector field
X = Υ∗Y is a singular analytic vector field well defined on M . In particular,

(3.2) fj(zj) =
gk(Υjk(zj))

Υ′
jk(zj)

,

where Υjk = φk◦Υ◦φ−1
j , Υ′

jk =
dΥjk

dz , and {φj : Vj ⊂ M → C}, {φk : Uk ⊂ N → C}
are charts of M and N , respectively.

Example 3.4. Holomorphic vector fields on the Riemann sphere. The holomorphic

vector fields on Ĉ are isomorphic to the Lie algebra psl(2,C). According to diagram
(1.1), up to pullback by T (z) ∈ PSL(2,C), we get two nontrivial families.

1. Y (t) = ∂
∂t , hence (C, gY ) is isometric to the euclidean plane, provided with the

geodesic vector field ∂
∂x .

2. Y (w) = λw ∂
∂w , λ ∈ C

∗, hence Re (Y ) has two centers if Re (λ) = 0; one source

and one sink otherwise. (C∗, gY ) is isometric to a euclidean cylinder S1
ρ × R,

provided with the geodesic vector field, where ρ is the perimeter which will be
explicitly calculated in §5.7.

3.2. Every singular analytic vector field admits a global flow box and is
a Newton vector field.

Proposition 3.5. Let X be a singular analytic vector field on M , the following
relations are fulfilled.

1) X = Ψ∗( ∂
∂t ) for a (possibly multivalued) global singular analytic map Ψ.

2) X = Φ∗(−w ∂
∂w ) for a (possibly multivalued) global singular analytic map Φ.

Furthermore, ∂
∂t is the pullback via exp(−t) of −w ∂

∂w and we have the commutative
diagram (1.1).

Proof. For (1) consider the singular analytic map

(3.3) Ψ(z) =

∫ z

z0

ωX : M� −→ Ĉt, z0 ∈ M ′,

applying Lemma 3.3 for
(
Ĉ, ∂

∂t

)
. Moreover, Ψ is univalued if and only if the periods

and residues of ωX are zero; see Lemma 2.7.
Analogously for assertion (2) use Lemma 3.3 and the singular analytic map

(3.4) Φ(z) = exp
(
−

∫ z

z0

ωX

)
: M�\Ψ−1(∞) −→ Ĉw , z0 ∈ M ′,

for
(
Ĉ,−w ∂

∂w

)
. Φ is univalued if and only if the periods and residues of ωX are

integer multiples of a suitable Π ∈ C∗, i.e.

�(3.5) nΠ =

∫
γ

ωX for every [γ] ∈ H1(M
′,Z) and n ∈ Z.
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Remark 3.6. We abuse notation in diagram (1.1) by saying that:

1. The domain of Ψ is M , when in reality it should be M� for Ψ.

2. The domain of exp(−t) is Ĉt, when in reality it should be Ct.
3. The domain of Φ is M , when in reality it should be M�\Ψ−1(∞) for Φ.

Thus, strictly speaking, the diagram (1.1) commutes whenever the analytic contin-
uation of the maps Ψ and Φ is well defined.

Remark 3.7. The vector field X obtained as a pullback via Φ of −w ∂
∂w is known

as the Newton vector field of the map Φ. These have been extensively studied in
several contexts; see [62], [63].

In particular, following H. E. Benzinger [10], who did it for the rational case,
we extend his results to the singular analytic category and show that the function
Φ provides a scheme for visualizing singular analytic vector fields X. Following
Smale’s original idea, along a trajectory z(τ ) of X one has that

Φ(z(τ )) = Φ(z0)e−τ , for all τ ∈ R,

hence h(z) = arg(Φ(z)) is a first integral of Re (X). This technique is used to
visualize the examples given in this paper (see [3], [4], [5] for further details).

Example 3.8. On the torus M = C/(Z ⊕ τZ), where as is usual Im (τ ) > 0,
every elliptic function f(z) determines a meromorphic vector field X(z) = f(z) ∂

∂z .
Moreover, X is a Newton vector field; see [4].

Example 3.9 (The exponential vector field on Ĉ). The entire vector field with an

isolated essential singularity at ∞ ∈ Ĉ,

X(z) = ez
∂

∂z
,

is obtained as the pullback via Ψ(z) = −e−z from the vector field ∂
∂t . Note that

Ψ determines an infinitely ramified cover of Ĉt with the minimal number of ram-
ification values, hence let us recognize X as the simplest vector field having an
isolated essential singularity. On Cz, Re (X) determines a two–dimensional Reeb
component on each strip {2πk ≤ Im (z) ≤ 2π(k + 1)} for k ∈ Z. See Figure 1.

Figure 1. Phase portrait of X(z) = ez ∂
∂z , (a) in the vicinity of

the origin, (b) in the vicinity of ∞ ∈ Ĉ. See Example 3.9.
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Example 3.10 (Class 2 essential singularity2 on Ĉ). The entire vector field

X(z) = eze−e
z ∂

∂z

is the pullback via Ψ(z) = e−e
z

of ∂
∂t . It has an isolated essential singularity at

∞ ∈ Ĉ. See Figure 2.

Figure 2. Phase portrait of X(z) = eze−e
z ∂
∂z in the vicinity of

∞ ∈ Ĉ. See Examples 3.10 and 5.9.

2We define the class p of a vector field in §4.1; see also Example 4.6.
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4. Vector field analytic invariants

4.1. Class, p–order and type at an isolated essential singularity. According
to the basic correspondence (Lemma 2.6), singular analytic vector fields are related
to global singular analytic additively automorphic functions of the form {ΨX,j =∫
(dz/fj)}, hence it will be convenient to examine, and extend to vector fields,

certain analytic invariants of functions.
In the usual literature, the class, order and type (of growth) is defined for entire

functions; see [11], pp. 352, [53], ch. 8, [60], ch. 3. As far as we know, A. Garijo et
al. in [25], were the first to use the order of growth for vector fields.

Let ψ : (C\{0}, 0) → C be a germ of a complex analytic function with an isolated
singularity at z = 0; i.e. ψ has a pole, or an isolated essential singularity at the
origin. We can define for ε > 0,

Mε(ψ) = max
|z|=ε

{log |ψ(z)|}

and

logp(x) =

⎧⎪⎨⎪⎩
x, for p = 0,

log(log(· · · log(x) · · · ))︸ ︷︷ ︸
p–times

, for p ∈ N.

Let ψ be as above, we say that:

1) ψ is of class zero (at 0) if

lim sup
ε→0

Mε(ψ)

− log(ε)
< ∞

(note the choice − log, since ε → 0).
2) ψ is of finite class p ∈ N (at 0), denoted by p–class, if p is the smallest natural

such that

lim sup
ε→0

logp(Mε(ψ))

− log(ε)
< ∞.

3) ψ is of infinite class (at 0) if no such natural number p exists.
4) For ψ of class p ∈ N ∪ {0}, the number ρp ∈ R determined by

ρp(ψ) = lim sup
ε→0

logp(Mε(ψ))

− log(ε)

is called the p–order of growth of ψ (at 0) when ρp(ψ) ≥ 0 or the p–order of
vanishing of ψ (at 0) when ρp(ψ) < 0.

5) For functions of class p and nonzero p–order of growth ρp �= 0, we also have the
concept of p–type τp defined as

τp(ψ) = lim sup
ε→0

logp−1(Mε(ψ))

ε−ρp
.

For convenience of notation we shall allow ρp to be ±∞ when needed. We can now
extend the above concepts to germs of vector fields and differential forms.

Definition 4.1. Let
(
(C, 0), X(z) = f(z) ∂

∂z

)
be a germ of a singular analytic vector

field, with 0 an isolated singularity of X. We say that:

1. X is of class zero if f is of class zero.
2. X is of class p if f is of class p.
3. X is of infinite class if f is of infinite class.
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4. For vector fields X of class p, the p–order of X is the corresponding for f , i.e.
ρp(X) := ρp(f).

5. Similarly, for the p–type of X we have τp(X) := τp(f).

Analogously, if ωX(z) = dz/f(z) is a germ of a differential form with 0 an
isolated singularity of ωX , then ωX inherits the class, order and type from that of
the function 1/f .

Remark 4.2. 1. The definitions of class, order and type of X make sense even in
the case when 0 is an accumulation point of zeros for a vector field, respectively,
an accumulation point of poles for the differential form ωX .

2. These definitions are invariant under conformal change of coordinates so they
make sense for X on a Riemann surface.

Example 4.3. Let X(z) = zng(z) ∂
∂z be a germ on (C, 0), with g holomorphic at

0 such that g(0) �= 0 and n ∈ Z, then X(z) is of class 0 and

ρ0
(
X
)
= −n,

i.e. for finite class zero, the 0–order corresponds to the negative of the usual3 order
of a zero or pole.

For X an entire vector field, on C, the interesting growth is at infinity. From the

above definitions we recover (through the change of variable z �→ 1/z for Ĉ), the

usual theory for entire functions and growth at ∞ ∈ Ĉ. For example, let f be an

entire function, the respective X(z) = f(z) ∂
∂z is of finite class p ∈ N at ∞ ∈ Ĉ, if

p is the smallest natural number such that

lim sup
ε→∞

logp(Mε(f))

log(ε)
< ∞.

Example 4.4. Let X(z) = eP (z) ∂
∂z , where P (z) is a polynomial of degree d. Then

at ∞ ∈ Ĉ, X is of class 1 and its 1–order ρ1(X) = d. We will further study the
family comprised of these vector fields in §8.

Example 4.5. Consider the entire vector field of Example 3.10, X(z) = eze−e
z ∂
∂z

at ∞ ∈ Ĉ, it is of class 2 and its 2–order of growth is

ρ2(X) = lim sup
ε→0

log2(Mε(f))

log(ε)
= 1.

Example 4.6. If

X(z) = exp
(
exp

(
· · · exp

(
g(z)

)
· · ·

))
︸ ︷︷ ︸

p–times

∂

∂z
,

for g an entire function of class zero, then the respectiveX(z) is of p–class at z = ∞.
We have that

ρp
(
X
)
= ρ0(g).

In the global case M = Ĉ, for entire vector fields, without zeros, the comparison
between X, and the respective ωX and ΨX is simple:

3In the sense of L. V. Ahlfors [2] pp. 29, 30.
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Lemma 4.7 (Order of growth of distinguished parameter). Let X(z) = f(x) ∂
∂z be

an entire vector field on C without zeros, having finite class p ∈ N, and let ωX , ΨX

be the associated differential form and distinguished parameter, respectively. Then

for ∞ ∈ Ĉ; the class of X, ΨX and ωX agree. Moreover, when either X, ΨX or
ωX is of finite class p, then

−
(
p–order(X)

)
= p–order(ΨX) = p–order(ωX),

p–type(ωX) = p–type(ΨX).

Proof. Note that X has an isolated essential singularity at infinity, ωX is an entire
differential form and ΨX is a univalued entire function. Ψ′

X gives the expression of

ωX and X = (1/Ψ′
X) ∂

∂z . The class, order and type of an entire function ΨX and
those of its derivative coincide; see [11], remark 4.5.2. Moreover, 1/Ψ′

X is without
any zeros and of finite order, again following [11], remark 4.5.2; f = 1/Ψ′

X is of the
same class and order as that of ΨX . �

4.2. Residues and semi–residues. Let ((C, 0), X) be a germ of singular analytic
vector field having a zero or isolated essential singularity at z = 0. The residue of
X is

Res(X, 0) := Res(ωX , 0) =
1

2πi

∫
γ

ωX ,

where γ is a simple closed counterclockwise oriented path that encloses the origin.

Definition 4.8. Let X be a singular analytic vector field on a Riemann surface
M . The semi–residue associated with a pair of singularities zj , zk ∈ SX\Z of X is

S(ω, zj , zk, γ) =

∫
γ

ωX ,

when it is finite, where γ is a simple path that starts at zj , ends at zk (i.e. γ does
not enclose; zeros, poles, essential singularities or accumulation points of them).

Note that we mainly use the case zj �= zk; the pair of singularities zj , zk could be
two poles (related to saddle connections, homoclinic, heteroclinic trajectories; see
[13], [23]), a pole and an isolated essential singularity or even an isolated essential
singularity of 1–order greater than 1, see for instance (8.9).

The semi–residue S(ω, zj , zk, γ), can be interpreted as the relative position,
ΨX(zk) − ΨX(zj) ∈ Ct, in the metric gX between the ramification values ΨX(zj)
and ΨX(zk).

Moreover, they are of interest in the local scenario when the germ ((C, 0), X)
has an accumulation point of poles. In this case, the collection of semi–residues
will be an infinite set, and a local invariant will be the tail end of the set. The
semi–residues will also play a central role when studying the vector fields of the
form eP (z) ∂

∂z ; see §8.1, Figure 19, Theorem 8.16 and Theorem 8.31.

Example 4.9. Semi–residues and saddle connections. LetX be a singular complex
vector field on M , such that the flat metric (M0, gX) contains an open maximal flat
cylinder S1

ρ × (0, h), of perimeter ρ and finite height h > 0 (also called finite height

annulus flow4). Two families of vector fields X with this property are as follows.

4This notation follows the classical concepts of L. Markus; see [47] and Table 3 in §11 Appendix
for more details.
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i) If X has only poles on a compact Riemann surface Mg of genus g ≥ 2, then
gX has cylinders of this type; see [66] §21 pp. 107 and [48] lemma 1.6.

ii) Certain rational vector fields X on Ĉ have cylinders of this type; see [50].

For these two families, on each boundary component of the closed cylinder S1
ρ ×

[0, h] ⊂ M there is at least one pole ofX; say zj ∈ S1
ρ×{0}, zk ∈ S1

ρ×{h}. Moreover,

there are an infinite number of geodesics γn in S1
ρ × [0, h], having extreme points

zj , zk, nonhomotopically equivalent as paths between zj and zk (see [50] proof of
theorem 3.2). Whence, (M0, gX) has an infinite number of semi–residues,

S(ωX , zj , zk, γn) =

∫
γn

ωX , n ∈ Z.

The geodesics {γn} correspond to saddle connections of suitable rotated vector
fields {eiθnRe (X)}; see [50].

4.3. Asymptotic values. For meromorphic functions in the classical setting,
asymptotic values appear in many instances (see [35], pp. 66, [53], pp. 298–303).
We follow W. Bergweiler et al. [12], essentially verbatim from Definition 4.10 to
Example 4.15, below.

Let Ψ : Cz → Ĉt be a meromorphic function, a priori not related to some vector
field. The inverse function Ψ−1 can be defined on a Riemann surface which is
conformally equivalent to C via Ψ−1. We want to study the singularities of Ψ−1.
This can be done by adding to Cz some ideal points and defining neighborhoods of
these points.

Definition 4.10. Take a ∈ Ĉt and denote by D(a, r) the disk of radius r > 0 (in
the spherical metric) centred at a. For every r > 0 choose a component U(r) of the
preimage Ψ−1(D(a, r)) in such a way that r1 < r2 implies U(r1) ⊂ U(r2). Note
that the function U : r → U(r) is completely determined by its germ at 0. Two
possibilities can occur:

1.
⋂

r>0 U(r) = {z0}, z0 ∈ Cz. Then a = Ψ(z0). If a ∈ Ct and Ψ′(z0) �= 0 or if
a = ∞ and z0 is a simple pole of Ψ, then z0 is called an ordinary point. If a ∈ Ct

and Ψ′(z0) = 0 or if a = ∞ and z0 is a multiple pole of Ψ, then z0 is called a
critical point and a is called a critical value. We also say that the critical point
z0 lies over a.

2.
⋂

r>0 U(r) = ∅. Then we say that our choice r → U(r) defines a transcendental

singularity of Ψ−1. We also say that the transcendental singularity U lies over
a. For every r > 0 the open set U(r) ⊂ Cz is called a neighborhood of the
transcendental singularity U . So if zk ∈ Cz, we say that zk → U if for every
ε > 0 there exists k0 such that zk ∈ U(ε) where k ≥ k0.

Definition 4.11. If U is a transcendental singularity, then a is an asymptotic value,
which means that there exists a path α ⊂ C tending to ∞ such that Ψ(z) → a as
z → ∞, z ∈ α. Such α is called an asymptotic path of aj .

In particular, it follows that every neighborhood U(r) of a transcendental singu-
larity U is unbounded. If a is an asymptotic value of Ψ, then there is at least one
transcendental singularity over a.

Certainly there can be many different transcendental singularities as well as
critical and ordinary points over the same point a. We remark that if Ψ is a

meromorphic function and D ⊂ Ĉt contains no critical or asymptotic values then
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Ψ : Ψ−1(D) → D is a covering. This justifies the name “transcendental singularities
of Ψ−1”.

The following classification of asymptotic values is due to F. Iversen [38], al-
though the connection between asymptotic values of Ψ and transcendental singu-
larities of Ψ−1 was stated by A. Hurwitz [36].

Definition 4.12. A transcendental singularity U over a is called direct if there
exists r > 0 such that Ψ(z) �= a for z ∈ U(r) (then this is also true for all smaller
values of r). A transcendental singularity U over a is called indirect if it is not
direct, i.e. for every r > 0 the function Ψ takes the value a in U(r).

In the case of an indirect transcendental singularity, the function Ψ takes the
value a infinitely often in U(r).

Definition 4.13. We say that U is a logarithmic branch point over a if Ψ : U(r) →
D(a, r)\{a} is a universal covering for some r > 0. The (unbounded) neighborhoods
U(r) are called exponential tracts.

Example 4.14. The simplest case of a direct transcendental singularity is a loga-
rithmic branch point. If Ψ(z) = exp(z), then its inverse, the (multivalued) function
Ψ−1(t) = log(t) has two logarithmic branch points: one over 0 and another over
∞. Of course 0 and ∞ are asymptotic values of Ψ and, for R > 0, U0(R) =
{z | Re (z) < R} and U∞(R) = {z | Re (z) > R}, are exponential tracts for the
asymptotic values 0 and ∞, respectively.

Example 4.15. A simple example of an indirect transcendental singularity is given
by the inverse function of Ψ(z) = sin(z)/z. Note that, the asymptotic value 0 is a
limit point of critical values.

In §5, §6 and §7 we will be interested in applying some of the above definitions to
germs

(
(V \{q}, q),ΨX

)
of the distinguished parameter ΨX , associated to a singular

analytic vector field X on an arbitrary Riemann surface M as in diagram (2.6),
where q will be an isolated singularity of ΨX .

As a first observation, note that if q is an isolated essential singularity of X, then
q is an isolated essential singularity of ΨX and there is at least one finite asymptotic
value of ΨX associated to q.

Example 4.16. Consider X(z) = ez ∂
∂z , hence ΨX(z) =

∫ z

0
ωX = 1 − e−z has

asymptotic values 1,∞ ∈ Ĉt (see §5.3.1 for full details). Of course q = ∞ ∈ Ĉz is
an isolated essential singularity of X and also of ΨX . The (multivalued) function
Ψ−1

X (t) = − log(1− t) has two logarithmic branch points: one over 1 and the other
over ∞.

Our second observation is that poles of X correspond to critical points of ΨX .
The case of zeros of X is more involved: When q is a zero of X, we need to

consider the associated differential form ωX .

i) If Res(ωX , q) = 0, then ΨX is univalued and q is a pole of ΨX .
ii) If Res(ωX , q) �= 0, then ΨX is multivalued and additively automorphic. In

this case either q is a simple zero of X so ΨX has a logarithmic branch point
over q (the logarithmic branch point is of ΨX , not of Ψ−1

X ), or q is a multiple
zero of X in which case q is a pole of ΨX .

The reverse implications are straightforward using Laurent series.
The above is summarized in Table 1.
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Table 1. Relationship between X and ΨX in terms of their sin-
gularities and values.

Behaviour of X Behaviour of ΨX

in a neighborhood of q in a neighborhood of q

q is a pole of X q is a critical point of ΨX

q is a simple zero of X ΨX has a logarithmic branch point over q
(so Res(ωX , q) �= 0) and ΨX is multivalued and additively automorphic

q is a multiple zero of X q pole of ΨX :
Res(ωX , q) = 0 ΨX is univalued,
Res(ωX , q) �= 0 ΨX is multivalued and additively automorphic
q is an isolated q is an isolated essential singularity of ΨX

essential singularity and there exists at least one finite asymptotic
of X value a ∈ C of ΨX associated to q

Thus, the singular sets5 S(ΨX) �= SX , since P, the set poles of X, does not in
general correspond to a singularity of ΨX , and the set of zeros of ΨX does not in
general correspond to a singularity of X. However, Z ∪ E ⊂ S(ΨX).

Example 4.17. Consider X(z) = ez3

3z3−1
∂
∂z on Ĉz, note that X has poles at{

1
3√3

, e
i2π/3

3√3
, e

−i2π/3

3√3

}
. On the other hand a simple calculation shows that

ΨX(z) =

∫ z

0

ωX = −ze−z3

,

so the poles of X are critical points of ΨX with critical values
{
− 1

3√
3e ,−

ei2π/3

3√
3e ,

−e−i2π/3

3√
3e

}
. Thus, S(ΨX) �= SX . Also, X has an isolated essential singularity at

∞ ∈ Ĉz and a1 = 0 is its (finite) asymptotic value with multiplicity 3, with the
exponential tracts given by

(4.1)
A1 = {z ∈ C | arg(z) ∈ [−π/6, π/6] },
A2 = {z ∈ C | arg(z) ∈ [ π/2, 5π/6] },
A3 = {z ∈ C | arg(z) ∈ [7π/6, 3π/2] }.

See Figure 21.b for the phase portrait.

As a summary of the material presented in this section we have.

Corollary 4.18 (Local and global invariants). Let X be an analytic vector field on
a Riemann surface M , having an isolated singularity at q, numerable critical and
asymptotic values of ΨX . The following are analytic invariants of X:

1) Finite or infinite class, order of growth, order of vanishing for ((M, q), X).
2) Residues for ((M, q), X).
3) Semi–residues for (M,X).
4) Configuration of critical and asymptotic values of ΨX modulo translations, for

(M,X).

As a prelude of the argument in part (4), we introduce an illustrative family.

5Recall Definitions 2.1 and 2.4.
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Example 4.19. Pullback vector fields on hyperelliptic Riemann surfaces. Let M
be a hyperelliptic compact Riemann surface of genus g ≥ 1, i.e. M is provided

with a meromorphic function Ψ : M → Ĉt of degree 2; see [51]. Let Ψ(qj) =

{aj} = {a1, . . . , a2g+2} ⊂ Ĉt be the critical values of Ψ. It is well known that the
configuration of critical values up to PSL(2,C)–action, determines the hyperelliptic
(M,Ψ); see [7], pp. 388, and [51], Lecture I.

For a moment we assume that ∞ �= aj , and furnish the target with
(
Ĉ, ∂

∂t

)
.

Let X = Ψ∗( ∂
∂t ) be a meromorphic vector field on M , whose singularities SX are

2g+ 2 poles of order −1 at {qj}, and 2 zeros of order 2 at {pι} = Ψ−1(∞). Thus,
(M,Ψ) determines (M,X) and Corollary 4.18.3 holds.

Moreover, the configuration of critical values {aj} is a complete analytic invariant
of (M,X).

Let (M,X), (N, Y ) be two pullback vector fields on hyperelliptic surfaces. As-
sume that there exists a biholomorphism Υ : M → N with Υ∗X = Y . We shall
now prove that the critical values {a′1, . . . , a′2g+2} of ΨY coincide with the critical
values of ΨX up to a global translation T : Ct → Ct.

If ΨX,j : Vj → Ct is a local biholomorphism with ΨX,j(q0) := t0 ∈ Ct, then from
the diagram

(4.2)

Vj ⊂ M N�Υ




�
ΨX,j(Vj) ⊂ Ĉt

Ψ−1
X,j ΨY,k

Ĉt

the map Tjk := ΨY,k ◦ Υ ◦ Ψ−1
X,j is the restriction of a translation {z �→ z + b}

in
(
Ĉ, ∂

∂t

)
. The analytic continuation T of Tjk is well defined for every path γ ⊂

Ĉt\{aj} (without loss of generality, we assume that there are not three points
t0, aj , a
 in a straight line of Ct). Consider the semi–residues

S(ωX , q0, qj , γj) =

∫
γj

ωX = aj − t0,

where γj is any of the two components in the inverse image Ψ−1(t0aj) ⊂ M , of the
oriented straight line segment t0aj .

The analytic continuation of T along the union of paths
⋃

j t0aj ⊂ Ĉt, is the
restriction of a translation.

Under T the configuration of critical values of ΨY coincide with the critical
values of ΨX , as in Corollary 4.18.4. The case aj = ∞, is left as an exercise for the
reader.

Proof of Corollary 4.18.4. Let (M,X) be the vector field and its global ΨX . The

configuration of critical and finite asymptotic values {a1, a2, . . .} ⊂ Ĉ is a numerable
set. There exist a regular value t0 = ΨX,j(q0) such that there are not three points
t0, aj , a
 in a straight line of Ct. Then we consider the analytic continuation T of
the a respective Tjk, analogous to (4.2), along the union of paths

⋃
j t0aj ⊂ Ct.

Using arguments as in the example, the conclusion follows. �

The following examples show that the numerable hypothesis is needed, and that
the set of critical values of ΨX is not a complete analytic invariant of X.
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Example 4.20. W. Gross constructed examples of analytic functions having dense
sets of critical and asymptotic values (see [29], also [53], pp. 287), hence the nume-
rable assumption in Corollary 4.18 is necessary.

Obviously, for compact M and (even in the case of) a meromorphic map ΨX ,
the set of critical values does not determine M (and by consequence X = Ψ∗

X( ∂
∂t )).

Roughly speaking, G. V. Bely̌ı [9] showed that nonsingular algebraic curves M are
defined by polynomials having algebraic number coefficients if and only if M can

be expressed as a ramified covering having only {0, 1,∞} ⊂ Ĉ as critical values.

5. Angular sectors at an isolated essential singularity

5.1. Angular sectors of vector fields in the real analytic category. Very
roughly speaking, let ((R2, 0), Z) be a real analytic vector field germ having an
isolated zero at the origin, and let F be its associated singular planar real analytic
foliation. Sometimes the local behaviour of F can be described by using hyperbolic,
elliptic, parabolic (real analytic) angular sectors, prototyped from the vector fields

1) Zh = x ∂
∂x − y ∂

∂y on {(x, y) | 0 ≤ x, y < 1, xy < 1/2},
2) Ze = (x3 − 3xy2) ∂

∂x + (3x2y − y3) ∂
∂y on {(x, y) | 0 ≤ x, y < 1, x2 + y2 < 1},

3) Zp = x ∂
∂x + y ∂

∂y on {(x, y) | 0 ≤ x, y < 1, x2 + y2 < 1},
respectively. The three left drawings in Figure 4 give a topological representation
of these kinds of angular sectors. The following nice result is well known.

Theorem 5.1 (A. A. Andronov, E. A. Lentovich, I. I. Gordon, A. G. Mayer, F. Du-
mortier). A singular planar real analytic foliation F on (R2, 0) with a characteristic
trajectory admits a sectorial decomposition into finitely many sectors, hyperbolic,
elliptic and/or parabolic, separated by characteristic trajectories.

Roughly speaking, a characteristic trajectory of F accumulates to the origin
with a well-defined slope. See [6], ch. VIII, [8], pp. 86 and [37], pp. 149 for precise
statements and sketch of the proof.

5.2. Angular sectors C, H, E, P , E of vector fields in the complex analytic
category. We want to consider a singular analytic vector field germ

(
(C, 0), X

)
,

having an isolated singularity at 0. Let us introduce the following conventions.

Consider the closed upper half–plane H
2

+ = {z | Im (z) ≥ 0} ∪ {∞} ⊂ Ĉ, or

the lower half–plane H
2

− for Im (z) ≤ 0; any of them is called H
2
. Moreover, H

2
is

provided with the singular flat metric inherited from (Ĉ, ∂
∂z ). For q = 0 or ∞ in

the boundary R ∪ {∞} of H
2
, the pair (H

2
, q) denotes a domain for germs.

Let ν = ν1+ iν2 ∈ C\R be a number and 0ν ⊂ C the corresponding straight line
segment. When ν2 < 0, ν determines a horizontal right strip

Sν = {z ∈ C | ν2 ≤ Im (z) ≤ 0, Re (z) > the respective x ∈ 0ν} ∪ {∞}

or horizontal left strip, when ν2 > 0,

Sν = {z ∈ C | 0 ≤ Im (z) ≤ ν2, Re (z) < the respective x ∈ 0ν} ∪ {∞}.

We provide each strip (Sν ,∞) with the singular flat metric inherited from (Ĉ, ∂
∂z ).

Note that Sν is a pair, a Riemannian manifold with boundary and a displacement
number ν.
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Definition 5.2. Let ((A, q), X) be a representative of a germ of angular sector
modelled on:

1. A center C2π/λ2
=

(
(C, 0), iλ2z

∂
∂z

)
, for iλ2 ∈ iR∗.

2. A hyperbolic sector H =
((

H
2
, 0

)
, ∂

∂z

)
.

3. An elliptic sector E =
((

H
2
, ∞

)
, ∂
∂z

)
.

4. A parabolic sector Pν =
(
(Sν ,∞) , ∂

∂z

)
, for ν ∈ C\R.

5. A class 1 entire sector E =
((

H
2
,∞

)
, ez ∂

∂z

)
.

Here, H
2
denotes an upper or lower half–plane.

We will omit the sub–index in C2π/λ2
, Pν , when the context is clear. The

geometric meaning of 2π/λ2 and ν will be explained in (5.6).

5.3. Attributes of the angular sectors. By simple inspection we note that germ
representatives in Definition 5.2 enjoy the following features.

1) (A, q) ⊂ Ĉz is a Riemann surface with boundary

∂A = {q} ∪ σ1 ∪ γ ∪ σ2.

Here, γ will be a piecewise C1 path (which will have to coincide with a trajectory
of Re (X) only in the center case C2π/λ2

).
Moreover, q = 0 in the center C2π/λ2

or hyperbolic H cases, q = ∞ otherwise.
2) The path {q} ∪ σ1 ∪ γ ∪ σ2 is oriented in the counterclockwise sense (A has a

canonical orientation).

3) The distinguished parameter Ψ :
(
(A, q), X

)
→

(
Ĉ, ∂

∂t

)
can be chosen as below:

for C2π/λ2
as a (multivalued) logarithm;

for H,E, Pν as the identity Ψ(z) = z;
for E as Ψ(z) =

∫ z

0
e−ζdζ, we will explore this in §5.3.1.

4) In cases different from a center C2π/λ2
,

σι(τ ) : Iι −→ A\{q}, ι = 1, 2,

are trajectories of Re (X), where Iι = (τmin, τmax) ⊂ R is the maximal interval
of definition. The α or ω–limit of σι(τ ) is q.
σ1, σ2 will play the role of characteristic trajectories6 (analogous to Theorem
5.1).

5) The maximal intervals of definition I1, I2 satisfy the following:
for H, both I1, I2 are bounded (i.e. finite) intervals in R;
for E, Pν , both I1, I2 are unbounded intervals;
for E, exactly one Iι is a bounded interval, equation (5.2) will show this.

The class 1 entire sector E is more elaborate.

6 This concept of characteristic trajectory is weaker than that of A. A. Andronov et al. since
our characteristic trajectory can be a spiral trajectory at the singularity. Since we are dealing only

with isolated essential singularities
(
(C, 0),X

)
, in Ĉt there are always horizontal trajectories that

arrive to ∞ ∈ Ĉt, by pulling back via Ψ we obtain a characteristic trajectory σ for
(
(C, 0),X

)
.
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5.3.1. Class 1 entire sectors E =
(
(H

2
,∞), ez ∂

∂z

)
. We make two different choices

for the representative (A,∞), (A′,∞) ⊂ (H
2
,∞) of this germ, the second will be

invariant under Re
(
ez ∂

∂z

)
. Both representatives will appear in different situations

along the work.

First representative: Let A ⊂ H
2

+ be a sector in the upper half–plane, as in the
left-hand side of Figure 3, (for the lower half–plane, details change in an obvious
way). The distinguished parameter is

(5.1) Ψ(z) = 1− e−z =

∫ z

0

e−ζdζ : A → Ĉt.

As characteristic trajectories, we use
σ1(τ ) = − log(−τ ) : (∞,−3)] → A, with (∞,− log(3)] being its image, and
σ2(τ ) = − log(−τ ) : [−1, 0) → A, with image [0,∞).

Both images under Ψ are inside of R∪{∞} ⊂ Ĉt. The respective times it takes for
a characteristic trajectory to reach the singularity ∞ ∈ A of the vector field are

(5.2)

∫ − log(3)

−∞
e−ζdζ = ∞, and

∫ +∞

0

e−ζdζ = 1.

Let γ = γ1 ∪ γ2 be in the boundary of A, here; γ1 is a path that starts at − log(3)
and ends at iπ and γ2 is the vertical segment from iπ to 0; they determine the germ

representative A ⊂ H
2

+; see left drawings in Figure 3. It is to be noted that this
choice of γ in the boundary of A is highly nongeneric in the sense that it is touching
one of the horizontal homoclinic trajectories, {Im (z) = ikπ, k ∈ N} when viewed
from 0, with endpoints at ∞ ∈ A. Homoclinic means it is a trajectory which joins
∞ to itself. However, as will be shown in Remark 5.18.2, γ can be deformed inside
A so as to obtain a path as the one just described.

The image of the boundary of A, Ψ(σ1 ∪ γ1 ∪ γ2 ∪ σ2) ⊂ Ĉt with the orientation
inherited from σ1 ∪ γ1 ∪ γ2 ∪ σ2, is as follows:

Ψ(σ1) = (∞,−2];
Γ1 = Ψ(γ1) is an arc of a circle centred at 0 starting at −2 and ending at 2;
Γ2 = Ψ(γ2) is an arc of a circle centred at 1 starting at 2 and ending at 0;

Ψ(σ2) = [0, 1);
see right drawing in Figure 3.

Definition 5.3. 1. Let Γ = Γ1 ∪ Γ2 be any simple piecewise C1 path in
(
C, ∂

∂t

)
parametrized by Γ1 : [τ1, τ2] → Ct, Γ2 : [τ2, τ3] → Ct, where Γ1(τ2) = Γ2(τ2) =
x0 + iy0.

Γ bounces off (the horizontal trajectory {t | Im (t) = y0}) if:
a) the endpoints tj = Γ(τj), j = 1, 2, 3, have the same imaginary part y0 and

either Re (t1),Re (t3) < Re (t2) or Re (t1),Re (t3) > Re (t2);
b) Γ is contained in the same upper/lower half–plane {t | Im (t) ≥ y0} (resp.

≤).
2. Analogously, given a local parameter ΨX as in §2, a path γ, in the domain of

ΨX , bounces off iff its image ΨX(γ) in
(
C, ∂

∂t

)
bounces off.

The concept of “bounce off” will enable us to recognize the presence of entire
sectors in §9.
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Note that the path γ1 ∪ γ2 bounces off the horizontal homoclinic trajectory that
contains iπ and its image Γ1 ∪Γ2 bounces off the horizontal trajectory (in Ct) that
contains 2.

The discontinuity in the image of Ψ(σ2) ∪ Ψ(σ1), i.e. the jump from 1 to −∞,
is due to the fact that Ψ has two asymptotic values:

(5.3) lim
τ→−∞

Ψ(σ1(τ )) = ∞ ∈ Ĉt, lim
τ→−∞

Ψ(σ2(τ )) = 1 ∈ Ĉt, τ ∈ R
−.

The second asymptotic value 1 is not intrinsic, however the fact that it is finite is
intrinsic. The reader can verify the coherence of Figures 1 and 3.

Second representative: We make the choice A′ = {z | kπ ≤ Im (z)}, see the light
grey disk in the bottom left drawing, Figure 3. A′ is invariant under Re

(
ez ∂

∂z

)
,

whence γ1, γ2 have reduced to a point.

A remarkable property now becomes apparent: Ψ : A′ → Ĉt in (5.1), determines
a “half–logarithmic spiral”, whose description requires two preliminary concepts in
the general framework.

Definition 5.4. A semi–infinite helicoid is a Riemann surface with boundary ob-
tained from a semi–infinite succession of half–planes7

H
2

± ∪H
2

± ∪ . . .

glued together along their boundaries as is usual in the graph of z �→ exp(z). Ana-
logously, a finite helicoid is obtained with an even finite succession of half–planes

H
2

± ∪ . . . ∪ H
2

∓

glued similarly, here H
2

± means
(
H

2

±,
∂
∂t

)
.

For the readers convenience, the glueing alluded in the definition will be made clear
in Corollary 5.11.

Referring to the top left and right drawings in Figure 3, for each horizontal strip

(5.4) Bk =
((

{z | kπ ≤ Im (z) ≤ (k + 1)π},∞
)
, ez

∂

∂z

)
⊂ A′ , k ≥ 1,

its image Ψ(Bk) is a lower half–plane H
2

− when k is odd or an upper half–plane H
2

+

when k is even.

Definition 5.5. Let Ψ be as in equation (5.1), a half–logarithmic spiral associated
to the asymptotic values a = 1,∞ is the Riemann surface of

Ψ :
⋃
k≥1

Bk −→
(
C

∗,
∂

∂t

)
.

Remark 5.6. Note that a semi–infinite helicoid is the same Riemann surface as
a half–logarithmic spiral, however, they arise from apparently different contexts;
the semi–infinite helicoid arises from the isometric gluing of a succession of half–

planes
(
H

2

±,
∂
∂t

)
, and the half–logarithmic spiral arises as the Riemann surface of

(H
2

±, e
z ∂
∂z ); see Table 3 in §11 Appendix.

7This notation follows the classical concepts of L. Markus for phase portraits of real vector
fields; see [47] and Table 3 in §11 Appendix for more details.
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Figure 3. Class 1 entire sector. The sector E =
(
(H

2
,∞), ez ∂

∂z

)
,

is illustrated viewed from 0 (left upper drawing) and from ∞ (left

bottom drawing) in H
2

+. The right drawing describes its ima-
ge Ψ(A). The path γ = γ1 ∪ γ2 is chosen so that its image
Ψ(γ1 ∪ γ2) = Γ1 ∪ Γ2 determines two semi–circles, and it bounces
off the horizontal trajectory {Im (t) = 0} that contains the finite
asymptotic value a = 1 and the asymptotic value ∞. In A: the
dark blue line segment is an infinite length trajectory σ1 that starts
at −∞ and ends at the beginning of the arc γ1; while the purple
line segment σ2 is a finite length trajectory that starts at the end of
γ and ends at ∞. In Ψ(A): the images under Γ1∪Γ2 conserves the
same colors. The purple line segment Ψ(σ2) starts at 0 (the end of
Γ) and ends at the finite asymptotic value a = 1. Furthermore: the
closed set E ⊂ A determines an elliptic sector; H ⊂ A determines a
hyperbolic sector. The image of the strip {π ≤ Im (z) ≤ 2π} ⊂ A,

determines the lower half–plane H
2

−, which in turn is glued (as

will be made clear in Corollary 5.11) to another half–plane H
2

+

by the complementary half–ray (light blue). These pieces are re-
peated infinitely further forming a half–logarithmic spiral (shown
as light grey) associated to the finite asymptotic value a = 1 and
the asymptotic value ∞. As a metric property; finite gX–length
trajectories in the boundaries are stressed with sub–index f , infi-
nite gX–length trajectories with sub–index ∞. See §5.3.1.
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Furthermore, if we consider E as in Definition 5.2 using A′ = {z | kπ ≤ Im (z)},
then

(5.5)

E =
(
(A′,∞), ez

∂

∂z

)
∼= {semi–infinite helicoid} ∼= {half–logarithmic spiral},

where ∼= means biholomorphism as pairs: Riemann surfaces and vector fields.

f

f

E

H

P

Figure 4. Hyperbolic, elliptic and parabolic sectors (in the com-
plex analytic category) of a vector field X on a Riemann surface
M . There exists a biholomorphism Υ :

(
(A, q), X

)
⊂ M → W , for

W ∈ {H,E, Pν}, which are angular sectors as in Definition 5.2. As
a metric property; finite gX–length trajectories that start or end at
the singularity q are stressed with sub–index f , infinite gX–length
trajectories with sub–index ∞. See also Definition 5.7.

5.4. Angular sectors on a Riemann surface. We enlarge Definition 5.2 for an
arbitrary Riemann surface.

Definition 5.7. A singular analytic vector field X on M with an isolated sin-
gularity at q ∈ M , has a center, hyperbolic, elliptic, parabolic or class 1 entire
angular sector at q, if there exist a germ of angular sector (A, q) ⊂ M and a
biholomorphism

Υ :
(
(A, q), X

)
−→ W, W ∈

{
C2π/λ2

, H,E, Pν , E
}
respectively,
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making both germs of vector fields holomorphically equivalent. See Figure 4.

Philosophically, several remarks regarding this definition are in order:

i) Obviously the center case C2π/λ2
is useful, though strictly speaking, it is not

a topological angular sector.
ii) Note that Υ in Definition 5.7 is an analytic equivalence of vector fields; hence

the respective (real) time behaviour of the trajectories of
(
(A, q), X

)
and W

must coincide.
For example, if we consider a parabolic sector Pν , Im (ν) < 0, having

all the trajectories defined for positive time (t0,∞), then the same holds for
((A, q), X) when Υ exists.

Remark 5.8. It is to be noted that many other types of angular sectors are not yet
considered. For instance, the vector field germs determined by

X1(z) = 2(cosh(z) + 1)
∂

∂z
, X2(z) = tan(z)

∂

∂z
on M = Ĉ,

centred at q = ∞ ∈ Ĉ, have an accumulation of poles and zeros.

Example 5.9 (Example 3.10 revisited). The class 2 essential singularity of the
vector field

X3(z) = eze−e
z ∂

∂z
,

at ∞ ∈ Ĉ which does not have an accumulation point of poles or zeros, determines
a new type of angular sector E E . Noticing that there is a reflection symmetry (of

Re (X)) about the real axis, it is enough to consider the half–plane (H+,∞) ⊂ Ĉz,
which is in turn composed of an “infinite number of nested class 1 entire sectors”
Ek, k ≥ 1. See Figures 2 and 5.

For the vector fields of Remark 5.8 and Example 5.9, the finite decomposition,

as sectors H,E, Pν , E (following the spirit of Theorem 5.1) on some disk Vj ⊂ Ĉ

centerd at q = ∞, does not apply.

5.5. Angular sectors in the flat surfaces category. It will be very useful to
think about angular sectors, C2π/λ2

, H,E, Pν , E of a germ ((A, q), X) on M , as
germs of singular flat surfaces. In order to describe this accurately, we assume
Definition 5.7, whence the composition

ΨX = ΨXι
◦Υ :

(
(A, q), gX

)
⊂ M −→

(
(A0, q0), gXι

)
−→ (Ct, δ)

(here Xι comes from C2π/λ2
, H,E, Pν , E, see Definition 5.2) is an orientation pre-

serving local isometry. We enrich the conditions of §5.3, adding the following metric
properties.

Remark 5.10 (Metric attributes of the angular sectors). Let
(
(A, q), gX

)
⊂ M be

an angular sector of kind C2π/λ2
, H,E, Pν , E as in Definition 5.7.

1. The trajectories σ1, σ2 in the boundary ∂A = {q} ∪ σ1 ∪ γ ∪ σ2 are geodesics
in (M, gX), having well-defined finite or infinite gX–length (which coincide with
the real time in that σι arrives at q, or escapes from q, recall equation (2.5)).

2. The path Γ = ΨX(γ) in Ct is the image of γ.
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Figure 5. Class 2 entire sector. Top drawing shows the sector

E E =
(
(H

2
,∞), eze−e

z ∂
∂z

)
, while the bottom drawing describes

the image Ψ(A). The path γ = γ1 ∪ γ2 ∪ γ3 is chosen so that
its image Ψ(γ1 ∪ γ2 ∪ γ3) = Γ1 ∪ Γ2 ∪ Γ3 determines three semi–
circles and such that Γ bounces off the horizontal trajectory that
contains the finite asymptotic values a0 and a1. In A: the region
between the boundary of the sector (dark blue, red and light blue
trajectories) and the green and purple paths, correspond to the
region denoted by A0 in the image of Ψ. Furthermore, the region
delimited by the purple path is itself a “copy” of the whole class
2 entire sector. In Ψ(A): like colored segments are glued together.
The green and yellow segments enclose a half–plane, which deter-
mines a half–logarithmic spiral related to a class 1 entire sector
associated to the asymptotic value a1 (denoted by E1). The region

below the purple segment corresponds to the half–plane H
2

− that
is glued to A0 precisely by the purple segment. On the half–plane

H
2

− (and H
2

+) there is a copy of the asymptotic value a1, giving
rise to a half–logarithmic spiral related to a class 1 entire sectors

associated to the copy of a1 denoted by E2 (E3 for H
2

+). The whole

construction is then repeated for H
2

+ by glueing the dotted dark

blue segments of H
2

− and H
2

+. This process is repeated ad infinitum

(H
2

+ and E3 are not drawn in A). See Examples 5.9 and 5.12.
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5.5.1. Flat metrics on centers C2π/λ2
. We assume that the vector field germ repre-

sentative ((A, q), X) on M is a center C2π/λ2
. We describe the case λ2 > 0 (λ2 < 0

is analogous). Let σ be a trajectory of Im (X) in A. The distinguished parameter

ΨX : A\({q} ∪ σ) ⊂ M −→ (0, 2π/|λ2|)× i(0,∞) ⊂ Ct

is a univalued map. Obviously, the strip on the right gives origin to a flat semi–
infinite height cylinder S1

2π/|λ2| × (0,∞), of perimeter 2π/|λ2| (or semi–infinite

height annulus flow8). The limp→q ΨX(p) = ∞ ∈ Ĉt corresponds to the Riemannian
end of the cylinder.

2π/|λ2| ∈ R+ is a complete isometric invariant of C2π/λ2
.

5.5.2. Flat metrics on hyperbolic sectors H. The germ of vector field X on M has
a hyperbolic sector H at a singularity q ∈ M , when a map ΨX : A ⊂ M → Ct

satisfying the following conditions exists:
ΨX(q) = a ∈ Ct.
Both geodesics σ1, σ2 ⊂ ∂A of Re (X) arrive at or escape from q, in a finite real

time τ > 0, this is noted in Figure 4.
ΨX(A) is an upper or lower half–disk, and ΨX(σ1 ∪ σ2) is in a horizontal tra-

jectory segment, Figure 4 shows the case of a upper half–disk.
The metric gX is real analytic at q in A.

5.5.3. Flat metrics on elliptic sectors E. The respective map ΨX : A ⊂ M → Ĉt

satisfies:
ΨX(q) = ∞ ∈ Ĉt.
All the geodesics (including the characteristic trajectories σ1, σ2 ⊂ ∂A) ofRe (X)

arrive at or escape (both possibilities occur in this sector) from q having infinite
gX–length, this is noted in Figure 4.

ΨX(A) is contained in an upper or lower half–plane, and ΨX(σ1 ∪ σ2) are two
semi–rays in a horizontal trajectory, Figure 4 shows the case of a upper half–plane
minus a half–disk.

5.5.4. Flat metrics on parabolic sectors Pν . Recall that ν = ν1 + iν2 ∈ C\R. The

respective map ΨX : A ⊂ M → Ĉt satisfies:

ΨX(q) = ∞ ∈ Ĉt.
All the geodesics, σ1, σ2 ⊂ ∂A of Re (X) arrive at or escape (only one possibility

occurs) from q, having infinite gX–length, this is noted in Figure 4.
ΨX(A) is a left (or right) strip and ΨX(σ2 ∪ σ2) are two horizontal half–rays,

Figure 4 shows the case of a left strip.
The height Im (ν) = ν2 �= 0 is an isometric invariant of the flat surface associated

to Pν . Moreover, the complete ν ∈ C\R will be useful for us (in Table 2).

5.5.5. Flat metrics on class 1 entire sectors E. Let ((A, q), X) be the a vector field

germ of a class 1 entire sector on M . We assume that Υ(A) is E =
(
(H

2

+,∞), ez ∂
∂z

)
,

in the upper half–plane, for the lower half–plane, details change in an obvious way.
The distinguished parameter ΨX of E is chosen as in (5.1). The limz→q ΨX(z) =

a,∞ ∈ Ĉt are the two asymptotic values of ΨX , associated with q, recall (5.3).
The boundary geodesics σ1, σ2 ⊂ ∂A of Re (X) in M have finite and infinite

gX–length (5.2), this is noted in Figure 3.

8This notation follows the classical concepts of L. Markus; see [47] and Table 3 in §11 Appendix
for more details.
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ΨX(A) determines a half–logarithmic spiral and ΨX(σ1 ∪ σ2) is in a horizontal
trajectory, once again refer to Figure 3.

5.6. Isometric glueing. In the flat surface category, surgery tools are widely used;
e.g. [66] pp. 56 “welding of surfaces”, [49], [44], or [69]. Let us recall a concrete
advantage of this point of view:

Corollary 5.11 (Isometric glueing). Let (M0, gX), (N0, gY ) be two flat surfaces
arising from two singular complex analytic vector fields X and Y . Assume that
both spaces M0, N0 have as geodesic boundary components of the same length: the
trajectories σ1, σ2 of X and Y . The isometric glueing of them along these geodesic
boundary, is well defined, and provides a new flat surface on M0 ∪N0 arising from
a new complex analytic vector field.

Proof. The foliation by geodesics Re (X) on (M0, gX) is a translation structure (in
the sense of geometric structures following W. Thurston [69] section 3.3, pp. 125);
having {z �→ z + ajk} as a change of coordinates. The same applies for Re (Y ) on
(N0, gY ). The geodesic boundaries σ1, σ2 are glued via an orientation preserving
isometry (the trajectory time orientations must match), which gives rise to a new
flat surfaceM0∪N0 having a translation structure. Using Lemma 2.6, the existence
of a complex analytic vector field on M0 ∪N0 extending X and Y follows. �

Alternatively the proof may be obtained as a simple application of the reflection
principle, [2] pp. 172.

The isometric glueing Corollary 5.11 has already been applied several times for
the construction of angular sectors, in particular, the class 1 entire sectors in §5.3.1
and class 2 entire sectors in Example 5.9.

Note that in general when glueing geodesic boundaries σ1, σ2 with endpoints
there is no control as to what type of singularity one might have at the endpoints
of the geodesic boundaries. However, in the case of angular sectors we will obtain
a conformal puncture; see Proposition 5.20.

Example 5.12 (Example 3.10 revisited). Considering as starting point the class 2
entire sector E E , note that the complexity of the flat metric attributes is greatly
increased: it is possible to construct an infinite number of conformally different
class 2 entire sectors. In Figure 5, on each nested copy, Ek, of a class 1 entire sector,
there is associated a finite asymptotic value ak ∈ Ct and a copy of the asymptotic
value ∞. Thus, the asymptotic value ∞ has infinite multiplicity. Moreover, the
ak ∈ Ct could all be different, so in fact each infinite sequence (a0, a1, a2, . . .) of
finite asymptotic values, with a0 �= ak for k ≥ 1, defines a conformally different
class 2 entire angular sector. A deeper study of these cases is left as a subject of
future work.

Example 5.13 (Differences between real and complex analytic angular sectors).
Let Z = x2 ∂

∂x − y ∂
∂y be a real analytic saddle–node on (R2, 0). Following Theorem

5.1, at the origin, its singular planar real analytic foliation F has two hyperbolic
sectors Zh and one parabolic sector Zp.

The hyperbolic angular sectors of Z at q = 0 can not be recognized with our
flat sectors H (since the maximal interval of time definition for the characteristic
trajectories of Z assumes (τ0,∞) or (∞, τ0) at 0).

G. León–Gil et al. [45], show that there is no complex structure J , making the
real analytic vector field germ

(
(R2, 0), Z

)
, the real part of the complex analytic
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vector field X. That is, for any choice of Riemann surface germ
(
(R2, 0), J

)
and

any choice of singular complex analytic vector field X on each Riemann surface
germ, the equation Re (X) = Z is not satisfied.

5.7. Cyclic words WX at poles and zeros. We recall the analytic normal forms
at poles and zeros of germs

(
(C, 0), X

)
whose complete analytic invariants are the

order and the residue. See Table 2, proved in [39] ch. 3, [26], [27], [1] pp. 111, [14],
[66] ch. III, [24]. Our goal is to recognize the cyclic words which are determined.
We use as a main parameter λ ∈ C∗ in the normal forms, from this we obtain the
respective residue and the metric invariants (2π/λ2, 2πi/λ, −2πλ2 and 2πiλ).

Thus it will be convenient to introduce a new letter Eν , indicating a ν surgery,
as will be explained in case 5 (note that E = E0 so in fact Eν replaces E). See also
Remark 5.17 and Proposition 5.20.

Table 2. Poles and zeros (λ = λ1 + iλ2 ∈ C∗)

normal form order residue metric cyclic
of X of X of ωX gX word

cone angle
1
zk

∂
∂z −k ≤ −1 0 (2k + 2)π H · · ·H︸ ︷︷ ︸

2k+2

cylinder
iλ2z

∂
∂z

s = 1

1
iλ2

∈ iR∗ S1
2π/|λ2| × (0,∞) C2π/λ2

cylinder
λz ∂

∂z
1
λ ∈ C\iR S1

2π|λ1|/|λ| × (0,∞) P2πi/λ

zs ∂
∂z

s ≥ 2

0 (2s− 2) copies (H
2
,∞) E · · ·E︸ ︷︷ ︸

2s−2

zs

1+λ2zs−1
∂
∂z

iλ2 ∈ iR∗ (2s− 2) copies (H
2
,∞) E · · ·E︸ ︷︷ ︸

2s−3

E−2πλ2

with −2πλ2 surgery

(2s− 2) copies (H
2
,∞)

zs

1+λzs−1
∂
∂z λ ∈ C\iR and a strip E · · ·E︸ ︷︷ ︸

2s−2

P2πiλ

with 2πiλ surgery

From the normal form
(
(C, 0), X

)
, first column Table 2, to the flat metric ((C, 0),

gX). We work in a open disk D(0, 2ε) having radius 2ε > 0 small enough, thus

Ψ(z) =

∫ z

ε

ωX : D(0, ε)\σ ⊂ Cz −→ Ct

and Ψ(ε) = 0. Moreover, in order to get a univalued Ψ, it is convenient to remove
a path σ between 0 and ε from D(0, ε). There are three possible choices.

a) Zeros of order s = 1 and λ1 = 0; the trace of σ is inside the ray R+ ⊂ Cz; see
Figure 6.a and d.

b) Zeros of order s = 1, λ1 �= 0; σ is the trajectory of X with initial condition
ε = σ(0), it is a spiral trajectory; see Figure 6.b, c and e.
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c) Zeros of order s ≥ 2; σ is the trajectory of X with initial condition ε = σ(0),
the trace of σ is inside the ray R+ ⊂ Cz; see Figure 7.

In Table 2, for the case of zeros, the displacement of γ or 2πi times the residue
of ωX is

(5.6)

∫
γ

ωX =

⎧⎨⎩
2πi
λ = 2π(λ2+iλ1)

λ2
1+λ2

2
s = 1,

2πiλ = 2π(−λ2 + iλ1) s ≥ 2,

here γ(θ) = εeiθ : [0, 2π] → (C, 0) is an oriented circle, whose radius ε is small
enough. Note that (5.6) is also the complex time of γ, which is the natural genera-
lization of (2.4). Hence the displacement makes sense for the paths γ ⊂ ∂A, as in
Remark 5.10. This displacement gives origin to the surgeries in Table 2, as we will
show below.

Following ideas of quadratic differentials [66] ch. VII, the height of Γ is defined
as

(5.7)

∣∣∣∣Im(∫
γ

ωX

)∣∣∣∣ =
⎧⎨⎩

2π|λ1|
|λ|2 s = 1, λ = λ1 + iλ2 ∈ C\iR,

2π|λ1| s ≥ 2.

Case 1. A pole.

Let
(
(C, 0), 1

zk
∂
∂z

)
be the vector field germ, then the distinguished parameter is

Ψ(z) =

∫ z

0

ζkdζ =
zk+1

k + 1
: D(0, ε) −→ Ct.

The associated word is H · · ·H, having 2 + 2k letters.
The cone angle (2 + 2k)π of gX characterizes the order −k of the pole9, thus

the cone angle is a complete metric and analytic invariant of the germ; see [48],
pp. 1028.

Case 2. A simple zero with pure imaginary linear part iλ2 ∈ iR∗.

Let
(
(C, 0), iλ2z

∂
∂z

)
be the vector field germ, then

Ψ(z) =

∫
ε

dζ

iλ2ζ
: D(0, ε)\{[0, ε]} −→ (0, 2π/λ2)× i(0,∞) ⊂ Ct, ε ∈ R

+;

see Figure 6.a for λ2 > 0. The metric gX on D(0, ε) can be described as a semi–
infinite height cylinder of perimeter 2π/|λ2|; recall 5.5.1. The case λ2 < 0 is
analogous, Figure 6.d. The associated word is C2π/λ2

.

Case 3. A simple zero with linear part λ = λ1 + iλ2 ∈ C\iR.

Let
(
(C, 0), λz ∂

∂z

)
be the vector field germ. Assume that λ1 > 0, then 0 is a source

for the trajectories of X. Moreover, the image Ψ(D(0, ε)\σ) is the interior of a left
horizontal strip S2πi/λ ⊂ Ct having vertical height 2π|λ1|/|λ|2; see Figure 6.b, c

for two examples. S2πiλ has boundary the straight line segment 0 2πi/λ and two
horizontal left half–rays.

If λ1 < 0, then 0 is a sink for the trajectories of X. We use a right horizontal
strip S2πi/λ in a manner analogous as above, Figure 6.e provides an example.

9We convene that the order (or multiplicity) of a pole is to be negative.
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,

Figure 6. LetX(z) = λz ∂
∂z be a vector field having a simple zero,

λ ∈ C∗, we consider the displacement
∫
γ
ωX = 2πi/λ as the red

arrow in right drawings. In all the cases, the metric gX determines
a semi–infinite cylinder S1

ρ × (0,∞), where ρ is the perimeter (see
Table 2), which can be obtained by suitable identification of a strip
in Ct. In (b), (c) and (e), σ ⊂ R+ is a characteristic trajectory,
having well-defined slope at 0 only for λ2 = 0. See §5.7.

A characteristic trajectory σ ofX with well-defined slope exists if and only if λ2 = 0.
When λ2 �= 0, we use a trajectory σ of X in order to cut the disk D(0, ε), even if
this trajectory σ behaves as a spiral at 0.

Using the strip S2πi/λ ⊂ Ct we can recover a semi–infinite height cylinder as a
flat surface gX ; by glueing between them the two horizontal boundary components
using the isometric glueing t ↔ t + (2πi/λ). The perimeter of the cylinder is
2π|λ1|/|λ|2. The associated word is P2πi/λ.
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Figure 7. Let X(z) = z2

1+λz
∂
∂z be a vector field having a dou-

ble zero, λ ∈ C. When λ �= 0, we consider the displace-
ment

∫
γ
ωX = 2πiλ as the red arrow on the right drawings. a)

Im (2πiλ) > 0 produces two elliptic sectors and one parabolic sec-
tor. b) Im (2πiλ2) = 0 produces two elliptic sectors, the −2πλ2

surgery is a glueing along the horizontal boundary, it is given by an
euclidean translation {t ↔ t−2πλ2} as in Corollary 5.11. c) λ = 0
produces two elliptic sectors. d) Im (2πiλ) < 0 produces two ellip-
tic sectors and one parabolic sector. In all cases, σ = [0, ε] ⊂ R+

in Cz is a characteristic trajectory of X. See §5.7.

Case 4. A zero of order s ≥ 2 having zero residue.

Let
(
(C, 0), zs ∂

∂z

)
be the vector field germ. Assume by simplicity s = 2, let

Ψ(z) =

∫ z

ε

dζ

ζ2
= −1

z
+

1

ε
: D(0, ε)\σ −→ Ĉt, ε ∈ R

+,

be the global distinguished parameter, satisfying Ψ(ε) = 0. Since the path γ is a
small circle enclosing z = 0, the path Γ closes itself having clockwise orientation.
In case s = 2; see Figure 7.c. Two elliptic sectors E are defined by the intersection

of horizontal trajectory in Ĉt and the image of Ψ. gX is isometric to the euclidean

metric of (Ĉt, δ) at ∞. The associated word is EE.
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If λ = 0 and s ≥ 3, the obvious glueing applies for t2 ∂
∂t arising as the pullback

via t : z �→ zs−1. The resulting gX is a ramified covering of the euclidean metric of

(Ĉt, δ) at ∞ with (s − 1) ramification index. In this case 2s − 2 elliptic sectors E
are present. The path Γ closes itself having clockwise orientation. We obtain the
associated word E · · ·E, having 2s− 2 letters.

Case 5. A zero of order s ≥ 2 having residue iλ2 ∈ iR∗.

Let
(
(C, 0), zs

1+λ2zs−1
∂
∂z

)
be the vector field germ. We take a characteristic trajec-

tory σ of zs ∂
∂z that connects 0 to ε ∈ R in

(
(C, 0), zs ∂

∂z

)
, as in case 4. Then one per-

forms the following 2πλ2 surgery on said trajectory: cut along the trajectory 0ε and
glue it back together with a horizontal shift by 2πλ2 in gX–units. This adds a real
residue to the singularity at z = 0, we obtain the germ

(
(C, 0), (zs/(1+ iλs−1

2 )) ∂
∂z

)
.

The respective Ψ : D(0, ε)\σ ⊂ Cz −→ Ct is in Figure 7.b. No parabolic sectors
appear. Furthermore, the path Γ does not close itself: it is missing a strictly real
segment corresponding to the displacement −2πλ2 ∈ R

∗. The associated word is

(5.8) E · · ·EEν

having 2s− 3 letters E with the introduction of the new letter Eν , where we recall
that we have a ν = −2πλ2 ∈ R∗ surgery on E to obtain this new letter Eν .

Case 6. A zero of order s ≥ 2 having residue λ = λ1 + iλ2 ∈ C\iR.

Let
(
(C, 0), zs

1+λzs−1
∂
∂z

)
be the vector field germ. For pure imaginary iλ2, we take

an imaginary trajectory of
(
(C, 0), zs ∂

∂z

)
that connects iε and 0. Then one performs

the surgery with a displacement of 2πiλ in gX–units. Again this adds an imaginary
residue to z = 0. Once again 2s−2 elliptic sectors E appear, and a parabolic sector
P2πiλ, appears. See Figure 7, (a) and (d). The path Γ does not close itself: the
displacement corresponds to 2πi times the residue λ. The associated word is

(5.9) E · · ·EP2πiλ

having 2s− 2 letters E and one letter P2πiλ.

5.8. Angular sectors of vector fields in the combinatorial category. We
now re-examine vector fields from quite a different perspective. Let

(
(R2, 0), Z

)
be

a real analytic vector field germ as in Theorem 5.1, then we have a correspondence
from vector fields to words

(5.10) Z �−→ WZ = W1 · · ·Wk , Wι in the Zh, Ze, Zp alphabet.

The three real analytic angular sectors in the alphabet on the right-hand side of
(5.10), are defined in §5.1. By simplicity, we are looking at these angular sectors as
objects in the C∞ smooth category or even simpler in the combinatorial category.
Thus, from now on, we shall also consider

C2π/λ2
, H,Eν , Pν , Eν

as “letters in an alphabet”.
Here, Eν means that, for ν ∈ R∗ we have a ν surgery on E analogous to surgery

in equation (5.8). If ν = 0, the sub–index ν will generally be omitted.
In the complex analytic category our goal is twofold:

• to establish the analogous correspondence of (5.10),
• to examine the way that the “letters in an alphabet” (combinatorial pieces Wι)
can fit together (in the metric category) to reconstruct a vector field X on (C, 0).
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Definition 5.14. A singular analytic vector field germ representative
(
(C, 0), X

)
determines a cyclic word at the singularity 0, when in some punctured neighborhood
of 0, the germ admits a finite cyclic decomposition

(5.11) WX = W1 · · ·Wk, Wι in the C2π/λ2
, H,Eν , Pν , Eν alphabet,

where the letters Wι are read in a counterclockwise direction.

Example 5.15. (Motivational examples of how a vector field germ determines
cyclic words).

1. Recalling the fifth column of Table 2, we see that zeros and poles give rise to
natural cyclic words.

2. For slightly more complicated examples that include transcendental vector fields,
first notice that the exponential vector field (Example 3.9) determines the cyclic
word (

(Ĉz,∞), X(z) = ez
∂

∂z

)
�−→ WX = EE,

where we use the second representative for the letter E as in (5.5). Second, by
considering the pullback via zd, for d ≥ 2, of et ∂

∂t , the new germ determines
another cyclic word(

(Ĉz,∞), X(z) =
ez

d

d zd−1

∂

∂z

)
�−→ WX = E · · · E︸ ︷︷ ︸

2d

.

3. In Example 8.32 consider Figure 15, upper drawing; the germ determines a cyclic
word (

(Ĉz,∞), X(z) = ei
π
4 ez

2 ∂

∂z

)
�−→ WX = HEPνEHEP−νE,

where clearly the residue of ωX at ∞ ∈ Ĉz is zero, hence the displacements
ν associated to the parabolic sectors must cancel out. On the other hand, in
Figure 16, upper drawing; the germ determines a cyclic word(

(Ĉz,∞), X(z) = ez
2 ∂

∂z

)
�−→ WX = HEEHEE.

It is to be noted that in this example the letters H and Pν fit together with
the letter E, forming nontrivial cyclic words. In this section we seek a better
understanding of this phenomenon.

For other cyclic words arising from vector field germs see for instance Exam-
ples 11.5 and 11.6 in §11.

Corollary 5.16. Let
(
(C, 0), Y

)
be a singular analytic vector field germ. Y deter-

mines a cyclic word WY at 0 as in fifth column of Table 2 if and only if Y assumes
the respective normal form.

Proof. Note that the letters C2π/λ2
, H,Eν , P2πiλ in WY mean the (respective) an-

gular sectors, in the flat surface category.
Given Y , we consider a representative of it on D(0, ε) and a point z0 ∈ D(0, ε).

Thus,

Ψuni,Y (z) =

∫ z

z0

ωY : D(0, ε)\[0, ε] −→ Ct

is a univalued distinguished parameter of (D(0, ε)\[0, ε], Y ). Moreover, Ψuni,Y is
an isometry.
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The map Ψ−1
X ◦ Ψuni,Y : D(0, ε)\[0, ε] → (C, 0) is well defined; see [69] pp. 139

for this order of ideas. Moreover, we can recognize an isometric glueing in the
closure of its image (taking into account the displacement); whence by the above
composition the map extends to a local isometry in the punctured disk D(0, ε)\{0}.
Using Remark 3.2 applied to Ψ−1

X ◦Ψuni,Y the assertion follows. �

It is clear that, if in WX there appears C2π/λ2
, then necessarily WX = C2π/λ2

.
Further note that, if in the WX there appears E, then the cyclic word will depend
on the choice of germ representative, as will be explained in Remark 5.18.

Remark 5.17. In all that follows, we recognize and use the equivalence between:

1. A letter C2π/λ2
, H,Eν , Pν , Eν in the alphabet.

2. The respective vector field germ ((A, q), X); see Definition 5.2.
3. The respective flat angular sector ((A, q), gX), provided with Re (X).

5.9. Admissible words W at isolated essential singularities. Our departure
point is an abstract cyclic word

(5.12) W = W1 · · ·Wk , Wι in the C2π/λ2
, H,Eν , Pν , Eν alphabet.

Notational conventions and clarifications.
1. A priori, an abstract cyclic word W does not arise from a vector field X, even

though by construction each letter Wι of the word does come from a vector field
germ. In these cases we shall agree to not include X as a sub–index of W .

2. When in fact the cyclic word arises from a vector field we will include the
sub–index X.

3. On the other hand when not needed we will omit the sub–indices in C2π/λ2
,

Eν , Pν , Eν .

The following conditions are satisfied by W .
• Wk+1 := W1.
• Each Wι =

(
(Aι, qι), Xι

)
can be interpreted also as a flat surface and an angular

sector vector field germ, following Definition 5.7.
• The geodesic boundary ofWι coincides with the characteristic trajectories σι,1, σι,2

⊂ Wι as in §5.3 and labels in the sub–index 1, 2 are well determined by the coun-
terclockwise orientation from the complex structure in Wι.

In order to perform the isometric glueing of the angular sectors of W in (5.12),
we require the following additional rules (A)–(C), in accordance to Corollary 5.11.

(A) There must be an even number (or zero) of angular sectors of each of the
following types: hyperbolic, elliptic and entire sectors.

This follows from the fact that the characteristic trajectories of the angular
sectors considered in the construction either arrive or escape the singularity qι of
Wι, and when gluing them together the boundary orientations must match. The
number of parabolic sectors can be arbitrary (including zero).

Rules (B) and (C) requires us to go back and examine the class 1 entire sector
in more detail.

Remark 5.18 (A relation on words originating from choice of germ representative
of class 1 entire sectors). In Figure 3, the left and right strips

{z | 0 ≤ Im (z) ≤ π, Re (z) ≤ the respective Re (γ1)} ∪ {∞},
{z | 0 ≤ Im (z) ≤ π, Re (z) ≥ the respective Re (γ2)} ∪ {∞}
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are such that ez ∂
∂z defines an elliptic E and a hyperbolic sector H on these. Using

the language of letters and words, this geometric fact can be written as the abstract
relations

(5.13) E ∼ EEH or E ∼ HEE,

depending on the presence of E on upper or lower half–planes.
Furthermore, recalling from §5.3.1 the two different representatives for the class

1 entire sector E, we observe that:

1) The half–logarithmic spiral (second representative) “should be” the definition
for the class 1 entire sector E. This is suggested by (5.13).

2) However, the half–logarithmic spiral is very nongeneric with respect to the choice
of γ = γ1 ∪ γ2 ⊂ (C, 0); see Figure 3. This follows by recalling that the border
of the half–logarithmic spiral is a horizontal homoclinic trajectory of X that
starts and ends at the isolated essential singularity. So, assuming that γ is an
arc of circle of radius r with centre the isolated essential singularity, then only a
discrete set of radii {r
} will intersect the border of the half–logarithmic spiral
(at the place where γ bounces off). Thus any perturbation of the radius will
give rise to a pair of sectors E and H as explained above.

Now, note that two characteristic trajectories σι,2 ⊂ ∂Wι and σι+1,1 ⊂ ∂Wι+1

can be glued together (see Corollary 5.11) if and only if both have finite or infinite
gX–length.

For example, an elliptic sector E cannot be glued to a hyperbolic sector H. Since
hyperbolic sectors have finite length boundaries while elliptic sectors have infinite
length boundaries; the syllable EH is forbidden.

In the context of Remark 5.18, this implies that there are two different types of
class 1 entire sectors centred at q, depending on whether the left/right boundaries
of the sector have finite length, or an infinite length. When needed we will denote
these two types of class 1 entire sectors as

(5.14) fE∞ and ∞Ef ,

respectively (otherwise we will just denote class 1 entire sectors by E ); ∞Ef means
that in the angular sector E, the length of the characteristics trajectory σ1 is infinite
and the length of σ2 is finite; see Figure 3.

Thus, entire sectors E can be glued to entire, elliptic, hyperbolic or parabolic
sectors.

(B) The syllables of angular sectors that can be constructed are

C, HH, EE, EP, PE, P∞Ef , fE∞P, E∞Ef , fE∞E,

HfE∞, ∞EfH, fE∞∞Ef , ∞Ef fE∞.

(C) Following Remark 5.18, words admit the following replacement laws :

∞Ef ∼ E∞EfH, fE∞ ∼ HfE∞E.

The first replacement means that, if we reduce the radius of an arc of circle γ in
5.3.1 used to bound class 1 entire sectors; we need to add sectors E and H; to
get E∞EfH. It is a reversible process for X on a small enough disk D(0, r). This
reflects the auto–similar nature of class 1 entire sectors E.

As a direct consequence of (C) the two abstract relations follow:

P∞EfH ∼ PE∞EfHH, HfE∞P ∼ HHfE∞EP.
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Definition 5.19. A cyclic word W is admissible if it obeys (A)–(C).

We have therefore extended correspondence (5.10) to the complex analytic cat-
egory

(5.15)
(
(C, 0), X

)
�−→ WX = W1W2 · · ·Wk, Wι ∈ {C2π/λ2

, H,Eν , Pν , Eν}.

A natural question is to ask which germs
(
(C, 0), X

)
give rise to admissible words.

A first observation is that poles and zeros trivially determine admissible words; see
Corollary 5.16. The complete answer to the above question and the recognition
of analytic invariants arising from admissible words containing E, will have to be
postponed to §9, specifically Theorem 9.8. However, we can prove a natural result
in this direction.

Proposition 5.20. Let W be an admissible word in the alphabet C2π/λ2
, H, Eν ,

Pν and Eν .

1) W comes from a germ
(
(C, 0), X

)
of an isolated singularity of a complex analytic

vector field.
2) Furthermore the sum of the displacements {ν} of W is 2πi times the residue of

X at 0.
3) If two germs

(
(C, 0), X

)
and

(
(C, 0), Y

)
give rise to the same admissible word,

then they are holomorphically equivalent.

Proof. For (1), assume that the admissible word W has k letters {Wι}. We glue, by
isometries as in Corollary 5.11, the elliptic, hyperbolic, parabolic and entire angular
sectors centred at z = 0 following the anticlockwise cyclic order of the word W .
One needs to take into account the displacement ν of each letter Pν , Eν and Eν .
In such a way, we obtain a Riemann surface, by abuse of notation (W\{0}, J), it is
homeomorphic to a topological annulus. Here J is the conformal structure obtained
from the flat metrics Wι = (Aι\{qι}, gXι

) so, recalling the basic correspondence in
Lemma 2.6, there is a unitary geodesic vector field on (W\{0}, J).

We need to recognize that the ideal boundary 0 of (W\{0}, J) (coming from the
vertex points qι ∈ Wι) is a conformal puncture of the conformal structure J .

Note that each angular sector Wι determines in (W\{0}, J) an angular sector of
conformal type {z ∈ C | 0 < |z| < ει, 0 ≤ arg(z) ≤ θι}. There exists a conformal
map of type {z �→ zβ = w}, β ∈ R+, such that it sends the union of the angular
sectors to one angular sector of argument 2π, i.e. to a conformal punctured disk.
Thus, 0 is a conformal puncture of J .

Applying Lemma 2.6, to (W\{0}, gX ,Re (X)), there is a germ ((C, 0), X) of a
singular analytic vector field that determines the admissible word W on (W , J).

For (2), let WX be an admissible word which comes from a germ ((C, 0), X) of
an isolated singularity having residue Res(X, 0). We define the residue of WX as

Res(WX) := Res(X, 0).

For each syllableWιWι+1 ⊂ W , chosen from one of the following EE, EE , EE, EP ,
and the respective number ν ∈ C∗, we can perform a ν–surgery that modifies the
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syllables as follows:

EE �−→
{
EPνE ν ∈ C\R,
EνE ν ∈ R,

EE �−→
{
EPνE ν ∈ C\R,
EνE ν ∈ R,

EE �−→
{
EPνE ν ∈ C\R,
EνE ν ∈ R,

EPν0
�−→ EPν0+ν .

For the syllable EE, this was performed in case 5 of §8.5. The other syllables admit
the analogous surgery, it is required that the involved characteristic trajectories
have infinite gX–length in order to perform the isometric glueing. Using that the
displacement is 2πi times the residue (see (5.6)), (2) follows.

For assertion (3), taking into account the displacements {ν} of WX , WY , we
observe that the flat metrics in

(
WX\{0}, gX ,Re (X)

)
and

(
WY \{0}, gY ,Re (Y )

)
are isometric. Using the ideas in the proof of Corollary 5.16 the result follows. �

Example 5.21. 1. Displacements and residues in words E · · ·E and E · · · E, with
2s letters. The word E · · ·E with −2πλ2 ∈ R surgery (see line five of Table 2),
now can be written adding suitable parabolic sectors as

Pν1
E · · ·E︸ ︷︷ ︸
2s−3

Pν2
E, satisfying (A–C) and ν1 + ν2 = −2πλ2.

The residueRes(ωX , 0) of the associated vector field germ
(
(C, 0), X

)
of Pν1

E · · ·E
Pν2

E at the singularity z = 0 assumes the value (ν1 + ν2)/2πi ∈ C∗.

Similarly, the word EE, obtained from ez ∂
∂z at ∞ ∈ Ĉ and having residue

zero, gives origin to a family of new words Pν1
EPν2

E, and new germs of vector
fields, having residue (ν1 + ν2)/2πi ∈ C∗.

The analogous holds for E · · · E, with 2s ≥ 4 letters.

2. Let X(z) = zez ∂
∂z be a singular analytic vector field on Ĉ. Note that X has

singularities at 0 and ∞. The respective germs provide us with two words:

HEP2πiEH for ((Ĉ,∞), X), P−2πi for ((Ĉ, 0), X).

6. Poincaré–Hopf index theory

Let us recall that the Poincaré–Hopf index PH(X, 0) ∈ Z of a singular analytic
vector field germ ((C, 0), X) having a zero at 0, is the winding number of the Gauss
map

(6.1) G : S1
ε −→ S1, γ(θ) �−→ Re (X(γ(θ)))

|Re (X(γ(θ)))| ,

where γ(θ) = εeiθ : [0, 2π] → (C, 0) is an oriented circle having small enough radius
ε > 0 and S1 is the unitary circle. Our starting point is the following.

Lemma 6.1. Let
(
(C, 0), X(z) = f(z) ∂

∂z

)
be singular analytic vector field germ

having an isolated singularity at 0.

1) The Poincaré–Hopf index, PH(X, 0), as the winding number of the Gauss map
is well defined.

2) As a consequence of the usual argument principle,

(6.2) PH(X, 0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz ∈ Z.
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Proof. The first assertion uses topological arguments. Let Re (X) be the respec-
tive real analytic vector field (representative of the germ) on a punctured disk
D(0, 2ε)\{0} = {0 < |z| < 2ε}.

We compute the winding number w ∈ Z of the Gauss map of Re (X), using a
particular γ(θ) = εeiθ.

Second, we note that the winding number w does not change under continuous
deformations γ(θ, s) : [0, 2π]×[0, 1] → D(0, 2ε)\{0} of γ(θ) := γ(θ, 0), as an element
in the fundamental group of the punctured disk; as long as each path γ(θ, s0) does
not go through any singularities of Re (X). In the punctured disk, the vector field
Re (X)/|Re (X)| is C0 (in fact real analytic) and γ(θ, s) is a continuous deformation.

�

Example 6.2. 1. If X is meromorphic at 0, then

(6.3) PH(X, 0) =

⎧⎨⎩
−k ≤ −1 for 0 a pole of multiplicity − k,

0 for 0 a regular point,

s ≥ 1 for 0 a zero of multiplicity s.

2. Moreover, let X be a meromorphic vector field on a compact Riemann surface
M of genus g. Then

(6.4)
∑
q∈M

PH(X, q) = 2− 2g = c1(T
′M);

here, the last equality is the Chern class c1 of the holomorphic tangent line
bundle T ′M .

In the case of poles, (6.3) is proved as follows. There exists ρ : (C, 0) → R
+∪{0} a

function germ, such that ρRe (X) is a C1 vector field on (C, 0), hence PH(X, 0) :=
PH(ρRe (X), 0) is well defined.

In fact, for X(z) = 1
zk

∂
∂z , the required function is ρ(z) = |z|2k.

Using Table 2 and the C1 Poincaré–Hopf index theory (see for example W.
Thurston’s exposition [69], §1.3), the proof of (6.3) is complete.

Let
(
(C, 0), X

)
be a singular analytic vector field germ having an isolated singu-

larity at 0 determining an admissible word WX , let us denote: h, e, ε the number
of hyperbolic, elliptic or class 1 entire sectors in WX , respectively.

Remark 6.3. Note that since h, e, ε are obtained from the cyclic word WX , these
numbers are in fact associated to a germ representative. Thus even though they
depend individually on the germ representative, the sum e − h + ε does not, as a
consequence of Rule (C) in §5.9.

The assertion Theorem (A.1) below, shows that one can in fact calculate the
Poincaré–Hopf index of a vector field at a singularity 0 by knowing the type of
sectors centred at 0 that occur. It generalizes the classical formula of I. Bendixon;
see [6] appendix §10.

Theorem (A) (Local and global Poincaré–Hopf theory). 1) Let
(
(C, 0), X

)
be a

germ of singular analytic vector field with an isolated singularity at 0 and further
suppose that X determines an admissible word WX . Then the Poincaré–Hopf
index of X at 0 is

(6.5) PH(X, 0) = 1 +
e− h+ ε

2
.
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2) Let X be a singular analytic vector field on a compact M having a discrete set
of poles, zeros and essential singularities determining admissible words at each
singularity, then

(6.6) χ(M) =
∑
q∈M

PH(X, q).

In order to compute the winding number of (X, 0), our main tool is the argument
principle on angular sectors.

Let X(z) = f(z) ∂
∂z be a nonvanishing holomorphic vector field on an angular

sector {z | 0 < |z| < 2ε, 0 ≤ arg(z) ≤ θ0} (note that z = 0 is removed) such that
the two boundary rays {arg(z) = 0, θ0} are trajectories of ±Re (X), and consider
the path γ(θ) = εeiθ : [0, θ0] → C in the sector.

The winding argument of X in the angular sector is

(6.7) G(γ(θ0))−G(γ(0)) =
1

i

∫ γ(θ0)

γ(0)

f ′(z)

f(z)
dz ∈ R.

The result must be interpreted using the endpoints of the trajectory G ◦ γ in S1,
in particular, this winding number can be greater than 2π or less than −2π.

Two important facts:

i) The boundary values of G are independent of the points in the corresponding
boundary rays, more precisely,

(6.8)
G(ρ γ(0)) = G(γ(0)) = ±1 ∈ S1,

G(ρ γ(θ0)) = G(γ(θ0)) for 0 < ρ < 2,

the signs ± depend on whether Re (X) points to 0 or not, along the boundary
ray {arg(z) = 0}. Whence, the integral (6.7) is independent of every simple
path, having extreme points in the boundary rays, required to compute it
(using an argument analogous to the one in Lemma 6.1.1).

ii) The integral (6.7) does not require that X assume a continuous value at the
vertex z = 0 of the angular sector.

Proof of Theorem (A.1). The caseW =C is obvious. If the lettersW ∈ {H,E, P, E}
describe the kind of sectors in WX and letting j run through the number of sectors
of each kind (for instance j ∈ {1, . . . , h} in the case of the hyperbolic sectors; e, p, ε
respectively for E, P , and E), then we decompose the path γ(θ) = εeiθ : [0, 2π] →
(C, 0) in closed connected arcs of argument {θL,j} coming from the decomposition
of WX in angular sectors. Thus, by construction

(6.9)
h∑

j=1

θH,j +
e∑

j=1

θE,j +

p∑
j=1

θP,j +
ε∑

j=1

θE,j = 2π

are the (unordered) arguments of the angular sectors. In order to simplify the
notation, we apply suitable coordinate changes on each angular sector in (C, 0),
and recognize γ([0, θL,j ]) as the arc of γ in an angular sector having a boundary in
R+, similar to what was done for the sector in (6.7) and (6.8). �

Lemma 6.4. In each angular sector determined by γ([0, θL,j ]), the winding argu-
ment of its Gauss map G ◦ γ behaves as follows.

1) In a hyperbolic sector it is θH,j − π.
2) In an elliptic sector it is θE,j + π.
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3) In a parabolic sector it is θP,j.
4) In an entire 1 sector it is θE,j + π.

Following in some places the original ideas of I. Bendixon and C1 arguments
a proof of Lemma 6.4.1–3, is given in [6], appendix §10. We use the argument
principle (6.7).

Proof of Lemma 6.4.1.

Step 1. Computation in a particular hyperbolic sector.
We assume that θH,j = 2π/(2k + 2), for −k ≤ −1. Let X(z) = 1

zk
∂
∂z be the

vector field on the sector {z | 0 ≤ arg(z) ≤ θH,j}, it follows that

(6.10)
1

i

∫ γ(θH,j)

γ(0)

f ′(z)

f(z)
dz =

1

i

∫ γ(θH,j)

γ(0)

−k

z
dz =

−k2π

2k + 2
=

2π

2k + 2
− π.

Step 2. Computation in any hyperbolic sector.

Figure 8. a) The winding argument of a hyperbolic sector H of
angle θH,j is θH,j − π. b) The winding argument of a entire sector
E of angle θE,j := π is π + θE,j . Furthermore, both results persist
under small perturbations of α. See proof of Lemma 6.4.

We assume {θH,j < 2π}, i.e. not necessarily of the form 2π/(2k + 2).
Consider the map {w �→ wβ = z}, for suitable β ∈ (0, 2π), sending the angular
sector {0 ≤ w ≤ θH,j} to a sector as the one that appears in (6.10), and compute
the respective integral of type (6.7).

A more geometric argument is as follows. Assume (6.10) and consider a small
enough perturbation of the angle θH,j + α say, for example, |α| < 2π/(2k + 2).

Let G be the Gauss map of the original vector field (6.10), sending the counter-
clockwise oriented arc γ([0, 2π

2k+2 ]) ⊂ S1
ε to the clockwise oriented arc in S1 having

extremes (similarly as in equation (6.8)):
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G(γ(0)) = 1, i.e. the ray {arg(z) = 0} is a trajectory of Re (X) that does not point
to 0;
G(γ( 2π

2k+2 )) =
2π

2k+2 − π.
See Figure 8.a. for k = 3.
Now, we increase the original argument by α; translate the vector field X to the

new angular sector of angle (2π/(2k + 2))+α, obtaining a new vector field Xα (this
can be done with a map of type {w �→ wβ = z}).

The Gauss map of the vector field Xα, sends the arc γ([0, 2π
2k+2 + α]) ⊂ S1

ε to

the clockwise oriented arc in S1 having extremes, similarly as in equation (6.8):
G(γ(0)) = 1;
G(γ( 2π

2k+2 + α)) = 2π
2k+2 + α − π, i.e. the ray {arg(z) = 2π

2k+2 + α} ⊂ C∗ is a

trajectory of Re (Xα) that points to 0.
See Figure 8.a. The proof of Lemma 6.4.1 is done. �

Example 6.5 (Coherence with previous results). 1. If θH,j = π, then we can use

X(z) = ∂
∂z and

1

i

∫ γ(π)

γ(0)

f ′(z)

f(z)
dz = 0 = θH,j − π.

2. An alternative proof of (6.3) follows (see [31], [52]), since the total winding
argument of a pole of order −k is

1

i

∫ γ(2π)

γ(0)

−k

z
dz = −k2π.

The proof of Lemma 6.4.2–3 follows the same ideas. If the particular elliptic
sector describes argument θE,j = π, then we can use

(
(C, 0), z2 ∂

∂z

)
and

1

i

∫ γ(π)

γ(0)

f ′(z)

f(z)
dz =

1

i

∫ γ(π)

γ(0)

2

z
dz = 2π = θE,j + π.

Proof of Lemma 6.4.4.

Step 1. Computation in a particular class 1 entire sector.
We assume that θE,j = π. Let X(z) = −z2e1/z ∂

∂z be the vector field on {z | 0 ≤
arg(z) ≤ π}\{0}, we get

(6.11)
1

i

∫ γ(π)

γ(0)

f ′(z)

f(z)
dz =

1

i

∫ γ(π)

γ(0)

(
2

z
+

1

z2

)
dz = 2π = θE,j + π.

Note that, the Gauss map has a critical point at some γ(θ0) ∈ S1
ε in the second

quadrant; see Figure 8.b.

Step 2. The computation in any class 1 entire sector describing an argument π+α,
is analogous as in the case of hyperbolic sectors.

The proof of Lemma 6.4.4 is done. �

Finally, by Lemma 6.4, the winding number of
(
(C, 0), X

)
is

1

2π
G ◦ γ

⎛⎝ h∐
j=1

θH,j

e∐
j=1

θE,j

p∐
j=1

θP,j

ε∐
j=1

θE,j

⎞⎠ = −h

2
+

e

2
+ 1 +

ε

2
,
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where by abuse of notation, the union means the decomposition of γ : [0, 2π] →
(C, 0) in intervals from the angular sectors of X, as seen in (6.9).

The proof of Theorem (A.1) is done. �
For the second part in Theorem (A), it will be suitable to remember a deep

result of C. Gutierrez [30] and to do a digression on the differentiability required
to develop Poincaré–Hopf theory.

Theorem 6.6 (C. Gutierrez’s smoothing of singular continuous flows and folia-
tions). Let M be a C∞ compact, orientable two manifold without boundary.

1) Let ϕ : R ×M → M be a continuous flow. Then there exists a C1 flow on M
which is topologically equivalent to ϕ. Furthermore, if all minimal sets of ϕ are
trivial, then ϕ is topologically equivalent to a C∞ flow.

2) Let F be a continuous one dimensional orientable foliation with singularities on
M. If the set of singularities of F is compact, then there exists a C1 flow on
M which is topologically equivalent with ϕ.

Thus, for a continuous one dimensional orientable foliation with singularities, F
on M as in Theorem 6.6.2, the Poincaré–Hopf formula

χ(M) =
∑
q∈M

PH(F , q)

holds, particularly if PH(F , q) is well defined.
If in addition F does not have exceptional minimal sets in M, then ϕ can be

smoothed to a C∞ flow.

Proof of Theorem (A.2). We look at the singular analytic vector field X on M on
a disk centred at a singularity, as usual we denote it by

(
(D(0, ε), 0), X

)
.

Let ρ : D(0, ε) → R+ ∪ {0} be a suitable C∞ bump function germ vanishing at
infinite order at the origin 0, i.e. ρ(0) = 0 exactly at the origin 0 and whose Taylor
series is identically zero.

Note that ρRe (X)/|Re (X)| is a C∞ real vector field on a punctured vicinity
D(0, ε)\{0} and it is a C0 vector field on a whole disk D(0, ε), with an isolated zero
at 0.

Let g be any C∞ Riemannian metric on the compact Riemann surface M . Using
partitions of the unity and the above trick; there exists a global C∞ function
ρ1 : M → R+ ∪ {∞} such that X1 := ρ1Re (X)/ |Re (X)|g is C0 on M and C∞ on

M\SX .
We can apply Gutierrez’s Theorem 6.6 to the foliation F defined by X1 on M .

There exists an associated C1 flow and one C1 vector field, say X2. Now, we apply
the usual C1 Poincaré–Hopf index theory.

The proof of Theorem (A.2) is done. �

Example 6.7 (Index for admissible words of singular analytic vector fields on Ĉ).

1. The vector field X(z) = ez ∂
∂z has associated the word

EE.

2. Let X(z) = ez
2 ∂
∂z be an entire vector field, its unique singularity is at ∞ having

associated word (see Figure 16)

HEEEHHEEEH.
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Comparing with Example 5.15.2, we see that the cyclic word representative is
not unique, as is explained in Remark 5.18.

3. On the other hand, let X(z) = (d zd−1)−1ez
d ∂
∂z = (zd)∗(et ∂

∂t ), for d ≥ 2, be
a singular analytic vector field with a pole at z = 0 and an isolated essential
singularity at ∞. So by using that X is a pullback, as in §3,

H . . .H︸ ︷︷ ︸
2d

, E . . . E︸ ︷︷ ︸
2d

are the associated words, respectively.
In the three cases, ∑

q∈̂C

PH(X, q) = 2.

4. Furthermore, the vector field X(z) = eze−e
z ∂
∂z has a unique singularity at ∞,

having associated word (see Figures 2, 5)

E E E E .

Whence, using Theorem 6.6 and the above ideas, it is possible to show that in
this case, once again PH(X,∞) = 2.

Remark 6.8. Notice that rule (A) of the construction of admissible words has an
equivalent statement in terms of the Poncaré–Hopf index:

(A′) A vector field X arising from an admissible word W must have Poincaré–Hopf
index an integer.

We define the Poincaré–Hopf index of an admissible word PH(WX) using (6.5).
Of course PH(WX) = PH(X, 0).

7. Extending vector field germs to compact Riemann surfaces

In this section we shall explore two results on the extension of germs. The first
result is more general in the sense that it does not require that the singularity be
isolated, as is required in the second.

Theorem 7.1 (Extension to some compact Riemann surface). Let
(
(C, 0), X

)
be a

germ of a singular analytic vector field having a nonnecessarily isolated singularity

at 0. There exists an extended singular analytic vector field X̃ on a compact Rie-

mann surface Mg, for each genus g ≥ 0, such that the germ of X̃ at some p ∈ Mg

is holomorphically equivalent to the germ X, with X̃ having an additional finite
number of zeros and poles.

Proof. Let γ : [0, 1] → (C, 0) be a simple closed path enclosing 0, without loss of
generality we assume that γ avoids the singularities of a germ representative of X
on (C\{0}, 0).

Let Γ = Ψ ◦ γ ⊂ Ct be the image path under the distinguished parameter. Γ is
closed if and only if

∫
γ
ωX is zero.

By a small enough perturbation of γ we can assume the following conditions.

1) Γ is a polygonal (i.e. piecewise linear) path having edges Γι and vertices vι,

(7.1) Γ = {v0} ∪ Γ1 ∪ {v1} ∪ . . .Γs ∪ {vs} ⊂ Ct,

with exactly s+1 different vertices if and only if
∫
γ
ωX �= 0, or exactly s different

vertices (in which case v0 = vs) if
∫
γ
ωX = 0.
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2) If ι �= j, then Γι ∩ Γj is empty or at most one point.
3) A half ε–tubular neighborhood T ⊂ Ct of Γ is well defined, for ε > 0 small

enough, such that Ψ−1(T ) is a topological annulus inside γ ⊂ (C, 0), homeo-
morphic to S1 × (−ε, 0].

Let σ be a piece of the trajectory of Re (X) in (C, 0) having initial condition
γ(0) = v0.

If the residue is zero, then Σ = Ψ(σ) ⊂ Ct is exactly a horizontal trajectory in
T .

If the residue is nonzero, then there are Σ1 = Ψ(σ), Σ2 = Ψ(σ) ⊂ Ct two
horizontal trajectories in its image (by considering for Σ2, the analytic extension
of Ψ along γ). Moreover, Σ1,Σ2 are in the boundary of T ; see central drawings in
Figure 9.a–b.

As first stage we want to recover Mg = Ĉ.

Case 1. Γ ⊂ Ct does not have self–intersections and is closed.

Assume that T is outside of Γ. The obvious solution is by gluing the closed
polygonal region Q ⊂

(
C, ∂

∂t

)
which is bounded by Γ, using Corollary 5.11. No

additional singularities of X̃ appear. In this case, the original germ necessarily
satisfies PH(X, 0) = 2.

On the other hand, assume that T is inside of Γ, i.e. T determines the interior
half ε–tubular neighborhood of a closed polygonal region Q ⊂

(
C, ∂

∂t

)
. The obvious

solution is by glueing the closed complement Qc ⊂
(
Ĉ, ∂

∂t

)
in the Riemann sphere.

An additional double zero of X̃ appears. In this case, the original germ necessarily
satisfies PH(X, 0) = 0.

Moreover, a second solution will be illustrative in the other cases.

Example 7.2. Let
(
(C, 0), X

)
be a germ as in the case 1 above, and assume that

T determines the interior half ε–tubular neighborhood of a closed polygonal region
K ⊂ Cz having s ≥ 3 edges {Γι}.

Γ is a polygonal, having s ≥ 3 edges {Γι} (as vectors in C using the coun-
terclockwise orientation in the boundary ∂T ). The sum of the internal angles
{θι | ι = 1, . . . , s} of T is (s − 2)π. We identify all the vertices of T to the same
point q; obtaining a topological sphere S2 minus a bouquet of s open disks. Apply-
ing Corollary 5.11, we glue to each closed geodesic Γι ∪ {q} a semi–infinite height
cylinder S1

|Γι| × [0,∞), where the sub–index |Γι| denotes the perimeter.

We can recognize that every cylinder contributes with cone angle π around q and
the point q has a cone angle (2s − 2)π. Hence q is a pole of order 2 − s of a new

vector field X̃. The riemannian end of each cylinder is a simple zero of X̃, recalling
that each cylinder comes from

(
D(0, 1), ±i(2π/ |Γι|)z ∂

∂z

)
, as in Table 2.

By the uniformization theorem, the resulting Riemann surface is Ĉ. The resulting

vector field X̃ on Ĉ has the original singularity germ X at some p ∈ Ĉ, s simple
zeros, and one pole at q of order −(s− 2).

(The above generalizes the following: ifX is nonsingular in the interior of T , then

X̃ is a polynomial vector field P (z) ∂
∂z on Ĉz with s simple zeros having residues

Γι/2πi. See Figures 2–4 in [50] and Figure 1 in [49].)

Case 2. Γ ⊂ Ct satisfies s = 2 in (7.1), self–intersections are possible.
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We consider two sub–cases depending on the position of the half ε–tubular neigh-
borhood T with respect to Γ = {v0}∪Γ1∪{v1}∪Γ2∪{v2}; see Figure 9.a–b. Without
loss of generality, we assume Im (v0) < Im (v2) and Re (v0) < Re (v1). Ψ(σ) has
two associated horizontal trajectories Σ1, Σ2 in Ct, arriving at v0 and v2.
• In Figure 9.a we identify the vertices v0, v1, v2 to a point q. The cone angle of q,
determined by T , is

(7.2) ∠
(
Γ1,−Re

(
∂

∂t

))
+ ∠

(
Γ2,−Γ1

)
+ ∠

(
−Re

(
∂

∂t

)
,−Γ2

)
= 4π.

We glue to each geodesic Γj ∪ {q} a semi–infinite height cylinder S1
|Γj | × [0,∞).

The point q has a total cone angle 6π, hence it determines a pole of order −2; see

Table 2. The riemannian end of each cylinder gives origin to a simple zero in X̃;

see Table 2. X̃ on Ĉ has additionally a double pole and two simple zeros.
Let us make two remarks.
i) Equation (7.2) is independent of the assumptions Im (v0) < Im (v2) and

Re (v0) < Re (v1). The angle 4π remains constant under continuous deformation
of Γ.

ii) The choice of the cone angle determined by T at the extreme vertices v0 and
vs in the drawings (a)–(f), is due to the fact that the glueing of T must be an
oriented annulus (we must glue the geodesics of the vectors Re

(
∂
∂t

)
at vι, as in

Corollary 5.11).
• In Figure 9.b we identify the vertices v0, v1, v2 to a point q. The cone angle of q
determined by T is 2π. We glue to each geodesic Γj ∪ {q} a semi–infinite height
cylinder. The point q has a total cone angle 4π and gives origin to a pole of order

−1 of X̃; see Table 2. The riemannian end of each cylinder is a simple zero, see

Table 2. Hence X̃ on Ĉ has additionally a simple pole and two simple zeros.

Case 3. Γ ⊂ Ct satisfies s = 3 in (7.1), self–intersections are possible.

We consider four sub–cases depending on the position of T respect to Γ =
{v0} ∪ Γ1 ∪ {v1} ∪ Γ2 ∪ {v2} ∪ Γ3 ∪ {v3} and the possible self–intersections of Γ;
see Figure 9.c–f. We assume without loss of generality that Im (v0) < Im (v2) and
Re (v0) < Re (v1). The two horizontal edges at the left of each figure are the images
of the trajectories of Re

(
∂
∂t

)
at v0 and v3.

• Considering Figure 9.c we identify the four vertices to the same point q. The cone
angle at q determined by T is 5π. We glue to each circle Γj ∪ {q} a semi–infinite
height cylinder. The point q has a total cone angle of 8π and is a pole of order

−3 of X̃. The Riemannian end of each cylinder is a simple zero of X̃. Thus the

resulting riemann surface is Ĉ.
The computations for drawings (d), (e), (f) are similar, we indicate in Figure 9

the cone angle determined by T at the new singularity q.

Case 4. Γ ⊂ Ct satisfies s ≥ 4 in (7.1), self–intersections are possible.

We use an inductive construction process with the above ideas. We leave for the
reader the details of the computation of the cone angle for any s ≥ 4.

The case of X̃ on Mg = Ĉ is done.

The second stage is Mg, for g ≥ 1.

We perform the isometric connected sum of the flat surfaces (Ĉ, X̃1) and suitable
compact Riemann surface (N,X2); cutting C along one segment Σ of trajectory of
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Figure 9. Half ε–tubular neighborhood T and cone angle. Draw-
ings (a) and (b) are examples of Γ ⊂ Ct with 2 edges, having the
same trace but with different half ε–tubular neighborhoods T . Af-
ter identification, we get a sphere minus a bouquet of two open
disks. In (a) a double pole and two zeros are required (total cone
angle 4π+ π+ π). In (b) a simple pole and two zeros are required
(total cone angle 2π + π + π). Drawings (c)–(f) present Γ ⊂ Ct

with 3 edges, the respective cone angle, determined by T , is the
odd multiple of π indicated below. Hence the total cone angle is
always an even multiple of π. See proof of Theorem 7.1.

finite length with ends points at regular points p1, p2 of X̃1, and cutting N along
a segment of trajectory of X2 with the same characteristics, use [49] construction

1, pp. 242 or [66] 12.3, pp. 57. The connected sum Ĉ ∪ N = Mg supports a new

singular analytic vector field X̃, having germs holomorphically equivalent to the

original germs of X̃1, X and at least two new simple poles p1 and p2. �

Note that, the complex structure of Mg in the above constructions, varies for
one fixed initial germ

(
(C, 0), X

)
. However, this variation is hard to describe, in

particular, we do not know if given X, all the complex structures for genus g ≥ 1
can be attained by this construction.

Isolated singularities having admissible words is a natural case to study, we
provide a simple statement.

Corollary 7.3. Let
(
(C, 0), X

)
be a germ of a singular analytic vector field having

an isolated singularity at 0 and determining an admissible word WX . There exists

an extended singular analytic vector field X̃ on Ĉ, such that the germ X̃ at 0 ∈ Ĉ is
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holomorphically equivalent to the germ of X, with X̃ having at most an additional
pole and a finite number of simple zeros.

Proof. Recall that e, h, p, ε denote the number of elliptic E, hyperbolic H, parabolic
P and entire E letters (sectors) in WX . In fact, ε = 0 implies that

(
(C, 0), X

)
is a

zero or pole as in Table 2, in this case the result is elementary. By rule (A) of the
admissible words the case ε = 1 is discarded. Hence we assume ε ≥ 2.

For each letter H,E, P, E, we consider a pair (Sι, Xι); Riemann surface (with
boundary) and singular analytic vector field. The four pairs, a priori germs, are
extended (see Figure 10) as follows.

i) (S1, X1) is
(
D(0, 1), iλ2z

∂
∂z

)
giving rise to a semi–infinite height cylinder

S1
2π/|λ2| × (0,∞); see Figure 10.a.

ii) (S2, X2) is (H
2
, ∂
∂z ) giving rise to a half–plane; see Figure 10.b.

iii) (S3, X3) is (Ĉ, z ∂
∂z ) with a horizontal geodesic cut along [1,∞) ⊂ Ĉ giving

origin to two boundary geodesics of a cylinder S1
2π × R; see Figure 10.c and

recall Table 2.
iv) (S4, X4) is (H

2
, ez ∂

∂z ) giving rise to a half–logarithmic spiral; see Figures 10.d
and 3.

E HH H

P

H

H H

Figure 10. Word dualities. Four pairs (Sι, Xι); a Riemann sur-
face and a singular analytic vector field, provided with two geodesic
boundary components. The left letters describe the original angu-
lar sectors of a germ ((C, 0), X). The right letters describe the
angular sectors at the corner point q. In cases (a), (c), simple ze-
ros of Xι appear inside of the respective Sι. See proof of Corollary
7.3.

Each (Sι, Xι) has two marked points in their boundary, it will be convenient to
rename these points as follows:

0 ∈ ∂Sι as the left angular sector in Figure 10, q ∈ ∂Sι as the right angular
sector.

Summing up, we recognize that germs of (angular sectors or) letters Wι ∈{
H,E, P , E

}
of WX are realized at the marked points 0 ∈ ∂Sι.

Moreover, in all four cases, the angular sectors H at the marked points q ∈ ∂Sι

are well defined.
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We can identify Sι topologically as one copy of {z | 0 ≤ arg(z) ≤ 2π

 } ⊂ Ĉ, where

� = (e+ ε+ h+ p).
More precisely, in the flat surface category, we perform the glueing of regions

(Sι, Xι), as in Corollary 5.11, following the cyclic pattern in WX , to recover at 0
the original germ of

(
(C, 0), X

)
.

In order to show that the isometric glueing is well defined, consider a germ
representative of X on a disk D(0, ε). Let l0/2 > 0 be the minimal gX–length
of the collection of boundary geodesic trajectories {σj} of the angular sectors of
{Wι} inside D(0, ε) which have finite gX–length. We can reduce the domain to
a neighborhood V ⊂ D(0, ε) such that new representative of X satisfies that, the
gX–length of all the geodesic trajectories {σj} in V is exactly l0.

Without loss of generality, we require that (Sι, gXι
) have finite boundary pieces

of gXι
–length l0 in Figures 10.a and d, thus the isometric glueing is well defined.

The point ∞ ∈ S2 which originates from the marked right points q ∈ ∂Sι, defines
a new word and additional zeros, following the rules:

(7.3)

H ←→ H at ∞ and an additional center C inside S1,
E ←→ H at ∞,
P ←→ HH at ∞ and an additional source–sink P inside S3,
E ←→ H at ∞.

Where the left column means the original letters of WX , and the right one comes
from considering the words Sι at the new point ∞ ∈ S2.

Whence X̃ on a new Riemann surfaceM is obtained. The singularities of X̃ at∞
and at the zeros inside S1, S3 (Figure 10.a and c), determine conformal punctures
in M , by the uniformization theorem we can recognize M as the Riemann sphere

Ĉ. This produces the desired vector field X̃ on Ĉ having p + h simple zeros and
a pole of multiplicity 1 − (e + ε + h + p)/2 ≤ −1 (= 0 means a nonsingularity),
recalling that (e+ ε+ h+ p) ≥ 2. �

Remark 7.4 (The extended vector field X̃ on Ĉ depends on the choice of the germ
representative). Note that the numbers of sectors e, ε, h, p depend on the repre-
sentative of the germ on D(0, ε); in particular, recall Remark 5.18 where class 1
entire sectors “produce” new elliptic and hyperbolic sectors as the radius ε → 0 in
(C, 0).

The above construction is far from being optimal with respect to the number of
additional zeros and poles; see Corollary 10.3.

8. Entire structurally finite 1–order d vector fields E(d)
In 1994 K. Hockett and S. Ramamurti studied the dynamics of vector fields of the

form exp (P (z)) ∂
∂z with P (z) = zd or P (z) = az2 + bz + c, finding (verbatim [34])

“that the corresponding real flow has a ‘bouquet’ of d flowers with a common root
at the point at infinity and directions kπ/d, k odd”. Furthermore, they conjectured
that “the dynamics of the corresponding case when P (z) is a general polynomial of
degree d is, up to conformal change of coordinates in the punctured plane, essentially
the same as that of P (z) = zd”.

We study the families of vector fields of the form X(z) = exp (P (z)) ∂
∂z with P (z)

an arbitrary polynomial of degree d, obtaining a complete analytical description of
these families. With this classification, we then show (amongst other things) that
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there are an infinite number of different topologies for Re (X) in each case d ≥ 3, a
clear answer (in the negative) to the conjecture of K. Hockett and S. Ramamurti.

In order to do this we use the basic correspondence between vector fields X and
the global distinguished parameter ΨX given by Lemma 2.6, thus the vector fields
X have a global flow–box (see §3.2 and the commutative diagram (1.1)).

On the other hand structurally finite entire functions of type (r, d),

(8.1) ΨX(z) =

∫ z

R(ζ)eP (ζ)dζ, P,R ∈ C[z],

where r = degree(R), d = degree(P ), and their classification, are classically well
known; see R. Nevanlinna [53], and M. Taniguchi’s seminal work on structurally
finite entire functions [67], [68]. With the above in mind, and using M. Taniguchi’s
notation, consider the following.

Definition 8.1. For d ≥ 1, the family of entire structurally finite 1–order d vector
fields is

E(d) =
{
X(z) = λeP (z) ∂

∂z

∣∣∣ P (z) = b0z
d + b1z

d−1 + . . .+ bd, λb0 �= 0

}
.

Certainly the parameters λ and b0 are redundant for E(d), but leaving both will
simplify the computations needed for the proof of Theorem 8.24. Note that the
group Aut(C) is the largest10 complex Lie group that acts holomorphically by
pullback on E(d).

8.1. Revisiting the Riemann surface RX associated to X ∈ E(d). In the fo-
llowing sections, sufficient elements that completely describe

(
RX , π∗

X,2(
∂
∂t )

)
when

we restrict ourselves to X ∈ E(d) are presented.

Remark 8.2. Recall diagram

(C, X)
(
RX , π∗

X,2(
∂
∂t )

)

πX,1

�
πX,2

��������
ΨX(2.6) (

Ĉ, ∂
∂t

)
.

Using Lemma 2.7 for X ∈ E(d), it follows that πX,1 is a biholomorphism and
πX,2 a ramified covering (with only logarithmic branch points, as will be shown
shortly). In what follows, we shall use the abbreviated form RX instead of the
more cumbersome

(
RX , π∗

X,2(
∂
∂t )

)
.

As usual (see for instance [53], [58], [66], [67], [68]), once the branch points
{b ∈ RX} under πX,2 are determined, the Riemann surface RX will be described
as sheets Ct\{suitable branch cuts} glued together in very specific ways. Since the
sheets are elementary blocks, an accurate description is pertinent.

Definition 8.3. Let {ak}rk=1 ⊂ Ct be a finite set of different points with r ≥ 1. A
sheet is a copy of Ct with r branch cuts Lk; i.e. Ct is cut along horizontal segments

10Aut(C) correspond to those Aut(Ĉ) ∼= PSL(2,C) that fix ∞ ∈ Ĉ. Furthermore, X ∈ E(d)
are global objects on Ĉ so Aut(C) is in fact the largest natural Lie group acting faithfully on E(d).
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Lk = [ak,∞), remaining connected, but with 2r horizontal borders left there for
further isometric glueing

(8.2) Ct\{Lk}rk=1
∼=

[
Ct\

( r⋃
k=1

[ak,∞)
)] r⋃

k=1

{
[ak,∞)+, [ak,∞)−

}
,

where the sub–indices ± refer to the obvious upper or lower boundary using Im (t).
We say that the height of Lk is Im (ak). Left cuts and left borders (∞, ak]± are also
allowed, by notational simplicity the above equation is written using right cuts.

A diagonal of the sheet is

(8.3) Δσρ = aσaρ ⊂ Ct\{Lk}rk=1,

i.e. it is the oriented straight line segment, in the sheet, starting at aσ and ending
at aρ, here ρ, σ ∈ {1, . . . , r}.

The upper drawings in Figure 11 provide examples of sheets and diagonals.

Since X ∈ E(d) has no poles or zeros, then there are no finitely ramified branch
points in RX . Furthermore, logarithmic branch points project, via πX,2 of diagram
(2.6), to the asymptotic values of ΨX ; see §4.3 for the appropriate definitions.

Given an asymptotic value a ∈ Ĉt, its preimages (under πX,2) in RX can be any
of the following: a regular point of RX or a logarithmic branch point of RX . Both
can coexist in the sense that π−1

X,2(a) can contain regular points and logarithmic
branch points on RX all of which project via πX,2 to a.

The following lemma follows from M. Taniguchi’s results; see [67] and [68].

Lemma 8.4 (Existence of logarithmic branch points). Let Ψ : Cz → Ĉt be a struc-
turally finite entire function of type (r, d). Then Ψ−1 has 2d direct singularities, no
indirect singularities and r critical values.

Moreover, the direct singularities correspond to d logarithmic branch points over

d finite asymptotic values {aσ} ⊂ Ĉt, and d logarithmic branch points over ∞ ∈ Ĉt.

Note that for X ∈ E(d), ΨX is a structurally finite entire function of type (0, d).
Further note that ΨX is of 1–order d. In fact, the hypothesis that Ψ−1

X has d
logarithmic branch points over d finite asymptotic values, and d logarithmic branch
points over ∞, implies that ΨX is of 1–order d.

Proof of Lemma 8.4. Since ∞ ∈ Ĉz is an isolated essential singularity of Ψ, a
consequence of the theorem of Denjoy–Carleman–Ahlfors (see corollaries 1 and 3
in [12]) is that Ψ has (at most) 2d asymptotic values, and all the transcendental
singularities Uι of Ψ

−1 over each asymptotic value are logarithmic.
Moreover, since Ψ is a structurally finite entire function of type (r, d), then by

Taniguchi’s representation theorem (see theorem 1 of [67] or theorem 2.14 of [68]),
it follows that:

1) Ψ(z) =
∫ z

R(ζ)eP (ζ)dζ for R,P ∈ C[z] of degree r and d, respectively.
2) The Riemann surface of Ψ is constructed from r quadratic blocks and d exp–

blocks by Maskit surgeries (corresponding to our isometric glueing Corollary
5.11).

Hence Ψ has r critical values (one for each quadratic block) and Ψ−1 has 2d loga-
rithmic branch points (two for each exp–block).
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It follows immediately that Ψ has: 1–order d, d finite asymptotic values (one for
each exp–block), d infinite asymptotic values (again one for each exp–block), and
r critical values (one for each quadratic block), all counted with multiplicity. �

The last result tells us that for X ∈ E(d), the Riemann surface RX has at least
two logarithmic branch points that do not lie over the same asymptotic value in

Ĉt. In fact, as was pointed out by R. Nevanlinna ([53] pp. 291) “any many–sheeted
surface has at least two logarithmic branch points that do not lie over one another”.
However, in the particular case of X ∈ E(d) for d ≥ 2 the following result extends
this: RX has at least three logarithmic branch points that do not lie over the same

asymptotic value in Ĉt.

Lemma 8.5. Let X ∈ E(d), then Ψ−1
X has d logarithmic branch points over a single

finite asymptotic value a1 ∈ Ct if and only if d = 1.

Proof. (⇐) When d = 1, Ψ−1
X has only one logarithmic branch point over a finite

asymptotic value. For a direct calculation, see (8.19).
(⇒) We proceed by contrapositive. Suppose that d ≥ 2, then Ψ−1

X has d loga-
rithmic branch points over d finite asymptotic values (counted with multiplicity).
If we assume that there is a single finite asymptotic value a1 ∈ Ct, then it has
multiplicity d. Thus RX has d ≥ 2 logarithmic branch points over the same finite

asymptotic value a1 ∈ Ct and d logarithmic branch points over ∞ ∈ Ĉt and no
other singular points. This space has d connected components, while on the other
hand, by Remark 8.2, RX is biholomorphic to Cz, which of course consists of only
one connected component. �

Hence for d ≥ 2 the number of distinct finite asymptotic values is m ≥ 2.

8.1.1. Logarithmic branch points of RX . Given X ∈ E(d), the distinguished pa-
rameter ΨX has exactly d finite asymptotic values (counted with multiplicity). If
we denote them by

(8.4) {aj}mj=1 ⊂ Ct, with multiplicities {νj}mj=1 and
m∑
j=1

νj = d,

then π−1
X,2(aj) has one logarithmic branch point of RX for each exponential tract

associated to the finite asymptotic value aj ; see first and third lines in (8.8).

Moreover, π−1
X,2(∞) has d logarithmic branch points since the asymptotic value

∞ has multiplicity d.

In other words, if α(τ ) : [0,∞) → Cz is an asymptotic path tending to ∞ ∈ Ĉz

associated to the asymptotic value a ∈ {a1, . . . , am,∞} ⊂ Ĉt, then we may assume
that α(τ ) is contained in one exponential tract and

lim
τ→∞

ΨX(α(τ )) = a.

The exponential tracts will be in bijection with classes of asymptotic paths. With
this in mind we shall identify each exponential tract simply by α.

Thus, asymptotic values are actually pairs; (α, a), comprised of a value a ∈ Ĉt

and the corresponding exponential tract α. Since logarithmic branch points lie
over asymptotic values, they are in correspondence with these pairs (α, a). In
particular, the asymptotic value a = ∞ has d different exponential tracts; each one
corresponding to a logarithmic branch point over ∞.



DYNAMICS OF COMPLEX ANALYTIC VECTOR FIELDS 183

Remark 8.6. The logarithmic branch points associated to the isolated singularity

at ∞ ∈ Ĉz, are not in fact in

RX ⊂ Cz × Ĉt.

Instead, see for instance [12], they lie on the non–Hausdorff closure Cz × Ĉt of

Cz × Ĉt. Here,

(8.5) Cz :=
((

Ĉ× {1}
)
�
(
Ĉ× {2}

)
� · · · �

(
Ĉ× {2d}

))
/ ∼

is the sphere with 2d infinities, that is the disjoint union of 2d copies of the Riemann

sphere Ĉ with the equivalence relation ∼, given by (z, σ) ∼ (z, ρ) for all σ, ρ ∈
{1, . . . , 2d} if z �= ∞.

Recalling Lemma 8.4, we will denote the 2d different infinities by {∞ς}2dς=1 ⊂ Cz.

Remark 8.7. Numerical computations suggest (and the analytical computations
found in §8.6 for the cases d = 1, 2, 3 show it in these cases), that lim

τ→∞
ΨX(α(τ ))

is either finite or infinite when we allow α(τ ) to stay in one of 2d equally spaced

angular sectors about ∞ ∈ Ĉz. In fact the limit alternates from finite to infinite to
finite again as we go from one contiguous angular sector to another around ∞. This
is in agreement with the above, in particular, that there are 2d exponential tracts
arising from the 2d (counted with multiplicity) asymptotic values of ΨX associated

to the essential singularity at ∞ ∈ Ĉz.
Without loss of generality, by a renumbering in (8.5) if necessary, we may assume

that the first d indices of ∞ς ∈ Cz are the ones related to the finite asymptotic
values.

Given a ∈ {a1, . . . , am,∞} ⊂ Ĉt, we will denote by (∞α, a) the corresponding
logarithmic branch point over a with associated exponential tract α.

Since aj has multiplicity νj , there will be νj asymptotic tracts for each distinct
aj . Moreover, the d logarithmic branch points over the finite asymptotic values lie

in Cz × Ĉt, however, slightly abusing notation they are to be thought in RX . We
will denote them by

(8.6) bσ = (∞σ, aσ) ∈ RX , for σ ∈ {1, . . . , d}.

The corresponding d logarithmic branch points over ∞ ∈ Ĉt will be denoted by

(8.7) (∞d+σ,∞) ∈ RX , for σ ∈ {1, . . . , d}.

In summary, for finite asymptotic values, the correspondence between indices is

(8.8)
σ ∈ 1, . . . , ν1︸ ︷︷ ︸ , ν1 + 1 , . . . , ν1 + ν2︸ ︷︷ ︸ , . . . , d− νm + 1, . . . , d︸ ︷︷ ︸ ,

j = j(σ) ∈ 1 , 2 , . . . , m ,

where σ enumerates the logarithmic branch points bσ ∈ RX , thus j = j(σ) enumer-
ates the distinct finite asymptotic values aj ∈ Ct, and α = α(σ) = σ enumerates
the exponential tracts11 associated to the finite asymptotic values.

11We have opted to use a very simple enumeration of the exponential tracts suggested by
Remark 8.7, but it is clear that a priori the enumeration is arbitrary.
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8.1.2. Global placement data. We also require information on where the different
ramified branch points of πX,2 are in RX and their interconnection on the surface.

Definition 8.8. Let aσ, aρ ∈ {a1, . . . , am} ⊂ Ct be two distinct (finite) asymptotic
values of ΨX and consider the oriented straight line segment aσaρ ⊂ Ct. The

inverse image π−1
X,2

(
aσaρ

)
= {Δϑσρ} ⊂ RX is a set consisting of an infinite number

of copies of aσaρ. For each segment Δϑσρ, let δϑσρ = πX,1(Δϑσρ) ⊂ Cz. We
shall say that Δϑσρ ⊂ RX is a diagonal, and that aσ, aρ share the same sheet
CΔϑσρ

\{suitable branch cuts} in RX , when the interior12 of δϑσρ is in Cz and δϑσρ
has as its endpoints ∞σ,∞ρ ∈ Cz.

The above coincides with Definition 8.3. Explicit examples of the use of diagonals
appear in Examples 8.12 through 8.15, and numerical computations in Theorem
8.24, equation (8.29).

Abusing notation, we will usually drop the index ϑ so a diagonal associated
to aσ and aρ will be denoted by Δσρ, and sometimes by the segment bσbρ, with
πX,2(bσ) = aσ and πX,2(bρ) = aρ. In this case the sheet shared by aσ and aρ will
be denoted by CΔσρ

\{suitable branch cuts} in RX .
There is a relationship between the diagonals Δσρ of RX and the semi–residues

of X (Definition 4.8). For Δσρ a diagonal associated to the finite asymptotic values

aσ and aρ, note that δσρ = πX,1(Δσρ) has as its endpoints ∞σ,∞ρ ∈ Cz and since
bρ, bσ ∈ RX , it follows that

(8.9) S(ωX ,∞σ,∞ρ, δσρ) =

∫
δσρ

ωX = bρ − bσ = Δσρ.

Lemma 8.9 (Existence of diagonals in RX). Assume that d ≥ 2 and let aσ be any
finite asymptotic value.

1) There exists at least a diagonal Δσρ associated to it.
2) By fixing a second (different) finite asymptotic value, aρ, the possible number of

diagonals in the collection {Δϑσρ} ⊂ π−1
X,2

(
aσaρ

)
ranges from 0 to d− 1.

Proof. Both assertions use that RX is biholomorphic to Cz; see Remark 8.2.
Consider the logarithmic branch point (∞σ, aσ).
Suppose that there is no diagonal associated to it. This implies that aσ does not

share a sheet, Ct\{suitable branch cuts}, with any other finite asymptotic value.
In other words, the only sheets, Ct\{suitable branch cuts}, of RX containing the
branch point (∞σ, aσ) are of the form Ct\{Lσ}, for Lσ = [aσ,∞); hence by the
same arguments as in Lemma 8.5, RX will have at least 2 connected components,
leading to a contradiction.

Thus, there exists at least a diagonal associated to (∞σ, aσ), that is,

(8.10) Δσρ =
(
∞σ, aσ

)(
∞ρ, aρ

)
,

πX,2

((
∞σ, aσ

))
= aσ, πX,2

((
∞ρ, aρ

))
= aρ,

for some aρ �= aσ.

12Since δϑσρ is a path homeomorphic to [a, b] ⊂ R, by the interior of δϑσρ we mean the

preimage, under the homeomorphism, of (a, b).
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Moreover, the multiplicity νj = νj(σ) of aj = aj(σ) (see equation (8.4)), is the

number of distinct preimages π−1
X,2(aj) = {(∞σ0

, aj), . . . , (∞σ0+νj−1, aj)}, for some

σ0 ∈ {1, ν1 + 1, . . . , d− νm + 1}, which are endpoints of a diagonal.
For assertion (2), the upper bound follows by considering a finite asymptotic

value aσ of multiplicity one and a finite asymptotic value aρ with multiplicity d−1,

then the segment aσaρ lifts via π−1
X,2 to at most d−1 diagonals. See Examples 8.14,

8.15. �
8.2. Why is the description of RX , for X ∈ E(d) difficult? For X be in E(d),
we must completely describe, analytically, the Riemann surface RX . In order to
do so, two combinatorial implicit obstacles are the following ones.

D.1. No canonical order can be given to {aσ} the asymptotic values of ΨX .
D.2. There is no preferred/canonical horizontal level 0,

CΔσρ
\{suitable branch cuts} ⊂ RX ,

that is to be chosen to start the description of RX as a combinatorial object.

8.3. d–configuration trees. We now introduce axiomatically certain trees capa-
ble of describing RX from X ∈ E(d).

We will denote by C̃∗ = {|z| ei arg(z)}, the universal cover of C∗, where arg(z) is
the multivalued argument.

Definition 8.10. A d–configuration tree is a graph tree Λ =
{
V ;E

}
with d vertices

V =
{
σ :=

(
∞σ, aσ

)}d

σ=1
,

where ∞σ ∈ Cz, aσ ∈ Ct, and d− 1 weighted edges

E =
{
(eσρ, λ̃σρ) | eσρ starts at σ and ends at ρ , λ̃σρ ∈ C̃∗

}
.

The following conditions must be satisfied.

For d = 1:

The 1–configuration trees are
{
1 =

(
∞1, a1

)
;∅

}
.

For d ≥ 2:

1) (Existence of edges) There are no edges between vertices σ and ρ if aσ = aρ.

2) (Weight of an edge) When an edge eσρ exists its associated weight is

(8.11) λ̃σρ =
(
aρ − aσ

)
ei2πK(σ,ρ) = |aρ − aσ| ei arg0(aρ−aσ)+i2πK(σ,ρ) ∈ C̃∗,

where K(σ, ρ) ∈ Z.
3) (Minimality condition) There are at least two vertices, say 1 = (∞1, a1) and

� = (∞�, a�) with a1 �= a�, such that there is an edge e1� connecting them.

The respective weight13 satisfies

λ1� = a� − a1 ∈ C
∗, i.e. K(1, �) = 0.

Several remarks regarding the complexity of Definition 8.10 are in order:

Remark 8.11. 1. The vertices σ will carry the information of asymptotic values
including their exponential tracts. An advantage of the σ notation is that it
simplifies the d–configuration trees and their representation as in Figures 11 and
13. The enumeration by the index σ is not canonical; see D.1 in §8.2.
13In order to make it easier to describe the geometry of the Riemann surfaces RX , it will be

convenient to sometimes use λσρ instead of λ̃σρ to emphasize when the argument lies in [0, 2π).
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2. A d–configuration tree can be thought of as a graph tree embedded in Cz × Ĉt.
3. The minimality condition (3) is not strictly required; it is a reflection of the

fact that C̃∗ (and hence RX) has a logarithmic branch point over 0 ∈ Ct. This

condition identifies a suitable copy of C∗ in C̃∗ as the horizontal level 0. The use
of the minimality condition simplifies the notation of the d–configuration trees,
in particular their d–skeleton (see Example 8.13 and Definition 8.19).

Example 8.12 (Examples of d–configuration trees, d ≤ 3). 1. For d = 1; Λ ={
1 = (∞1, a1);∅

}
as in Figure 11.a.

2. For d = 2; Λ =
{
1 = (∞1, a1), 2 = (∞2, a2); (e1 2, λ1 2)

}
as in Figure 11.b.

3. For d = 3; let a2 = 1, a1 = ei2π/3 and a3 = ei4π/3 be the cube roots of unity,

λ2 1 = a1 − a2, λ1 3 = a3 − a1, and λ̃1 3 = λ1 3ei4π (so K(1, 3) = 2). By agreeing
that 1 = (∞1, a1), 2 = (∞2, a2), 3 = (∞3, a3), then the following

Λ =
{
1 , 2 , 3 ; (e2 1, λ2 1), (e1 3, λ1 3)

}
,(8.12)

Λ̃ =
{
1 , 2 , 3 ; (e2 1, λ2 1), (e1 3, λ̃1 3)

}
(8.13)

are two different 3–configuration trees; see Figure 11.c, d. Note that we have
chosen an order for this example where the starting vertex for the enumeration
is 2 and not 1 (see §8.2.D.1). Obviously, the minimality condition remains
true with λ2 1 ∈ C∗.

Example 8.13 (Usefulness of the minimality condition). Consider a d–configuration
tree Λ =

{
V ;E

}
, d ≥ 2, with vertices

V =
{(

∞σ, aσ
)}d

σ=1
=

{(
∞1, a1

)
,
(
∞2, a2

)
,
(
∞3, a3

)
, . . . ,

(
∞d, ad

)}
,

where the asymptotic values {aσ}dσ=1 ⊂ Ct, have distinct imaginary parts, say
Im (a1) < · · · < Im (ad), and edges given by

E =
{
(eσ σ+1, λσ σ+1) | λσ σ+1 = (aσ+1 − aσ), σ ∈ {1, . . . , d− 1}

}
.

This d–configuration tree will correspond (as will be seen shortly) to a Riemann
surface RX with a logarithmic branch point over each aσ.

For each σ ∈ {1, . . . , d−1}, the collection of segments {Δϑ σ σ+1} ⊂ π−1
X,2(aσ aσ+1)

⊂ RX consists of exactly one diagonal and an infinite number of segments that are
not diagonals.

Furthermore, since the weights λσ σ+1 ∈ C
∗, all the d − 1 diagonals share the

same sheet Ct\{Lk}dk=1 in RX , (i.e. they all are on the same horizontal level of the
d–skeleton, see Definition 8.19). See Figure 12.a.

Note that the minimality condition is trivially satisfied since all λσ σ+1 ∈ C∗.
On the other hand, if the minimality condition was not present in the definition,

this example would change as follows.
A priori the horizontal level 0 (the starting sheet on RX for the description of

the d–skeleton) could contain the logarithmic branch point (∞1, a1) corresponding

to the vertex 1 but not the diagonal 1 2 . However, since all the logarithmic

branch points on RX (corresponding to the vertices { 1 , . . . , d }) lie on the same
sheet, then the weight λ1 2 would have to include the information as to how many
sheets in RX are needed to go up or down around the logarithmic branch point
(∞1, a1) before arriving at the sheet containing the other logarithmic branch points.
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b)

c)

a)

d)

Figure 11. d–configuration trees (d ≤ 3) and the corresponding
sheets in RX . (a) corresponds to Example 8.12.1. (b) corresponds

to Example 8.12.2; here there is only one diagonal 1 2 in a sheet
Ct\{Lk}2k=1. (c) and (d) correspond to the two 3–configuration
trees of Example 8.12.3, equations (8.12) and (8.13), respectively.

Note that λ1 3 �= λ̃1 3, since they differ in the argument by 4π. (c)
has all three diagonals (denoted by the orange dotted lines) sharing

one sheet Ct\{Lk}3k=1, even though the diagonal associated to 2 3
is not used in the construction of the 3–configuration tree. (d) has

only two diagonals ( 2 3 is not a diagonal) and each diagonal lies
on its own sheet. The gray shaded regions correspond to the sheets
Ct\{suitable branch cuts} necessary to construct the soul of the
d–configuration tree (see Definition 8.21 in text) for each example.
Finite determination trajectories are denoted by black dotted lines.
As will be seen in the proof of Theorem 8.16, cases (c) and (d) will
each represent a Riemann surface: RX1

�∼= RX2
, for X1, X2 ∈ E(3),

with their associated πX1,2 and πX2,2 as in diagram (2.6).
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Thus λ1 2 = (a2 − a1)ei2πK(1,2) would in general have an argument not in [0, 2π),
that is, K(1, 2) assumes a value in Z\{0}. The d–skeleton would then have to
include K(1, 2) vertical edges (with corresponding vertices) above or below the
vertex associated to 1 of the horizontal subtree.

As was mentioned immediately after Definition 8.8 in §8.1, for two fixed asymp-
totic values the number of corresponding diagonals that can occur as preimages
of πX,2, ranges between 0 to d − 1. It is now very simple to show this with d–
configuration trees.

Example 8.14. Consider a d–configuration tree Λ =
{
V ;E

}
, with vertices

V =
{(

∞σ, aσ
)}d

σ=1
=

{(
∞1, a1

)
,
(
∞2, a2

)
,
(
∞3, a3

)
, . . . ,

(
∞d, ad

)}
,

where the d ≥ 2 distinct asymptotic values are {aσ}dσ=1 ⊂ Ct, each with its corre-
sponding exponential tract (note that each pair (∞α(σ), aσ) determines a distinct

point in Cz × Ĉt), and edges given by

E =
{
(e1σ, λ̃1σ) | λ̃1σ = (aσ − a1)ei2π(σ−2), σ ∈ {2, . . . , d}

}
.

The corresponding RX should have a logarithmic branch point over each aσ.
For each σ ∈ {2, . . . , d}, the collection of segments {Δϑ 1σ} ⊂ π−1

X,2(a1 aσ) ⊂ RX

consists of exactly one diagonal and an infinite number of segments that are not
diagonals.

Furthermore, given σ, ρ ∈ {2, . . . , d}, σ �= ρ, there are no diagonals in the collec-
tion of segments {Δϑσρ} ⊂ π−1

X,2(aσ aρ) ⊂ RX .
In other words, there are exactly d− 1 diagonals in RX . See Figure 12.b.

Hence, Ct\{aσ}dσ=1 in Examples 8.13 and 8.14 are topologically equivalent; il-
lustrating the obstacle considered in §8.2.D.1.

Example 8.15. Consider a d–configuration tree Λ =
{
V ;E

}
, with vertices

V =
{(

∞σ, aσ
)}d

σ=1
=

{(
∞1, a1

)
,
(
∞2, a2

)
,
(
∞3, a2

)
, . . . ,

(
∞d, a2

)}
,

with d ≥ 2 and two distinct finite asymptotic values aσ = a2 �= a1 for σ ∈ {2, . . . , d},
the corresponding exponential tracts (once again each pair (∞α(σ), aσ) determines

a distinct point in Cz × Ĉt), and edges given by

E =
{
(e1σ, λ̃1σ) | λ̃1σ = (a2 − a1) ei2π(σ−2), σ ∈ {2, . . . , d}

}
.

The corresponding RX should have a logarithmic branch point over a1 and d − 1
logarithmic branch points over a2; the finite asymptotic values a1, a2 have multi-
plicities one and d− 1.

The collection of segments {Δϑ 1 2} ⊂ π−1
X,2

(
a1 a2

)
⊂ RX consists of exactly d−1

diagonals and an infinite number of segments that are not diagonals.
Once again there are exactly d− 1 diagonals in RX . See Figure 12.c.

8.4. Natural equivalences in E(d). As a guide to the rest of this section, we
remind the reader of the different categories that we study, and their natural equiva-
lences in the family of vector fields E(d).
Combinatorial category. In §8.5, the correspondence between classes of d–configu-
ration trees [ΛX ] and vector fields X ∈ E(d) is proved.
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Figure 12. d–skeletons, d–configuration trees and the correspon-
ding configurations Ct\{aσ}dσ=1. Bottom row shows Ct with the
finite asymptotic values and segments aσaρ (corresponding to the
projection under πX,2 of the diagonals); the middle row shows the

d–configuration trees with the weights λ̃σρ; the top row shows the
d–skeleton (see Definition 8.19). (a) corresponds to Example 8.13:
there is only one horizontal subtree, since the weights {λσρ} ⊂
C∗. (b) corresponds to Example 8.14: there are d − 1 horizontal
subtrees, each one consists of two vertices and a diagonal shown
in black bold lines; by starting the traverse of the d–configuration
tree from 2 , each horizontal subtree is one level upwards of the
previous one, as can be appreciated in the corresponding weights

{λ̃1σ}; since there are d distinct finite asymptotic values the d− 1
diagonals project onto d − 1 segments in Ct. (c) corresponds to
Example 8.15: once again there are d − 1 horizontal subtrees as
in (b); the distinction is that there are only two finite asymptotic
values a1, a2 with multiplicities one and d − 1; thus the d − 1
diagonals all project down to the segment a1a2 ⊂ Ct.



190 ALVARO ALVAREZ–PARRILLA AND JESÚS MUCIÑO–RAYMUNDO

Complex analytic category. Since E(d) is a complex manifold and Aut(C) is the
largest complex Lie group that acts holomorphically by pullback on E(d), there will
be a natural projection map

π1 : E(d) −→ E(d)
Aut(C)

.

Note that a priori the quotient space E(d)/Aut(C) need not be a complex manifold.
However, Theorem 8.16 provides an affirmative answer. This is the subject of §8.6
and §8.7.
Flat singular surfaces category. The circle S1 acts by X �→ eiθX leaving invariant
the respective flat metric gX , hence we have another natural projection map

π3 :
E(d)

Aut(C)
−→ E(d)

Aut(C)× S1
.

In this case the quotient space turns out to be a real analytic manifold, we examine
this in §8.7.
Topological category. The orientation preserving homeomorphisms14 Homeo(C)+

also act on E(d) by pullback on the singular foliations of the vector fields Re (X),
thus there is another natural projection map

π2 :
E(d)

Aut(C)
−→ E(d)

Homeo(C)+
.

The results concerning the image of π2 are presented in §8.8.
As a summary, the combinatorial, analytical, geometrical and topological classi-

fication of E(d) is expressed in diagram (1.2).

8.5. Description of the family E(d) via combinatorial scheme.

Theorem 8.16 (d–configuration trees as parameters for E(d)).
1) Entire structurally finite 1–order d vector fields are in one-to-one correspondence

with classes of d–configuration trees, i.e.

E(d) ∼=
{[
ΛX

] ∣∣ ΛX is a d–configuration tree
}
.

2) The family E(d) of entire structurally finite 1–order d vector fields is a complex
manifold of dimension d+ 1.

The equivalence classes
[
ΛX

]
of d–configuration trees will be described in Re-

mark 8.5.3.

Proof. Recalling Lemma 2.6 to prove (1) of the theorem, it is enough to show
that the classes of d–configuration trees are in one-to-one correspondence with the
Riemann surfaces RX for X ∈ E(d).

14Once again Homeo(C)+ correspond to those orientation preserving homeomorphisms of Ĉ,

Homeo(Ĉ)+, that fix ∞ ∈ Ĉ.
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8.5.1. First part of the proof: Given X ∈ E(d) and its Riemann surface RX ,
we construct a d–configuration tree ΛX .

Case d = 1. Let b1 ∈ RX be such that πX,2(b1) = a1 (see Remark 8.6), then
{(∞1, a1);∅} is the 1–configuration tree determined by the finite asymptotic value
a1. For the explicit analytic expression of X see Theorem 8.24, and Figures 1 and
3.

Case d ≥ 2. From RX , we shall identify the elements that will enable us to describe
it as a d–configuration tree.

1. Vertices of ΛX . Following equations (8.6), (8.8), let the vertices be

V =
{
σ =

(
∞σ, aσ

)}d

σ=1
.

2. Edges of ΛX . It is natural to consider that the diagonals (Definition 8.8)
should be the edges, however there is a caveat (see (b)).

a) Let the edge eσρ between σ and ρ exist whenever the segment(
∞σ, aσ

)(
∞ρ, aρ

)
is a diagonal Δσρ.

By Lemma 8.9, there is always at least one edge associated to every vertex and
there is always a path of edges that connects any two vertices.

b) If by considering (a) we obtain a cycle in the corresponding graph, choose any
one edge of said cycle and remove it; no information is lost. See for example

Figure 11.c where the edge 1 3 is removed to avoid a cycle.
c) Thus the edges will be in 1–1 correspondence with the set of diagonals described

in (a) and (b).

This provides us with a (nonweighted) tree that has d vertices and d− 1 edges.

3. Weights of ΛX . In order to assign the corresponding weights to the edges, we
will need to traverse the tree. However, there is no canonical way of doing so (recall
§8.2.D.1), hence the notation will get inherently complicated. An explicit example,
8.17, to help understand the assignment of the weights is provided; the reader may
follow along using Figure 13.

Example 8.17 (Combinatorial aspects from sheets of an RX to its 6–configuration
tree ΛX). Let RX be a simply connected Riemann which is described as sheets
(Definition 8.3) glued together in the following very specific way (see Figure 13):
There are six logarithmic branch points { σ = (∞σ, aσ)} over six distinct finite
asymptotic values {aσ}6σ=1 of multiplicity one.

In addition, we assume that for {σ} := {1, 2, 4} ⊂ {1, . . . , 6}, a sheet

(8.14) Ct\{Lσ = [aσ,∞)}σ=1,2,4 ⊂ RX exists.

The sheet determines two edges and diagonals Δ1 2, Δ2 4 whose extremes are the
corresponding vertices 1 , 2 , 4 of ΛX . Since the vertices share the same sheet,
we define the weights as

λ1 2 = a2 − a1, λ2 4 = a4 − a2 ∈ C
∗.

It is natural to say that the sheet (8.14) determines a horizontal subtree of ΛX ,
corresponding to the horizontal level 0 (since it contains the starting vertex of the
description of RX as a combinatorial object).
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We assume the analogous in RX for a second set {σ} := {2, 3, 5, 6}, a sheet

(8.15) Ct\{Lσ = [aσ,∞)}σ=2,3,5,6 ⊂ RX exists.

It determines the respective vertices, edges and weights in ΛX , as well as another
horizontal subtree of ΛX .

Furthermore, RX contains three sheets of type Ct\{L2 = [a2,∞)}, forming a
finite helicoid (Definition 5.4), and glued together to the sheets (8.14) and (8.15)
in such way that

λ̃2 3 = (a3 − a2) ei2πK(2,3) ∈ C̃∗,

where 2πK(2, 3) = −6π is the argument (measured inside RX) between the sheets
containing the diagonals Δ1 2 and Δ2 3 in the sheets (8.14), (8.15), respectively. In
other words, the sheet (8.15) containing Δ2 3 is K(2, 3) = −3 levels (downwards)
from the sheet (8.14) containing Δ1 2.

This finishes the construction of ΛX from RX .
Note that the sheets (8.14), (8.15) also have half–logarithmic spirals (see Defi-

nition 5.5) glued to them. The sheets of RX inside these spirals (red vertices in
Figure 13) do not concern ΛX . In the second part of the proof of Theorem 8.16,
recognizing RX , for X ∈ E(6), will become clear.

Assignment of the weights.

a) We start to traverse the tree at a leaf (a vertex of degree 1), without loss of
generality we will assume that said leaf is 1 , and the edge corresponding to
the leaf is e1�. That is e1� connects the vertex 1 and � . We define the weight

λ1� = a� − a1 ∈ C
∗ i .e. K(1, �) = 0,

hence 1 , � share the same sheet in RX , thus achieving the minimality con-

dition. This exhausts the edges containing the leaf 1 .
b) Now standing at the vertex � , we can choose a vertex σ , with σ �= 1, �, such

that the edge e� σ exists. The associated weight is defined as in (8.11) by

(8.16) λ̃� σ =
(
aσ − a�

)
ei2πK(�,σ) = |aσ − a�| ei arg0(aσ−a�)+i2πK(�,σ),

where 2πK(�, σ) is the argument (measured inside RX) between the sheets
containing the diagonals Δ1� and Δ�σ.

Note that geometrically K(�, σ) ∈ Z corresponds to the number of sheets in
RX that separate Δ1� and Δ�σ.

As is usual (for instance on the Riemann surface of the logarithm), going
around a ramified branch point counterclockwise makes us go “upwards” on
the ramified surface and hence the number that separates the sheets is posi-
tive. Similarly, going around the ramified branch point clockwise makes us go
“downwards” on the ramified surface.

c) Continue the construction as in (b) for all the edges that contain the vertex
� , assigning the corresponding weight just as before. This exhausts the edges
containing vertex � .

d) Standing at the vertex σ of the edge e� σ, we can now choose a vertex ρ , not
equal to the ones already traversed, and such that the edge eσρ exists. Once
again, define the weight, as in (8.11) by

(8.17) λ̃σρ =
(
aρ − aσ

)
ei2πK(σ,ρ) = |aρ − aσ| ei arg0(aρ−aσ)+i2πK(σ,ρ),

where 2πK(σ, ρ) is the argument between the sheets containing Δ�σ and Δσρ.
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Figure 13. A 6–configuration tree ΛX and its 6–skeleton (cor-
responding to Example 8.17). In the case pictured, the weights
λ1 2, λ2 4 ∈ C∗, i.e. have arguments in [0, 2π) so the vertices 1 ,
2 , and 4 together with the edges (e1 2, λ1 2) and (e2 4, λ2 4) give

rise to the horizontal level 0. On the other hand, λ̃2 3 ∈ C̃∗ has
argument in [−6π,−4π), while λ3 5, λ3 6 ∈ C∗, hence the subtree,
in the 6–skeleton, formed by the vertices 2 , 3 , 5 and 6 is 3
levels downwards from the horizontal level 0. Note that the weight

λ̃2 3 gives origin to λ2 3 ∈ C∗, while λ1 2, λ2 4, λ3 5 and λ3 6 all lie
in C∗. The red shaded elements in the figure are a representation
of the semi–infinite helicoids that are glued to the soul of ΛX to
obtain the surface RX .
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e) Continuing in this way until all the vertices are exhausted, we assign weights
to all the edges.

We have then constructed a d–configuration tree ΛX associated to X.

Remark 8.18. Note that there might be other d–configuration trees associated to
X since in §8.5.1.2.b there could be a choice when assigning the edges. This will
be addressed in §8.5.3.

8.5.2. Second part of the proof: Given a d–configuration tree ΛX , we construct
a simply connected Riemann surface RX with d logarithmic branch points, i.e.
X ∈ E(d).

The construction will proceed in two steps, we will first construct an auxiliary
tree, the d–skeleton (see definition below), describing the embedding of ΛX in

Cz×Ĉt. As a second step, from the d–skeleton we will construct a simply connected
Riemann surface RX with d logarithmic branch points.

The d–skeleton will contain the same information as ΛX , with the disadvantage
that it is more cumbersome to express, but with the advantage that it will allow us
to clearly identify the equivalence classes of ΛX .

1. Construction of the d–skeleton. We extend a d–configuration tree

ΛX =
{{

σ =
(
∞σ, aσ

)}d

σ=1
;
{
(eσρ, λ̃σρ)

}}
,

by the following procedure (see Figure 13).

First recall that for each weighted edge, (eσρ, λ̃σρ), that starts at σ and ends at
ρ , the weight can be expressed as

λ̃σρ = λσρ ei2πK(σ,ρ),

with λσρ ∈ C∗ and K(σ, ρ) ∈ Z.

I) For each vertex σ = (∞σ, aσ,∞), of the original ΛX :
a) Let

Kmax = max
ρ

{0,K(σ, ρ)} and Kmin = min
ρ

{0,K(σ, ρ)},

where the maximum and minimum are taken over all the edges that
start at σ and end at ρ .

b) Construct a vertical tower associated to σ consisting of exactly (Kmax−
Kmin+1) copies of the vertex σ joined by (Kmax−Kmin) vertical edges
(without weights). We shall assign, consecutively, to each vertex of the
vertical tower a level : an integer starting at Kmin and ending at Kmax.
Call the increasing direction up and the decreasing direction down.
At this point the vertical tower will have vertices of degree 2, except for
the vertices at levels Kmin and Kmax which have degree 1.

II) We proceed with the construction.
a) Replace all the vertices with their associated vertical tower.

b) The edges require a little more finesse: The edge, (eσρ, λ̃σρ), is to end at
the level 0 vertex of the vertical tower associated to ρ . Furthermore, it

should start at the level K(σ, ρ) vertex of the vertical tower associated
to σ .

c) Finally, replace the weights λ̃σρ by λσρ.

Definition 8.19. We shall call this tree the d–skeleton of ΛX .
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The d–skeleton has the following properties (see Figure 13):

A) All edges that are not vertical are of the form (eσρ, λσρ) with λσρ ∈ C
∗. We

shall call these horizontal edges.
B) Consider two horizontal edges (eσρ, λσρ) and (eρτ , λρτ ) on the d–skeleton that

share the vertex ρ in the original d–configuration tree ΛX . We shall say that

the horizontal edge (eρτ , λρτ ) is K(ρ, τ ) levels upwards or downwards of the
edge (eσρ, λσρ) in the d–skeleton depending on whether K(ρ, τ ) is positive or
negative, respectively. In case that K(ρ, τ ) = 0 we shall say that the edges
share the same horizontal level.

C) The d–skeleton has horizontal subtrees formed by the horizontal edges on the
same horizontal level. From the minimality condition the weight λ1 2 ∈ C∗,
hence the subtree containing (e1 2, λ1 2) will correspond to the horizontal level
0 subtree of the d–skeleton.

D) By collapsing the vertical edges of the d–skeleton we recover the original d–
configuration tree, losing the information of the argument of the original weights

λ̃σρ. This collapsing of the d–skeleton can also be thought off as the projection
πX,2 to the original d–configuration tree; see Figure 13.

2. Construction of RX from the d–skeleton. For simplicity, let us first assume
that the m distinct values {aj(σ)}mj(σ)=1 ⊂ (C, ∂

∂t ) arising from the vertices σ =

(∞σ, aσ), lie on m different horizontal trajectories, i.e. Im (a1) < · · · < Im (am).
There are two types of vertices on the d–skeleton; those that do not share hori-

zontal edges (these are the vertices with vertical edges, i.e. on the vertical towers)
and those that share horizontal edges (the vertices that belong to a horizontal
subtree).

Remark 8.20. Combinatorial aspects of a sheet, from the d–skeleton to RX . We
recall Definition 8.3.

Case 1. If we have a vertex σ with only vertical edges attached to it (there are
only two such vertical edges), then we obtain a sheet Ct\{Lσ} with only one Lσ.
Note that the two boundaries [aσ,∞)± correspond to the vertical edges.

Case 2. If we have a horizontal subtree in the d–skeleton, say with vertices σ
 ,

then we obtain a sheet Ct\{Lσ	
}
. Once again the edges eσρ correspond to the

diagonals Δσρ ⊂ Ct\{Lσ	
}
.

We proceed with the construction.

a) Replace each vertex15 that does not share a horizontal edge with a copy of
Ct\Lσ.

b) Given a horizontal subtree with s vertices, let v
, for � ∈ {1, . . . , s} be its
vertices. Denote by σ
 the vertex, of the original d–configuration tree, to

which the vertex v
 projects down to. Replace the given horizontal subtree
with a copy of

Ct\{Lσ	
}s
=1,

15Recall that all the vertices of the d–skeleton are either the original vertices σ of the original
d–configuration tree, or copies of them. Thus any vertex in the d–skeleton projects to a unique
vertex on ΛX .
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where each Lσ	
is the horizontal branch cut associated to the vertex σ
 . Since

all the values {aσ	
} lie on different horizontal trajectories of ∂

∂t , then none of
the horizontal branch cuts Lσ	

intersect in Ct.
c) Continue as in (b) for every horizontal subtree.
d) Note that we obtain stacked copies of Ct\Lσ and Ct\{Lσ	

}s
=1, but they retain
their relative position with respect to the d–skeleton, by the fact that we still
have not removed the vertical edges of the d–skeleton.

e) On each vertical tower, say the one associated to the vertex σ , glue together,
using Corollary 5.11, the horizontal branch cuts by alternating the boundaries
of Ct\Lσ, so as to form finite helicoids (recall Definition 5.4) glued together
over the vertex σ , making sure that all the finite helicoids go upwards when
turning counterclockwise around the vertex. Note that these finite helicoids
replace the vertical towers in the d–skeleton. Erase the vertical edges of the
d–skeleton.

We obtain a simply connected surface constructed from the d–skeleton that has
as boundary horizontal branch cuts [aσ,∞)− ∪ [aσ,∞)+ associated to the values
{aσ}dσ=1 ⊂ Ct.

If some of the values {aσ}dσ=1 ⊂ (C, ∂
∂t ) arising from the vertices σ , lie on the

same horizontal trajectory of ∂
∂t , then by Sard’s theorem there is a small enough

angle θ > 0 such that the set of values {aσ} ⊂ (C, eiθ ∂
∂t ) lie on m different trajec-

tories of eiθ ∂
∂t (in fact any small enough angle θ �= 0 will suffice). Proceed with the

construction (a)–(e) as above but using eiθLσ instead of Lσ for the construction.
Note that for small enough θ > 0 all the surfaces obtained are homeomorphic.
Finally, let θ → 0+ and consider the limiting surface16.

Definition 8.21. We shall call this surface the soul of the d–configuration tree ΛX .

In Figure 11 we can observe the soul of d–configuration trees for d = 1, 2, 3. An ex-
ample of the soul of a 4–configuration tree is in Figure 19. Applying the construction
(a)–(e) to the 6–skeleton of Figure 13 one obtains the soul of the 6–configuration
of Example 8.17.

Finally, glue a semi–infinite helicoid to each of the 2d boundaries of the soul of
ΛX to obtain a simply connected Riemann surface RX that is many sheeted with
d logarithmic branch points over finite asymptotic values. In fact, this surface is
realized via Maskit surgeries with d exp–blocks, so, by [67], [68], it corresponds to
a function

ΨX ∈ SFr,d =

{∫ z

z0

R(ζ)eP (ζ)dζ + b
∣∣∣ P,R ∈ C[z], degR = r, degP = d

}
,

with r = 0, that is, ΨX(z) =
∫ z

z0
λ−1e−P (ζ)dζ with P (z) a polynomial of degree d.

Finally, assign to RX a flat metric
(
RX , π∗

X,2(
∂
∂t )

)
induced by πX,2. By Proposition

3.5, our sought after vector field is

X(z) = Ψ∗
X(

∂

∂t
)(z) = λ eP (z) ∂

∂z
∈ E(d)

as required.

16This construction need only be applied if at stage (b) of the construction, some of the vertices

vl on a given horizontal level have their corresponding values {aσl} on the same trajectory of ∂
∂t

.
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Remark 8.22. Each semi–infinite helicoid (associated to the finite asymptotic values
aσ) provided with the flat metric π∗

X,2(
∂
∂t ) is biholomorphic to a half–logarithmic

spiral associated to the asymptotic values aσ and ∞.

8.5.3. Third part of the proof: The equivalence relation on d–configuration trees.
Let us summarize the parameters that define the d–configuration trees:

1) We have d− 1 parameters {λ̃σρ} ⊂ C̃∗.

2) The choice of starting vertex 1 = (∞1, a1), a1 ∈ Ct, to traverse the d–configura-
tion tree, which in fact is a choice of an asymptotic value (together with its
exponential tract). Hence we are also determining a horizontal level 0 in the
d–skeleton.

3) The choice of the lower limit of integration z0 for the distinguished parameter
Ψ(z) =

∫ z

z0
ωX . Note that this choice is equivalent to choosing an “origin”

b0 = (z0, 0) ∈ RX .

Even though (2) and (3) above are related, they are not equivalent.
From the above, Remarks 8.2 and 8.18, it is clear that there is a hidden equiv-

alence relation amongst the d–configuration trees. In fact, given a d–configuration
tree there are many choices for the starting vertex for the construction of RX and
for how to traverse the d–configuration tree. Moreover, recalling that there is a
choice of the edge that needs to be removed when a horizontal cycle of diagonals
appears on a horizontal subtree (see §8.5.1.2.b), it is clear that the d–skeletons ob-
tained from any of the above choices are equivalent in the sense that they give rise
to the same surface RX .

So we have:

Definition 8.23. Two d–configuration trees are equivalent,

Λ1 ∼ Λ2,

if their corresponding d–skeletons are the same up to:

1. Relabelling of the vertices.
2. Choice of the horizontal level 0.
3. Choice of which edge to remove when a horizontal cycle occurs (see §8.5.1.2.b

where the edges of ΛX are assigned).

Note that the d+ 1 complex parameters,
{
z0, (∞1, a1),

{
λ̃σρ

}d−1

1

}
defining ΛX

are continuous, and they form local charts for E(d) as a complex manifold of di-
mension d+ 1.

The proof of Theorem 8.16 is done. �

We now have three compatible atlases for E(d) as a complex manifold:

• The one given by
{
z0, (∞1, a1),

{
λ̃σρ

}d−1

1

}
defining ΛX .

• The more “natural” charts that arise from the d+ 1 coefficients {(b0, . . . , bd)} ⊂
Cd+1 of the polynomial P (z) defining X ∈ E(d).

• The final one given by the d roots of P (z) and the coefficient λ, as in Definition
8.1.

8.6. Normal forms for X ∈ E(d), when d = 1, 2, 3. We examine low degree
cases for X ∈ E(d), where one can actually come up with explicit expressions for
π1 : E(d) → E(d)/Aut(C) in diagram (1.2) and for the finite asymptotic values
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{aσ}. A normal form is a representative of an equivalence class in E(d)/Aut(C), in
general it is not possible to choose a canonical representative.

Theorem 8.24. The normal forms in E(d)/Aut(C), d ≤ 3, can be given as follows:

For d=1, ez
∂

∂z
.

For d=2, μ ez
2 ∂

∂z
, μ ∈ C∗.

For d=3, μ e(−
1
3 z

3+pz) ∂

∂z
, μ ∈ C∗, p ∈ C.

Furthermore, explicit expressions for the finite asymptotic values are given by (8.19),
(8.21), (8.28), for d = 1, 2, 3, respectively.

Proof.

Case d = 1 (Normal form). Given a singular analytic vector field

X(z) = e(b0z+b1)
∂

∂z
, b0 �= 0,

then by considering the affine transformation T (w) = 1
b0
w− b1+log b0

b0
, the pullback

vector field is

(8.18) X̃(w) = (T ∗X) (w) = ew
∂

∂w
.

Finite asymptotic value. If Ψ(z) =
∫ z

z0
e−b0ζ−b1dζ, then a straightforward cal-

culation shows that

Ψ(z) = b−1
0 (e−(b0z0+b1) − e−(b0z+b1)),

hence letting b0z = reiθ one has that

lim
r→∞

e−(reiθ+b1) =

⎧⎪⎨⎪⎩
0 θ ∈ (−π

2 ,
π
2 ),

∞ θ ∈ (π2 ,
3π
2 ),

DNE θ = π
2 ,

3π
2 .

So the finite asymptotic value of Ψ(z) is

(8.19) b0
−1e−(b0z0+b1),

with finite determination paths being those paths γ that tend to ∞ ∈ Ĉz with
argument in (−π

2 − arg(b0),
π
2 − arg(b0)). See Example 8.12.1 and Figure 11.a for

the 1–configuration tree Λ and its soul.

Case d = 2 (Normal form). Given a singular analytic vector field of the form

X(z) = e(b0z
2+b1z+b2) ∂

∂z
, b0 �= 0,

then by considering the affine transformations Tj(w) =
1√
b0
w − b1

2b0
, where j = 1, 2

indicates the choice of square root, the pullback vector field is

(8.20) X̃(w) =
(
T ∗
j X

)
(w) = μjew

2 ∂

∂w
, with μj =

√
b0 exp

(
− b21
4b0

+ b2

)
.

Hence μj ∈ C
∗ is the complex parameter that completely determines the class of

X ∈ E(2)/Aut(C). See Figures 15 and 16 for the generic examples of the phase
portraits.
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Finite asymptotic values. If Ψ(z) =
∫ z

z0
e−b0ζ

2−b1ζ−b2dζ, then there are exactly

two finite asymptotic values of Ψ(z) given by17

(8.21)

a1 =
√
π

2μj

(
−erf

(√
b0z0 +

b1
2
√
b0

)
+ 1

)
,

a2 =
√
π

2μj

(
−erf

(√
b0z0 +

b1
2
√
b0

)
− 1

)
,

with finite determination paths being those paths γ that tend to ∞ with argument
in

[
−π

4 − arg
√
b0,

π
4 − arg

√
b0

]
or

[
3π
4 − arg

√
b0,

5π
4 − arg

√
b0

]
.

Let γz be a path starting at z0 and ending at z in C. From (8.20)

Ψ(z) =

∫ z

z0

e−b0η
2−b1η−b2dη =

∫ T−1
j (z)

T−1
j (z0)

1

μj
e−ζ2

dζ,

and letting w0 = T−1
j (z0) and w = T−1

j (z), we have that∫ w

w0

1

μj
e−ζ2

dζ =

(∫ 0

w0

+

∫ w

0

)
1

μj
e−ζ2

dζ.

Now noticing that

1

μj

0∫
w0

e−ζ2

dζ =
1

μj

−w0∫
0

e−ζ2

dζ =

√
π

2μj
erf (−w0) = −

√
π

2μj
erf (w0) ,

and since

lim
z→∞
z∈γz

erf
(
T−1
j (z)

)
=

⎧⎪⎨⎪⎩
1 when arg

(
T−1
j (z)

)
∈ [−π

4 ,
π
4 ],

−1 when arg
(
T−1
j (z)

)
∈ [ 3π4 , 5π

4 ],

∞ when arg
(
T−1
j (z)

)
∈ (π4 ,

3π
4 ) ∪ ( 5π4 , 7π4 ),

equation (8.21) follows. Note that the closed intervals where the limit is finite is
not a typographical mistake, but a characteristic behaviour of the error function.

From Corollary 4.18, the configuration of finite asymptotic values modulo trans-
lations is the parameter that determines the class

[[a1, a2]] = ±(a2 − a1) =

√
π

μj
= λ12, μj = ±

√
π

a1 − a2
.(8.22)

We have an orbifold structure for

(8.23)
E(2)

Aut(C)
∼=

C
∗

Z2
=

{[[a1, a2]]}
Z2

,

where the Z2 action identifies μj with −μj . It is convenient to note that in this
case the asymptotic values a1 and a2 always share a sheet on RX and, in fact, the
segment b1b2 ∈ π−1

X,1(a1a2) is the unique diagonal Δ12. See Example 8.12.2 and
Figure 11.b for the corresponding 2–configuration tree ΛX and its soul.

Case d = 3 (Normal form). Given a singular analytic vector field of the form

X(z) = exp
(
b0z

3 + b1z
2 + b2z + b3

) ∂

∂z
, b0 �= 0,

17Here erf is the usual error function originating from the integral of the exponential of z2.
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there exists 3 affine transformations Tj , j = 1, 2, 3, such that the pullback vector
field is

(8.24) X̃(w) =
(
T ∗
j X

)
(w) = μ exp

(
−1

3
w3 + pw

)
∂

∂w
.

In order to show this consider the affine transformations Tj(w) = αjw + βj with

αj = (− 1
3b0

)1/3 and βj = − b1
3b0

, where j = 1, 2, 3 indicates a choice of the cube

root, then the pullback vector field is (8.24) with

μ = (−3b0)
1/3 exp

(
2b31 − 9b0b1b2 + 27b20b3

27b20

)
and p =

b21 − 3b0b2
(−3b0)4/3

,

where we omit the sub–index j indicating the choice of cube root in μ and p.
Thus showing that in case d = 3 the local geometry of the normal form is

completely understood by the local parameters μ �= 0 and p. In fact, E(3)/Aut(C)
is a complex analytic variety of (complex) dimension 2.

Finite asymptotic values.

Lemma 8.25. Let

Ai(p, z) =
1

2πi

∫
L(z)

e
1
3 ζ

3−pζdζ,

be the Airy integral, where A = {z ∈ C | arg(z) ∈ (π/6, 3π/6)}, L(z) := L(z, τ ) :
[0, 1] −→ A is a simple C1 path starting at 0 and ending at z, then:

1) Ai(p, z) is an entire function of p and is analytic in A as a function of z.

2) Furthermore, Ai(p, z) is in fact analytic in Â = A ∪ ei2π/3A ∪ e−i2π/3A and
Ai(p, e±i2π/3z) = e±i2π/3Ai(e±i2π/3p, z).

Proof. Let L(z) be a path as above and let L(z) be the conjugate path traversed in

the opposite direction (i.e. starting at z and ending at 0). Then L̂(z) = L(z)∪L(z)
is a piecewise C1 simple path symmetrical about the real axis in C that starts at

z and ends at z. Denote by L̂ the limit path obtained from L̂(z) by letting z tend
to infinity along A. Then

Ai(p) =
1

2πi

∫
̂L
e

1
3 ζ

3−pζdζ

is the usual Airy integral which is in fact an entire function of p (see [56], pp. 53).
Moreover,

(8.25)

Ai(p) = 1
2πi

∫
̂L e

1
3 ζ

3−pζdζ

= lim
z→∞
z∈A

{
1

2πi

∫
L(z)

e
1
3 ζ

3−pζdζ + 1
2πi

∫
L(z)

e
1
3 ζ

3−pζdζ
}

= lim
z→∞
z∈A

{
Ai(p, z) + 1

2πi

∫
L(z)

e
1
3 ζ

3−pζdζ
}
,

hence in fact Ai(p, z) is an entire function of p, and is analytic as a function of
z ∈ A, as stated.
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For the proof of statement (2) of the lemma, consider that

(8.26)

e±i2π/3Ai(e±i2π/3p, z)

=
e±i2π/3

2πi

∫
L(z)

e
1
3 ζ

3−(e±i2π/3p)ζdζ

=
1

2πi

∫
L(z)

e
1
3 (e±i2π/3ζ)3−p(e±i2π/3ζ)e±i2π/3dζ

=
1

2πi

∫
e±i2π/3L(z)

e
1
3 ζ

3−pζdζ = Ai(p, e±i2π/3z). �
Furthermore, note that the last integral appearing in (8.25) is in fact equal to

1

2πi

∫
L(z)

e
1
3 ζ

3−pζdζ = − 1

2πi

∫ z

0

e
1
3 ζ

3−pζdζ = − 1

2πi

∫ e−i2π/3z

0

e
1
3 ζ

3−pζdζ

= −Ai(p, e−i2π/3z) = −e−i2π/3Ai(e−i2π/3p, z),

for z ∈ A, so in fact, we have

(8.27) Ai(p) = Ai(p)− e−i2π/3Ai(e−i2π/3p), Ai(p) = lim
z→∞
z∈A

Ai(p, z).

Corollary 8.26. Let Ψ(z) =
∫ w

w0

1
μe

1
3 ζ

3−pζdζ, where w = T−1
j (z) and w0 =

T−1
j (z0), then there are exactly 3 finite asymptotic values of Ψ(z) given by

(8.28) aj+1(μ, p) =
2πi

μ

(
ηjAi(ηjp)−Ai(p, w0)

)
, j = 0, 1, 2, η = ei2π/3,

with finite determination paths ending in A = {z ∈ C | arg(z) ∈ (π/6, 3π/6)},
ei2π/3A and e−i2π/3A for j = 0, 1 and 2, respectively.

Proof. It is a straightforward calculation using the previous lemma. The three finite
asymptotic values depend on the specific finite determination path γ chosen:

• if γ ends in A = {z ∈ C | arg(z) ∈ (π/6, 3π/6)}, then j = 0 so ηj = 1,
• if γ ends in ei2π/3A, then j = 1 so ηj = ei2π/3,
• if γ ends in e−i2π/3A, then j = 2 so ηj = e−i2π/3. �

In the case of E(3), the configuration of finite asymptotic values modulo trans-
lations (see once again Corollary 4.18) are the classes

[[a1, a2, a3]]

consisting of the three finite asymptotic values modulo translations, which are in
1–1 correspondence with the triangles having vertices a1, a2, a3. Using (8.27), it
follows that the sides of the triangle [[a1, a2, a3]] are given by the absolute values of

(8.29)

λ̃1 3 = a3 − a1 = − 2πi
μ Ai(p),

λ̃2 1 = a1 − a2 = −ei2π/3 2πi
μ Ai(ei2π/3p),

λ̃3 2 = a2 − a3 = 2πi
μ

[
Ai(p)− ei2π/3Ai(ei2π/3p)

]
,

where λ̃jk = λjkei2πK(j,k), with λjk ∈ C
∗ and K(j, k) ∈ Z, as in (8.11). As seen

in the explicit construction of the vertices of the triangle (also see [53], pp. 291), it
is not possible to have a fully degenerate triangle (all finite asymptotic values of Ψ
being the same). This finishes the proof of Theorem 8.24. �

With the above conventions, we have proved the following.
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Corollary 8.27. The 3–configuration tree ΛX , for X given by (8.24), is

ΛX =
{
1 = (∞1, a1), 2 = (∞2, a2), 3 = (∞3, a3); (e2 1, λ̃2 1), (e1 3, λ̃1 3)

}
,

where we choose 2 to be the starting vertex, hence λ̃2 1 ∈ C∗. �

Remark 8.28. This relates to Example 8.12.3 and Figure 11.
The 3–configuration tree and its soul in Figure 11.c correspond to the case when

the diagonals all share the same sheet C\{La1
∪ La2

∪ La3
}.

On the other hand, Figure 11.d corresponds to the case when the diagonal 2 1

lies in the sheet C\{La1
∪La2

} and the diagonal 1 3 lies in the sheet C\{La1
∪La3

}
forming two horizontal subtrees separated by a vertical edge on the 3–skeleton.

Note that∞1,∞2,∞3 corresponds to the exponential tract denoted by A, ei2π/3A,
e−i2π/3A, respectively, in Corollary 8.26. Moreover, these 3 equi–angular sectors

at ∞ ∈ Ĉz have 3 other sectors interspersed where Ψ has ∞ as asymptotic value,
this in accordance with Remark 8.7.

8.6.1. Global geometry of E(3)/Aut(C). Contrary to the case d = 2 (see (8.23)), for
d = 3 we need more than just the triangles [[a1, a2, a3]] to determine X. In what
follows we examine numerically the holomorphic mono–parametric family

Cp −→ E(3), p �−→ X(z) = e−
1
3 z

3+pz ∂

∂z
,

where we have fixed μ = 1 in (8.24), since μ acts as a homothety of the triangle
[[a1, a2, a3]] of asymptotic values.

For each p ∈ Cp, in Figure 14.a, corresponds a triangle [[a1, a2, a3]] in Figure
14.b, where without loss of generality we assume that a1 = 0. With the above
assumptions, and considering (8.29) together with the notation of Remark 8.28, we
can now observe the following (a Mathematica CDF file, corresponding to Figure
14, is available as electronic supplemental material).

1. The blue curves in Figure 14.a indicate where Re (a3) = 0, so in the correspond-
ing triangle the side a1a3 (depicted red in Figure 14.b) is vertical; the red curves
in Figure 14.a are where Im (a3) = 0, so the side a1a3 is horizontal. The green
and orange curves indicate where Re (a2) and Im (a2) are zero, respectively (the
corresponding triangle will have the blue side a2a1 being vertical or horizontal,
respectively).

2. The blue dots correspond to the case of the degenerate triangle when a3 = a1 = 0
(exactly on the zeros of the Airy function Ai(p)). The black dots correspond to
a2 = a1 = 0, and the brown dots to a3 = a2.

3. The green dots correspond to two particular choices of parameter p that give
rise to the two triangles depicted in Figure 14.b. The origin in Cp corresponds
to the equilateral triangle depicted in Figure 14.b, while the other green dot
(lying on the intersection of the dotted brown curve and one of the red curves)
corresponds to the isosceles triangle.

4. In general for p ∈ Cp the segments 1 3 , 2 1 and 2 3 in RX , are not
all diagonals (recall that πX,2(bj) = aj); in fact, the three segments are all
diagonals if and only if a1, a2, a3 are all distinct and share the same sheet on
RX . Furthermore, since we have fixed a1 = 0 ∈ Ct we may assume without
loss of generality that the side a2a3 (colored purple) is never a projection of a
diagonal (except in the case just considered). See Definition 8.8, Figure 11.c–d.
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5. By moving p along one of the dotted lines (or along the negative real axis) the
associated triangle changes and eventually repeats itself (modulo scale). We
shall examine in detail three scenarios by considering the triangle [[a1, a2, a3]]
on Ct, and the diagonals on RX .
a) Moving p along the negative axis (away from the origin) makes the side

a2a1 (colored blue) go around the origin counterclockwise, thus on RX the

corresponding diagonal 2 1 changes sheet every time p crosses two orange
curves.

b) Moving p along the dotted black lines (away from the origin) makes the
side a1a3 (colored red) go around the origin clockwise, thus on RX the

corresponding diagonal 1 3 changes sheet every time p crosses two red
curves.

c) Moving p along the dotted brown lines (away from the origin) makes the side
a1a3 (colored red) go around the origin counterclockwise and the side a2a1
(colored blue) go around the origin clockwise, thus on RX the corresponding

diagonal 1 3 changes sheet every time p crosses two red curves and the

corresponding diagonal 2 1 changes sheet every time p crosses two orange
curves.

6. Relating the configuration tree ΛX to (5) above, the argument of the weight λ1 3

changes by ±π every time that p crosses either an orange or a red curve.

−10 −8 −6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

-4 -2 0 2 4
-4

-2

0

2

4

a2

a3

a2

a3a1

(a) Cp for fixed μ = 1. (b) Triangles [[a1, a2, a3]].

Figure 14. We depict in (a) the p–parameter plane Cp for
E(3)/Aut(C) fixing μ = 1, and (b) the corresponding triangles
[[a1, a2, a3]], with a1 = 0, in Ct. The green dot at the origin in (a)
corresponds to the equilateral triangle, the other green dot cor-
responds to the isosceles triangle. Moving the parameter p in (a)
deforms the corresponding triangle in (b). See §8.6.1 for further
details.

8.7. The quotient space E(d)/Aut(C) and flat metrics. Continuing with the
study, started in §8.6, of the normal forms E(d)/Aut(C) for general d ≥ 2, and
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including the flat metrics E(d)/(Aut(C)× S1) alluded to in diagram (1.2), we can
now state and prove the following result.

Corollary 8.29 (Normal forms and flat metrics up to isometry, d ≥ 2).

1) Normal forms: E(d)
Aut(C) is a complex manifold of dimension d− 1.

2) Flat metrics: E(d)
Aut(C)×S1 is a real analytic manifold of dimension 2d− 3.

Note that the complex dimension alluded to in (1) of the corollary has been
explicitly calculated, in the previous section, for the cases d = 1, 2, 3.

Proof. The space of polynomials can be parametrized by the roots up to the action
of the symmetric group of order d, S(d), hence we get the diagram

(8.30)
(C∗)2 ×

(
C

d
roots

S(d)

)
→ C∗ × C

d+1
coef → E(d)

(λ, b0 , [p1, . . . , pd]) �→ (λ, b0, . . . , bd) �→ λ exp(b0z
d + . . .+ bd)

∂
∂z ,

here [p1, . . . , pd] means the unordered roots and

(z − p1) · · · (z − pd) = zd + (b1/b0)z
d−1 + . . .+ (bd/b0).

A virtue of the parametrization using the roots (8.30) and the redundant para-
meter λ, is as follows. The action of the affine group Aut(C) = {w �→ aw + b = z}
by pullback is

Aut(C)× E(d) −→ E(d)
(aw + b, (λ, b0, [p1, . . . , pd])) �−→ (λa−1, b0a

d, [T−1(p1), . . . , T
−1(pd)]).

In fact, given (λ, b0, [p1, . . . , pd]) and T (w) = aw + b = z, we can compute

T ∗
(
λ exp(b0(z − p1) · · · (z − pd))

∂

∂z

)
=λ exp

(
b0(aw+b−p1) · · · (aw+b−pd)

) ∂

∂z

=
λ

a
exp(b0a

d(w − T−1(p1)) · · · (w − T−1(pd)))
∂

∂w
.

Clearly, for d ≥ 2 this is a proper action and its isotropy group is trivial, so it is
free. Considering also the action of S1 by rotations X �→ eiθX, it is clear that this
is also a proper and free action.

As is usual the triviality of the isotropy group of X ∈ E(d) has geometric impli-
cations on the quotient spaces. Following [20], pp. 53: the action of Aut(C) on E(d)
is proper with isotropy group the identity, hence the quotient space is a manifold
of dimension dim(E(d))− dim(Aut(C)). The analogous fact holds for the action of
Aut(C)× S1. �

8.8. On the cardinality of the topological classes of Re (X), for X ∈ E(d).
The previous section shows that the analytical and metric classification are very
fine. In order to have a coarser classification, we will consider the notion (see
Definition 3.1.1) of topological equivalence of singular analytic vector fields under
the action of

Homeo(C)+ = {h : Ĉz → Ĉz |orientation preserving homeomorphism fixing ∞}.
In particular, we will be considering E(d)/Homeo(C)+, i.e. the topological classes
of phase portraits of Re (X), for X ∈ E(d).

Recalling Definition 8.3 of a sheet of RX , Definition 8.8 of a diagonal associated
to a pair of asymptotic values and the description of d–configuration trees, we now
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present a first step towards the topological classification of Re (X), for X ∈ E(d),
identifying the canonical regions18 in a sheet, hence the bifurcation mechanisms.

Remark 8.30 (Dynamical aspects of a sheet of RX , for X ∈ E(d)).

Case 1. A sheet Ct\{Lk} with only one branch cut Lk, determines two half–planes(
H

2

±,
∂
∂t

)
in the phase portrait of Re (X) on Cz.

Case 2. A sheet Ct\{Lk}rk=1 having r branch cuts with different heights (recall

Definition 8.3) Im (a1) < · · · < Im (ar) determines two half–planes
(
H

2

±,
∂
∂t

)
and

r − 1 finite height strips flow
(
{Im (ak) < Im (z) < Im (ak+1)}, ∂

∂t

)
in the phase

portrait of Re (X) on Cz.

Case 3. A sheet Ct\{Lk}k=1,2 having two branch cuts in the same horizontal trajec-

tory, say (∞, a]∪ [a+ τ0,∞) for τ0 ∈ R+, determines two half–planes
(
H2, ∂

∂t

)
, and

one single finite homoclinic trajectory of Re (X), thus isometric to a closed interval
[a, a + τ0] in the phase portrait. Recall that homoclinic means it is a trajectory

which joins the singularity ∞ to itself in the phase portrait of Re (X) on Ĉz.

Case 4. Is the mixing of cases 2 and 3. If the sheet Ct\{Lk}rk=1 has (horizontal)
branch cuts with at least two different imaginary values then at least one finite
height strip flow is determined; moreover, if there are two or more branch cuts in
the same horizontal trajectory these determine homoclinic trajectories. Of course
the branch cuts with the smallest and the biggest heights determine two half–
planes. Whence this type of sheet determines half–planes, finite height strip flows

and homoclinic trajectories for the phase portrait of Re (X) on Ĉz.

Theorem 8.31 (Cardinality of the topological classes E(d)/Homeo(C)+).
For d = 1, 2, there are d topological classes of Re (X) for X ∈ E(d).
For each d ≥ 3, there are infinite (numerable) topological classes of Re (X) for

X ∈ E(d).

Proof. Case d = 1. Follows directly from Theorem 8.24.

Case d = 2. We shall show that there are two distinct topologies for the real vector
fields. Start by noticing that X will have two distinct finite asymptotic values a1
and a2 whose corresponding diagonal Δ1 2 (associated to λ1 2 in ΛX) lies on the
same sheet in RX . We now have two cases:

1) The diagonal Δ1 2 is not horizontal, we apply Remark 8.30, case 2. That is, if
Im (a1) �= Im (a2), then Re (X) has a horizontal finite height strip flow

S = πX,1

(
{(z, t) ∈ CΔ1 2

⊂ RX | Im (a1) < Im (t) < Im (a2)}
)
,

of height |Im (a2) −Im (a1)|, foliated by trajectories of Re (X), or the analogous
case when Im (a2) < Im (t) < Im (a1); where CΔ1 2

denotes the sheet in RX

where the diagonal Δ1 2 lies (see the last paragraph of Definition 8.8).
2) The diagonal Δ1 2 is horizontal, we apply Remark 8.30, case 3, hence a finite

homoclinic trajectory.

18This notation for the phase portrait of Re (X) on Cz follows the classical concepts of
L. Markus; see [47] and Table 3 in §11 Appendix.
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Example 8.32 (Two phase portraits for
{
Re

(
λez

2 ∂
∂z

) ∣∣ λ ∈ C∗
}
). Figure 15

shows the finite height strip flow in the phase portrait, generated by the non-
horizontal diagonal. Figure 16 shows the case when the diagonal is horizontal, thus
degenerating the strip flow to a finite homoclinic trajectory.

Case d ≥ 3. When d ≥ 3, recall that by Theorem 8.16 there is a correspondence
between X ∈ E(d) and d–configuration trees (and therefore its corresponding d–
skeleton), clearly the four cases in Remark 8.30 can appear. Moreover, from the
description of the d–skeleton, notice that for d ≥ 3 there will be at least 2, and
generically d − 1 different horizontal subtrees. On the other hand, horizontal sub-
trees are vertically separated from other horizontal subtrees by an integer number
|K(σ, ρ)| of vertical edges of the d–skeleton. By changing the integer K(σ, ρ) we
change the topology of Re (X) since we are adding (or eliminating) 2K(σ, ρ) half–
planes to (from) RX . �

Example 8.33. 1. d = 3 Numerical argument. Consider §8.6.1.6, Figure 14. By
allowing p ∈ Cp to move, every time time p crosses two consecutive orange curves
or two consecutive red curves, K(1, 3) changes by an integer.

2. d = 3 Combinatorial argument. This case can be appreciated in Figure 11.c
where K(1, 3) = 0, and Figure 11.d where K(1, 3) = 1; in particular by adding

copies of Ct\{Lk} in between the sheets that contain the diagonals 2 1 and

1 3 one obtains an infinite number of different surfaces RX , and hence an
infinite number of different topologies for Re (X).

The interested reader can compare §8 in the case d = 3, with [53], pp. 292.

9. From germs to admissible words and back

In this section we shall explore the relationship between germs with an isolated
essential singularity, that satisfy certain conditions on the logarithmic branch points
and admissible words that have a specific number of sectors of type E.

9.1. Admissible words from germs
(
(C, 0), X

)
.

Theorem 9.1 (Recognition of admissible words from germs). Let
(
(C, 0), X

)
be a

singular analytic vector field germ such that

1) 0 is an isolated essential singularity of X, and

2) the inverse Ψ−1
X of ΨX : (C, 0) → Ĉt has as unique singularities d ≥ 2 logarith-

mic branch points over d finite asymptotic values {aj} ⊂ Ct and d logarithmic

branch points over ∞ ∈ Ĉt.

If γ : [0, 2π] → (C, 0) is a simple path enclosing 0, then there exists a deformation
of γ, which determines an admissible word WX at 0, composed of sectors of type
H,E, P and E. In particular, there are ε = 2d sectors of type E.

Recall that the definitions in §4.3, of asymptotic values, transcendental singula-
rities, and logarithmic branch points make sense for an isolated essential singularity
e ∈ M or (C, 0) of ΨX . Moreover, the Definition 8.8 of diagonal also makes sense
by replacing ∞σ,∞ρ ∈ Cz with the appropriate eσ, eρ ∈ M , where M is a suitable
non–Hausdorff closure of M\{e} or (C, 0)\{0}; see Remark 8.6.

To illustrate the difficulties and their solution, we consider the following.
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X(z) = ei
π
4 ez

2 ∂
∂z

Figure 15. One of the two different topologies for the phase por-
trait of Re (X), when d = 2. Note the appearance of a finite height
strip flow in this figure, while in Figure 16 this degenerates to a
finite homoclinic trajectory. This bifurcation of the topology of
Re (X) occurs when the diagonal Δ12 ⊂ RX is horizontal (i.e. λ12

is strictly real). See Theorem 8.31.
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X(z) = ez
2 ∂
∂z

Figure 16. One of the two different topologies for the phase por-
trait of Re (X), when d = 2. In this figure the finite height strip
flow, pictured in Figure 15, degenerates to a finite homoclinic tra-
jectory. This bifurcation of the topology of Re (X) occurs when
the diagonal Δ12 ⊂ RX is horizontal (i.e. λ12 is strictly real). See
Theorem 8.31.
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Example 9.2. Let
(
(Ĉ,∞), ez ∂

∂z

)
be the germ, provided with γ a simple path en-

closing ∞ ∈ Ĉ. There is only one finite asymptotic value, say a1. We assume that γ

is such that Γ̃(τ ) :=
(
γ(τ ),Γ(τ )

)
, for Γ(τ ) = (ΨX◦γ)(τ ), is contained in a copy of an

upper half–plane H
2

+ ⊂ RX . Recalling §5.3.1, X determines two half–logarithmic
spirals. The soul of the Riemann surface RX\{two half–logarithmic spirals}, ob-
tained from the graph of ΨX over U\{∞}, is the gray shaded region in Figure 17.a,

having as boundary, the path Γ̃ and two horizontal branch cuts [a1,∞)+∪ [a1,∞)−
similarly as in (8.2) and (8.3).

The original path γ, or Γ̃, does not define a cyclic word for the germ of X.
However, there is a deformation of γ towards its interior in RX such that the

respective deformation of Γ̃ bounces off (recall Definition 5.3) the boundary of
the half–logarithmic spiral of RX determined by [a1,∞)+. The deformed path is
illustrated in Figure 17.b, it determines an entire sector flanked by a hyperbolic
sector and an elliptic sector, by abuse of notation HEE.

Figure 17.c shows a taut deformation Γ̃1∪Γ̃2, where the path bounces off the half–
logarithmic spirals associated to [a1,∞)− and [a1,∞)+. In turn this determines a
word

EEH︸ ︷︷ ︸
˜Γ1

HEE︸ ︷︷ ︸
˜Γ2

for the germ X. From Γ̃1 ∪ Γ̃2, we obtain the desired deformation of γ.

Proof. Step 1. For simplicity, let us start off by assuming that:
i) the asymptotic values {aj}dj=1 lie on d different horizontal trajectories of

(
C, ∂

∂t

)
,

ii) Res(ωX , 0) = 0.
Let U ⊂ (Cz, 0) be the closed region, whose boundary is a path γ = γ(τ ), as in

the theorem, and let X be a germ representative. The associated Riemann surface

RX ⊂ Cz × Ĉt is determined by the graph of ΨX over U\{0}.
RX is connected, non compact and contains the path

Γ̃(τ ) =
(
γ(τ ),Γ(τ )

)
,Γ(τ ) =

(
ΨX ◦ γ

)
(τ ).

To each deformation of γ(τ ) in (Cz, 0) corresponds a deformation of Γ̃(τ ) in RX ,
and vice versa, since U\{0} is biholomorphic to RX , similarly as in Remark 8.2.

The fundamental group of RX is Z, whose generator is Γ̃.

From hypothesis (2), the boundary of RX ⊂ Cz × Ĉt is exactly

Γ̃ ∪ {(∞j , aj)}dj=1 ∪ {(∞j ,∞)}2dj=d+1,

following the enumeration convened in Remarks 8.6 and 8.7 (a priori X does not
belong to E(d)).

As a consequence, the analytic extension of Ψ−1 along paths β(τ ) : [0, ε) −→ Ct

which avoid {aj}dj=1 is possible. The boundary of RX projects under πX,2 to

Γ ∪ {aj}dj=1 ⊂ Ct.
Let ((C, 0), X) be a singular analytic vector field germ, as in the theorem, the

soul of the Riemann surface RX is a connected surface with open interior

RX\{the 2d half–logarithmic spirals of X}.
For example, in Figure 17.a and Figure 19, the shaded regions determine the soul
of RX , respectively.
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Figure 17. For X(z) = ez ∂
∂z , a representation of the Riemann

surface RX\{2 half–logarithmic spirals of X} is given in (a). A
deformed path that bounces off the half–logarithmic spiral deter-
mined by the branch cut is illustrated in (b). As a result, in (c)

and (d) the deformed taut path Γ̃1 ∪ Γ̃2, recognizes the admissible

word enclosed by the original γ (or equivalently Γ̃). See Example
9.2.

Note that by definition the soul is a surface having Γ̃ and the horizontal branch
cuts Lj = [aj ,∞)+ ∪ [aj ,∞)− ⊂ RX , contained in its boundary.

Remark 9.3. In fact, if X ∈ E(d), it is clear that the soul of the d–configuration
tree ΛX (see Definition 8.21) and the soul of the Riemann surface RX agree up to
a finite number of half–planes, which can be incorporated into the half–logarithmic
spirals of X. This is again a reflection of the self–similar nature of the class 1 entire
sectors E (as in the relation EEH ∼ E, see (5.13)).

Since each half–logarithmic spiral is homeomorphic to an open disk in RX (see

Figure 17.d for an example), we can assume under suitable deformation that; Γ̃ is
inside the soul of RX .

Consider the restriction to Γ ⊂ RX of a height function

(9.1) Im (ΨX) : Γ̃ −→ R.

After a small perturbation of the Γ̃ in the soul of RX , the height function assumes

only a finite number of local maxima and minima {pα} ⊂ Γ̃, and a finite number

of horizontal segments {Σβ} ⊂ Γ̃.

Let pς ∈ Γ̃ be a local maximum or minimum of the height function (9.1), it is

an extreme point of Γ̃ when in addition it belongs to a branch cut Lj = [aj ,∞)− ∪
[aj ,∞)+ of the soul of RX . A bounded horizontal segment Σς ⊂ Γ̃ is an extreme
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segment of Γ̃ when it is contained in a branch cut Lj of the soul of RX and it is a

maxima or minima of the height function (restricted to Γ̃ as above).

Example 9.4. 1. In Figure 17.c, Γ̃1∪Γ̃2 contains two extreme points. In Figure 18

(a), (b), (c) the respective Γ̃ contain two extreme points. Moreover, (c) contains
one extreme segment; (d) contains one extreme point and one extreme segment.

In Figure 19, the arc Γ̃1 contains three extreme points, but the arc Γ̃3 does

not contain any (certainly Γ̃3 intersects a branch cut, but these points are not
maxima or minima for the height function).

2. Note that Γ̃1∪Γ̃2 in Figure 17.c–d bounces off and assumes the minimum number
of extreme points.

Figure 18. Four examples of Γ̃ ⊂ RX containing extreme points
and/or extreme segments. The arcs in (c) are in a finite height strip
flow, the others are in half–planes. In all the cases a deformation

of Γ̃ allows a bounce off in exactly one point of each branch cut.
Moreover, the extension RX ∪ C is obviously a Riemann surface.
See Example 9.4 and Corollary 10.1.

Step 2 (of proof of Theorem 9.1). In order to recognize sectors of type E we use
the following.

Remark 9.5 (Bounce off and words aspects of a sheet of RX , for
(
(C, 0), X

)
). We

recall Definition 8.3. Consider a sheet Ct\{Lj}rj=1 in the soul of RX and assume
that the sheet is glued to a half–logarithmic spiral along a branch cut [aj ,∞)±
(resp. a left branch cut (∞, aj ]±).

If Γ̃ bounces off a branch cut [ak,∞)± (resp. a left branch cut (∞, ak]±), then

Γ̃ determines an entire sector E.
Our goal is to perform a taut deformation of Γ̃ in the soul of RX . This means

the following.

i) The deformed Γ̃ bounces off exactly once on each of the two boundaries
[aj ,∞)± arising from every branch cut {Lj}dj=1 in the soul of RX .

ii) The deformed Γ̃ attains the minimum possible number of critical points of
the height function Im (ΨX) inside RX\{2d half–logarithmic spirals of X},
see Figure 17.
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iii) In addition, if not all the horizontal branch cuts lie on the same sheet (due
to the existence of finite helicoids, recall Definition 5.4, in the soul of RX),

then it might be necessary to keep deforming Γ̃, so that it wraps around the

finite helicoids in order to reach the sheets where the deformed Γ̃ bounces off
the (two) half–logarithmic spirals corresponding to each horizontal branch cut
associated to each finite asymptotic value. When this happens, we will be able
to recognize a sequence of elliptic Eν , or hyperbolic H, sectors. See Example
9.6.

iv) It might be necessary to deform Γ̃ across some of the finite height strip flows
of the soul of RX . When this occurs we will be able to recognize parabolic
sectors Pν with ν corresponding to the displacement (the value of the integral
of ωX) along the deformed γ as it crosses the finite height strip flow.

The taut deformation of Γ̃, can always be performed, since Γ̃ is a generator of
the fundamental group of RX\{2d half–logarithmic spirals}.

By (anticlockwise respect to (Cz, 0)) traveling around the taut deformed Γ̃ we
can read off the words associated to each possible sector: Eν , H, Pν , Eν , according
to their description given in §5. In this way WX is determined by the deformed γ

arising from the projection, under πX,1 in (2.6), of the taut deformation of Γ̃.
This finishes the proof when all the {aj} are distinct and none share a horizontal

and Res(ωX , 0) = 0.

Step 3 (of proof of Theorem 9.1). Consider now the case when two asymptotic
values, say aσ and aρ, are on the same horizontal and there is a diagonal between
them in RX . Recall that Ct\Lσ are really copies of Ct cut along Lσ but with the
borders left there for further identification, then Ct\(Lσ ∪Lρ) presents no problem
for the proof: having made the leftmost branch cut, there will be a choice of border

(top or bottom) on which to make the other branch cut. The original Γ̃ is in the
soul of RX .

This leaves the case when some of the asymptotic values have multiplicity. Once
again this poses no problem: there cannot be a diagonal between the preimages,
π−1
X,2(aj), of an asymptotic value aj with multiplicity νj > 1.

Finally, if we assume that Res(ωX , 0) �= 0, then there exists a characteris-
tic trajectory σ of Re (X) in U such that it starts at some point of γ and has
limτ→∞ ΨX(σ(τ )) = ∞ (see footnote 6). We define R0

X as the graph of ΨX over

U\σ. The boundary of R0
X contains two copies of Σ̃ = ΨX(σ) (as in Figure 9), we

glue its boundary and get a new surface, say RX (see Example 9.7). Note that,

the fundamental group of RX has the corresponding Γ̃ as generator. Hence, all the
above arguments can be repeated inside the soul of RX . �

Theorem 9.1 is now exemplified for nontrivial objects: first in Example 9.6 the
case when Res(ωX , 0) = 0 and secondly in Example 9.7 when Res(ωX , 0) �= 0.

Example 9.6 (Recognizing an admissible word on a Riemann surface with d = 4
logarithmic branch points and Res(ωX , 0) = 0). In Figure 19 we have drawn the
soul of a particularRX , together with the horizontal branch cuts (solid double lines)
associated to the four distinct finite asymptotic values {aj}4j=1. The four sheets
shown are glued along the horizontal branch cuts (as in Corollary 5.11), according
to the light blue dotted lines (all the glueings are made so that the solid dark blue

path Γ̃1 ∪ · · · ∪ Γ̃6 is continuous). The segments b1b2, b1b3, and b3b4 in the soul of
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RX are the diagonals and appear as orange dotted lines (recall that πX,2(bj) = aj).
However, none of the segments Δϑ14, Δϑ23, and Δϑ24 are diagonals. In order to
complete the Riemann surface RX one needs to glue to the soul a half–logarithmic
spiral on each of the eight horizontal branch cuts that have not been identified.

b1

b2

Γ1
Γ∼

∼

b1

b3

Γ2

Γ6
∼

∼

b3

Γ3

Γ5
∼

∼

b3

b4

Γ4
∼

Figure 19. Soul of a Riemann surface RX with d = 4 logarithmic

branch points and Res(ωX , 0) = 0. The green path Γ̃ (correspond-

ing to γ) is deformed into the blue taut path Γ̃1∪Γ̃2∪· · ·∪Γ̃6, which
bounces off the corresponding branch cuts, in order to recognize

the admissible word enclosed by γ. The exterior of Γ̃ is colored

white, while the exterior of the deformed Γ̃1∪ Γ̃2∪· · ·∪ Γ̃6 is white
and light green. In this case X ∈ E(4). See Example 9.6.

Note that the green path Γ̃, corresponding to γ, lies completely on one sheet

and that the interior of Γ̃ encloses all the preimages (under πX,2) of the 4 finite

asymptotic values. Γ̃ does not define a cyclic word for the germ of the respective

X. The path Γ̃ is deformed into the taut path Γ̃1 ∪ Γ̃2 ∪ · · · ∪ Γ̃6. From it, we can
now recognize the admissible word (we drop the sub–indices of the Pν since they
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are not needed)

P EHHEEPEEHH︸ ︷︷ ︸
˜Γ1

HHEP︸ ︷︷ ︸
˜Γ2

EE︸︷︷︸
˜Γ3

EPEEHHEP EHH︸ ︷︷ ︸
˜Γ4

HH︸︷︷︸
˜Γ5

HHEEPE︸ ︷︷ ︸
˜Γ6

,

which in turn can be reduced (using (5.14) so that HEE ∼ E and EEH ∼ E) to

P EHEP EH︸ ︷︷ ︸
˜Γ1

HHEP︸ ︷︷ ︸
˜Γ2

EE︸︷︷︸
˜Γ3

EP EHEP EHH︸ ︷︷ ︸
˜Γ4

HH︸︷︷︸
˜Γ5

HEPE︸ ︷︷ ︸
˜Γ6

.

Example 9.7 (Recognizing an admissible word on a Riemann surface with d = 4
logarithmic branch points and Res(ωY , 0) �= 0). Consider once again Figure 19,
but with the topmost sheet replaced with the one of Figure 20. This gives rise to
the soul of Riemann surface RY as in the end of the proof of Theorem 9.1.

b1

b2

Figure 20. Soul of a Riemann surface RY with d = 4 logarithmic
branch points and Res(ωY , 0) �= 0. Here we illustrate only the first
sheet that replaces the topmost sheet shown in Figure 19, the rest

remain the same. Once again, the green path Γ̃ (corresponding to

γ) is deformed into the blue taut path Γ̃1 ∪ Γ̃2 ∪ · · · ∪ Γ̃6, which
bounces off the corresponding branch cuts, in order to recognize

the admissible word enclosed by γ. The exterior of Γ̃ in RY is

colored white, while the exterior of the deformed Γ̃1 ∪ Γ̃2 ∪ · · · ∪ Γ̃6

is white and light green. The nonzero residue corresponds to any
of the red arrows (as in Figure 7), the red arrows also indicate that
these boundaries should be identified to obtain RY . See Example
9.7.

In this case, since Res(ωY , 0) �= 0, the path Γ̃ (corresponding to γ) is not closed.

Hence the sheet containing Γ̃ will have the right or left part of a finite height
strip flow corresponding to the nonzero residue (see also Figure 7 for the analogous
construction that corresponds to the residue). The boundaries of the added or
missing part of the finite height strip flow can now be identified to obtain the soul
of RY . The admissible word can be read as before. In order to account for the
residue, it is convenient to recall that letters Pν in the admissible words have a
sub–index νj indicating the displacement; see (5.6). Hence, once again taking into
account the relations HEE ∼ E and EEH ∼ E, we obtain the admissible word

Pν1
EHEPν2

EH︸ ︷︷ ︸
˜Γ1

HHEPν3︸ ︷︷ ︸
˜Γ2

EE︸︷︷︸
˜Γ3

EPν4
EHEPν5

EHH︸ ︷︷ ︸
˜Γ4

HH︸︷︷︸
˜Γ5

HEPν6
E︸ ︷︷ ︸

˜Γ6

.

Note that each νι ∈ C
∗, ι = 1, 2, . . . , 6 contributes to the residue; in the case at

hand the contribution of ν3 = −ν6, similarly ν4 = −ν5, leaving the contributions
of ν1 + ν2 to be exactly the residue, i.e. Res(ωY , 0) = (ν1 + ν2)/(2πi) �= 0.



DYNAMICS OF COMPLEX ANALYTIC VECTOR FIELDS 215

It is clear in Example 9.6, that since Res(ωX ,∞) = 0, RX is the Riemann
surface associated to some X ∈ E(4). On the other hand, Example 9.7 corresponds
to an Y �∈ E(4), because of Theorem 8.16.

9.2. Germs from admissible words WX . With the results presented so far in
§5.9, particularly Proposition 5.20, and Theorem 9.1, we can now justify the term
admissible for cyclic words comprised of the alphabet H, E, P , E.

Recall that ε denotes the number of class 1 entire sectors E in an admissible
word.

Theorem 9.8 (Recognition of analytical invariants from admissible words). Let
WX be an admissible word in the alphabet H, E, P , E, with ε ≥ 2, coming from
a germ

(
(C, 0), X

)
of an isolated essential singularity of a complex analytic vector

field. The distinguished parameter ΨX satisfies that Ψ−1
X has ε/2 logarithmic branch

points over ε/2 finite asymptotic values (up to translation) and ε/2 logarithmic
branch points over ∞.

To illustrate the difficulties and the meaning of the assertion, we consider the
following.

Example 9.9. Let X(z) = iz ez ∂
∂z be a singular analytic vector field on Ĉ. There

are singularities at 0 and ∞. Consider first the germ ((Ĉ,∞), X) and provide it

with a simple path γ enclosing ∞ ∈ Ĉ. It gives origin to the word

WX = EHHHEEν ,

where ν = −2π =
∫
γ
ωX is the complex time along γ or displacement of WX . That

is, the isometric glueing of Eν and E requires a −2π surgery. Moreover, when we

consider the germ ((Ĉ, 0), X) provided with a simple path −γ enclosing 0 ∈ Ĉ, it
gives origin to the word

WX = Ci,

where −i = Res(ωX , 0) and the displacement is 2π =
∫
−γ

ωX .

The global distinguished parameter

ΨX(z) =

∫ z

z0

ωX : Ĉz\{∞, 0} −→ Ct,

is multivalued.
A modification of the domain, will provide insight to the configuration of asymp-

totic values. We look at a punctured disk D(∞, r)\{∞} with the radius r > 0 in
the spherical metric, and cut the disk along R+ ∪ {∞}. A univalued distinguished
parameter is

Ψuni,X(z) =

∫ z

z0

ωX : D(∞, r)\(R+ ∪ {∞}) −→ Ct.

The inverse function Ψ−1
uni,X has a logarithmic branch point over a finite asymptotic

value a ∈ Ct and a logarithmic branch point over ∞. This is the assertion of
Theorem 9.8.

When gluing back the cut along {R+∪∞} we obtain the multivalued ΨX |D(∞, r)
that has an infinite configuration of asymptotic values {a + (−2π)k | k ∈ Z},
compare with Corollary 4.18.
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Proof of Theorem 9.8. The admissible word WX contains ε ≥ 2 class 1 entire sec-
tors E, whence 0 is an isolated essential singularity of X.

Furthermore, for the class 1 entire sectors that appear in WX , there is a nat-
ural pairing between letters ∞Ef and fE∞, recall (5.14), such that Ψ−1

uni,X has a
logarithmic branch point over a finite asymptotic value.

In fact, class 1 entire sectors come in pairs; considering a word that contains
class 1 entire sectors, say, for instance,

WX = W1 · · ·∞EfH · · ·HfE∞︸ ︷︷ ︸
no additional E

· · ·Wn.

It is clear that both of the class 1 entire sectors will have the same finite asymptotic
value associated to them. That is: the trajectories σ1, σ2 in ∞Ef and fE∞ that
arrive to the isolated essential singularity in finite time are asymptotic trajectories,
and will be the ones that determine a finite asymptotic value (in particular these
can also be characteristic trajectories).
Note that, Ψ−1

uni,X has another logarithmic branch point over ∞ with multiplicity
the number of pairs of class 1 entire sectors that appear in WX .

Thus,

Ψuni,X(z) =

∫ z

z0

ωX : D(∞, r)\{R+ ∪∞} −→ Ct

is a univalued function on this simply connected domain. Ψ−1
uni,X has d logarithmic

branch points over the d finite asymptotic values and d logarithmic branch points
over ∞, where d = ε/2 half the number of entire sectors in the admissible words.

This is the meaning of the assertion. �

10. A better vector field germ extension result

Corollary 10.1 (Description of X ∈ E(d) as an admissible word). A germ
(
(Ĉ,∞),

X
)
is the restriction of an X ∈ E(d) if and only if ∞ ∈ Ĉ is an isolated essential

singularity and the admissible word WX satisfies that

1) the residue of the word Res(WX) = 0,
2) the Poincaré–Hopf index of the word PH(WX) = 2,
3) it has exactly ε = 2d class 1 entire sectors E.

Proof. (⇒) (1) is obvious. (3) follows directly from Theorem 9.1.
For (2) consider that X ∈ E(d) is a nonvanishing analytic vector field on C with

∞ ∈ Ĉ the unique singularity of X, then PH(WX) = PH(X,∞) = χ(Ĉ) = 2.

(⇐) Considering the germ
(
(Ĉ,∞), X

)
and since Res(X,∞) = Res(WX) = 0

it follows that the distinguished parameter ΨX : (Ĉ,∞) → Ct is univalued. From
Theorem 9.8, Ψ−1

X has ε/2 logarithmic branch points over ε/2 finite asymptotic
values and ε/2 logarithmic branch points over ∞.

Recall that WX is an admissible word, hence there is a simple path γ ⊂ (Ĉz,∞),
enclosing ∞ once, that determines WX (as in Theorem 9.1).

Notice that since Res(X,∞) = 0, the path Γ̃(τ ) =
(
γ(τ ), (ΨX ◦ γ)(τ )

)
⊂ RX

is closed and because of Lemma 2.7, Γ̃ has no self–intersections. Furthermore,

Γ̃ encloses the images, under π−1
X,1, of the angular sectors comprising WX (as in

Figures 17, 18 and 19, recall that the gray shaded area is the interior of Γ̃).
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Step 1. Next, since our model of RX is composed of copies of

Ct\{suitable branch cuts} Ct\
(
{suitable branch cuts} ∪ {C}

)
,

where each C is the missing region of Ct arising from the “exterior” of Γ̃, we

conclude that in fact ∂C ⊂ Γ̃. See Figure 18 for examples. Each corresponding
subset C has at this moment indeterminate shape. We want to be able to recognize
where the boundary of C assumes a “bounce off like shape” (as in Figures 17 and
19), coming from the sectors E ∈ WX . Using the local models for the angular sector

H,E, P, E we can assume that Γ̃ is a finite union of arcs of circle and horizontal
segments (note that not necessarily all the critical points of horizontal segments of

Γ̃ are extreme).

In fact, consider a height function Im (ΨX) : Γ̃ −→ R; see (9.1).

Step 2. Let pς , Σς be an extreme point or an extreme segment of Γ̃.

Since pς (resp. Σς) is a minima or maxima of the height function, an arc of Γ̃
containing pς (resp. Σς) is contained in;

i) a half–plane H
2
in the soul of RX , or

ii) a finite height strip flow Sν = {Im (aj) ≤ Im (t) ≤ Im (ak)}, ν = ak − aj ,
such that its two horizontal boundaries contain branch cuts (of asymptotic values
aj , ak).

It is clear that H
2
(respectively Sν) in the soul of RX is well defined. Hence, so

is the missing region C ⊂ H
2
(respectively Sν); see Figure 18.

Main Fact. By analytic extension of Ψ−1
X , we can add to RX the missing region C

as above, i.e. RX can be extended to the Riemann surface, R̃X = RX ∪ C.

Let us consider some previous examples.

Example 10.2 (Examples 9.2 and 9.6 revisited). The extension is the inverse

process in Figure 17. Considering the succession (c), (b), (a), both Γ̃1 and Γ̃2

contain one extreme point, the path in (b) contains one extreme point and one

extreme segment, and finally in (a) by adding the topological disk bounded by Γ̃,

we obtain the desired R̃X .
A slightly more complex example can be seen in Figure 19: starting with Γ̃ =

Γ̃1 ∪ · · · ∪ Γ̃6 we can deform Γ̃ and add the corresponding C’s to obtain half–planes

and/or finite height strip flows. By doing this the original Γ̃ is reduced to Γ̃0, and

finally adding the topological disk bounded by Γ̃0, we obtain the desired R̃X .

Note that other shapes for C must be considered; see Figure 18 for some of them.
However, in all cases the extension is well defined and RX∪C is a Riemann surface.

Step 3. In order to perform the construction of R̃X , we proceed as follows:

i) For each extreme point pς , or extreme segment Σς , we can add the missing
exterior region Cς in the respective half–plane or finite height strip flow con-
taining a bounce off. We obtain an extended Riemann surface RX ∪ Cς with

a new Γ̃ς as boundary. Recall that Γ̃ς has at least one new extreme segment.

ii) Continue until the extended Riemann surface has its boundary Γ̃−k, com-

pletely contained in one copy of Ct. Moreover, note that Γ̃−k bounds a topo-
logical disk in the copy of Ct. Finally, extend the surface by adding the

topological disk bounded by Γ̃−k, thus obtaining the desired R̃X .



218 ALVARO ALVAREZ–PARRILLA AND JESÚS MUCIÑO–RAYMUNDO

This R̃X can be recognized (since PH(X,∞) = PH(WX) = 2) as the Riemann

sphere Ĉ by the uniformization theorem.

Also, by Theorem 8.5 the extended Riemann surface R̃X is the Riemann surface

of a vector field X̃ ∈ E(d).
Of course, this X̃ has the original germ as the singularity at ∞. �
Note that the second part of the proof of the previous corollary can be interpreted

as an extension result.

Corollary 10.3. Let
(
(C, 0), X

)
be a germ of singular analytic vector field defining

an admissible word WX in H,E, P, E, with Res(ωX , 0) = 0, and assume that the
Poincaré–Hopf index PH(X, 0) = 2 − 2g for g ∈ N ∪ {0} a nonnegative integer.

Then there exists an extended singular analytic vector field X̃ on the compact Rie-

mann surface Mg, of genus g, such that: X̃ has the original germ
(
(C, 0), X

)
as a

singularity and
a) no other singularities on M0

∼= Ĉ, when g = 0,
b) two new simple poles and no other singularities on Mg, when g ≥ 1.

Proof. As mentioned, the proof of Corollary 10.1 proves the case M0
∼= Ĉ.

For the general case perform surgery, as in Step 2 of the proof of Theorem 7.1,
adding two simple poles and no other singularities. �

11. Appendix: Global decomposition into canonical regions,

following L. Markus and H. E. Benzinger

According to L. Markus [47], see also [55], [21] pp. 33, the

• spiral
(
R

2\{0}, x ∂
∂x + y ∂

∂y

)
,

• annulus
(
R2\{0}, −y ∂

∂x + x ∂
∂y

)
and

• strip
(
R

2, ∂
∂x

)
are the real models for the search of a topological decomposition of C1 phase por-
traits of real vector fields Z on a region U ⊂ R

2. These models are sometimes
denoted canonical regions. Philosophically, canonical regions are open connected
subsets V ⊂ U , invariant under the flow of Z, where Z is parallel and maximal
respect to the above properties.

From our point of view, canonical regions V ′ ⊂ U are the largest domains where
Z admits a C1 “flow box” having maximal domain ΨZ ; i.e. ΨZ sends (V ′, Z) to a
spiral, annulus or strip.

The list of canonical regions of L. Markus can be enriched in the complex analytic
category, as in Table 3, where for a singular complex analytic vector field (M,X)
we consider Re (X) on M .

With this in mind, a result of H. E. Benzinger (see [10], pp. 466) can be inter-
preted as follows.

Theorem 11.1 (H. E. Benzinger). A rational vector field X on Ĉ admits a finite
decomposition in strip flows, annulus flows and spiral flows.

Proof. Note that if X admits a spiral flow, an infinite height strip flow, or an infinite

height annulus flow, then X is holomorphic on Ĉ.
Assume that X has at least one pole. A maximal trajectory {zj(τ ) : (τmin, τmax)

⊂ R → Ĉz} of X is a separatrix if its domain is a strict subset of R. Equivalently,
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Table 3. Complex analytic canonical regions of X on M .

dynamics geometry nomenclature

spiral flow(
C∗, λz ∂

∂z

)
C∗ spiral flow λ ∈ C\iR

annulus flow (iλ2 ∈ iR∗)

(C∗, iλ2
∂
∂z ) C

∗ infinite height
annulus flow (cylinder),

({0 < |z| < 1}, iλ2
∂
∂z ) D(0, 1)\{0} semi–infinite height

annulus flow (cylinder),
({1 < |z| < h}, iλ2

∂
∂z ) {1 < |z| < h} finite height

annulus flow (cylinder),

strip flow

(C, ∂
∂z ) C infinite height

strip flow (plane)

(H
2

±,
∂
∂z ) H

2
semi–infinite height

strip flow (half–plane)
({0 < Im (z) < h}, ∂

∂z ) {0 < Im (z) < h} finite height strip flow

union of
semi–infinite height strip flows

(H
2

±, e
z ∂
∂z ) H

2

± ∪H
2

∓ ∪ . . . half–logarithmic spiral
(semi–infinite helicoid)

({0 < |Im (z)| < 2Kπ}, ez ∂
∂z ) H

2

± ∪ . . . ∪H
2

± finite helicoid

the image of zj(τ ) accumulates at one pole; its flow is not analytic in at least one

direction. Removing from Ĉz the zeros, the poles of X and its separatrices we get

a finite number of open sets {Uβ} ⊂ Ĉz that are the desired strip flows, annulus
flows and/or spiral flows. �

Remark 11.2. Let X be a singular analytic vector field on M , having singulari-
ties determining admissible words WX . There exist a one-to-one correspondence
between:
• angular sectors E and

• semi–infinite helicoids (or equivalently half–logarithmic spirals) H
2

± ∪H
2

∓ ∪ . . . .

Finally, by considering the singular analytic category with one isolated essential
singularity, and introducing (for convenience of the reader) the two models based
on the semi–infinite helicoid and the finite helicoid, we have:

Corollary 11.3 ( Global decomposition of meromorphic on C, class 1 vector fields).
A vector field X, meromorphic on C, with an isolated essential singularity at ∞ ∈
Ĉ, with Ψ−1

X having d logarithmic branch points over d finite asymptotic values
and d logarithmic branch points over ∞, admits a finite decomposition in 2d half–
logarithmic spirals, semi–infinite height strip flows, finite height strip flows, annulus
flows and spiral flows.
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Proof. Follows immediately from Benzinger’s result (Theorem 11.1), the local re-
alization (Theorem 9.1) and the recognition of analytical invariants from admissible
words (Theorem 9.8). �
Example 11.4. Every vector field X ∈ E(d) admits a finite decomposition as in
the corollary (without annuli or spirals).

As a particular example, consider Figure 15, corresponding to X(z) = ei
π
4 ez

2 ∂
∂z ;

one can observe the appearance of a finite height strip flow and 4 half–logarithmic
spirals.

In Examples 11.5 and 11.6, together with their corresponding figures, we can
observe some of the decomposition pieces for the 1–order 3 meromorphic case. For
instance in Figure 21.b finite height strip flows can be observed between the poles,
in both Figures 21.a and 21.b we can observe 6 half–logarithmic spirals.

(a) X(z) = −ez3

3z2
∂
∂z (b) X(z) = ez3

3z3−1
∂
∂z

Figure 21. Phase portraits of the vector fields of Examples 11.5
and 11.6 as seen from two different perspectives: in the vicinity of

∞ ∈ Ĉz and on the plane near the origin. The black and green
paths around the singularities, corresponding to the respective {γ},
are added to illustrate the different sectors that appear at each
singularity.

Example 11.5. Consider the vector field X(z) = −ez3

3z2
∂
∂z ; see Figure 21 (a). In

this case X has an isolated essential singularity at ∞ ∈ Ĉ and a double pole at the
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origin. Furthermore, there are 6 entire E sectors in the vicinity of infinity, so the
admissible word at ∞ is

EEHHEEEEHHEEEEHHEE,

hence the Poincaré–Hopf index of X at ∞ is 4, while the admissible word at 0 is
HHHHHH, and its Poincaré–Hopf index is −2, and of course

χ(Ĉ) = PH(X,∞) + PH(X, 0) = 4− 2.

Example 11.6 (Example 4.17 revisited). Consider the vector fieldX(z) = ez3

3z3−1
∂
∂z ;

see Figure 21 (b). Once again ∞ is an isolated essential singularity of X, but now

X has 3 simple poles located at 1
3√3

, e
i2π/3

3√3
and e−i2π/3

3√3
. The admissible word at ∞

is (starting from the top in Figure 21 (b)):

EHHEEEEHHEEEEEHHEEEE,

so the Poincaré–Hopf index of X at ∞ is 5, while the admissible word at each
simple pole is HHHH, and the corresponding Poincaré–Hopf index is −1, and of
course once again

χ(Ĉ) = PH (X,∞) + PH

(
X,

1
3
√
3

)
+ PH

(
X,

ei2π/3
3
√
3

)
+ PH

(
X,

e−i2π/3

3
√
3

)
= 2.
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ing systems of autonomous ordinary differential equations by reduction to a variable of an
algebra, Int. J. Math. Math. Sci. (2012), Art. ID 753916, 21. MR2974702

[6] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Măıer, Qualitative theory of
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