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Topological and analytical classification of vector fields with only
isochronous centres
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We study vector fields on the plane having only isochronous centres. The most familiar
examples are isochronous vector fields, they are the real parts of complex polynomial
vector fields on C having all their zeroes of centre type. We describe the number NðsÞ of
topologically inequivalent isochronous (singular) foliations that can appear for degree
s, up to orientation preserving homeomorphisms. For each s, there exists a real analytic
variety I ðsÞ parametrizing the isochronous vector fields of degree s, the group of
complex automorphisms of the plane AutðCÞ acts on it. Furthermore, if 2 # s # 7, then
I ðsÞ is a non-singular real analytic variety of dimension s þ 3, and their number of
connected components is bounded by 2NðsÞ. An explicit formula for the residues of the
rational 1-form, canonically associated with a complex polynomial vector field with
simple zeroes, is given. A collection of residues (i.e. periods) does not characterize an
isochronous vector field, even up to complex automorphisms of C. An exact bound for
the number of isochronous vector fields, up to AutðCÞ, having the same collection of
residues (periods) is given. We develop several descriptions of the quotient space
I ðsÞ=AutðCÞ using residues, weighted s-trees and singular flat Riemannian metrics
associated with isochronous vector fields.

Keywords: ordinary differential equations; isochronous centres; residues; complex
polynomials

AMS Subject Classification: 37C10; 34C05; 58F23

1. Introduction

A real vector field on R2 has an isochronous centre when the periods of trajectories

surrounding the singular point are constant. The simplest vector fields having isochronous

centres are the real parts ReðXÞ of complex polynomial vector fields X, with non-zero pure

imaginary derivative at some zero.

Real and complex isochronous centres appear in the following situations:

In the problem of linearization of centres for real vector fields of class Cv, see [7,17].

They are good prospects to study the birth of limit cycles under perturbation of centres,

this is the infinitesimal Hilbert’s 16 problem [2,14]. In the topological classification of

plane polynomial vector fields, the phase portraits of polynomial vector fields with only

isochronous centres are between the simplest (see [1,4] or [23]) for the quadratic case.

They are the most simple examples of Jenkins–Strebel quadratic differentials on the

Riemann sphere [26, 27].

In all that follows, an isochronous vector field, in short, an isochronous X is a complex

polynomial vector field on C, having all their zeroes of centre type.
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An isochronous X has associated a weighted s-tree LðXÞ as follows, the s vertices

correspond to the zeroes, the edges are determined by adjacent centre basins and the

weights are the periods. In particular, LðXÞ determines an embedded s-tree in C.

Following [18], we know the following three facts. Each embedded s-tree (without

weights) in C is realized by an isochronous X. If two isochronous X1;X2 determine

topologically equivalent isochronous foliations (up to preserving orientation home-

omorphisms HomeoðCÞþ), then they have associated the same embedded s-tree.

Furthermore, X1;X2 are biholomorphically equivalent (up to complex automorphisms

AutðCÞ) if and only if they have associated isomorphic weighted s-trees.

Let Csþ1 be the space of complex polynomial vector fields on C having degree at most

s. The set of isochronous vector fields of degree s, denoted by I ðsÞ, forms a real analytic

family. The complex Lie group AutðCÞ acts holomorphically on Csþ1 as changes of

coordinates. We have the diagram

Csþ1 . I ðsÞ! I ðsÞ
AutðCÞ

!
I ðsÞ

HomeoðCÞþ
: ð1Þ

Our goal is the computation of the above quotients from the point of view of

combinatorics, topology, geometry and dynamics.

The first main result Theorem 5.3 answers a question in [2].

The number of classes of topological isochronous foliations in I ðsÞ=HomeoðCÞþ (i.e.

without bearing in mind the orientation of the trajectories) is

NðsÞ ¼
1

2ðs 2 1Þ

X
djðs21Þ

f
s 2 1

d

� � 2d

d

 !
2

1

2
cs21 þ

1

2
xevenðsÞcðs=2Þ21; ð2Þ

where cs ¼ ð1=ðs þ 1ÞÞ
2s

s

 !
denotes the sth Catalan number, f denotes the Euler’s

function and xeven is the characteristic function of even integers.

Furthermore, for 1 # s # 15 the respective numbers are

1; 1; 1; 2; 3; 6; 14; 34; 95; 280; 854; 2694; 8714; 28640 and 95640: ð3Þ

The idea of enumeration (2) using s-trees was suggested Muciño-Raymundo in [18]

Corollary 8.3, compared with the recent result of Rong [24] and see our diagram (16) for an

accurate description. The analytic families are more subtle, we describe them in Theorem 6.1.

Assume 3 # s # 7. The set of isochronous vector fields I ðsÞ , Csþ1 is a non-singular

real analytic space of dimension s þ 3.

The quotient space I ðsÞ=AutðCÞ is of dimension s 2 1, Hausdorff and admits a

stratification by orbit types.

In particular for s # 7,

The number of connected components of I ðsÞ is
¼ 2NðsÞ odd s;

# 2NðsÞ2 1 even s:

(
ð4Þ

The low-dimensional quotients I ðsÞ=AutðCÞ, s ¼ 1; 2; 3, are described in Proposition

6.3. The second assertion says (very roughly speaking) that I ðsÞ=AutðCÞ is a locally finite

union of manifolds, pieced together in a nice way. Equation (4) says that for odd s, the

preimage of a point under I ðsÞ! I ðsÞ=HomeoðCÞþ in (1) has precisely two connected

components of I ðsÞ, due to the change of sign ^X. For even s, a more complex behaviour

appears, some precise values for (4) are given in 6.1.3.
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An isochronous vector field X is characterized by their associated rational 1-formv, such

thatvðXÞ ; 1, having only one zero at infinity and simple poles with non-zero pure imaginary

residues. Our main analytic tool is an explicit formula for these residues (see (8)).

The hypothesis s # 7 in the above result depends on explicit computations with the residues.

We conjecture that it remains valid for all s (see Remark 2 in Section 7). The residues of

complex polynomial vector fields are the most natural complex analytic invariants under the

AutðCÞ-action (see Proposition 2.3). A third result is as follows (see Theorem 7.8).

AutðCÞ-orbits fail to be separated by the residues. For s $ 4, the number of different

classes of isochronous vector fields in I ðsÞ=AutðCÞ having the same collection of residues

varies between 1 and ðs 2 2Þ!

The determination of enough invariant quantities for the AutðCÞ-action on I ðsÞ is

equivalent to the construction of the quotient space I ðsÞ=AutðCÞ. This classical idea

emerged from the work of Cayley and Hilbert (see [9], p. xiii for an illuminated

explanation). Even more, we deal with real analytic spaces I ðsÞ, non-complex analytic.

Hence, we require techniques from Lie group actions (see Chapter 2 in [10]).

Very roughly speaking, we describe I ðsÞ=AutðCÞ, using the following points of view:

realizable weighted s-trees, singular flat Riemannian metrics up to isometries, collections

of residues and configurations of zeroes (see diagram (27)).

The similar problems (realization of analytic families, moduli spaces, use of weighted

graphs, number of connected components, etc.) for holomorphic 1-forms on compact

Riemann surfaces of genus g $ 1 have received much attention (see [16,27]). However,

the case of rational 1-forms having arbitrary zeroes and poles on the Riemann sphere is

less studied. Our results for ‘isochronous’ rational 1-forms, describe new families on the

Riemann sphere.

In Section 2, we construct complex manifolds which are parameter spaces for the

complex polynomial vector fields with simple zeroes and their associated 1-forms. Also

we recall the residues as AutðCÞ invariants. In Section 3, we deal with real vector fields. A

complete characterization of weighted s-trees coming from isochronous X is given in

Corollary 3.6. The residue theorem imposes a restriction, but also there are other

restrictions (see Example 7.3). In Section 4, the flat metric associated with an isochronous

X is described as a gluing of flat cylinders. The main results are the topological

classification and the construction of non-singular analytic families for I ðsÞ (both are

presented in Sections 5 and 6, respectively). The characterization of realizable residues by

isochronous vector fields is studied in Section 7. In Section 8, explicit families of

isochronous centres are described in terms of configurations of zeroes, inequalities for the

residues and weighted graphs. Their dimensions and codimensions in I ðsÞ are provided.

As an application, Section 9 is devoted to results of bifurcations under rotation and the

Hamiltonian nature of isochronous vector fields (see Sections 2 and 5). Conclusions and

future directions are in Section 10.

The authors wish to thank to the anonymous referees for their valuable suggestions to

improve this paper.

2. Different facets of complex polynomial vector fields

In all that follows we use the one-to-one correspondence between

(i) complex polynomial vector fields X of degree s,

(ii) rational differential forms v having only a zero at 1 [ Ĉ of multiplicity s 2 2,

(iii) orientable rational quadratic differentials v^v, having poles of even multiplicity in

C and a zero at 1 [ Ĉ of multiplicity 2s 2 4,

M.-E. Frı́as-Armenta and J. Muciño-Raymundo1696



(iv) singular flat Riemannian metrics g on Ĉ, with suitable singularities and a geodesic

unitary vector field; see [18] for a general explanation (the above multiplicities are

for s $ 3, the special cases s ¼ 1; 2 are easy).

In the present case we recall some basic facts and notation.

Let X be a complex polynomial vector field on C of degree s $ 1, non-identically zero,

as follows

X ¼ ðb0z s þ b1z s21 þ · · · þ bs21z þ bsÞ
›

›z
8

1

l
ðz 2 p1Þ· · ·ðz 2 psÞ

›

›z
: ð5Þ

Its associated rational 1-form is

v ¼
dz

ðb0z s þ b1z s21 þ · · · þ bs21z þ bsÞ
8

l dz

ðz 2 p1Þ· · ·ðz 2 psÞ
: ð6Þ

On the Riemann sphere Ĉ, v has a zero of muliplicity s 2 2 at infinity. For (5), the

associated orientable quadratic differential is v^v. The flat Riemannian metric associated

with v^v is

g ¼

1
u 2þv 2 0

0 1
u 2þv 2

0@ 1A; on ðC2 {zeroes of X}Þ;

here X ¼ ðu þ ivÞð›=›zÞ is the polynomial expression and i ¼
ffiffiffiffiffiffiffi
21

p
. The metric g is real

analytic outside of the zeroes (we say that g is singular at the zeroes and infinity).

By a trajectory of X, we understand a real trajectory of the polynomial vector field

ReðXÞ8 u
›

›x
þ v

›

›y
:

The trajectories of X are geodesics for the flat metric g.

Parameter spaces. By (5), the space of complex polynomial vector fields having

degree s is isomorphic to the open set {b0 – 0} in the space of coefficients

Csþ1
coef ¼ {ðb0; . . . ; bsÞ}.

The condition of having simple zeroes is necessary in order to get isochronous vector

fields. Let D ¼ {pi ¼ pjji – j; i; j [ 1; . . . ; s} be the set of hyperplanes in

Cs
roots ¼ {ðp1 . . . ; psÞ}, describing pi with non-simple multiplicity. Under the natural

action of the symmetric group SðsÞ of order s, the quotient ðCs
roots 2 DÞ=SðsÞ is an open

complex manifold.

The Viète map from roots to coefficients induces a holomorphic map

Vs : C* £
Cs

roots 2 D

SðsÞ

� �
! Csþ1

coef

ðl; ½p1; . . . ; ps�Þ 7! ðb0; . . . ; bsÞ

1

l
ðz 2 p1Þ· · ·ðz 2 psÞ

›

›z
7! ðb0z s þ · · · þ bsÞ

›

›z
;

ð7Þ

described by the elementary symmetric polynomials lba ¼ saðp1; . . . ; psÞ.

Note that the bracket ½ . . . � means the unordered collection of roots.
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The image of Vs is the complement of two algebraic sets: {b0 ¼ 0} and the

discriminant hypersurface {D ¼ 0} comprised of polynomials with multiple roots. If we

restrict the Viète map to the domain and image as above, Vs is a biholomorphism (see [6],

p. 124).

Corollary 2.1. The complex manifolds

C* £
Cs

roots 2 D

SðsÞ

� �
and Csþ1

coef 2 ð{b0 ¼ 0} < {D ¼ 0}Þ

are parameter spaces for the set of complex polynomial vector fields on C of degree s, with

simple zeroes.

We also recognize the above manifolds as parameter spaces for the set of rational 1-

forms on C having s simple poles and free of zeroes.

Lemma 2.2.

1. For s $ 2, the residue of v at pj is

rjðl; ½p1; . . . ; ps�Þ ¼
1

2pi

ð
gj

v ¼
l

ðpj 2 p1Þ· · ·ð dpj 2 pjpj 2 pjÞ· · ·ðpj 2 psÞ
; ð8Þ

here the hat over the factor ðpj 2 pjÞ indicates that it is omitted.

2. For complex polynomial vector fields with simple zeroes, the residue map

R : C* £
Cs

roots 2 D

SðsÞ

� �
!

ðC*Þs

SðsÞ ðl; ½p1; . . . ; ps�Þ 7! ½r1; . . . ; rs� ð9Þ

is rational (between complex algebraic varieties).

Proof. Since all the poles of v are simple, we can write v ¼ f ðzÞdz=ðz 2 pjÞ at each pole,

for f ðzÞ holomorphic on a neighbourhood of z ¼ pj. Thus

Residue
f ðzÞdz

z 2 pj

; pj

� �
¼ f ðpjÞ;

and (8) is done. For part 2, we recall that the symmetric product ðC*Þs=SðsÞ is an algebraic

variety, not a complex manifold (see [13], Example 10.23). A

If we express X or v in terms of b0; . . . ; bs in (6), then a simple expression for R is

impossible for s $ 5, due to the Abel–Galois theorem on the non-existence of radical

expressions for V21
s .

Let AutðCÞ ¼ {TðzÞ ¼ az þ b} be the group of complex automorphisms of C. Each

affine transformation T acts over X as change of coordinates. The language of 1-forms is

more suitable.

M.-E. Frı́as-Armenta and J. Muciño-Raymundo1698



Proposition 2.3. The holomorphic Lie group action AðT;vÞ ¼ T*v is

A : AutðCÞ £ C* £
Cs

roots 2 D

SðsÞ

� �
! C* £

Cs
roots 2 D

SðsÞ

ðaz þ bÞ;
l dz

ðz 2 p1Þ· · ·ðz 2 psÞ
7!

las21dz

ðz 2 ðap1 þ bÞÞ· · ·ðz 2 ðaps þ bÞÞ

and the residues ½r1; . . . ; rs� are invariant.

Proof. It is a routine calculation. A

The next result is well-known, compare with [15], pp. 10–11.

Corollary 2.4. Let X be a complex polynomial vector field on C of degree s $ 2, the

following assertions are equivalent.

1. X has s isochronous centres.

2. Their derivatives satisfy

X0ðpjÞ ¼
1

l
ðpj 2 p1Þ· · ·ð dpj 2 pjpj 2 pjÞ· · ·ðpj 2 psÞ [ iR*; at s 2 1 zeroes of X:

3. Their residues satisfy rjðvÞ [ iR*, at s 2 1 poles of v.

Along this work, the residues of an isochronous X [ I ðsÞ, i.e. of its associated v

means the unordered collection

½r1; . . . ; rs�; where rj [ iR*:

Definition 2.5. Consider two centres pi, pj of an isochronous X having basins Ui;Uj ,
C with a common boundary. The respective semi-residue of X (i.e. of v) is

Sij ¼

ð
lij

v [ Rþ: ð10Þ

Here lij 8 Ui> Uj is the saddle connection (homoclinic) trajectory of X starting and

ending at 1 [ Ĉ, describing the boundary of the basins. Obviously Sij ¼ Sji.

Remark 1. An isochronous centre pj of a complex polynomial vector field X satisfies

1

X0ðpjÞ
¼ rjðvÞ ¼

{period of ReðXÞ at pj}

2pi
8

Tj

2pi
: ð11Þ

In particular, the periods Tj are ‘oriented’ as in (11) and Tj [ R*. In many places we will

interchange the residues and the periods applying (11).

3. Real Cr isochronous vector fields

We introduce vector fields Y on R2 having differentiability class C r, r [ 1; . . . ;1;v, and

isochronous centres. A comparison with the complex polynomial case is useful, it

increases the flexibility of our techniques.
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The following local characterization of isochronous centres is classical in the real

analytic case, it is due to Poincaré and Lyapunov (see [17]). We describe the differentiable

case.

Proposition 3.1. For r [ 1; . . . ;1, the following properties are equivalent.

1. The real C r vector field Y on R2 has an isochronous centre at p of period T [ R*.

2. Under a local, C r21, change of coordinates, Y is equivalent to

2p

T
2y

›

›x
þ x

›

›y

� �
:

3. Under a local, C r21, change of coordinates, Y is equivalent to the real part of the

holomorphic vector field

2piz

T

›

›z
:

Proof. We show 1 ) 2. By a result of Sabatini [25], there exists a second vector field W,

having class C r, such that it is transversal with Y in a punctured neighbourhood of p and

commutes with Y, this is ½Y ;W� ; 0. In polar coordinates P21ðx; yÞ ¼ ðrðx; yÞ; uðx; yÞÞ, the

corresponding vector fields Y1;W1, are of class C r21 at {r ¼ 0} (see [8], Proposition

1.135). Using that Y1 and W1 commute, there exists a C r21 diffeomorphism Cðr; uÞ
rectifying both vector fields. That is, C*Y1 ¼ ð2p=TÞð›=›uÞ and C*W1 ¼ ›=›r. The

required change of coordinates is P+C+P21. The other equivalences are immediate. A

We look at the global situation, consider in the plane the orientation coming from

i ¼
ffiffiffiffiffiffiffi
21

p
and the usual identification R2 ø C.

Assume that Y is a real C r vector field on R2, r $ 1, such that

(i) Y has a finite number of singularities {p1; . . . ; ps} , R2 which are isochronous

centres with periods {T1; . . . ; Ts},

(ii) the union of the closure of their basins {U1; . . . ;Us} is R2.

Let us give some topological facts. The boundary of Ui is a certain finite collection

{lij} of trajectories of Y as in (10), having a and v-limit at infinity of R2 < {1}.

If the intersection Ui > Uj , R2 is not empty, then lij 8 Ui > Uj.

Each vector field Y as above have associated with a decomposition of R2 given by

R2 ¼ U1 < · · · < Us <ij lij:

The trajectory lij does not necessarily exist for each subindex pair ij.

By the isochronicity hypothesis, the flow of Y is defined in lij for bounded time, say

Sij [ Rþ similarly as in (10), since lij is oriented by Y.

We are attaching a sign to each period, Tj . 0 when Y turns in the anticlockwise

direction at pj and Tk , 0 otherwise.

M.-E. Frı́as-Armenta and J. Muciño-Raymundo1700



Definition 3.2. The weighted s-tree of Y (a vector field as above) is

LðYÞ ¼ p1;
T1

2pi

� �
; . . . ; ps;

Ts

2pi

� �
;Lij

� �
;

where the vertices are the centres pi of Y, their weights are T i=2pi [ iR* from the

respective periods, the edges Lij (joining pi and pj) are defined when Ui > Uj , R2 is not

empty and LðYÞ has a natural embedding in R2.

Following the notation of Harary and Palmer [11], pp. 66–67 (see also Bergeron et al.

[3], p. 284, Example 4), we have the next concept.

Definition 3.3. A plane s-tree L , C is a class of embeddings of a s-tree to the plane up

to orientation preserving homeomorphisms HomeoðCÞþ.

Recall that LðYÞ encodes an abstract s-tree and a plane s-tree.

If Y ¼ ReðXÞ for X holomorphic, then the weights coincide with the residues (see

(11)). We denote the associated plane s-tree simply by L ¼ {v1; . . . ; vs;Lij}.

Figure 1. An isochronous X of degree 4 as in Example 4.3 and four facets of it. The phase portrait in
the Poincaré-Lyapunov disc with a plane 4-tree drawn on, having the periods ½T1; . . . ; T4� as
weights. The arrangement of the periods in R is in the upper right drawing. The flat metric on the
Riemann sphere with five punctures, the four zeroes and a point of cone angle 6p, corresponding to
the pole of X. The Riemann surface �B , C, from the gluing of four half bands (having bases in the
arrangement) is drawing below right.
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Example 3.4. In Figure 1 upper left drawing, the plane 4-tree L corresponding to an

isochronous X [ I ð4Þ is shown (L is placed on the phase portrait of X).

The next result appeared in [18] as 8.1.

Theorem 3.5. Let Y be a real C r vector field on R2, r $ 1, as above. There exist a

complex structure J on R2, a complex polynomial isochronous vector field X and a

biholomorphic map c : ðR2; JÞ! C, such that c*ðYÞ ¼ ReðXÞ if and only if

(i) Y has a finite number of singularities that are isochronous centres,

(ii) the union of the closure of their centre basins is R2,

(iii) the period T i of each isochronous centre satisfies

jT ij ¼
X

j

Sij; pj adjacent with pi in LðYÞ:

Let us remark that, in general, the complex structure J depending on Y is not the usual

form i ¼
ffiffiffiffiffiffiffi
21

p
on C (recall that there are plenty of complex structures on R2).

In the other direction, let L0 be an ‘abstract’ weighted s-tree. We characterize under

what conditions L0 comes from an isochronous vector field.

Corollary 3.6. Realizable weighted s-trees.

Let L0 ¼ {ðv1; r1Þ; . . . ; ðvs; rsÞ;Lij} be a weighted s-tree satisfying

(i) ri [ iR and Sri ¼ 0,

(ii) each two adjacent vertices vj, vi have weights rj and ri of opposite signs in iR,

(iii) there exists a one-to-one correspondence {Lij $ Sij} with suitable Sij [ Rþ, such

that

jrij ¼
1

2p

X
j

Sij; vj adjacent with vi in L0:

Then L0 determines an isochronous X [ I ðsÞ, unique up to AutðCÞ.

Proof. By hypothesis, L0 is embedded as abstract graph {v1; . . . ; vs;Lij} in C. There exists

a C 1 real vector field Y having topological phase portrait and periods as the data in L0. The

factor 1=2p in condition (iii) fulfils the relation between periods and residues (11). By

Theorem 3.5, there exists at least one X [ I ðsÞ with associated weighted tree LðXÞ ¼ L0.

For the unicity, two isochronous X1;X2 coming from L0 are biholomorphically

equivalent to the vector field ð1=2ÞðY 2 iJYÞ on ðR2; JÞ under c21
1 , c21

2 , respectively. Here

again we are using 3.5 and [18] Remark 1.1. By transitivity, X1 and X2 are

biholomorphically equivalent under c2+c
21
1 [ AutðCÞ. A

Let us summarize. Each realizable weighted s-tree LðXÞ determines an equivalence

class in I ðsÞ=AutðCÞ.

However, each plane s-tree L a priori determines two equivalence classes ½X� and

½2X� in I ðsÞ=HomeoðCÞþ, we will study this in Lemma 6.7 (see diagram (27)).
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4. Geometry of the flat metrics

We describe the metric associated with an isochronous X. This is instructive, provide us

with simple intuition and will allow us avoid calculations in Sections 8 and 9.

Lemma 4.1.

1. A complex polynomial vector field X of degree s $ 2 is isochronous if and only if

the associated flat metric g on C2 {zeroes of X} satisfies the following:

(i) g is obtained by the gluing along the boundaries (using isometries) of s

half flat cylinders

{S1
jT ij

£ ½0;1ÞjT i . 0}; {S1
jTjj

£ ð21; 0�jTj , 0};

here the subindex jT ij ¼ 2pjrij means the perimeter and r1; . . . ; rs are the

residues of X.

(ii) The gluing is performed in such way that only a singular point of cone

angle 2pðs 2 1Þ appears corresponding to 1 [ Ĉ, the pole of X.

(iii) The unitary closed geodesics in the cylinders and the trajectories of ReðXÞ

coincide and have the same time orientation.

2. At level of sets there exists a one-to-one correspondence such that

I ðsÞ
AutðCÞ £ Z2

¼

flat metrics of

isochronous X;

up to isometries

8>><>>:
9>>=>>;: ð12Þ

The metrics in (12) are real analytic on the sphere Ĉ with s þ 1 punctures, the s zeroes

and the pole of the corresponding vector field X.

A more complete appreciation of (12) is given in diagram (27).

Proof. For (i), we use the ideas of Section 8 in [18]. Given an isochronous X, each centre

basin ðUj 2 {pj}; gÞ as Riemannian surface is isometric to the interior of a half flat

cylinder. The gluing of two half cylinders is by isometries along their boundaries, which

are the trajectories lij in (10). This provided the global metric in ðC2 {zeroes of X}Þ, see

examples 4.2–4.4.

For the converse, given the flat metric g on Ĉ coming from the gluing of s half

cylinders, g has a unique point of cone of angle as in (ii) and s punctures, which are the

Riemannian ends of the cylinders.

On ðC2 {zeroes of X}; gÞ, we define ReðXÞ as the geodesic vector field F whose

trajectories are unitary closed geodesics in the cylinders. From the real vector field we can

recover the complex vector field as X ¼ ð1=2ÞðF 2 iJFÞ, here J is the complex structure

from g (see [18], Remark 1.1). Using equation (11) we recognize the periods and the

residues of X. It is isochronous.

For part 2, we consider X [ I ðsÞ and T [ AutðCÞ. The vector fields X and T*X

determine the same metric g, i.e. T is a Riemannian isometry. Moreover, the corresponding

flat metrics of X and 2X are isometric. Consider the action

Z2 £ I ðsÞ! I ðsÞ; X 7! ^X: ð13Þ

Journal of Difference Equations and Applications 1703



This action leaves invariant the isometry classes of the metrics. The correspondence

between classes of vector fields and classes of metrics is done. A

Example 4.2. The metric g of an isochronous X [ I ð2Þ is a flat cylinder with a puncture.

The residues are ½r;2r� ¼ ½T=2pi;2T=2pi�, T . 0. Consider the vertical band

B ¼ {x þ iyjx [ ½0; T�} , C:

We paste the opposite vertical sides of B (each point iy in the boundary is identified with

T þ iy) to get the cylinder S1
T £ R. The vector field X is ›=›z on B. Finally, we remove one

point q ¼ x þ 0i in the cylinder, it corresponds to 1 when we think X on Ĉ.

Example 4.3. The metric g of an isochronous X [ I ð4Þ, having residues

½r1; r2; r3; r4� ¼
T1

2pi
;

T2

2pi
;

T3

2pi
;

T4

2pi

� �
;

T1 , T2 , 0 , T3; T4; 2T1 2T2 ¼ T3 þ T4

Note that 2T3 is different from T1 or T2. Without loss of generality assume T3 , 2T1 see

Figure 1, upper right drawing. Consider two lower half bands in C and two upper

{x þ iyjx [ ½0;2T1�; y # 0}; {x þ iyjx [ ½2T1;2T1 2 T2�; y # 0};

{x þ iyjx [ ½0; T3�; y $ 0}; {x þ iyjx [ ½T3; T3 þ T4�; y $ 0};

see Figure 1 lower right drawing. From each band we get a half cylinder. In addition, we

paste the horizontal boundary of the half bands (respectively, the half cylinders)

identifying each point x [ R in a lower band with the respective x in the upper band, see

the lower row drawings in Figure 1. The resulting surface fulfils the conditions in 4.1. X is

induced by ›=›z. Let us remark that in this metric there are three trajectories

{lij} ¼ {ð0; T3Þ; ðT3;2T1Þ; ð2T1; T3 þ T4Þ};

which are the intersections of the centre basins �Ui > �Uj, determining the semi-residues.

Our choice of upper half bands for 0 , T3;T4 is coherent with the orientation on C, the

definition of r3, r4 (as the integral along a path with the anticlockwise orientation) and

equation (11).

Example 4.4. The metric g of an isochronous X [ I ð4Þ, having residues

½r1; r2; r3; r4� ¼
T1

2pi
;

T2

2pi
;

T3

2pi
;

T4

2pi

� �
;

T1 , 0 , T2; T3; T4; 2T1 ¼ T2 þ T3 þ T4:
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Consider four half vertical bands in C one lower and three upper, which are as follows

{x þ iyjx [ ½0;2T1�; y # 0};

{x þ iyjx [ ½0; T2�; y $ 0}; {x þ iyjx [ ½T2; T2 þ T3�; y $ 0};

{x þ iyjx [ ½T2 þ T3; T2 þ T3 þ T4�; y $ 0}:

From each band we get a half cylinder. We paste the horizontal boundary of the half bands

(respectively, the half cylinders) identifying each point x [ R in the lower band with the

point x in the respective upper band. The resulting surface fulfils the conditions in 4.1. X is

induced by ›=›z.

Summing up, an isochronous X [ I ðsÞ has associated with the following data, see

(14), a rational 1-form, a weighted s-tree LðXÞ, a plane s-tree L (e.g. Figures 2 and 3), a

configuration of zeroes ½p1; . . . ; ps�, an unordered collection of residues ½r1; . . . ; rs� and

periods ½T1; . . . ; Ts� and their semi-residues {Sij}.

ðl; ½p1; . . . ; ps�Þ ½p1; . . . ; ps�

l b

v $ X ! LðXÞ ! L

# d #

{Sij} ½r1; . . . ; rs�

l

½T1; . . . ; Ts� :

ð14Þ

In general, no further implications are possible. In Sections 6–9, we will derive additional

conditions for the converse implications.

Figure 2. Plane 7-trees, i.e. embedded up to Homeo ðCÞþ.
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5. Topological enumeration

We answer a question in [2] describing the topological classification of isochronous vector

fields X [ I ðsÞ. In order to avoid confusions, we make explicit three notions of

equivalence.

Definition 5.1.

1. Two isochronous vector fields X1;X2 determine topologically equivalent

isochronous foliations if there exists a homeomorphism h [ HomeoðCÞþ which

takes trajectories from X1 to X2 (independent of the time orientation).

2. Furthermore, X1;X2 are topologically equivalent isochronous vector fields if in

addition the homeomorphism h as above preserves the time orientation along the

trajectories. In particular the signs (in iR) of their respective residues must

coincide under h.

3. X1, X2 are holomorphically equivalent isochronous vector fields if there exists an

affine map T [ AutðCÞ such that T*X1 ¼ X2.

Our isochronous foliations are singular, by abuse of language we omit this. Clearly the

above definitions satisfy 1 ( 2 ( 3, however the converse implications fail.

Example 5.2. The implication 1 ) 2 depends on the degree.

For degree s ¼ 1, the isochronous izð›=›zÞ and 2izð›=›zÞ define topologically

equivalent isochronous foliations. However they are topologically inequivalent

isochronous vector fields, i.e. h [ HomeoðCÞþ cannot preserve the time orientation. In

particular Nð1Þ ¼ 1 in equation (3).

For degree s ¼ 2, every isochronous X [ I ð2Þ is

X1 ¼
r

z þ 1
þ

2r

z 2 1

� �
21 ›

›z
; r [ Rþ;

Figure 3. Plane 8-trees, i.e. embedded up to Homeo ðCÞþ.
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under a suitable h [ AutðCÞ. Moreover, in this case, X1 and 2X1 are topologically

equivalent isochronous vector fields under hðzÞ ¼ 2z. In particular Nð2Þ ¼ 1 in equation

(3).

Recall the Z2 action given by X 7! ^X (see (13)). A class of this action is the

isochronous foliation of ^X. Using the discussion in Section 3, Definitions 3.3 and 5.1.1

we have the following diagram:

I ðsÞ ! I ðsÞ
HomeoðCÞþ

d #

I ðsÞ
HomeoðCÞþ£Z2

¼

topological

isochronous

foliations

8>><>>:
9>>=>>; ¼

plane s-trees

ðembedded s-trees

up to HomeoðCÞþÞ;

L , C

8>>>>><>>>>>:

9>>>>>=>>>>>;
: ð15Þ

Let us remark that {L} are combinatorial objects. The proof of the right equality in

(15) uses arguments in the phase portraits as in [2], we leave the details to the reader. A

virtue of the concept of plane s-tree is its relation with the number of connected

components in I ðsÞ and I ðsÞ=AutðCÞ, as we see in Theorem 6.1.3. Now we introduce the

enumeration of plane s-trees.

Theorem 5.3. The number of classes of topological isochronous foliations of degree s is

NðsÞ ¼
1

2ðs 2 1Þ

X
djðs21Þ

f
s 2 1

d

� � 2d

d

 !
2

1

2
cs21 þ

1

2
xevenðsÞcðs=2Þ21;

where cs ¼ ð1=ðs þ 1ÞÞ
2s

s

 !
denotes the sth Catalan number, f denotes the Euler’s

function and xeven is the characteristic function of even integers.

Furthermore, for 1 # s # 15, the respective numbers are

1; 1; 1; 2; 3; 6; 14; 34; 95; 280; 854; 2694; 8714; 28640 and 95640:

Proof. Let us recall two facts. The enumeration of tree-like structures started with Pólya

[22]. The enumeration of s-trees as abstract graphs was achieved by Otter [21].

From the dynamical point of view, the enumeration of embeddings of s-trees in C can

be consider in two ways:

(i) looking at the classes of embeddings up to homeomorphisms of the plane,

HomeoðCÞ, as was studied by Álvarez et al. [2] and Rong [24], or

(ii) looking as plane s-trees, i.e. classes of embeddings up to orientation preserving

homeomorphisms of the plane, HomeoðCÞþ, see diagram (15).

Our choice is (ii).

In diagrams (1) and (15), we are looking at the canonical orientation on C (given by the

complex structure i ¼
ffiffiffiffiffiffiffi
21

p
).
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Summing up

#

s-trees

as abstract

graphs;

Otter ½21�

8>>>>><>>>>>:

9>>>>>=>>>>>;
# #

embedded s-trees

up to Homeo ðCÞ;

Rong ½24�

8>><>>:
9>>=>>; # #

plane s-trees

ðembedded s-trees

up to Homeo ðCÞþÞ;

ð2Þ

8>>>>><>>>>>:

9>>>>>=>>>>>;
: ð16Þ

For 1 # s # 6, the enumerations of Otter, Álvarez et al., Rong and our equation (2) coincide.

For 7 # s, the inequalities in (16) are strict, which are as follows. A

Example 5.4. The first case where the enumerations of Rong and equation (2) are different

is the family of 7-trees. As abstract graphs there are eleven 7-trees, see [21]. In Figure 2,

the plane s-trees labelled with 11 and 12 are equal as abstract graphs but different as

classes of embeddings up to homeomorphisms of the plane, thus following Rong’s

enumeration we get 12. Moreover when we are considering the plane 7-trees, recall

diagram (15) and graphs labelled with {1; 2} in Figure 2 are different as plane 7-trees, and

the same for graphs labelled {3; 6}, then our enumeration increases to being 14. Recall that

Álvarez et al. [2] provided #12, for s ¼ 7.

Example 5.5. The next case where the enumerations are different is the family of 8-trees.

As abstract graphs there are twenty three 8-trees, see [21]. In Figure 3, the trees labelled

with 8 and 12 are equal as abstract graphs but different as classes of embeddings up to

homeomorphisms of the plane. The same is true for the couples of graphs labelled {9; 16},

{26; 29} and {30; 33} in Figure 3. Thus following Rong’s enumeration, we get 27.

Moreover when we are considering the plane 8-trees, the couples of graphs labelled {3; 4},

{12; 13}, {14; 15}, {16; 23}, {17; 18}, {19; 20} are different (see Figure 3). Then our

enumeration increases to being 34. Recall that Álvarez et al. [2] provided #28, for s ¼ 8.

The general case. We started with Otter’s enumeration. When a rooted tree is

embedded in the plane a cyclic order is induced on the edges incident with the root, this is

shown in Harary et al. [12]. Moreover they found an explicit formula for enumeration of

these kinds of structures. In equations (3.3.23), (3.3.24), (3.3.25) and theorem in page 67 of

Harary and Palmer [11], they resumed the computation of generating series and whence

enumeration for planted, rooted and plane s-trees, respectively. Following the above ideas

of Harary et al., in pages 284–285 and 291 of Bergeron et al. [3], a modern resume is

presented, particularly (48) of [3] is our equation (2).

Following (2), for 1 # s # 15, we get the numbers in (3).

6. Analytic structure for the space of isochronous vector fields

We leave the description of I ðsÞ in the special cases s ¼ 1; 2, for the reader.

Theorem 6.1. Assume 3 # s # 7.

1. The set of isochronous centres I ðsÞ , Csþ1
coef is a non-singular real analytic space of

dimension s þ 3. Furthermore, I ðsÞ has the structure of a real line bundle over a

real analytic manifold, removing the zero section.
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2. The quotient space I ðsÞ=AutðCÞ is of dimension s 2 1, Hausdorff and admits a

stratification by orbit types.

3. For s # 7, the number of connected components of I ðsÞ is 2NðsÞ for odd s, and

#2NðsÞ2 1 for even s.

The respective numbers are 2; 1; 2; 3; 6; 10and14.

Proof of assertion 6.1.1. The classes in I ðsÞ=AutðCÞ describe the holomorphically

equivalent isochronous vector fields, recall Definition 5.1.3. Consider the diagram

C* £
Cs

roots2D

SðsÞ

� 	
. I ðsÞ ! I ðsÞ

AutðCÞ
ø

realizable

weighted

s-treesLðXÞ

8>><>>:
9>>=>>;

R d ðC*Þs

SðsÞ

#

e

; ð17Þ

where R maps each polynomial vector field to the unordered collection of their residues

(see (9)). The other two down arrows are the restrictions of R. The meaning of realizable

weighted s-trees is in Corollary 3.6.

The map R is a sort of geometric transformation, sending each unordered

configuration of zeroes to the respective unordered collection of residues. R is invariant

under the AutðCÞ-action, recall Proposition 2.3.

We define the isochronicity equations for X ¼ ðl; ½p1; . . . ; ps�Þ in C* £ ðCs
roots 2

D=SðsÞÞ as

argðr1Þ ¼ · · · ¼ argðrs21Þ ¼ argðrsÞ: ð18Þ

Thus, if the residues ½r1; . . . ; rs� ¼ Rðl; ½p1; . . . ; ps�Þ belong to the real line L ¼

{reiu0 } , C with u0 ¼ argðriÞðmodpÞ; then eiu0X is isochronous.

By the residue theorem, ðs 2 1Þ equalities in (18) imply the remaining.

Analytic line bundle structure of I ðsÞ. Let us define

CðsÞ ¼ {ð½p1; . . . ; ps�Þjargðr1Þ ¼ · · · ¼ argðrsÞ} ,
Cs

roots 2 D

SðsÞ

called the set of isochronous configurations. This is well defined, since l is a linear factor

in every ri (see (8)).

The fact that CðsÞ is a real analytic variety (possibly singular) is immediate from (18).

We want to study whether CðsÞ is non-singular and show that ðs 2 1Þ equations in (18) are

non-redundant.

The property of being a non-singular space is local. We introduce the ordered residue

map R as follows. Let Va , Cs 2 D be a collection of open discs, such that

<aVa ¼ Cs 2 D. Note that each ðp1; . . . ; psÞ [ Va is the usual ordered s-tuple. For each

Va we get an ordered residue map

Rðl; p1; . . . ; psÞ ¼ ðr1; . . . ; rsÞ;

Journal of Difference Equations and Applications 1709



where both sides have order (ri is the obvious residue). R satisfies the following diagram

C* £ Va !
R

ðC*Þs !
1=r

ðC*Þs21 !
arg

ðS1Þs21

# #

C* £
Cs

roots2D

SðsÞ

� 	
!
R ðC*Þs

SðsÞ

: ð19Þ

By definition

1

r

� �
+R : ðl; p1; . . . ; psÞ 7!

1

r1

; . . . ;
1

rs21

� �
;

1

rj

� �
ðl; p1; . . . ; psÞ ¼

1

l
ðpj 2 p1Þ· · ·ð dpj 2 pjpj 2 pjÞ· · ·ðpj 2 psÞ

are polynomial functions and we are considering l as a parameter, see (8). Moreover in

(19), S1 ¼ R=2pZ, the down arrows are the inclusions and arg is the argument function on

each coordinate. The maps R, ð1=rÞ+R and arg depend on Va, by abuse of notation we omit

this. A

Lemma 6.2. For s # 7, the map ð1=rÞ+R is a submersion.

Proof. In order to introduce a manifold structure in I ðsÞ, only the computation up to 1=rs21

is required, since the last residue can be expressed as ð1=rsÞ ¼ ð1=ð2r1 2 · · · 2 rs21ÞÞ.

The differential of the map is

D
1

r

� �
+R

� �
¼

›ð1=rjÞ

›pi

� �
; j [ {1; . . . ; s 2 1}; i [ {1; . . . ; s}:

Fixed k [ {1; . . . ; s}, when we remove the row of partial derivatives ›=›pk, the

determinant of the respective square matrix is

det
›ð1=rjÞ

›pi

� �
i–k

¼
ðs 2 1Þ!

l s21

Y
a,b

ðpa 2 pbÞ
2; a;b – k: ð20Þ

For s # 7, we verify (20) using Mathematica. When s $ 4, a theoretical proof of (20)

seems to be very complex.

Furthermore, {ðpa 2 pbÞ
2 ¼ 0} are equations for D, as sets. The determinant (20) does

not vanish at the domain of R. Thus, ð1=rÞ+R is a submersion. A

Remark 2. For s $ 8, when we try to verify (20), the complexity of the calculations

overcomes the memory of a common computer. In order to use a cluster, probably non-

linear programmation will be required.

Conjecture 1. Equation (20) is true for all s $ 8.
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Since, equation (18) defines a submanifold of ðS1Þs21, its inverse image under ð1=rÞ+R

is also a submanifold. Thus for s # 7, CðsÞ is a real analytic submanifold of dimension

s þ 2, having local coordinates

{ðp1; . . . ; psÞ [ Vajargðr1Þ ¼ · · · ¼ argðrs21Þ}:

For each configuration ½p1; . . . ; ps� [ CðsÞ; there exists a punctured real line L ¼

{reiu0 jr [ R*} , C* parametrizing the isochronous vector fields with this configuration

of zeroes. We have u0 þ argðriÞ ¼ ^p=2 and u0 depends in a real analytic way of the

configuration ½p1; . . . ; ps� [ CðsÞ , ðCs
roots 2 DÞ=SðsÞ.

Summing up, there exists a Cv real line bundle structure

p : I ðsÞ! CðsÞ; p21ð½p1; . . . ; ps�Þ ¼ {ðreiu0 ; ½p1; . . . ; ps�Þ}:

Note that, the total space of the bundle I ðsÞ does not contain the zero section, i.e. r – 0.

This real line bundle parametrizes all the isochronous vector fields having s zeroes. The

real dimension of I ðsÞ is s þ 3. The proof of assertion 6.1.1 is done.

Proof of assertion 6.1.2. Dimension and stratification of I ðsÞ=AutðCÞ, s # 7. We compute

the explicit quotients for s # 3.

Proposition 6.3.

I ð1Þ
AutðCÞ

¼ iR*;
I ð2Þ

AutðCÞ
¼ iRþ;

I ð3Þ
AutðCÞ

¼
ðiRþÞ2

Z2

<
ðiR2Þ2

Z2

;

in the last Z2-action is by the reflection ðr1; r2Þ , ðr2; r1Þ.

Proof. The case s ¼ 1 follows from Example 5.2. For s ¼ 2, a representant in each

equivalence class written as 1-form is

v ¼
r

z þ 1
þ

2r

z 2 1

� �
dz; r [ iRþ:

Note that the vector fields, written as 1-forms,

v1 ¼
r

z þ 1
þ

2r

z 2 1

� �
dz; v2 ¼

2r

z þ 1
þ

r

z 2 1

� �
dz

are in the same equivalence class, using the map TðzÞ ¼ 2z.

For s ¼ 3, in order to get explicit expressions, we use Lemma 7.1 and the residues as

parameters. Since r1 þ r2 þ r3 ¼ 0, we can assume that r1 and r2 have the same sign in

iR*. Whence a representant in each equivalence class is

v ¼
r1

z þ 1
þ

2r1 2 r2

z 2 ððr2 2 r1Þ=ðr1 þ r2ÞÞ
þ

r2

z 2 1

� �
dz; ðr1; r2Þ [ ðiR^Þ2:

This quotient space has boundaries, they originate from classes {ðr; rÞ}, which are the

fixed points of the Z2-action induced by ðr1; r2Þ 7! ðr2; r1Þ. A
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Since AutðCÞ is connected, from the above quotients we get that the number of

connected components of I ðsÞ is 2, 1, 2, for s ¼ 1; 2; 3, respectively, as (4) in 7.1.3 asserts.

We return to the study for 4 # s # 7. The group AutðCÞ is non-compact. In order to

apply the well-known results of Lie group actions, e.g. [10], Chapter 2, we need to deal

with a proper action having compact isotropy groups. Both properties are true.

Lemma 6.4. The push-forward action

A : AutðCÞ £ I ðsÞ! I ðsÞ; ðaz þ bÞ; ðl; ½p1; . . . ; ps�Þ 7! ðlas21; ½ap1 þ b; . . . ; aps þ b�Þ

is proper.

Proof. The assertion is for all s. A is induced on I ðsÞ by the action in Proposition 2.3. We

verify that A is proper on I ðsÞ and proper at each X0 [ I ðsÞ. Both conditions will

simplify the application of the theory in [10].

The first property uses the definition in [10], p. 53. We must show that the map

AutðCÞ £ I ðsÞ! I ðsÞ £ I ðsÞ, given as ðT ;XÞ 7! ðT*X;XÞ, is proper. Note that T : C! C

is always a proper map. Whence AðT;XÞ ¼ T*X changes the position of the zeroes by T

and the coefficient l by as21. The desired property follows.

Furthermore, the action A is proper at each X0 [ I ðsÞ, see [10], pp. 98–99 for the

definition. This is, for every pair of sequences {Xj} of I ðsÞ and {Tj} of AutðCÞ; if

limj!1Xj ¼ X0 and limj!1ðTjÞ*Xj ¼ X0, then there is a subsequence {jðkÞ} with

convergent {TjðkÞ} in AutðCÞ, as k !1. We leave the details to the reader. A

Since I ðsÞ is a Cv manifold (for s # 7), by [10], Lemma 1.11.3 the quotient space

I ðsÞ=AutðCÞ is Hausdorff.

A is not a free action on I ðsÞ. The isotropy group of X [ I ðsÞ is the subgroup

{T [ AutðCÞjT*X ¼ X}. This statement is equivalent to the fact that T sends the weighted

graph LðXÞ on itself as automorphism. As usual, the isotropy group of X is called trivial if

it is the identity.

Two examples. For X [ I ð1Þ the isotropy group is C*, and for X [ I ð2Þ the isotropy

group is trivial, see the explicit descriptions in Proposition 6.3.

Corollary 6.5. Assume s $ 3.

1. The non-trivial isotropy groups of isochronous vector fields are cyclic subgroups of

rotations Zp, 2 # p # s 2 1.

2. Every I ðsÞ admits vector fields with non-trivial isotropy group.

3. If a connected component C , I ðsÞ has associated an plane s-tree L with a group

of automorphisms (as abstract graph) trivial or different from Zp, p $ 2, then each

X [ C has trivial isotropy in AutðCÞ.

Proof. To show (1), recall that the finite groups of AutðĈÞ leaving invariant the point

1 [ Ĉ are finite rotation groups Zp. Assertion (2) follows from the explicit construction

of suitable isochronous vector fields, see Lemma 8.2 for the case p ¼ s 2 1.

For the third assertion, since every continuous deformation of Xt : ½0; 1�! C
determines the same phase portrait, the associated plane s-tree L of C is well defined,
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diagrammatically

I ðsÞ! I ðsÞ
Homeo ðCÞþ £ Z2

C 7! L:

By contradiction, if X [ C has a non-trivial isotropy group Zp , AutðCÞ, then Zp induces

a non-trivial automorphism of L as abstract graph. A

Example 6.6. Consider the connected components Ca of I ð7Þ having associated 7-trees

labelled with 1, 2, 3, 5, 6, 7, 9, 12 and 13 in Figure 2. Every isochronous X [ Ca has trivial

isotropy group.

Now, we introduce the set of associated generic isochronous vector fields

X [ GðsÞ , C , I ðsÞ, i.e. the isochronous X such that their weighted trees LðXÞ have

residues ½r1; . . . ; rs�, with ri – rj, for each i; j, i – j. Here the plane s-tree L is fixed.

For s # 7, GðsÞ determines an open and dense subset (a submanifold) of I ðsÞ always

with trivial isotropy groups in AutðCÞ.

The quotients GðsÞ=AutðCÞ or C=AutðCÞ (when C is a full connected component with

trivial isotropy, see 6.5.3) are real Cv manifolds. This follows by a classical result of Lie

group actions on manifolds, see [10], p. 53, Theorem 1.11.4. The dimensions of these

quotients are computed as

dim½GðsÞ�2 dim½AutðCÞ� ¼ ðs þ 3Þ2 4 ¼ s 2 1: ð21Þ

Moreover p1 : GðsÞ! GðsÞ=AutðCÞ is a Cv principal fibre bundle.

Assume 3 # s # 7, in general a connected component C , I ðsÞ can behave in one of

the following ways:

(i) all the vector fields in C have trivial isotropy as in 6.5.3,

(ii) there are vector fields with non-trivial isotropy, hence C splits in a finite number of

subsets, depending in the isotropy groups that appear.

Moreover, the case (ii) means that C and hence C=AutðCÞ admit stratifications by orbit

types. It follows from the fact that the action A is proper but non-free at several vector

fields, see [10], Section 2.7 for a clear exposition of the theory.

The computation of dim½C=AutðCÞ� ¼ s 2 1 (by definition, the maximum of the

dimensions of the strata in C) is as follows.

In case (i), the computation follows directly as is (21).

In case (ii), the submanifold GðsÞ , C is the subset of maximal dimension, s þ 3 in

the stratification of C. We regard that each submanifold Mp of C , I ðsÞ, given by the

stratification with non-trivial isotropy Zp, has dimension less that s þ 3. Hence the

hypothesis of non-trivial isotropy imposes additional equalities for the residues

{½r1; . . . ; rs�} in (18). Now we apply the idea in (21) to each Mp, obtaining

dim½Mp�2 dim
AutðCÞ

Zp

� �
, s 2 1:

The proof of assertion 6.1.2 is done.

Proof of assertion 6.1.3. We want to compute the number of connected components of

I ðsÞ, for 1 # s # 7. Our varieties I ðsÞ are real affine (using the language of algebraic
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geometry), and their connectedness properties in general give origin to hard questions.

However using that the ordered residue map R is a submersion, the connectedness problem

becomes simple. The strategy is as follows.

Step 1. Given X [ I ðsÞ, there is a ‘canonical’ isochronous vector field, say Xþ
can, such

that X and Xþ
can are in the same connected component of I ðsÞ.

Step 2. Compute how is the intersection of the AutðCÞ-orbits of two canonical vector

fields Xþ
can (this depends on the parity of s and the plane s-tree L).

Step 3. Compute by inspection the number of connected components.

Step 1. Let X be an isochronous vector field and its weighted s-tree

LðXÞ ¼ {ðp1; r1Þ; . . . ; ðps; rsÞ;Lij}. The collection of semi-residues {Sij} [ Rþ of X is

well determined (see Corollary 3.6). We consider the continuous paths

Sij;t : ½0; 1�! Rþ; t 7! Sij;t 8
Sij

ð1 2 tÞ þ tSij

;

note that Sij;1 ¼ 1. There is a continuous path t 7! Lt of weighted trees; starting at the

weighted tree LðXÞ and defined by the following two conditions.

(i) The weighted tree is

Lt ¼ {ðv1;t; r1;tÞ; . . . ; ðvs;t; rs;tÞ;Lij}

having residues

ri;t ¼
^1

2pi

X
j

Sij;t [
Z

2pi
pj;t are adjacent with pi;t in Lt; ð22Þ

here we are using condition (iii) in Corollary 3.6, the choice of the sign ^ is such that

ri and ri;t are in the same component of iR*.

(ii) LðXÞ and Lt are the same plane s-trees in C, up to h [ HomeoðCÞþ.

By Corollary 3.6, for each t, there exists an isochronous Xt that realizes the weighted

tree Lt.

We must check that the realization of Xt from Lt is continuous in I ðsÞ.
The continuous path of unordered residues

t 7! ½r1;t; . . . ; rs;t� [ ðC*Þs; t [ ½0; 1�

is in the image RðI ðsÞÞ of a suitable ordered residue map (see diagram (19)). For fixed

t [ ½0; 1�, there exists a local continuous lift

ðl; p1;t; . . . ; ps;tÞ [ ðC* £ VaÞ , C* £
Cs

roots2D

SðsÞ

b # R

t ! ðr1;t; . . . ; rs;tÞ [ ðC*Þs

for t [ ðt 2 1; t þ 1Þ, 1 . 0, such that Rðl; p1;t; . . . ; ps;tÞ ¼ ðr1;t; . . . rs;tÞ: Here we are

using suitable {Va} and the fact that R is a submersion, in a similar way with Lemma 6.2.

Hence it determines a local fibration over an open neighbourhood of each ðr1;t; . . . rs;tÞ.

The local lift is not unique, it can be changed by a continuous Tt [ AutðCÞ. Using a finite
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cover of ½0; 1� and the above local lifts, we get the desired continuous path

t 7! Xt [ I ðsÞ; X0 ¼ X and X1 8 Xþ
can:

We define, the canonical isochronous vector field Xþ
can [ I ðsÞ associated with X is an

isochronous vector field determining the same plane s-tree that X, semi-residues 1 and

residues of the same sign (in iR*) that X.

Note that, for all T [ AutðCÞ; the vector field T*Xþ
can is also canonical and associated

under a continuous path with X. Hence the canonical vector field from X is not unique. Xþ
can

determines a canonical AutðCÞ-orbit in I ðsÞ.
Step 2. We want to know how is the intersection of canonical AutðCÞ-orbits in I ðsÞ. Let

Xþ
can be a canonical isochronous vector field, we define

X2
can 82Xþ

can:

Both have semi-residues 1, but their respective residues are of opposite sign in iR*. The

key point is to characterize whether

Xþ
can and X2

can

are holomorphically equivalent isochronous vector fields. The characterization is as

follows.

Lemma 6.7.

1. If s is odd or Xþ
can satisfies that the numbers of their residues of opposite sign in iR*

are different between them, then Xþ
can and X2

can determine different AutðCÞ-orbits

and different connected components of I ðsÞ.
2. If s is even, then the following assertions are equivalent.

(i) Xþ
can and X2

can determine the same AutðCÞ-orbit (they are holomorphically

equivalent).

(ii) Xþ
can and X2

can determine the same connected component of I ðsÞ.

Let us start with three illustrative objects.

Example 6.8. The action of TðzÞ ¼ 2z. Let X ¼ ðl; ½p1; . . . ; ps�Þ be a polynomial vector

field written as in (7) a priori non-isochronous. Assume in addition that the collection of

zeroes is invariant under T [ AutðCÞ. Then T*X ¼ ðlð21Þs21; ½p1; . . . ; ps�Þ; see Lemma

6.4. Our assertions are the following.

s is odd if and only if T*X ¼ X, i.e. T is in the isotropy of X.

s is even if and only if T*X ¼ 2X, i.e. X and 2X are in the same AutðCÞ-orbit.

Example 6.9. Case as in 6.7.2 (i) with the same orbit. Assume even s ¼ 2k and a canonical

vector field having expression

Xþ
can ¼ iðz 2 x1Þ· · ·ðz 2 xkÞðz þ x1Þ· · ·ðz þ xkÞ

›

›z
[ I ðsÞ;

where 0 , x1 , x2 , · · · , xk [ Rþ. In Proposition 8.1 we will show the existence of a
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suitable collection of zeroes such that the semi-residues are 1 and their associated tree is a

path graph. Then Xþ
can and X2

can are in the same AutðCÞ-orbit, since TðzÞ ¼ 2z makes true

the equation T*Xþ
can ¼ X2

can.

Furthermore, T induced the obvious permutation between the weighted vertices from

these canonical vector fields, which are

2xk;
1

2pi

� �
; 2xk21;

22

2pi

� �
; . . . ; xk21;

2

2pi

� �
; xk;

21

2pi

� �� �
and

2xk;
21

2pi

� �
; 2xk21;

2

2pi

� �
; . . . ; xk21;

22

2pi

� �
; xk;

1

2pi

� �� �
:

Example 6.10 Case as in 6.7.1. Assume odd s ¼ 2kþ 1; the vector fields

Xþ
can ¼ iðz 2 x1Þ· · ·ðz 2 xkÞzðz þ x1Þ· · ·ðz þ xkÞ

›

›z
; X2

can

are in different AutðCÞ-orbits. In fact the collections of weighted vertices from these

canonical vector fields are

2xk;
1

2pi

� �
; 2xk21;

22

2pi

� �
; . . . ; xk21;

22

2pi

� �
; xk;

1

2pi

� �� �
and

2xk;
21

2pi

� �
; 2xk21;

2

2pi

� �
; . . . ; xk21;

2

2pi

� �
; xk;

21

2pi

� �� �
;

a permutation induced by T [ AutðCÞ sending one collection in another is impossible.

Example 6.11 Case as in 6.7.2, with different orbits. Assume even s and the canonical

vector field having expression

Xþ
can ¼ irzðz s21 2 1Þ

›

›z
[ I ðsÞ;

for suitable r [ Rþ. In Proposition 8.2 we will show their existence with the associated

tree which is a star shape graph (with a vertex of degree s 2 1 at z ¼ 0) and having semi-

residues 1. Thus Xþ
can and X2

can determine two different AutðCÞ-orbits. In fact the

collections of weighted vertices from these canonical vector fields are

0;
s 2 1

2pi

� �
; 1;

21

2pi

� �
; . . . ; zs21;

21

2pi

� �� �
and

0;
2ðs 2 1Þ

2pi

� �
; 1;

1

2pi

� �
; . . . ; zs21;

1

2pi

� �� �
;

a permutation induced by T [ AutðCÞ sending one collection in another does not exist

(here 1; . . . ; zs21 are the ðs 2 1Þ-th roots of the unit).

Now we return to Lemma 6.7.
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Proof. For assertion 1, in order to show that Xþ
can, X2

can are in different connected

components, we proceed by contradiction. Assume there exists a continuous path Xt :

½0; 1�! I ðsÞ such that X0 ¼ Xþ
can and X1 ¼ X2

can. We get a continuous family of

homeomorphisms ht [ HomeoðCÞþ such that ht makes X0 ¼ Xþ
can and Xt topologically

equivalent isochronous vector fields. ht is a topological isotopy.

h1 induces a permutation s from the weighted vertices {ðp1; r1Þ; . . . ; ðps; rsÞ} in

LðXþ
canÞ of one canonical vector field to the other. The permutation must send the positive

residues ri [ iRþ to negative rj [ iR2 and, vice versa.

However by hypothesis, the number of positive residues ri [ iRþ is different from the

number of negative residues. A permutation with this property does not exist. We have

arrived to a contradiction. Assertion 1 is done.

For assertion 2, the AutðCÞ-orbits are also connected, this and Step 1 shown (i) ) (ii).

For (i) ( (ii), by hypothesis there exists a continuous path Xt : ½0; 1�! I ðsÞ such that

X0 ¼ Xþ
can and X1 ¼ X2

can. Starting with {Xt} we want to construct a suitable T [ AutðCÞ,

using the ideas in [18].

There exists a continuous family of homeomorphisms ht [ HomeoðCÞþ such that ht

makes X0 ¼ Xþ
can and Xt topologically equivalent. ht is a topological isotopy.

Thus h1 is a topological equivalence between Xþ
can and X2

can. Using that the periods and

the plane s-tree of both vector fields are the same, we can recognize that h1 can be realized

by an orientation preserving isometry

T : ðC2 {½p1; . . . ; ps�}; g0Þ! ðC2 {½p1; . . . ; ps�}; g1Þ;

here g0; g1 are the respective flat metrics. Moreover this isometry is a biholomorphic map

between punctured Riemann surfaces. By the Riemann extension theorem, the

biholomorphic map is well defined across the pole and zeroes of Xþ
can. Furthermore by

the Uniformization theorem, T [ AutðCÞ is the desired map such that T*Xþ
can ¼ X2

can. The

respective AutðCÞ-orbits coincide as (i) asserts. A

Step 3. For the third assertion in 7.1, given s # 7; we verify by inspection, which plane

s-trees have the property that Xþ
can and X2

can belong to the same AutðCÞ-orbit.

For s ¼ 1; 3; 5; 7, using Lemma 7.6.1, the number of connected components of I ðsÞ is

2NðsÞ, where NðsÞ is the number of topologically inequivalent isochronous foliations.

For s ¼ 2, using Lemma 7.6.2 (ii), the number of connected components of I ð2Þ is 1.

For s ¼ 4, there are two 4-trees, a path graph and a star shape graph (i.e. having a

vertex of degree 3). Using Lemma 6.7.2 (ii), the number of connected components of

having the topology of the path graph is 1. Applying example 6.11, the number of

components having the topology of the star shape tree is 2. The number of components of

I ð4Þ is 3.

For s ¼ 6, I ð6Þ has 10 connected components (we leave the details to the reader).

This end the proof of assertion 6.1.3.

Theorem 6.1 is done.

Conjecture 2. For all s . 7, the total number of connected components I ðsÞ is as

follows.

If s is odd, then is 2NðsÞ.

If s is even, then is bounded by 2NðsÞ2 1.

Journal of Difference Equations and Applications 1717



The odd case will follow by Conjecture 1 and Lemma 7.6.1. In the even case, we recall

that the isochronous vector fields in Example 6.9 determine only a connected component.

But, when s increases there are more plane s-trees determining only one connected

component. For example the 8-tree labelled 10 in Figure 3 determines only a connected

component in I ð8Þ.

7. Combinatory of residues

Consider diagrams (14) and (17). An unordered collection ½r1; . . . ; rs� having ri [ iR*

and Sri ¼ 0 is called isochronous if there exists an isochronous vector field X realizing

these periods.

Question 1: Given ½r1; . . . ; rs� as above, when is isochronous?

For rational vector fields, the similar problem has always positive answer. The 1-forms

provide a more suitable language.

Lemma 7.1. Let {h} be the family of rational 1-forms on Ĉ, having s simple poles and

arbitrary zeroes. Every collection of poles and residues (satisfying the residue theorem) is

realized by some h.

Proof. We start with s pairs {ðpi; riÞ} , C £ C*, where {pi} are different points in the

plane, since here we are working up to PSLð2;CÞ. The desired 1-form is

h ¼
r1

z 2 p1

þ · · · þ
rs

z 2 ps

� �
dz ¼

a1z s21 þ a2z s22 þ a3z s23 þ · · · þ as

ðz 2 p1Þ· · ·ðz 2 psÞ

� �
dz; ð23Þ

where

a1 ¼
X
i

ri ¼ 0; a2 ¼
X
i

ri
X
a–i

pa

 !
;

a3 ¼
X
i

ri
X
a;j–i

papj

 !
; . . . ; as ¼

X
i

ri p1 . . . pi
^ . . . ps


 �
:

A

Example 7.2. The collection

½ðs 2 1Þr;2r; . . . ;2r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðs21Þ

�; r [ iR*

is isochronous only for X [ I ðsÞ, s $ 3, having a star shape s-tree L.

Thus, L has a vertex with degree s 2 1, for examples see trees labelled 14 and 32 in

Figures 2 and 3. Up to T [ AutðCÞ, X has zeroes at the origin and the ðs 2 1Þ-th roots of

the unity, see Lemma 8.2 for an additional description.

Negative examples for Question 1 are as follow.
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Lemma 7.3. The collection

½r; r;2r;2r�; r [ iR*

is not isochronous for any polynomial X [ I ð4Þ. Moreover, it is the unique forbidden

collection of residues for I ð4Þ.

Proof. We show several arguments. There are two 4-trees: one of order 3 (star shape) and

another of order 2 (a path graph).

If we use the tree having order 3, then the residue ^r assigned at the vertex of order 3

cannot satisfy condition (iii) in Corollary 3.6, we get a contradiction. Similarly, when we

study the tree having order 2.

Another argument uses the metric cylinders. Observe that the gluing of four half

cylinders with these perimeters 2pjrjj ¼ jTjj cannot be performed satisfying the

conditions in Lemma 4.1. This is evident when we compare ½r; r;2r;2r� with Examples

4.4 and 4.3. Both examples shown that ½r; r;2r;2r� is the unique forbidden

collection. A

Remark 3.

(i) The collection ½r;2r 2 i1; r þ i1;2r�, for enough small 1 – 0, is isochronous. LðXÞ

is the path 4-tree in Example 4.3. Using (23), the explicit expression is

v ¼
r

z
þ

2r 2 i1

z 2 1
þ

r þ i1

z 2 ðð2i12 2rÞ=i1Þ
þ

2r

z 2 ðð2ði1þ rÞÞ=i1Þ

� �
dz:

(ii) Moreover, using (23), ½r; r;2r;2r� is the collection of residues of a one parameter

family of rational 1-forms {h} on Ĉ having four simple poles and two simple zeroes,

hence the associated vector fields Xh are not polynomial.

(iii) In simple words Lemma 7.3 says that, a real or complex polynomial PðxÞ of degree 4

having derivatives ½r;2r; r;2r� at their zeroes, r [ C*, does not exist.

Example 7.4. The collection

½r; . . . ; r|fflfflfflffl{zfflfflfflffl}
k

;2r; . . . ;2r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

�; r [ iRþ; k $ 2

is not isochronous for any X [ I ð2kÞ.

For the proof, we use the geometry of vertical bands and cylinders in Lemma 4.1. The

obstructions are similar as in Lemma 7.3.

Example 7.5. The collection

½r; . . . ; r|fflfflfflffl{zfflfflfflffl}
k

;2s1r;2s2r; . . . ;2skr�; r [ iRþ; sj [ N; k $ 2; k ¼ Saj;

is not isochronous for any X [ I ðk þ kÞ.

The proof uses Lemma 4.1.
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Corollary 7.6. For each s $ 4, there are collections ½r1; . . . ; rs� having ri [ iR* and

Sri ¼ 0, which are not isochronous for any X [ I ðsÞ.
Now we study, how many times a collection of residues can appear for different

classes ½X� [ I ðsÞ=AutðCÞ.

Example 7.7. The collection

½2r; . . . ; 2r|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k

;2kr;2r; . . . ;2r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

�; r [ iRþ; k $ 1;

is isochronous for only one class in I ðsÞ=AutðCÞ and its respective s-tree (s ¼ 2k þ 1).

In order to fix ideas, consider s ¼ 7, k ¼ 3 and the tree labelled 10 in Figure 2, say L7.

At the extreme vertices of L7 we put residues 2r;2r;2r, at the central vertex 23r, and at

the others vertices 2r; 2r; 2r. Following Corollary 3.6, there exists an isochronous X

realizing the data in L7.

By simple inspection, any other 7-tree in Figure 2 cannot support these residues

satisfying Corollary 3.6. Another argument avoiding large computations is as follows. We

observe that the gluing of 7 half cylinders with these perimeters can be performed

satisfying the conditions in Lemma 4.1 with a unique pattern.

The general case is left to the reader.

We summarize in the following result, the residues do not determine uniquely the

orbits in I ðsÞ=AutðCÞ.

Theorem 7.8. For an unordered isochronous collection of residues ½r1; . . . ; rs� the

number of its possible associated weighted s-trees, #{L½r1; . . . ; rs�}, is the topological

degree of the map

R :
I ðsÞ

AutðCÞ
!

ðC*Þs

SðsÞ

in (17) and satisfies

1 # #{L½r1; . . . ; rs�} # ðs 2 2Þ! ð24Þ

Proof. We assume that ½r1; . . . ; rs� is isochronous. Since we are working in I ðsÞ=AutðCÞ

without loss of generality, two residues, say r1 and r2, correspond to zeroes at positions

p1 ¼ 0 and p2 ¼ 1 in C. It follows that the system of algebraic equations (23),

{a2ð0; 1; p3; . . . ; psÞ ¼ 0} > · · · > {as21ð0; 1; p3; . . . ; psÞ ¼ 0};

admits solutions {ð0; 1; p30; . . . ; ps0Þ}.

The degree of the algebraic equation ai ¼ 0 with respect to the affine variables

{ðp3; . . . ; psÞ} is ði2 1Þ. By Bezout’s theorem in these affine variables, the number of

solutions is infinite or is at most the product of the degrees, that is ðs 2 2Þ!

Note that infinite solutions are impossible, because we are working on I ðsÞ=AutðCÞ

(we imposed the conditions p1 ¼ 0, p2 ¼ 1).
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The bound in equation (24) is sharp. Consider L the s-tree having a vertex, say v1, of

order s 2 1 (this characterize the s-tree as plane graph), e.g. the 7-tree labelled 14 in Figure

2 and 8-tree labelled 32 in Figure 3.

Consider the isochronous periods

½2ðs 2 1Þi; ð1 þ 12Þi; . . . ; ð1 þ 1sÞi�;

here 0 , j1ij , 1 and all the residues are different between them. In order to get a

weighted tree, assume the following correspondence between periods and vertices

{2 ðs 2 1Þi; ð1 þ 12Þi; . . . ; ð1 þ 1sÞi} $ {v1; v2; . . . ; vs}:

The above correspondence admits ðs 2 1Þ! permutations, given origin to non-equivalent

weighted trees in C. There are ðs 2 1Þ! classes in I ðsÞ=AutðCÞ as equation (24) says. A

8. Isochronicity and configurations of zeroes

We return to diagrams (14) and (17). Let X be a complex polynomial vector field as in (5),

we assume the knowledge of the position of their zeroes.

Question 2: Under what conditions on the configuration of the zeroes of X,

½p1; . . . ; ps� [ ððCs
roots 2 DÞ=SðsÞÞ, there exists a rotation, such that eiu0X is isochronous?

In the affirmative case ½p1; . . . ; ps� belongs to the base CðsÞ of the line bundle structure

in I ðsÞ and we say that ½p1; . . . ; ps� is an isochronous configuration, as in Section 6.

The isochronicity conditions (18) say that ½p1; . . . ; ps� is isochronous if and only if

rj

r1

¼ 2
ð dp1 2 p1p1 2 p1Þðp1 2 p2Þ· · ·ð dp1 2 pjp1 2 pjÞ· · ·ðp1 2 psÞ

ð dpj 2 p1pj 2 p1Þðpj 2 p2Þ· · ·ð dpj 2 pjpj 2 pjÞ· · ·ðpj 2 psÞ
[ R*; j [ 2; . . . ; s: ð25Þ

Our task is the description of (25) from three points of view: elementary geometry of

isochronous configurations, inequalities between the residues, and realizable weighted

trees.

The following result is related with [1] (Theorem 1.1) (see also [18], Example 8.4.1).

Proposition 8.1. Isochronous vector fields whose zeroes are in a line.

1. For s $ 3, the following assertions are equivalent.

(i) The zeroes {pj} of X are in a line L.

(ii) Up to suitable T [ AutðCÞ and reiu0 , the vector field X satisfies

T*ðreiu0XÞ ¼ izðz 2 1Þðz 2 x3Þ· · ·ðz 2 xsÞ
›

›z
;

where 1 , x3 , · · · , xs.

(iii) For u0 ¼ 2argðr1Þ, the rotated vector field eiu0X is isochronous and its s-

tree is a path graph.

2. These families of vector fields determine full connected components in each I ðsÞ.

Proof. The equivalence (i) , (ii) is immediate.
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For (ii) ) (iii), we want to describe the phase portrait of X. The conjugation z 7! �z is a

homeomorphism of C, leaving invariant each trajectory (reversing the time along each

trajectory) of ReðXÞ and the zeroes are fixed points under �z. Both properties imply that the

tree LðXÞ is a path graph.

The easiest proof of (ii) ( (iii) uses conformal maps. Consider X as in (iii), by

Theorem 3.5 there exists a real C r vector field Y on R2 having its weighted tree isomorphic

with LðXÞ.

In addition to C r techniques, we can assume that Y has all its zeroes in a real line
~L , R2 and the euclidean reflection R with respect to ~L satisfies R*Y ¼ 2Y . In particular,

the trajectories of Y are invariant under R (independently of the time orientation).

Without loss of generality, the biholomorphic map c : ðR2; JÞ! C sending Y to ReðXÞ

is such that cð ~LÞ ¼ R, here c is as in 3.5. The composition c+R+c21 : C! C is an anti-

conformal automorphism, that is z 7! �z up to conjugation in AutðCÞ. All the zeroes of X are

in the line R.

To show assertion 2, let us remark that these families have as effective number

parameters {r; x3; . . . ; xs} (recalling that the ordered residue map is a submersion) plus the

four in AutðCÞ. The total number of parameters is s þ 3, that is the dimension of I ðsÞ. Then

the families are open subsets of I ðsÞ. To show that the families in (1) fill completely the

respective components of I ðsÞ, we can use a continuous path argument as in the proof of

Theorem 6.1.3. We leave the details to the reader. A

The situation is more complicated for s $ 4 as we describe below. We present an

instructive second family, it is related with [1] (Theorem 1.1) (see also [18]), Example

8.4.2).

Lemma 8.2. Isochronous vector fields whose zeroes are at a regular polygon.

1. For s $ 4, the following assertions are equivalent.

(i) The zeroes of X are at the vertices p2; . . . ; ps and centre p1 of a regular

polygon.

(ii) Up to suitable T [ AutðCÞ and reiu0 , the vector field satisfies

T*ðreiu0XÞ ¼ izðz s21 2 1Þ
›

›z
:

(iii) The residues {rj} of X satisfy

r1 ¼ 2ðs 2 1Þr2; r2 ¼ · · · ¼ rs:

2. These subfamilies {reiu0X} have s-trees with a vertex of degree s 2 1 and dimension

5 (codimension s 2 2) in the respective connected components of I ðsÞ.

Proof. Equivalence (i)–(ii) is immediate. Assume (iii), by Corollary 3.6, there exists X1

having residues r1; r2 ¼ · · · ¼ rs. It is easy to see that a vector field X in (ii) provides this

collection of residues. Hence, X1 is X up to a change of coordinates, (ii) is done. We leave

assertion 3 to the reader. A

The last assertion says that the codimension of this subfamily is higher. An interesting

problem is to find explicit polynomials for the above vector fields describing these full

connected components in I ðsÞ.
Case s ¼ 4. The next part was in [1,5] (Theorem 1.2).
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Lemma 8.3. Isochronous vector fields whose zeroes are at a triangle.

1. For s ¼ 4, the following assertions are equivalent.

(i) The zeroes of X are at the vertices p2; p3; p4 of a non-degenerate triangle

and its orthocentre p1.

(ii) For u0 ¼ 2argðr1Þ, the residues of eiu0X satisfy

½r1; r2; r3; r4� ¼
T1

2pi
;

T2

2pi
;

T3

2pi
;

T4

2pi

� �
; ^T1 , 0 , ^T2; ^ T3;^T4:

(iii) For some u0, the rotated vector field eiu0X is isochronous and its tree has a

vertex with degree 3.

2. These families {reiu0X} determine two full connected components of I ð4Þ.

Proof. Let p1; . . . ; p4 be as above, we have

r2

r1

¼ 2
ðp1 2 p3Þðp1 2 p4Þ

ðp2 2 p3Þðp2 2 p4Þ
:

Thus ðp1 2 p3Þ and ðp2 2 p4Þ are an altitude and a side of the triangle, they are

orthonormal. Also ðp1 2 p4Þ and ðp2 2 p3Þ are orthonormal. Equation (25) holds,

½p1; . . . ; p4� is isochronous.

The collection of periods comes from Example 4.4. The associated tree is as in (iii).

The assertion (2) follows from Example 7.9. A

Corollary 8.4.

1. For s ¼ 4, the families of isochronous vector fields having their zeroes in a line or

in the vertices and the orthocentre of a non-degenerate triangle determine the three

full connected components of I ð4Þ.
2. The unique forbidden collection of residues for I ð4Þ is ½r; r;2r;2r�, r [ iR*.

Proof. Part (2) was done in Examples 4.4 and 4.3 and Lemma 7.3. A

Case s ¼ 5. The isochronous configurations for s $ 5 are very difficult to describe.

There are three 5-trees. In the case of L; a path graph is completely described by (4). We

present solutions for the other two classes of 5-trees. In order to find explicit solutions of

(25), we assume some symmetry in the configuration of five zeroes.

Our symmetry hypothesis is that three zeroes p3; p4; p5 are in the perpendicular

bisector line of the segment defined by p1, p2. That is, up to suitable T [ AutðCÞ and reiu0 ;
we deal with the vector fields

T*ðreiu0XÞ ¼ i z þ
1

2

� �
z 2

1

2

� �
ðz 2 iy3Þðz 2 iy4Þðz 2 iy5Þ

›

›z
;

where y3 , y4 , y5.

Journal of Difference Equations and Applications 1723



Lemma 8.5. ½2ð1=2Þ; ð1=2Þ; iy3; iy4; iy5� is an isochronous configuration if and only if

y3 þ y4 þ y5 ¼ 4y3y4y5: ð26Þ

Proof. It is an explicit computation in order to verify (25). A

Example 8.6. Isochronous vector fields whose zeroes are at a rhombus.

1. For s ¼ 5, the following assertions are equivalent.

(i) The zeroes of X are at the vertices of a rhombus p2; . . . ; p5 and its centre

p1.

(ii) The residues ½r1; . . . ; r5� of X satisfy

r1 ¼ 22ðr2 þ r3Þ; r2 ¼ r4; r3 ¼ r5:

2. These isochronous subfamilies {reiu0X} have 5-trees with a vertex of degree 4, and

dimension 6 (codimension 2) in the respective connected components of I ð5Þ.

In order to show it for the rhombus, we note that (26) reduces to y3 þ y5 ¼ 0. Another

proof uses a similar computation to 8.3.

The configurations in (26) determine the appearance of two classes of 5-trees. The first

is when p4 is in the convex hull of the other zeroes. This case contains as subfamilies the

rhombus and the regular square in Lemma 8.2.

Lemma 8.7. Isochronous vector fields with 5 zeroes symmetric respect to a line I.

1. For s ¼ 5, the following assertions are equivalent.

(i) The zeroes of X satisfy that p3; p4; p5 are in the bisector line of the segment

by p1, p2 and moreover p4 is in the convex hull of p1; p2; p3; p5.

(ii) The residues ½r1; . . . ; r5� of X satisfy

r4 ¼ r1 þ r2 þ r3 þ r5 and jr1j ¼ jr2j:

2. These isochronous subfamilies {reiu0X} have 5-trees with a vertex of degree 4and

dimension 7 (codimension 1) in the respective connected components of I ð5Þ.

Proof. For (i) , (ii), use the fact that these phase portraits are invariant under a reflection

z 7! �z as in the proof of 8.1. A

The second case is when p3; p4 are in the convex hull of p1 ¼ ð1=2Þ; p2 ¼ 2ð1=2Þ; p5.

Lemma 8.8. Isochronous vector fields with 5 zeroes symmetric respect to a line II.

1. For s ¼ 5, the following assertions are equivalent.

(i) The zeroes of X satisfy that p3; p4; p5 are in the bisector line of the segment

by p1, p2 and moreover p3; p4 are in the convex hull of p1; p2; p5.

(ii) The residues ½r1; . . . ; r5� of X satisfy

jr3j , jr1j þ jr2j þ jr4j and jr4j , jr5j:
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2. These isochronous subfamilies {reiu0X} have 5-trees with a vertex of degree 3and

dimension 7 (codimension 1) in the respective connected components of I ð5Þ.

We return to the case of isochronous X having the star shape s-tree, extending the

Lemma 8.2. A

Lemma 8.9.

1. For s $ 3, the following assertions are equivalent.

(i) The residues ½r1; . . . ; rs� ¼ ½ðT1=2piÞ; . . . ; ðTs=2piÞ� of isochronous eiu0X

satisfy that only one period T i is positive (or negative).

(ii) The isochronous {reiu0X} have s-trees with a vertex of degree s 2 1.

2. These isochronous subfamilies of vector fields determine two full connected

components in each I ðsÞ.
3. Under the condition (i) every collection ½r1; . . . ; rs� having ri [ iR* and Sri ¼ 0 is

isochronous.

Proof. Assertion (i) , (ii) is direct from the fact of two adjacent poles have different sign.

For part 2, we use a continuous path argument as in the proof of Theorem 6.1.3.

Part 3 uses Lemma 4.1 and an explicit construction similar as in Example 4.4. A

Lemma 8.9 generalizes 8.2, however note the lack of explicit geometric descriptions

for these isochronous configurations ½p1; . . . ; ps�, when s $ 5.

9. Bifurcations and Hamiltonian properties

Let X be a complex polynomial vector field on C, the family of their real-rotated vector

fields is

{eiuReðXÞju [ R=2pZ}:

The trajectories of the family coincide (in the obvious sense) with the trajectories of the

geodesic flow in the unitary tangent bundle of ðC2 {zeroes of X}; gÞ.

Corollary 9.1. Let X be a complex polynomial vector field on C with simple zeroes, the

following assertions are equivalent.

1. For some u0; the vector field eiu0X is isochronous.

2. The family of the phase portraits {eiuReðXÞ} has exactly two bifurcation values

{u0; u0 þ p}.

Proof. Use that the closed geodesics on the half cylinders in Lemma 4.1 are trajectories of

^eiu0ReðXÞ. A

The two bifurcation values in 9.1.2 are the dynamical expression of the Z2-action in

(12). The problem of bifurcation under rotation was considered in [19]. Let X be

isochronous and let eip=2ReðXÞ8 ImðXÞ be the rotated field. This vector field has sources
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or sinks at the zeroes of X. The residue theorem admits an interpretation as a conservation

law for the g-area, which is as follows.

Corollary 9.2. Let ImðXÞ be as above. The g-area entering in ðC2 {zeroes of X}; gÞ

under the flow of ImðXÞ from a source pj in one unit of time is Tj and the exiting area at the

sink pi is T i. Moreover X
pj is a source

Tj þ
X

pi is a sink

T i ¼ 0:

Proof. The flows of ReðXÞ and ImðXÞ leave invariant the g-area. A

The conservation law for the g-area of a meromorphic vector field on a compact

Riemann surface is described in [20].

Question 3: Given a real polynomial vector field Y with only isochronous centres,

under what conditions Y is Hamiltonian?

For a discussion, see [17,7] and references therein. In particular the problem of

existence of (at least one) isochronous centre for a polynomial function Hðx; yÞ has

received much attention. By Theorem 3.5, we can construct a family of vector fields with

Hamiltonian structure.

For a complex polynomial vector field X, we look at the pair of real vector fields

ReðXÞ8 u
›

›x
þ v

›

›y
; ImðXÞ82v

›

›x
þ u

›

›y
:

They commute, are linearly independent outside of the zeroes of X, and in the language of

differential geometry determine a frame. The dual frame of 1-forms is

v1 ¼
u dx þ v dy

u2 þ v 2
; v2 ¼

2v dx þ u dy

u2 þ v 2
:

Thus V ¼ v1 ^ v2 ¼ ððdx ^ dyÞ=ðu2 þ v2ÞÞ determines a symplectic structure of Cv

class, outside of the zeroes of X.

Proposition 9.3. The isochronous vector field ReðXÞ on ðC2 {zeroes of X};VÞ is

Hamiltonian for the univalued, Cv, function

Hðx; yÞ ¼

ððx;yÞ
ðx0;y0Þ

v2:

Proof. The initial ðx0; y0Þ must be a regular point of X. We observe that v2 is closed and

v2ðReðXÞÞ ¼ 0, thus H is univalued. The value of H at the zeroes of X is ^1. The

Hamiltonian vector field of H is ReðXÞ. A
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10. Conclusions and future directions

We have enlarged the information of diagrams and equations (1), (12), (14), (15) and (17).

Our new diagram is

I ðsÞ ! I ðsÞ
AutðCÞ

! I ðsÞ
Homeo ðCÞþ

l d d

realizable

weighted

s-treesLðXÞ

8>><>>:
9>>=>>; I ðsÞ

AutðCÞ£Z2
! I ðsÞ

Homeo ðCÞþ£Z2

# d l l

isochronous

residues;

½r1; . . . ; rs�

8>><>>:
9>>=>>;

flatmetrics of

isochronous X;

uptoisometries

8>><>>:
9>>=>>; !

plane

s-trees

L , C

8>><>>:
9>>=>>;

: ð27Þ

The Z2-action is induced by X 7! ^X and l means bijection. Having in mind the above

results, we can state the following questions.

Problem. Characterize geometrically the isochronous configurations ½p1; . . . ; ps�, for

s $ 5.

Problem. Given an isochronous configuration ½p1; . . . ; ps�, construct an algorithm to

determine the associated plane s-tree L.

In particular:

Problem. If for some isochronous configuration ½p1; . . . ; ps�, with s $ 5, only one

point, say p1, is in the open convex hull of the other s 2 1 points; is it true that the

associated s-tree has a vertex at p1 with degree s 2 1 (as in 8.9)?

Conjecture. For every isochronous residues ½r1; . . . ; rs�, with s $ 5:

the minj{jrjj} is attained at pb in the boundary of the convex hull of the zeroes,

the maxj{jrjj} is attained at pi in the interior of the convex hull of the zeroes.

In other order of ideas. For s $ 2, the symplectic structure making Hamiltonian an

isochronous vector field in Proposition 9.3 has punctures at the zeroes.

Problem. Given an isochronous vector field, does exists a smooth symplectic structure

on all R2 with the above property?
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[20] J. Muciño-Raymundo and C. Valero-Valdéz, Geometry and dynamics of the residue theorem,

Morfismos 5 (1) (2001), pp. 1–16.
[21] R. Otter, The number of trees, Ann. Math. 49 (1948), pp. 583–599.
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