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Abstract 

The notion of strong Barr dinatural transformation is introduced which, when taken between 
Horn functors, gives a notion of natural number specifically adapted to the category under con- 
sideration. We call these dinatural numbers and we study their ari~e~ie which depends in a 
nice way on the structure of the category. We also consider families of dinatural numbers, which 
leads to a new universal property for natural numbers object as classifying object for dinatural 
numbers. When there is a natural numbers object, its arithmetic defined by recursion corresponds 
to the arithmetic of dinatural numbers. Examples are given with a particular emphasis on the 
category of finite sets. @ 1998 Elsevier Science B.V. All rights reserved. 

AMS Clas$cation: 18A23, 18D20 

1. Introduction 

In [ 11, Bainbtidge et al. introduced a semantics for the polymo~hic lambda calculus 

in terms of tinctors and generalized natural transfo~ations. This theme is picked up 

again in [7]. Types are interpreted as bivariant functors on a suitable Cartesian closed 

category and terms as dinatural transformations. It was already known to Dubuc and 

Street when they introduced them in [6] that dinatural transformations do not compose 

in general. This embarrassment is circumvented in [l] by working only with the cat- 

egory PER of partial equivalence relations on N. There, the dinatural transformations 

do compose, as there are relatively few of them and they have a very special form. 

Still, the general idea is attractive enough to make one wonder how far it might go 

using such nice categories as the category of sets or the category of finite sets. In partic- 

ular, inspired by the notion of Church numeral, one might wonder, as Bainb~dge et al. 
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did, whether every dinatural transformation on the Horn set is given by iteration a fixed 

number of times. The answer is “no” and counterexamples are given in Section 2.2. 

We introduce a stronger notion of dinatural transformation suggested by Barr, which 

is much better behaved. They are closed under composition, in particular. For the Horn 

functor on the category of sets, they correspond exactly to iteration a fixed number 

of times. For other categories, such as finite sets, there are more. We view them as 

a notion of natural number specifically adapted to the category in question. We call 

them dinatural numbers. 

There is a certain amount of arithmetic which can be done with dinatural numbers 

which depends quite nicely on the structure of our category. If the category is merely 

monoidal we can define addition and prove certain nice properties; for Cartesian cate- 

gories we also have a well-behaved multiplication; and for Cartesian closed categories 

we can define exponentiation of dinatural numbers. 

We also study families of dinatural numbers and their arithmetic. This gives us a 

new universal property for natural numbers objects as classifying objects for families 

of dinatural numbers. That is to say, taking families of dinatural numbers gives a 

contravariant functor into the category of sets and there is a natural numbers object if 

and only if this functor is representable. 

In the last section we make a detailed study of dinatural numbers for finite sets and 

relate this to the counterexamples of Section 2.2. The work of Benabou and Loiseau 

[2] suggests how these results might be extended to an arbitrary elementary topos. 

2. Barr dinatural transformations 

2.1. Dinatural transformations 

Dinatural transformations were introduced by Dubuc and Street in [6]. Given two 

functors of mixed variance, F, G : A”P x A + B, a dinatural transjbrmation, t : F 2 G, 

consists of a morphism t(A) : F(A,A) 4 G(A,A) for every A in A, such that for every 

morphism f : A + A’, the following hexagon commutes: 

F(A,A) I(‘) IG(A,A) 

Q/,4 
/i/ \ 

G(A>/) 

F(k, A)’ 
\ 

F(A:f) \ / GM A’) 
F(A’, A’) - ,cA,) G(A: A’) 

Note: We used Mac Lane’s convention of placing two dots over the arrow when 

we want to emphasise that what we have is a dinatural transformation. The prefix “di” 
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was chosen to reflect the fact that it is defined on the diagonal, i.e. on pairs (A,A) in 

A”Q x A. 

Examples. For any category A, the function idA : I + Horn (A,A) which picks out the 

identity morphism on A gives a dinatural transformation from the constant functor 

A( 1) : A”Q x A + Set with value 1 to the horn mnctor HomA(-, -) : A”Q x A + Set. 

For finite-dimensional vector spaces, the trace try : Horn (V, V) + K is dinatural. In 

any Cartesian closed category, the evaluation evA,B : AB x B + A is natural in A and 

dinatural in B. Any natural transformation F --f G restricts to a dinatural transformation. 

A dinatural transformation t : Horn* A Horn* assigns to each endomorphism A f’ A 

another endomorphism t(f) : A -+ A, in such a way that for all g : A + B and h : B + A, 
t(hg)h = ht(gh) (the hexagon condition for g). E.g. 

t(J’)=f@)= f of of o...of (n times) 

The question posed by Bainbridge et al. was whether every dinatural t : HomA A 

HomA was of this form for A = Seto. 

2.2. The counterexamples 

Our counterexample is given by iteration but the number of times depends on the car- 

dinality of the set. Thus, for ,f : A + A, we define t(f) = f(“!!’ where n!! = 1!2!3! . n! 

and n = #A. 
The point is that if m > n, then f(“‘!!) = f(“!!) so that as far as the hexagon, which 

involves only two sets, is concerned, one can think of t as iteration m!! times where m 

is the maximum of the cardinalities of the two sets. Thus the hexagon does commute 

and t is dinatural. On the other hand, if f is defined on { 1,2,3,. . . , n} by 

if i = n, 
otherwise, 

then t(f) is the constant function with value n. So t is not iteration any fixed number 

of times. 

Peter Johnstone has given a much more conceptual version of this example. For 

any finite set A, Horn (A, A) is a finite monoid so any f E Horn (A,A) has a unique 

power which is idempotent. (Indeed, there must exist k < 1 such that fck) =f”) 

from which it follows that f(“) = f(m+n([-k)) f or all m 2 k and n 2 0. If we let 

m = k(l - k) and n = k, we see that f (k(‘--k)) is idempotent. If we had two powers 

of f which were idempotent, f(') and f(") say, then f(‘) = f(“) = f(“).) Define 

t(f) to be that power of f which is idempotent, f(‘). Then given f and g such that 

t(fg) = (fs)“’ and t(gf) = (gf)‘“), then also t( fg) = (fg)‘“) and t(gf) = (gf )(“‘I 
so for the same reason as above t is dinatural but not iteration a fixed number of 

times. 
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Freyd also gave a large class of examples. Let K be any set of cardinal numbers, 

and define 

t(f)= 1A 
=I 

f if #Fix( f) E K, 

otherwise. 

Then as Fix ( f 9) and Fix (g f) have the same cardinality (f gives a bijection between 

the two sets), t is dinatural. 

Our example, which is the same as Peter Johnstone’s, works for finite sets, whereas 

Freyd’s works as well for all sets. Furthermore, Freyd’s are all different so on Set he 

has a proper class of them (even more!). 

2.3. BDNs 

It is well-known that dinatural transformations do not compose. The problem is this: 

given t:F+G and u:G-H and f :A+A’, we get two commutative hexagons 

but if we try to paste them together, we get 

and there is no way in general to conclude that the outside hexagon commutes. 

If t is natural (not merely dinatural) then we can fit t(A’,A) : F(A’,A) -+ G(A’,A) 

into the diagram above, and a simple diagram chase shows that the outside hexagon 

does commute now. Thus, if one of t or u is natural then U. t is again dinatural. In a 

similar vein, if G has the property that all the squares 

W’J) G( f9.4) - W&A) 

GM’,/‘) W..f) 

GV’J’) ~(f W,A’) 

are pullbacks (or pushouts), then u t is again dinatural (because, once again, we get 

a fill-in for one of the chevron-shaped regions). This leads us to Barr’s strengthening 

of the notion of dinatural transformation (oral communication) which we call Barr 

dinaturals. 
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Definition. Let F, G : A”P x A + B be functors where B has pullbacks. A Barr dinatural 

transformation (BDN) consists of a family of morphisms t(A) : F(A,A) + G(A,A), one 

for each object of A, such that for each morphism f : A ---f A’, 

/ 

F(A,A) r(A) k G(A, A) 

/ \ WA. f) 
,I’ \ 

Ff ‘G(A, A’) 

/ W > A’) 

F(A’, A’) tcA,j i G(A: A’) 

commutes, where Ff is given by the pullback 

/-F(APA)kfl 

Ff 

/ 

W, A’) 

W. A’) 
F(A’, A’) 

It is not hard to see that a Barr dinatural is dinatural and that a natural transformation 

restricts to a Barr dinatural. Furthermore, Barr dinaturals are closed under composition 

because the pullback property gives a fill-in r 

from which commutativity of the outside hexagon is easily seen. 

If F has the property that all the squares 

F(A, A) 

F(J,A)/ ‘\‘;‘\ 
F(4f) 

/ 

F(A’, A)’ 
\ 

/” 
W, A’) 

FM’, /-j;\l /F(/J’) 
F(A’, A’) 

are pullbacks, then Barr dinaturals are the same as dinaturals, obviously. This holds, 

for example, if F is constant in one of the variables. It is also the case that in any 
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Cartesian closed category, evaluation eA,B : A5 x 3 -+ A is Barr dinatural in B; the reason 

is the same as above, i.e. the squares obtained by varying B in AB x B are pullbacks 

(which comes from the more basic fact that a product of two pullback diagrams is a 

pullback, a special case of limits commuting with limits). 

This argument breaks down in the monoidal closed case and the evaluation is not 

in general Barr dinatural (e.g. it is not for finite-dimensional vector spaces - take f 
to be the unique k + 0). 

Note: The condition that B have pullbacks can be removed by the usual trick of 

embedding B in SetB”P via the Yoneda functor, and then reformulating the conditions 

solely in terms of morphisms of B. Thus, t would be Barr dinatural if for every h,b’ 

making (*) commute in 

the exterior hexagon also commutes. We might take this as a definition of what it 

would mean for a diagram such as (**) to commute. However, as will become clear 

below, we will be concerned only with the case B = Set. 

2.4. Iteratovs 

Our main concern will be with Barr dinatural transformations 

t:HomA -=-+HomA, 

where HomA is the horn functor A OP x A + Set. (We have some fun with notation 

and replace Mac Lane’s two dots with a bar when we wish to emphasise that we 

are in the presence of a Barr dinatural transformation.) Such a BDN associates to 

each endomorphism of A, f : A +A, another endomorphism t(f) :A--+A such that if 

qf = yc;o then pot(f) = Q)cp, i.e. 

f A-A A&A 

B-B B-B. 
g t(Y) 

For example, t(f) = fin) gives a BDN; if q,J’ = gqn then qf(“) = g(“f~p. 
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Proposition 1 (Barr). Every BDN t : Hornset + Horn set is of the form t( ,f) = ,f’(“’ 

for a uniqur n E N. 

Proof. Let n = t(s)(O) where s : N + N is the successor function. Then for any f : A --t A 

and aEA, there exists a unique h such that 

N ’ )N 

This h is given by h(k) = f(“)(a). As t is a BDN we have 

so t(J’)(a)=ht(s)(O)=h(n)=f‘(“)(a), i.e. t(f)=,f’“‘. The uniqueness of n is obvi- 

ous. 0 

Remark. As all of Freyd’s examples extend to Set, they cannot be BDNs. However, 

our examples based on iteration as they are, are BDNs. 

We phrased Barr’s proof in terms of natural numbers objects because this way it is 

clear that this is a much more general result. 

2.5. NNOJ 

Let A be a Cartesian category, i.e. a category with finite products. Recall that in this 

setting Lawvere’s definition of natural numbers object must be strengthened to include 

parameters. Thus, a natural numbers object in A is a diagram 1 5 N -% N such that 

for every diagram A -% B L B there exists a unique h such that 

A x 0 A x s 
Axl-------iAxN-AxN 

1 h 



It is well-known that when A is Cartesian closed, it is sufficient to state the definition 

with A = 1, as Lawvere did. 

The definition can be reformulated in terms of adjoints. Let E(A) be the category 

of endomorphisms in A. Its objects are endomorphisms f : A + A and its morphisms 

cp:(A,f)--+(B,g) are morphisms q:A+B such that 

A --y+ B 

A iB. 
lP 

E(A) is the functor category AN where N is the monoid of (ordinary) natural numbers, 

If A has a natural numbers object, then the forgetful functor U : E(A) + A, U(A, f) =A 

has a left adjoint F given by F(A)=(A x N,A x s). 

In the other direction, if U has a left adjoint F such that the canonical morphism 

F(A x B) --) (A, IA) x F(B) is an isomorphism for all A and B, then A has a natural 

numbers object (N,s)=F(I). 

Now, assume that A has a natural numbers object. Given n : 1 +N we shall define 

a BDN, ( )(‘I : tiomft 4 HomA, as follows. For f :A +A, there exists a unique h 

such that 

Ax1 
Ax0 AXS 

------+AxN~AxN 

A -A ____i A. 
I.4 f 

Let f(“) be the composite 

Proposition 2. The above dejinition gives n BDN, ( )cn) : HomA *Home. 

Proof. Given 

B.B 
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let k be the unique morphism satisfying 

BXO Bxs 
Bxl-BxN-BxN 

Compare the diagrams 

Ax0 AXS 
Axl-AxN-AxN 

B -B-B 
1 Y 

and 

Ax1 
Ax0 

B AxN 
AXS 

- AxN 

B- B- B 
1 4 

to see that cp. h and k. cp x N both satisfy the same recurrence relations and so are 

equal. 

Thus, we have 

AL Ax1 
Axn h 

-AxN. A 
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i.e. 
i”“’ 

A-A 

B 
$J@’ 

iB 

commutes, therefore ( )in) is a BDN as claimed. 0 

As in the proof of Proposition 1, a BDN, t : HomA --=-+ HomA, gives n : 1 + N as 

the composite I L N ‘o,N. If we start with an n : 1 --+ N, we get a BDN, ( )(n), and 

this gives the same n back. Indeed, 

t(s) = (N -~Nx~~%NxNAN) 

so 

t(s)(O)=(l ” 1 x 1 -N x N -% N)=n. 

But starting with a BDN, t, and letting n=t(s)(O) we do not automaticaIly get 

t = ( )(‘?). A calculation shows that at some point we need t(A x s) =A x t(s). This 

leads us to the following concept. 

2.6. Slru?zy BDNs 

De~ni~ion. A BDN, t : HomA ---t HomA, is strong if for every A and y : B 4 B we 

have t(A x g)=A x t(g). 

Theorem 1. Suppose A has a natural numbers object, then the relations rz = t(s)(O) 
and t = ( )tn) establish a one-to-one correspondence bettveetz strong BDNs and ele- 
ments of N, n : I +N. 

Proof. We have already shown how rr : 1 --+ N gives a BDN in Proposition 2. We must 

show that it is strong. If we apply A x ( ) to the defining diagram for k (same notation 

as in Proposition 2) we get 

AxB B AxB - AxB 
1 A x il 

so 

(Axg)‘“)=(AxB--%AxBx 1 -.!.?%%AxB~N~X~A xB) 

=A x g(“). 
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Now starting with a strong BDN, t : HomA --+ Horn,.,, we define n = t(s)(O). Then 

f(“) is the composite 

Ax0 
A=Axl+ 

A x t(s) h 
AxN-AxN + A, 

where h satisfies 

Ax0 Axs 
Axl-AxN-AxN 

By dinaturality we have 

Ax0 
Axl-AxN tC.4 x S) , /j x N 

N I 
A WA-A 

14 t(f) 

and given that t(A x s)=A x t(s), we see that f(“)= t(f). 0 

2.7. The strength of strength 

Note that the above proof only uses strength in the form t (A x S) = A x t(s), so one 

might wonder whether strength could not be eliminated altogether. In fact, we can 

reduce it to some simple conditions but we cannot quite eliminate it. 

For any endomorphisms f and g we have 

A A I(f) , A 

Y 

so t(fxg)=t(f)xt(g). Thus, t is strong if for every A, t( 1~) = lo, a reasonable 

condition if we expect to characterize iteration. 
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Any subobject, S, of 1 only has one endomorphism, Is, so t( 1~) = Is. If the sub- 

objects of 1 form a generating set, then for any A and any morphism q : S -+A we 

have 

A-A A-A 
II r(b) 

and since the set of all such cp is jointly epic, we must have t( lA) = 1~. Thus, in this 

case all BDNs, t : Horn AHorn, are strong. This is the case with finite sets, Seto, the 

category of sets or any category of sheaves on a topological space, as well as many 

other categories. 

However, not all BDNs are strong, even on such a nice category as SetN, i.e. sets 

with an endomorphism. Given f : (X, 0 ---f (X, 0, define t(S) = 5 : (X, <) + (X, t). Then 

so t is a BDN, but t( l~,~,i;,) = s’ which need not be the identity. 

There is something mysterious about strong BDNs. It does not seem possible to 

define them between general functors F, G : A”P x A + B, even when B = Set. In order 

to get a better understanding, we shall reformulate the definition. 

2.8. The category of endomorphisms 

A BDN, t : Horn* i Horn*, is the same as a functor T over A 

where E(A) is the category of endomorphisms in A, A N, introduced in Section 2.5. 

Given a BDN, t :Hom~ -L Horn*, T is defined by T(A, a) = (A, t(a)). For mor- 

phisms, T(q) = cp. The reader can easily check the claim. 
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Now, if A were Cartesian closed and had equalizers, then E(A) would be an A- 

enriched category. The A-valued horn would be defined to be the equalizer 
5” 

M~),(RB)l 5 B A - BA A. 
DA 

U : E(A) + A is a strong functor, its strength being given by 

e: KA,~),(RP)l +BA. 

As e is manic. we see that U is A-faithful. 

Proposition 3. t is a strong BDN ij” and only $ T is u strong jiinctor over A. 

Proof. For T to be strong over A we must have morphisms stT such that 

SIT 
[(A> a), (4 PII - [(A, t(a)), (4 t(P)>1 

Since all the e’ are manic, the str are unique if they exist, and automatically satisfy 

the coherence conditions for a strength. Such morphisms exist if and only if for every 

@:C+B”, 

B”.+p”.@ j B”“‘.@=t(/j)A.@, 

i.e. if and only if for every cp : C x A --f B we have 

Cxr 
CxA-CxA CxACX”“‘CxA 

B AB B __i B. 
/I f(P) 

If t is a strong BDN then, this clearly holds. Conversely, if it holds, then taking 

cp=lcXA, we see that t is strong. 0 

E(A) is a tensored A-category in the sense that for every C in A, there is an object 

C3(A,r)=(C xA,C x ct) with the property that morphisms C@(A,cc)+(B,j3) are 

in bijection with A morphisms 

C * [(A> Co, (4 PII, 

i.e. the functor [(A, cc), -1 : E(A) + A has a left adjoint ( ) ~1 (A, a). (See [S] for more 

on tensored categories.) 
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As each of the functors in an adjoint pair determines the other, it is possible to 

refo~ulate the notions of enriched category theory in terms of the tensor rather than 

as is usually done in terms of the horn. Since E(A) is always tensored regardless of 

whether it has equalizers or is Cartesian closed, and the tensor has already shown up 

in the proof of Proposition 3, we shall express things in these terms. 

3. The monoida setting 

3.1. Actions of monoidal cuteyorirs 

It is best, both for conceptual clarity and applicability, to replace our base cate- 

gory A with a general monoidal category V. By a (kji) V-t~~sor~d category we 

shall mean a category X with an action of V, @ : V x X--+X. This action must be 

unitary and associative up to coherent isomorphism. We do not assume that X is a 

V-category. For example, the tensor on V gives an action of V on itself even if V 

is not closed. So V is always a V-tensored category. The category E(V) of endo- 

mo~hisms in V is also a V-tensored category via ~~(~,~)~(~~~~, Yc@LY). If X 

and Y are V-tensored categories, a V-functor F: X + Y is a functos which respects 

the actions in the following sense: for every X in X and V in V we are given a 

morphism 

VC$FX-+F(V@X). 

These morphisms must respect the associativity and unity isomorphisms for the ac- 

tions. For example, the forgetful functor U : E(V)+ V is a V-functor with identi- 

ties 

as structure morphisms. If F, G :X + Y are V-functors, a V-natural transfo~ation 

t : F + G is a natural transformation such that for every X and V 

C’@t(X) 
VOFX ____i V@GX 

~ 1 
F(V@X) m G(Vm%X). 

V-tensored categories, V-functors and V-natural ~ansfo~ations form a 2-category so 

we have a notion of V-adjointness. If one works through the definition it can be seen 

that V-functors F and U are V-adjoint if there is a natural bijection 

V@FX-+Y 

V@X-+WY 
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or, what is equivalent, F is left adjoint to U and F preserves the tensor in the sense 

that the structural morphism 

V@FX+F(V@X) 

is an isomorphism. 

If X is a V-tensored category and for every X in X the functor ( ) 8.Y : V - X 

has a right adjoint [X, -I: X + V, then X becomes a V-category with horn given by 

[X,X’] E V. Actually, in the non-symmetric case, there are two notions of V-category. 

The one we get here, corresponding to a left action, has composition morphisms 

[X’J”] CC [X,X’] 4 [X,X”]. 

We can think that composition is performed in the classical order. In any case 

V-functors, V-natural transformations and V-adjunctions are all the usual V-category 

concepts. 

For the basic theory of V-categories, the reader is referred to [3,8]. For more on 

the use of the tensor as basic notion, one may consult [5, 12, 131. 

3.2. NNOs in monoidul categories 

A (right) nuturul numbers object in V is a diagram I A N 5 N such that for 

every diagram A A B & B there exists a unique h such that 

This is a straightforward generalization of the usual notion with 1 replaced by the unit 

I and x by @. It appeared in [12] in the form of free actions but as far as we know, it 

was only taken seriously as a natural numbers object in [l 11, where it was shown that 

such an N is a commutative comonoid and that all the primitive recursive functions 

can be defined on it. 

Proposition 4. V has a naturul numbers object (f und on1.v if the forgetful ,functor 

U : E(V) + V has a left V-adjoint. 

Proof. Once we note that a left V-adjoint is an ordinary adjoint F with the property 

that F( V @ W) ” V 8 F(W), the proof is easy. If V has an NNO, then F(V) = (V RN, 

V ~9s) is a left V-adjoint. If F is a left V-adjoint, then F(Z) is an NNO. q 
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3.3. Strong BDNs revisited 

Clearly, the notion of strong BDN makes sense, not only for Cartesian A, but 

also for monoidal V. We consider again Homv : V”P x V--f Set (not into V even 

if V is closed). A BDN t : Homv 2 Homv is strong if t( V @ f) = V @ t(f) for all 

f :X -X in V. In this generality, the proof of Proposition 3 is much easier. 

Proposition 5. t : Homv + Homv is a strong BDN if and only if’ the corresponding 

T : E(V) + E(V) is a V-finctor over V. 

Proof. T is a V-functor if and only if there are morphisms I’@ T(A, x) + T( V @ (A, c()) 

satisfying some compatibilities. T is over V means UT = U as V-functors. This forces 

the above morphisms to be identities at the underlying level. Thus, T is a V-functor 

over V if and only if VEJT(A,~)=T(V@(A,U)), i.e. iff (V@A,V@t(z))=(V@A, 

t(V@cr)), i.e. iff V@t(cc)=t(V@cc). 0 

One might ask whether strong BDNs, t : Homv + Homv, correspond to natural num- 

bers n :I + N in the monoidal setting as well. The answer is “yes” and the proof is 

exactly the same as for Theorem 1. For f :A + A, let h be the unique morphism such 

that 

and define f @) to be 

Theorem 2. ( )(‘) is a strong BDN Homv --1-t Homv and establishes a one-to-one 

correspondence between natural numbers n : I + N and strong BDNs. The inverse is 

given by n=/ LN t(s!N. 

Whether or not V has a natural numbers object, we can think of a strong BDN, 

Horn + Horn, as iteration by some kind of natural number specially adapted to the 

category V, much like Church numerals. 

Definition. A strong BDN, t : Homv G Homv, will be called a dinatural number 

for V. 

Some examples will illustrate how things work in the monoidal case. 
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3.4. Examples 

Example 1. The category of endomorphisms on sets, E(Set), is a Grothendieck topos 

and as such has a natural numbers object (N, 1~) with successor s. A natural number 

1 2 N is just an ordinary natural number, and the corresponding strong BDN takes 

f:(X,t)-(X,<) to the nth iterate f(“):(X,<)+(X,{). A s we saw in Section 2.7, not 

all BDNs are strong in E(Set). 
The category, E(Set), also has a tensor by virtue of its being M-sets for the com- 

mutative monoid M=(N,+). Thus, (A,cc)@(B,fi)=(C,s) where C=A x B/- and - 

is the equivalence relation generated by (~(a),b) - (a,/?(b)). The effect of y on an 

equivalence class a @ b is ~(a @ b) = a(a) 8 b. The unit is (N,s). The forgettil func- 

tor U : E(E(Set)) -+ E(Set) has a left adjoint F(A, X) = ((A x N, x x N),A x s) which 

is strong for both Cartesian product and 63. Thus, E(Set) has two NNOs, the Cartesian 

one discussed above F( 1,l) = ((N, I), s) and th e monoidal one F(N,s) = ((N x N, 

s x N),N x s). 

With respect to @ a natural number is (N,s) + (N x N,s x N) which corresponds 

to a pair (m, n) of ordinary natural numbers. Given f : (X, 5) -+ (X, c), we get a unique 

h:(X,Q@(N xN,s xN)+(X,o making 

commute. h is given by h(x, p) = f(P)(x). Then f(““‘)(x) = f(“)(t(“)(x)), i.e. f(m+n) = 

f(“)$“). Thus, the example in Section 2.7 of a BDN which was not strong is strong 

for the 64. It corresponds to the natural number ( 1,O) in this case. 

In fact, all BDNs are strong with respect to this 8. Note first of all that the strength 

condition always holds for the unit object t(r@ f ) = I @ t( f ). This is because 

B 
--YTB 

B - B. 
l(f) 

Next, if the @ has an associated internal horn, so that ( ) @ B preserves jointly epic 

families and if the unit is a generator, then for any A there is an epimorphic family 
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e,:I+A and 

Compa~ng this with 

and using joint epiness of e, $3 B, we conclude $4 8 f) = A @a t(J). 

In the case of E(Set), the unit for the tensor is (N,s), which is a generator. There 

is also an internal horn 

where (P(f) = Of. So all BDNs are strong for 18. 

Example 2. In this example, the opposite occurs. Consider the Grothendieck topos 

Set x Set. The subobjects of (1,1) generate, so all BDNs are strong for the carte- 

Sian product. An element of N is (1,1) -+ (N,_N), i.e. a pair of natural numbers 

(m,n). The associated BDN takes (f, q) to (~(~~),~(~)). Every BDN is of this 

form. 

But there is a @ in Set x Set other than Cartesian product 

(A,B)@(C,D)=(AxC,AxD+BxC) 

with unit ( 1,O). It is an easy exercise to check that this is a monoidal closed structure: 

the internal horn is given by [(A,B), (C,D)] = (C” x DB,DA). There is also a natu- 

ral numbers object with respect to the @, namely (N,O) with successor (s, lo). For 

this @, an element of N is (1,O) - (N, 0), i.e. a single natural number n. The strong 

BDN which this yields is (f, q)(“) = (~(~~),~(~)). So here not all BDNs are strong 

for 63. 
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Example 3. R-mod has no natural numbers object for the Cartesian product @. Actually, 

0 --+ 0 -+ 0 has the universal property that for every f there exists a unique h such 

that 

but not for parameters. This dramatically illustrates the uselessness of the universal 

property without parameters. 

There is, however, a natural numbers object for the @. It is R[x] with successor 

( ) . x, multiplication by x. A morphism I --f N in this case is a linear map R -+ R[x], 

i.e. a polynomial P(X). The corresponding BDN associates to each f : M -+ A4 the linear 

map P( f ) : M -+ M. Again, R is a generator and there is an internal horn so all BDNs 

are strong with respect to the @. Thus, every function t which takes linear operators to 

linear operators on the same space with the property that qf = gcp =+ cpt( f) = t(g)cp 

is of the form 

t(f) = 0 + r1 f + Q f (*) + . . + r,f@) . 

Note that we are conside~ng BDNs on 

HomR : (R-mod)oP x R-mod -+ Set. 

If we were to consider BDNs on the enriched horn, into R-mod, they would all be of 

the form t(,f) = rf, and not related to iteration in any way. 

3.5. Strong profunctors 

We still have not said how to define strong BDNs for arbitrary functors V”P x 
V --+ Set. In order to do this, we must introduce the notion of strong functor VOP x 
V -+ Set. This can be done for arbitrary V-tensored categories A, B. A functor F : AOP x 
B -+ Set is strong if it comes equipped with strength morphisms for all 

A,& Ye 

StA.B,V:F(A,B) --f F(V@A,V@B) 

satisfying the following conditions : 

( 1) stA,B, r is natural in A and B and dinatural in V, 
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(2) 

F(A, B) 
a, B. I - F(Z@A,I@B) 

(3) 

FM B) st,l. B. I 8 y -+ F((W@ V)@A,(W@ f”)@JB) 

F(V@A3 V@B) Sf F(Wc3(V@A),W@(V@B)) 

For x E F(A,B), we denote stA,B, V(X) by V 18,x. 

Homv : V”P x V -+ Set, as well as all the functors Horn+ introduced in Section 5.1 

below, are strong functors. A functor F : A ‘P x B --) Set corresponds, via its category 

of elements to a discrete bifibration 

El(F) 

;“‘: P Q 

A B. 

If F is strong, then El(F) is a V-tensored category and the functors P and Q preserve 

the action. This statement is in fact equivalent to F being strong. So our notation in 

V 8.x is not a bad one. 

If F, G: A”P x A + Set are two strong functors, a strong BDN, 1: F --) G is a BDN 

such that for every x E F(A,A) 

A profimctor F : B --ti A is by definition a functor F : A”P x B--f Set. So we have 

a definition of strong profunctor between categories with V-action. The identity pro- 

functor I : A ++ A is the horn fimctor, Horn* : A”P x A ---f Set, which is strong, the 

strength being given by 

$Q,V:A(A,B) --f A(V@A,V@B), 

I 
AIB- V@A’“. V@B. 
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Given profimctors F : B - A and G : C tt B, their composite F ~3 G : C --ti A is 

given by the formula 

.I’ 

B 

F’%G(A,C)= F(A,B) x G(B, C). 

If F and G are strong, so is F 18 G. The strength is given by the universal property of 

the coend 

F @ G(A, C) 
St 

~F@G(VcaA,V@C) 

J%-(A,Bj’x G(B, C) 
II 

+ JBF(034~) x G(B, ~63~) 

h I I jr, 0 B 

W,B) x W, C> ~W%A,V@B)x G(V@BB, V@C). 

A functor U : B 4 A induces two profimctors, U, : B --H A and U’ : A ++ B such 

that U* is right adjoint to U, in the bicategory Prof. They are given by U,(A,B) = 

A(A, UB) and U*(B,A) = A( UB, A). The usual arguments with the Yoneda lemma show 

that a strength for the profunctor U, is the same as a strength for U : B -+ A as defined 

in Section 3.1, i.e. a family of morphisms 

s~:~: V@U(B) + U(V@B) 

natural in V and B and respecting associativity and unity isomorphisms. 

On the other hand, a strength for U* corresponds to a family of morphisms 

T~T,~:U(V@B) + V@U(B) 

with properties similar to the SV,B above. If the adjointness U* -1 U* is also strong, 

then the sV,B and tV,g are inverse to each other, and U preserves the V-action. 

4. The arithmetic of dinatural numbers 

All our definitions below are motivated by thinking of a dinatural number as iteration 

of endomorphisms. Thus, e.g., the law f cm+) = f(“) o f(“) inspired the definition of 

addition in Section 4.3 below. 

4.1. Zero 

Define t(A): Hom(A,A)-+Hom(A,A) by the formula t(A)(f)= 1~ for all f. 

Proposition 6. t is (I dinatural number. 
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Proof. Obvious. Cl 

We denote this dinatural number by Q. We also omit the A when this does not lead 

to confusion. Thus Q(f) = lA. 

4.2. Successor 

Let t : Horn ---t Horn be a dinatural number. Define o(t)(A) : Hom(A,A)+ 

Horn (A, A) by the formula a(t)(A)(f) = f o t(A)(f). 

Proposition 7. o(t) is a dinatural number. 

Proof. If we have 

f A-A 

then 

WXf 1 f A-A-A 

B-B-B 
f(B)(g) g 

also commutes, so a(t) is a BDN. Strength follows from commutativity of 

We call a(t) the successor oft. With successor we can define the standard numerals. 
If IZ is an ordinary natural number, we let n = ~(a(o(. . (0) . . .))), where 0 is applied 

n times. Thus, g(f) = f o f o . o f, n times. In particular, I(f) = f for all f. 
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4.3. Addition 

Given t and u : Horn -=-+ Horn dinatnral numbers, define t + u by (t + u)(f) = 

UMf). 

Proposition 8. t -I- u is a dinaturai number. 

Proof. If 

commutes, then so does 

A u(,f‘) , A 

B-B-B. 
u(s) Q) 

Strength follows from functoriality of 8: (t + u)(c B f>=t(c B f)u(c Q f)= 

(C @ t(f>)(C @ u(f)> = c ‘5s (t(f>u(f)> = c @ ((t + u)(f)). q 

Proposition 9. Addition of dinatural numbers satisfies the following identities: 

(i) (t+u)+v=t+(u+o), 
(ii) t + u=zf + t, 

(iii) t+Q=t=Q+t, 

(iv) a(t) -t- u = o(t + u) = t + CT(U). 

Proof. (i) follows from associativity of composition. For (ii), consider the following 
commutative square: 
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Dinaturality of t implies that 

commutes, and dinaturality of u implies that 

commutes, too. Thus, t(,f)u(f) = u(f)l(j), i.e. (t + 24)(f) = (u + t)(f) for all f. Thus 

t + u = u + t. For (iii), (t + Q)(f) = t(f)Q(f) = t(f)lA = t(f). Finally, (iv) follows 

from (o(t) + n)(f) = mu = fUMf> = f(t + u)(.f) = o(t + am). 0 

It follows from (iii) and (iv) that for standard numerals, addition agrees with the 

usual; ~+~=nz+n. 

4.4. Multiplication 

We can also define a multiplication for dina~al numbers although it is not quite 

satisfactory in the monoidal case. It is given by composition of BDNs. 

Let t,u: Horn *Horn be dinatural numbers. Define the product of t and u by 

(t . u>(f) = t(w)). 

Proof. Assume that 

A“-_, 
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commutes. Then so does 

and, consequently, so does 

B - B. 
ri4ri)t 

So f . u is a BDN. Strength is easy: (t . u)(C 8 f)= t(u(C 8 ,f))= t(C 8 u(S)) = 

C @ t(U)) = c @ (f u)(f). q 

Proposition Il. The product of dinaturul numbers sati$es the following identities: 
(i) (t . 24) . t! = t. (u . u), 

(ii) I.t=l=t.l, 
(iii) Cl)-t=Q, 

(iv) at . u = t e u + 24, 

(v) (t+u).v=t4+u*?% 

Proof. All are immediate consequences of the definitions, but see Section 6.3. iIl 

Note that in this generality, product is not commu~tive nor do the other versions of 
(iii)-(v) hold. 

Example 3 of Section 3.4 discussed the case of R-mod with its usual @ (R, a com- 
mutative ring). It was seen that all BDNs were strong and that they were in one-to-one 
correspondence with pol~omials P(X) E R[x]. An endomo~hism ,f : A4 ---f A4 is sent to 
P(f) : M + A4, the linear transformation obtained by substituting f into the polyno- 
mial. Directly from the definitions above we can construct Table 1 of correspondences, 
where t corresponds to P(X) and u to Q(x). 

Taking P(x) =x + 1 and Q(x) =x2 we see immediately that product is not commu- 
tative nor do the other halves of (iii)-(v) hold. We also see that it does not follow 
from ~LJ = gf that t(fg) = t(f)t(g). 

In the Cartesian case the other half of (iii) does hold. Indeed, t ’ Q(f)= t@(f)) = 

t( 1~) = 1~ = Q(f), by strength of t. However, the other properties do not. To see this, 
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Table 1 

BDNs Polynomials 

l(constant) 

x 

xP(n) 

fTxx&) 
w&)1 

note that if a polynomial P(X) has the property that P( 1) = 1, then the BDN it defines 

is strong for @ on R-mod, so if we replace P above by P(x) = 2x - 1 and keep 

the same Q, we get counter-examples to the other halves of (iv) and (v) as well as 

commutativity of multiplication. 

Still, (iii) and (iv) are enough to show that multiplication of standard numerals is 

the usual one, m - 12 = mn. 

5. Families of dinatural numbers 

5.1. Families of dinatural numbers 

Our experience with topos theory has taught us that it is not sufficient to consider 

elements as morphisms 1 --+X, but that we should also consider generalized elements 

L -+X and these are, of course, enough to determine X. 

Let V be an arbitrary monoidal category with natural numbers object (IV, O,s), and 

let L be an arbitrary object of V. A morphism FZ : L + IV can be viewed as a family of 

natural numbers indexed by L, n = (n~);~ E L. Given f : A --+ A there is a unique h such 

that 

A@,N ‘463s )A@N 

h 

We now define 

We may think of f(“) as an L-family of iterates, (f(“;))n E L. 
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Let us define a functor Hom$ : V“P x V + Set by Horn $(A, B) = Horn v(A @ L, B), 

the set of L-families of morphisms from A to B. A BDN, t : Horn v’Hom$, is said 

to be strong if for every A and every g : B -+ B, 

commutes. Such a strong BDN is called an L-family of dinatural numbers. 

Theorem 3. For any n : L --+ N, ( )“” 1s an L-family of dinatural numbers, and ev- 
ery L-family of dinatural numbers, t : Homv2Hom$, is of this form for a unique 

n:L+N. 

Proof. Let 

B B B. 

Compare the diagrams 
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and 

to conclude that the right square in 

commutes. (The left one obviously commutes by ~nctoriality.) Thus ( )@*) is a BDN. 

To see that it is strong, tensor the defining diagram for k by A 

so 

ACM%9 
t(A@g)=(AABBL- AG~BBNNAAB) 

=A@t(g). 

Now, given a BDN, t : Horn v--tHom $, define 
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If t=( )(m) for m :L + N, then the corresponding n is obtained as follows. First note 

that 

N@N NBS 

N@I< It ~NI‘ 
N s +N . 

so qs)=(N@LL2NNN AN). Then 

Now, starting with a strong BDN, t : Homv -+ Hom$, we construct n = t(s) a 0 ~3 

L .3,-l. For any f : A + A we have h such that 

so we also have 

A@N@L 
K.4 @s) 

---+ A@N 

Thus, 

t(f)=h.t(A~i)‘Aii~O~N.AA~-’ 

= h . A B (t(s) . 0 @N e A-‘) 

=h.A@n 

= f’“’ 0 
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5.2. The .functor .N 

Even if V does not have a natural numbers object we can still consider the set J’(L) 

of all L-families of dinatural numbers, t : Homv -+ Horn;. 

Remark. Actually, J’(L) could be a proper class, although this is not really relevant 

to our discussion, as we could equally well consider ;t’: V”P + Set the category of 

sets in the next universe. 

However, let V be the category whose objects are those sequences of sets (AK) 

indexed by the ordinals, for which there exists an ordinal KO such that A, = 1 for all 

K 2 ~0. A morphism (A,) -+ (Bh.) IS a sequence of functions (fK : A, -+ BY). V is a 

legitimate Cartesian category (in fact Cartesian closed) generated by its subobjects of 1, 

Each ordinal sequence of natural numbers (ni.) gives a strong BDN, t : Homv2Homv, 

by t( (fi.) ) = (f: ), and these are all distinct. Thus _&“( 1) is certainly not a set here. 

Should we wish to impose conditions on V to insure that each J(L) is a (small) 

set, then accessibility (see [lo]) would be enough and would cover all the examples we 

have in mind. Indeed, if V is accessible, then the category of endomo~hisms, E(V), 

is also accessible as is the forgetful functor U: E(V)+V. This means that there is 

a set of endomorphisms 6, such that every endomorphism, f : A + A, is a K-filtered 

colimit in E(V) of J;: : Ai --+Ai in &K. Furthermore, the forgetful functor U preserves 

this colimit, i.e. lim Ai =A. Then, as i 

5 Ai - A; t(h) Ai @ L _ Ai 

we see that t(f) = 5 t(fi> so that t is determined by its values on _A, of which there 

is but a set. So there can only be a set of BDNs, Homv -+ Hom$_ (Note that ( ) @L 

preserving x-filtered colimits is part of the definition of accessible monoidal category.) 

Proposition 12. J+“(L) is the objecf part qf’ a jiinctor W’ + Set, ~~~jc~ takes any 
colimit in V which is preserzzd by all the finctors V 63 ( ) to a limit in Set. 

Proof. A morphism 1: L’ --+ L gives a strong natural transformation 

I*:Hom$--+Hom$ 

defined by Z*(A @L L B) = (A ~3 L’ % A @L f‘ B). A family of dinatural numbers 

composed with a strong natural transfo~ation such as this, gives again a family of 

dinatural numbers. Thus ,V( l)(t) = I” o t. 
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Let j, : L, + L be a colimit cocone. Given a family of dinatural numbers, t : Horn v + 

Horn+, we get a compatible family (ta) of dinatural numbers in the canonical way. 

For f :A+A we have 

A@L 

Ac3.i. A 

A@L, 

For a compatible family (tl) we define t(f) to be the unique morphism making the 

above diagram commute, which exists because (A ~3 L, + A @ L)a is a colimit cocone. 

That the t is a BDN follows from the fact that the A ~3 j, are jointly epic and the t, 

are BDNs. Strength of t follows for the same reason. 0 

Remark. The condition that a colimit is preserved by the mnctors V@( ) is a perfectly 

natural one in our situation. It simply says that the colimit is strong. 

It follows from this proposition that ,Ir has every chance of being representable. 

Theorem 3 says that if V has a natural numbers object, then ,I/” 2 V(-,N). The fol- 

lowing theorem is the converse. 

Theorem 4. If M' is representable, the representing object is a natural numbers ob- 

ject. 

Proof. Suppose A’ ” V(-,N). Then there exists a universal element h E ,4’-(N) with 

the property that for every strong BDN, t : HomviHom$, there exists a unique 

n:L+N such that 

Horn, 

Thus, for every f : A + A, 

A . 
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Define CJ:JV+JV by 

a(t)(f) = (A @L fcr! A 1’ A). 

a(t) is a strong BDN, Homv + Horn:, and r~ is natural in L. Now a(h) : Homv + 

Hom$, so there exists a unique s : N + N such that 

Horn” 

So for every f :A+A, we have 

(1) 

Also define z : Horn, -+ Horn{ by 

z(f)= (p:A@I~A). 

Again, there exists a unique morphism 0 : I ---f N such that 

AC31 A@o )A@N 

‘\,I P h(f) 

A . 

Given B 5 A L A we have 

P 
‘\‘::I A@0 .,, A@s +Ak; 

A@I- 

P 

\\.\\\I 

h(f) h(f) 

(2) 

B yj A 
9 f 

‘A 



so h( f)(g @ N) gives a fill-in for our natnral numbers candidate. We must show 
uniqueness. Let k be such that 

Apply h to the right square to get 

and compute 

x* 0 bz : Horn, -+ From; 

at an arbitrary c : C + C. 

The square commutes because it is h applied to (I ) with c replacing f* The triangle 
in the middle is an instance of (2) tensored by C, and the triangle on the left is one 
of the coherence conditions for monoidal categories. Thus, x* o h = h so x = 1 ,V by the 
uniqueness properzy of h. It follows fkorn (3) that k = h(S) (9 @9X), using once again 
that p RN = B 8 R-‘. Thus, N is a natural numbers object. ci 

This theorem together with its converse, Theorem 3, gives a universal property for 
a natural numbers object as a right representor. The (generalized) elements of N are 
families of dinatural numbers. 
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There is a certain amount of arithmetic that can be done on the elements of JV 
in this generality. The operations we introduce are the natural extension of those of 
Sections 4.1-4.3 to families of BDNs. 

First there is the successor already introduced in the previous proposition. For 
t E A’“(L) and f: A +A, let a(t) = f o t(f) 

f(f f 
a(t):(AfA)~(A@L-A -L A). 

There is also a zero e~ern~~t 0 which should satisfy Q(S) = lA. In fact we must 
define O(f) = (p :A ~$1 +A). This is a dinatural number so Q E J(1). 

Successor and 0 allow us to define all numerals n = CJ (a(. . o(Q). . -)), n times. Then 
a(S)=fofo ..’ 0 f 0 p : A @I -+ A. Except in degenerate cases these are all distinct. 
For example, if @ is Cartesian product and our category is not a poset, then they 
are distinct. Suppose y,h : B +A are distinct morphisms, then if we let f =(p2, ~3,. . , 

pl,,p~):A”-+A”, g(f)= 1~” but &(f)# 1,~ for O<k<n. To see this consider 

(g,h,h,..., h):B+A”. Then &((f)o(g,h ,..., hjopl-h # g=(g,h ,..., h)opl. It is 
not clear what happens in the monoidai case. 

Addition was defined in Section 4.3 by the formula (t + u)(f) = t( f)u( f), but we 
must also define it with p~ameters. Thus, let t f JV(L) and u E ,Y(L’). Given f: A + A, 

(t + u)(J)=(A~~‘S3L~A~L’i!r_n). 

t + u is easily seen to be a family of dinatural numbers, Honq, -+ Horn+’ @ L. 
It is easily verified that 

Now 

(~+t)(f)=A~~~Z fiS)@f-+A@Z P.A 

and 

(t+O)(f)=A~Z~LPA~L~A, 

which are essentially equal to t(f), if we make the identifications A @IL @I = A @L = 
A @Z I@ L. From these laws we conclude that, on standard numerals, + agrees with the 
usual one. 

In Section 4.3 we gave a proof that addition of dinatural numbers is commutative. 
But again, we must show commutativi~ for families of ~na~ral numbers, not just 
simple ones. With parameters, the argument would go as follows. 
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Let t E .,V(L) and u E M(L’). Then for any f :A +A, we apply t to the diagram 

to get 

A@L’o A 

f@L 

I 1 

f 

A -A 
t(f) 

and then apply u 

If @ is symmetric, with symmetry isomorphisms 11, then 

A@L@L” 

Indeed, 

(*) 
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By the same token 

Thus, if we precede (*) by A @ y, we get a similar diagram in which u and t are 

interchanged. It is in this sense that addition is commutative. 

So we need to assume that @ is symmetric and we only get commutativity up to 

the symmetry isomorphism. This is not a problem once things are set up properly, 

which we now do. 

5.4. The convolution tensor on SetvoP 

From [5] we know 

S@2qV) = 

V 

that Setv”’ has a convolution @. For 9,9 E Set”” 

lim F(fi)xY(&) 
- 
f V, @ M 

This indeed gives a tensor with unit 9 = V( -, I). SetvoP is biclosed with this tensor, 

i.e. the functors P @ ( ) and ( ) @C 22 have right adjoints. The Yoneda embedding 

preserves the 8; V(-, F$)@V(-, 6) % V(-, V, @ V,). If the @ on V is symmetric, 

so is this new extended one. If the tensor on V is the Cartesian product so is the 

convolution product. Indeed, in this case, 

s 

VI, v2 
9-@9(V) = ~(fi;)xV(V,6 xh)xqv2) 



R Part, L. RomcinlJournal of Pure and Applied Alyebra 128 (1998) 33-92 69 

5.5. Operations on M 

Since 9 ~3 9 is defined as a coend, morphisms 9 @ 3 + 2 are easily described; 

they are families of functions 

natural in V and dinatural in V, and 6. 

Using the Yoneda lemma we see that they are the same as families 

natural in V, and Vz. This is precisely the sort of thing our addition was. Thus we 

summarize. 

Theorem 5. The set M(L) of L-families of dinatural numbers 

Homv i Horni 

dejkes an object Jf of SetvoP. In SetvuP we have morphisms 0 : 3 + Jr, (T : A” +. 1 1 

and + : ,I’ 18 M --f JV. 

(1) + satisjies the following conditions with respect to 0 and CS: 

and 

(2) JV with 0 and + is a monoid. 

(3) Zf 61 is symmetric, then JY- is a commutative monoid 
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Proof. Everything stated here is a reformulation of what was proved in Section 5.3, 

except for associativity of addition. Given t,u,v 

and 

(t+(u+v))(f) = A@L”@L’@L = A@L r(f) A 

= A@L/‘@L/@L V(j‘)@L”~ /j@L’@L f( ./ 1 
~A~L--+A. 

so (t+u)+u=t+(u+v). 0 

Remark. One might think that N is a natural numbers object in SetVnP, but it is not. 

In fact, as SetvoP has countable coproducts (indeed, all colimits) preserved by F @ ( ), 

the countable coproduct EN0 y is the NNO, and this is not usually the same as N 

(in particular, if V has a NNO then EN0 9 y V(-,N)). 

5.6. Strong profunctors revisited 

Because V is embedded in SetvO’ via the Yoneda functor, we get an action of V on 

SetvoP ; V@F=V(-,V)@p. Thus, 

(V@W(A)= I& I& W,6@W 
0: K-V xE.F(l$) 

N 
- lim V(4 v@ v2). 

- 
XE.F(V2) 

In fact, we see that this formula works for Set”O’ where A is a category equipped 

with a V-action. (V @ P)(A) = %,r E ,p(AfjA(A, V 8 A’). 

Now let B be another category with V action and F : A’!-’ x B 4 Set, a profimctor 

B --ti A. F corresponds to a functor F: B + Set*“. Then to say that F is a V-functor 

means that it is equipped with strength morphisms 

SVJ: v@F(B)+F(V@B) 

satisfying the obvious compatibilities. This means that for every A’ we are given 

SV,B,A’ : lim A(A’, V@AA)+F(A’,V@B), 

GT,Bl 

i.e. a compatible family 

(ox : AM’, V @A) + W’, j’ @ W)x E F(A,B). 
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Each of the ox is natural in A, so by Yoneda they correspond to elements of 

F( V @A, V @ B), one for each x E F(A, B). Thus, the strength corresponds to stA,B, v : 

F(A,B) + F( V @A, Y @B) and it is easily checked that the compatibilities for the 

strength s translate to the ones given in Section 3.5 for a strong profunctor. So what 

seemed like an ad hoc notion, invented specifically to make sense of strong BDNs, is 

now seen to be perfectly natural. 

5.7. The problem with products 

We have already seen that co~u~tivity of ad~tion required that the tensor be 

symmetric. In order to get a proper theory of multiplication of dinaturals we will have 

to further specialize our tensor to be the Cartesian product. The problem is this. We 

would like multiplication to be a morphism 

This would require, not only multiplication of dinatural transformations but of families 

of such. Thus, given 1 E J’(L) and u E A/@‘), we must produce t ’ tl E yV(L’ @L). 

Given an endomorphism f : A 4 A, we get t(f) : A 153 L + A but we do not know 

how to apply u to this. Even for standard numerals we do not. If y : A ~3 L + A, and 

we wish to compose it with itself, the best we can do is 

g’*‘=(A@L@L ‘2 A@L -% A). 

Similarly, gC3 ) : A @ L 63 L e;3 L --f A, etc. Thus, it would appear that u(g) should be a 

morphism A 63 u(L) --f A, but we have no idea what the u-fold tensor, u(L), off, might 

even be. 

However, in the Cartesian case it does work. There, we can use the diagonal 6 : 

L -+ L x L to reduce an L x L-family to an L-family and so keep things under control. 

Thus, if g : A x L + A, then 

9 ‘2’=(AxL Az AxLxL <‘x4 AxL&A). 

In terms of subscripts, given a family (9;. : A --i A)E, Ed, if we wish to compose it 

with itself we have two options, either 

isiogp :A--~&,,,)EL~L 

or 

The first is more general and is the only choice in the monoidal case, whereas the sec- 

ond, which uses the diagonal to duplicate 2, is only available in the Cartesian situation 

but is better behaved. 

Thus, from now on, we shall work solely with the Cartesian product. 
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6. Back to the Cartesian case 

6.1. BDNs applied to families 

Assume that A is a Cartesian category. It will be useful for us to upgrade our result 

of Section 2.7 characterizing strong BDNs as those preserving identities to BDNs, 

HomK i Horn’. 

Proposition 13. A BDN, t : HomK -G HomL, is strong if and only if for every C, if 

p1 : C x K -+ C is the jirst projection, then t(pl ) = pi : C x L + C. 

Proof. Assume t is strong. For the unique morphism r : K + 1, t(z) = z : L + 1. Thus, 

t(p])=t(CxT)=Cxt(z)=CxT=pl. 

Conversely, assume that t preserves projections. Then for any f :A x K + A and C 

we have commutative diagrams 

PI3 PI 

CxAxK CX/ -CxA 

AxK - A 
f 

so, as t is a BDN, we also have 

t(Pl) CXL - c 

CxAxL- 

AxL - A 
j(f) 

and as t(pI)=pl, it follows that t(C x f)= C x t(f), i.e. t is strong. q 

Remark. For BDNs of the form t : Horn + Horn L, the preservation of projections takes 

the form t(lc)=p1:CxL-,C. 
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In the Cartesian case, not only can BDNs be applied to endomorphisms but also to 

families of endomorphisms f : A x K + A. 

Proposition 14. Any strong BDN, t : Horn -+HomL induces, for each K, a strong 

BDN tK HomK + HomKXL. For each k : J -+ K, the following square of BDNs com- 3 . 
mutes: 

HomK 1 HomKXL 

HomJ tj F HomJX L. 

Proof. Given f : A x K ---) A, we construct the endomorphism (f, ~2) : A x K + A x K 

to which t can be applied. Then tK is defined by 

tK(f)=(AxKxLwAxKaA). 

To show that tK is a BDN. assume 

AxK“ A 

BxK- B 
9 

commutes. Then so does 

AxK(f.P2)_AxK 

BxK-BxK 
kl>PZ) 

and, because t is a BDN, so does 

AxKxLmAxK A, A 

Thus tK is a BDN. 
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TO show that tK is strong, let p1 : C x K---f C be the projection. Then 

tK(p,)=(CxKxL w CxK 2 C) 

f(lCXK) =(CxKxLm C x K 5 c) 

PI2 =(CxKxL - CxK% C) 

=pl:CxKxL+C. 

Finally, for k : J + K, the BDN, k* : HomK + HomJ was defined in Section 5.2 by 

k*(f)=(AxJ*AxK ‘-,A). 

Now 

A x J (f’Axk&), A xJ 

Axk 

4 
AxK-AxK 

(f,P2) 

commutes and therefore so does 

A x J x L t((f.Axkpd) A x J PI , A 

AxkxL 

AxKxL-AxKwA. 
~((f,PZ)) PI 

The top is t-‘(k*(f)) and the other composite is (k x L)*tK(f). 0 

Remark. This result does not hold in the monoidal case, thus reinforcing our argument 

of Section 5.7. For example, let Vect be the monoidal category of k-vector spaces. Vect 

has a natural numbers object k[x]. So a strong BDN, t : Horn --f Horn, is evaluation at a 

polynomial P E k[x]. Consider P(x) =x2 and t the corresponding BDN, Horn + Horn. 

Can t be extended to a BDN, tL : HomL + HomL in such a way that 

HomL & Horn L 

Horn A Horn 



commutes for all I? This means that if f : V i9 L --+ V, then tL( f) : V @L + V has the 
property that t”( f >(v @ 1) = f( f(v @ E) @ E) for all 2, E V, E EL. But the right side of 
this equation is not even linear in E: 

Now that we have established Proposition 14, we can define mu~tipIieation of fam- 
ilies of dinatural numbers. Given t : hom+homL and u : Horn AHorn”, we define 

t. u : Horn --+HomKXL by the formula (t. u)( .f’) = tK(u( f )), i.e. t. II is the composite 

of BDNs 

Horn -% HomK L HomKXL. 

By Proposition 14, f. u is a famity of dinatural numbers if f and ~6 are. It is the natural 
extension of the definition of Section 4.4 to families. Thus, we get a function 

. : Jr/-(L) x N-(K) + Jv(K x L). 

Proposition 15. The Jfilnction . : J’(L) x N(K) -+ N(K x L) is mturaf in K arad L. 

Proof. Let t E ,Y(t), u E MfK) and k : K’ + K, I : L’ + L be morphisms of A. We have 
the following commutative diagram: 

Horn” _f Horn 

The left-hand side is k*u = N(k)(u) and the top composite is (k x t)*r .U = .Y(K x 
L)(t . u). We claim that the bottom morphism (X’ x I)*tK’ is ~V’(l)(l)~‘. Indeed, 

AxK’xi 
=AxKfxL’------+ AxK’xL-AXK ---+A / Pi 

= (R’ x r)*tK’( f). 



76 R. Park, L. Romcin I Journal qf Pure and Applied Algebra I28 (1998) 33-92 

Thus, from the diagram, 

dv(k x E)(t . u) = (k x E)*t. u 

= (K’ x I)*t”‘R*zl 

= dlqz)(t)K’,I’.(k)(u) 

= Jv”( Z)(t) * dV(k)(U). 0 

However, the proofs of the properties of multiplication, such as associativity or 

distributivity, become cumbersome if we have to take care of different kinds of pa- 

rameters J, K,L, etc. As mentioned in Section 5.7, in the Cartesian case the dia- 

gonal and projection morphisms can be used to reduce doubly indexed families to 

singly indexed ones and so get multiplication (and addition) as natural transformations 

JV(L) x M(L) -+ JV(L). This simplifies matters considerably. 

6.2. Controlling families 

Proposition 16. Families offunctions $(K,L) : M(L) x N(K) + Ar(K x L) natural in 

K and L are in bqection with families t,b(L) : d’“(L) x J’“(L) + X(L) natural in L. 

Proof. This follows from the general 2-categorical fact that an adjoint pair U : B -+ A, 

F : A+ B with F -I U, induces an adjoint pair CFop -I CUop : CA” -+ CBop. We take 

U=x:AxA+A and F=d:A+AxA. Let ~8’ in Set(AXA)op be defined by 

&Z(K,L) = M(L) x M(K). Then we have the bijection 

Given 4 as above, the II/ which corresponds to it is given by 

II/(L) = N(L) x N(L) = N(L x L) .r’-(s) - N(L). 

We have already defined addition (in Section 4.3) and multiplication (in Section 6.1) 

as operations on doubly indexed families. We now translate these definitions into singly 

indexed operations. This controls the complexity of the calculations. We use the same 

notation, + and ‘, as before. This should not cause confusion. 

Given t, u : Horn -=+ HomL, f + u : Horn 2 HomL is given by 

and t - u : Horn &Horn’ by 

Ax& 
(Z’#)(f)4 XL- 

hu( I”,, 
AxLxL-A 

Ax6 ~(whJ2)) 
=AxL +AxLxL -AxLPl’A. 
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Constants Q, 1, n, must similarly be interpreted as natural transformations 1 --+ J1’. 
At L, Q(L): l(L) --+ J/(L) is the element of J+*(L) given by Q(f) =A x L 3 A. 

l(,f)=AxL %A -“,A, and in general n(f)=A xL P’. CA. 

Successor (T is already a natural transformation 4” + _j+: so now everything is taking 
place in the functor category SetAap. 

The properties of addition, successor and zero, expressed in Proposition 9 still hold 
in the present context by transport of structure. 

We now study the properties of multiplication. Before stating our theorem, it will 
be useful to establish the following lemma expressing how strength interacts with 
symmetry. 

Lemma 1. Let u : Horn --=+ HomL be a strong BDN, f : A -+ A an endomorphism and 

C an object of A; then the fo~~o~~i~g d~agra~l comm~tes~ 

AxCxL 

1 /Awe 
AxLxC 

where ~23 is the “twist” morphism. 

Proof. Consider the commutative diagram 

AxCf’xcAxC 

CxA-CxA. 
CXf 

As t is a BDN, 

AxCxL’0A.C 

CxAxL------+CxA 
QCxf) 
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also commutes. The diagram 

also commutes and as t is strong, t(C x f) = C x t(f), so we can paste the two squares 
above and thus obtain the commutativity asserted in the lemma. 0 

Theorem 6. ~ulti~li~ati~n of f~~~li~~ qf ~i~at~ra~ numbered satisfies 

(i) (t . u} . t’= t f (a s u), 

(ii) I-t=t=t.l, 

(iii) Q.t=Q=t.Q, 

(iv) IT~~u=~~u~-u, 
(v) (t+u)~u=t~u+u-t~. 

Proof. Let t, u, v : Horn --k HomL be L-families of dinatural numbers and f : A + A an 

endomorphism. 

(i> 

AX6 
(~.(~.~))(~)=~ XL--+ 

f(~(U.f~)(~),~2)) 

AXLXL +AxLz A 

and a simple calculation shows that 

Ax6 
((t . u) . v)(f) =A x L - AxLxLxL 

t((U((U(.f’),Pz)),P3)) 
>AxLxLA A. 

Consider the diagram 

AxL ((~UXS).PZ) ,A XL 

(*I 

AxLxL -AxLxL. 
wlw)&)xP3) 

When followed by ~1, it becomes 

AxL f=o)(f) *A 

/ 
Ax6 

.l 
AxLxL ------+AxL 

U(M/),Pd) 
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which commutes by definition of u . v. When (*) is followed by p2 we get 

Now 

IL L ---A L U(lL) LXL M L 

p: 

i I i 

Pi. =3 p2xL 

AxC------+AxL 
M.f’),PZ) AxLxLYiim&7AxL 

but strength of ra says that ~41~) = pz, so ~~~~(~~(~), ~2)) = p3 so (**) commutes. 
Finally, when we follow (*) by ~3, we get p2 for both composites. Thus (*) com- 

mutes. 
Now appfy t to the top and bottom of (*) to get 

Thus t+fu~~)=(t~~)*~, 
(ii) 

commutes, so _l_ 1 t = t. Also 
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which is equal to the common composite of the commutative diagram 

XL 

i.e. t( f ). Therefore t .I = f. 

(iii) 

O.~(~)=A~LAX~.A~L~L~~~AXL~ A 

Ax6 
=AxL---t AxLxL --% AxL% A 

=A XL 3 A=Q(f). 

A xs 
=AxL ---+AxLxL 

t((ptJQ)) 
-AxLPl A 

AXIS t(lAxL) 
=AxL ----+AxLxL- AxLsA 

= AxLP” A=g(f). 

(iv) (t + I)(f) is the common composite in the following commutative diagram: 

AxLAAxLxL 
tu w 

tAxL 

pi 

hL Pit 

,I 

PI 

AxL 
U) 

A 

So n(t) = t + 1. Thus, (iv) will follow from (v) and (ii). 
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(v) ((t f u) . u)(f) is the composite of the top and the right sides of 

81 

so ((t+zr)~u)(f)=jt-u+u.u)lf) once we remark that ( 1) commutes by the lemma, 
(2) by definition of f -I- u, (3) by definition of t + u, and (4) by Barr dinaturality of u 
applied to the commutative diagram 

AxLxL-AxLxL 

T 
AX8 

~ 

AxS 

AxL-AxL, 
Ml hP2) 

q 
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Remark. The proof of part (i) is much longer than one would expect. After all, for 

L = 1, multiplication of dinatural numbers is just composition, which is clearly asso- 

ciative. The complication occurs when families of dinatural numbers are introduced. 

A conceptual simplification can be obtained by the introduction of the categories 

A[L]. The objects of A[L] are the same as those of A but a morphism f : A --) A’ in 

A[L] is an L-family of morphisms from A to A’, i.e. a morphism A x L +A’ in A. 

Identities are given by projections p1 : A x L +A and composition of g with f by 

These identities and compositions occur everywhere in the above calculations. 

This is a well-known construction. It is nothing but the Kleisly category for the 

comonad ( ) x L on A. It is also discussed in [9] where it is viewed as the result of 

adjoining an indeterminate of the form x : 1 --) L to the category A. 

It can be shown that strong BDNs, t : Horn* + Horn:, are in bijection with strong 

BDNs, u : HornA[~j & HomalL and that multiplication corresponds to composition, 

but the calculations are similar to the above but more complicated. For this reason 

we decided to give a direct proof of (i). However, further work in this direction will 

surely involve the categories A[L]. 

6.4. Exponen tials 

In this section, we further explore the relationship between the categorical structure 

on A and the arithmetic of dinatural numbers. We shall show that if A is Cartesian 

closed and has pullbacks then we can define the exponential of two dinatural numbers 

and that this exponential has nice properties. Our discussion below is still preliminary. 

An extensive study of exponentiation must await a future work. 

Let A be Cartesian closed with internal horn [ , ] : A’P x A --f A. Further assume 

that A has pullbacks. We shall show that dinatural numbers can be internalized and, 

therefore, that we can apply BDNs to them. 

Let t : Horn i Horn L be an L-family of dinatural numbers. Then by proposition 

14, t can be extended to strong BDNs, tK : HomK 2 HomK xL, naturally in K. Thus, 

for each A, we have 

t,f:Hom(AxK,A)-+Hom(AxKxL,A) 

which gives, by Cartesian closedness, morphisms 

Horn (K, [A,A]) + Horn (K x L, [A, A]) 

natural in K. So, by the Yoneda lemma, we get 

-;a : [A, A] x L + [A, A]. 
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For f : A x K + A let us denote the corresponding morphism K --t [A,A] by ‘f ‘. Now 

the basic property of 7 can be expressed by 

KxL 
‘f’XL 

) LVI x L 

rrK(f )’ 

\,/ 

iA 

LMI. 

Proposition 17. ‘?: [, ] x L + [, ] is a strong BDN. 

Proof. To say that 7 is a BDN means that for any morphism 4 : A --t B, the following 

hexagon commutes: 

[AA x L i( 

/ 

’ k44 
M$l 

\ 
P [AA 

/ t441 

E&B1 x L~WI 

(*) 

where P is the pullback of [A, $1 x L and [$, B] x L. But as A is Cartesian closed, P 

is isomorphic to Q x L where Q is given by the pullback 

QY[‘^lk’ MB1 

To show that (*) commutes, it is sufficient to test it on morphisms of the form 

qxL:KxL+QxL.Butamorphismq:K + Q corresponds to a pair 'f ', :q‘ making 
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commute, i.e. a diagram 

AxKf A 

~inatumlity of tK implies that 

$xKxL 

i 

BxKxL 
tKkl) 

kB 

also commutes, which means that (*) commutes when preceded by q x L. Thus (*) 

commutes. 

By i‘ ~t~~~g we mean that for every A and C, 

PA1 x L t; 

StXL 

I 

[CxA,CxA]xL ~[CxA;Cx4 

commutes, where st is the strength for the functor C x ( ). Let ‘f‘ : K -+ [A, A] corre- 

spond to rf 7 : A x K--f A. Preceding (w) by rf’ x L, we see that the top composite is 

C x tK(f) : C x A x K x L + C x A, whereas the bottom is tK(C x f). Strength of fK 

says that these are equal. q 

Conversely, a strong BDN, u : [, J x L --rZ, [, ] gives a strong BDN, ~2 : Horn 4 

Horn L as follows. For J : A -+ A we get 

r 1 

1 XL 
f 
2” [A,A] x L a [AJ] 

which corresponds to G(f) : A x L -+ A. Thus ‘u’(f)’ = UA . 'f' x L. That ti is a strong 

BDN is straightforward. 

Proposition 18. if 6 : Horn i Horn’ is a strong BDiV, then ?= t. 

Proof. %(f)‘= G . ‘Lr’ x L = i(f)‘. ci 
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However, it is not true that 2 = u for all u as the following example shows. Consider 

the topos SetZ of Z-sets. An object may be viewed as a pair (X, t) where X is a set 

and i’ :X +X a bijection. SetZ has a natural numbers object, ((N, IN),s) so strong 

BDNs, t : Horn ---t Horn, correspond to morphisms 1 -+ (N, lo), i.e. ordinary natural 

numbers. So all dinatural numbers are standard. The internal horn in SetZ is given 

by [(X, [), (Y, O)] = (IV, w) where W is the set of all functions f :X + Y and o(f) = 

f)ofo<-‘. Define 

It is straightforward to show that u is a strong BDN, u : [ , ] i [ , 1. But u does not 

correspond to a standard dinatural number. In fact, ii : Horn ----t Horn is the identity 

(i.e. 1) so U; = 11~~1 #UA. 

Thus, there are possibly more internal BDNs than external ones. We still maintain 

that it is the external ones that correspond to natural numbers. 

For the remainder of the section, we restrict our attention to single dinatural num- 

bers rather than families. Everything should work for families but the calculations are 

somewhat involved and have not yet been checked in every detail. 

Proposition 19. Let u : [, ] 2 [, ] be a strong BDN and t : Horn 2 Horn a BDN. 

Then t(u~ ) : [A, A] ---f [A, A] dejnes a strong BDN. 

Proof. That u is a BDN means that the hexagon 

commutes for every 4. Q is the pullback of [A, 41 and [&B] so there exists a fill-in 

r as in the diagram. As t is a BDN we get a commutative diagram 

so t(aA) is a BDN. 
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An application of t to the diagram 

[CxA,CxA] ------+[CxA,CxA] 
UC X A 

shows immediately that t(uA ) is strong. 0 

Definition. Let t, u : Horn AHorn be dinatural numbers. The exponential tU is defined 

by tU = (I.@): Thus, for f : A + A, we have 

rt”(f)‘=u(Q 0 ‘f’. 

Proposition 20. Exponentiation of dinatural numbers has the following properties: 

(i) tQ=l, 

(ii) tl= t, 
(iii) tu(U) = tU . t, 

(iv) t( u+a) = tu . tC, 

Proof. Let f :A +A. 

(i) ‘t”(f)‘= Q(c) 0 ‘f’= 11~~1 o rf’ = ‘f ‘. Thus t”(f) = f for all f, i.e. tg = 1. 

(ii) ‘t~(f)‘=I(~)orf=~~~=~t(f)‘. Thus t’(f)=t(f) for all f. 
(iii) Follows from (ii) and (iv) and O(U) = u + 1. 

(iv) 

w+“‘(f )’ = (u + ?I)($) 0 ‘f’ 

= u(Qov(~)o’Ifl 

= u(G) 0 ‘t”(f )’ 

= ‘t”(f)l 

= ‘(t” . t”)(f )‘. 

So t(“+“)(f)=(t”.P)(f) for all f. 0 

Properties (i) and (iii) insure that if u is a standard numeral n, then 

tn=t.t.t... .t (n times). 

In particular, mz = m”. 
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Remark. We do not know if the identity (t”)” = t(“.“) holds in general. 
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7. Examples 

7.1. When A has a natural numbers object 

When A has a natural numbers object (N,s), then Theorem 3 says that L-families 

of dinatural numbers, t : Horn 2 Horn L, correspond exactly to morphisms L --f N. 

Thus JV E A(-, N). Successor and 0 for Jf correspond under this isomorphism to 

A(-,O):A(-,Z)-tA(-,N)andA(-,s):A(-,N)~A(-,N),respectively.Theorem5 

then shows that addition corresponds to A(-, +) as it satisfies the corresponding re- 

currence relation. 

Multiplication is not defined as a natural transformation into JV” in the monoidal 

case, but in the Cartesian case, Theorem 6 shows that multiplication does correspond 

to the usual one N x N 4 N. Indeed, the internal definition of multiplication is as the 

unique morphism : N x N -+ N which fits into the diagram 

IxNgNi:p*j sxN ‘Nj:p*j 
NxN 

(+,Pz) 
)NxN 

If we apply A(L, -) to this diagram, we see that its commutativity is equivalent to 

properties (iii) and (iv) of Theorem 6. 

In order to see that the exponentiation defined in Section 6.4 coincides with the 

one defined internally by recursion, we must extend our definition to include families. 

Indeed, the internal exponential is defined to be the unique morphism exp : N x N --t N 

which fits in the commutative diagram 

and that is all that we know about exp. So to show that our definition of 6.4 agrees 

with this one we should show that a similar diagram commutes for JV” which would 

require a definition of exponential for L-families of dinatural numbers. However, we 

can get the result by introducing families only in the exponent and this makes the 

calculations considerably easier. Let us fix n : 1 + N. Then we can define n( ) : N -+ N 
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recursively by 

where ( ) . n = (N G N x 1 Nx? N x N L N). It is easily seen that n( ) = exp(-, n). 

Now we define tU for t : Horn i Horn a single BDN and u : Horn 4 Horn L an 

L-family. tU = (u(a)>-: Horn --t Horn L. Thus we get a function t( ) : N(L) + N(L) for 

each L. 

Proposition 21. t( ) : N(L) + M(L) is natural in L, i.e. if I :K +L then l*(P)= 
t”(U) 

Proof. If f :A --‘A, then rl*(t”)(f)l is given by the composite 

whereas ‘t’*(“)(f)’ is given by 

The two composites are obviously equal. 0 

If t : Horn li Horn and U, v : Horn ----t Horn are strong BDNs, then all of the iden- 

tities of Proposition 20 still hold, and the proofs are basically the same once we note 

that the effect of t* on morphisms is given by ?( f >‘= u(r) o r/ x L, which fact was 

used in the preceding proof. 

The natural transformation t( ) : A’” --f AT induces a morphism e: N + N and if 

n: 1 + N is the natural number corresponding to t, then properties (i) and (iii) of 

Proposition 20 show that e satisfies the recursion data for n( ). Thus, the exponen- 

tial defined in Section 6.4, and improved here, agree with the usual one defined by 

recursion. 

7.2. Dinuturals for jinite sets 

We wish to study strong dinatural transformations Horn 1-, Horn on the category 

of finite sets. From the discussion of Section 2.7, all dinaturals are strong for finite 

sets. Also, because HomL(A,B) = n Horn (A,B), an L-family of dinaturals is just L 
independent dinaturals. So it will be sufficient to understand BDNs, Horn -G Horn. 
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Consider N as a universal algebra with one nullary operation, 0, and one unary 

operation s. The finite quotients of N are a11 of the form 

.4y,r = N/q = q + r, 

where 4, r E N and r # 0. By q = q $ r we mean the congruence generated by setting 

q z q -+ r. Explicitly, 

ni==n or 
m=Fl* 

1 m,n > q and r/m-n, 

We may picture A,., as 

0 1 
a--+ l -+ : ---+ :..P;l,*/,-q+r i 

\- 

As homomo~hisms A,, 4 AYf.’ I must preserve 0 and s, there can be at most one and 

there is one if and only if q’ I q and r’ /r. Thus, we have a directed diagram of finite 

algebras indexed by the poset N x N* of all (q, r) as above. Define 6 = lim,, A,,. Note 

that the congruence q 5 q + r is also a congruence for addition and m>tiplication so 

that each A,, has these operations, given by [a]+[b] = [a-t-b] and [a].[b] = [ab]. When 

there is a homomo~hism_#: A,, --tAs~.r~ it is given by &[a]) = [a], so it pre_serves 

+ and 1 Consequently, N has + and . satisfying the usual properties, i.e. N is a 

commutative rig (i.e. commutative ,semi-ring with 1). 

Theorem 7. There is UB isomorphism of rigs between _V( 1) and s. 

Proof. Let t E ,,1-^( 1 ), i.e. t : Horn S Ham. Apply t to the successor s : A,, + A,,. to 

get t(s) :A,, +Aq,r. Let t(s)[O] = [n,,,]. If 4 : A,, -+Ay~,p~ is a homomorphism, then 

commutes, so applying t to top and bottom and evaluating at [0] we see that &[F+]) = 

I%r’,r’ 1. Thus the family ([E,,~]) is an element ctf N. 

Conversely, given an element ([R~,~])~,~ of N we can define t : Horn -;j Horn as 

follows. If f : A -+ A with A finite, then there exist q, r E N such that f(4) = f(q+“, 

with r # 0. Define t(f) = ft”q,r). If q 5 q’ and r ( Y’ then ,f(q) = f(y+r) + f’q’) = f(q’+r’) 
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so t is well defined. Also, by directness of our poset N x N*, given y : B --t B we can 

find a pair (q, r) for which t(f) = f(‘+ 1 and t(s) = g(‘+), so as far as f and .q are 

concerned, t is iteration by a fixed integer and therefore is a BDN. 

Note that for s : il,, +A4,,. we have ~(9) = s(q’+), so if we start with ([a, r])y ,. E N 3 I 
and construct t as above, then t(s)[O] =s(“~~~)[O] = [n,,]. Thus, we get back the same 

element of 6. 

On the other hand, let us start with t f ..I’( 1) and let [ne,] = t(s)[O], and then con- 

struct a new BDN, U, from ([u~,~])~,+ For f : A --+ A there is qr such that f(q) = f(q+r). 

For a E A define (b: A,,, --$ A by c$( [I?]) = f(“)(a), which is indeed well defined. Now 

commutes, so 

f(S) A,,. - A,, 

A -A 
l(.f) 

does also. Thus, t( f)&[O]) = t( f)( ) a is equal to &(s)([O]) = ~$([n,~]) = f”+?‘(a) = 

u(f)(a). Thus u = t. This shows that we have a bijection .,V( 1) ” N: 

Q(s)[O] = 1~,,,[0] = [O], so ([O]) corresponds to 0. 

lJs)[O] = s[O] = [l], so ([I]) corresponds to 1. 

In order to see that addition and multiplication are preserved first note that if 

f :A,, +AP,<j commutes with s and if f[O] = [n] then f[m] = [m + II]. Also note 

that if ,f commutes with s then so does t(f) for any BDN, t. 

Let r(s)[O] = [+,I and u(s)[O] = [n,,,]. Then 

(t + u)(s)[Ol = t(s) . 4~)[01 = t(s>[nq,rl = [~~q.r + nq,rl. 

So addition is preserved. 

As U(S) : A,, 4 A,, commutes with s, it satisfies u(s)(~! = u(s)(~+‘). Thus 

(t . ~)(~XOl = t(4s))Wl 
= U(SpJ)[O] 

= u(s) 0 u(s) 0 . . . 0 u(s)[O] 
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= [%J + nq,r + . . + I+] 

= [ m&r . nqJ . 1 

So multiplication is also preserved. U 

The congruence y z q + r is not in general a congruence for exponentiation. For 

exampte, in A2,3, 2 s 5 but 22 =4 $32 =2”. But as JV( I) has exponentiation so does 

6, by transport of structure. Let us examine how this works. 

Let f[eq,yl) = t[mq,rli (‘flu !I) and let t and u correspond to ([M~,~]) and ([n,,]), resp- ” 
ectively. Then b : Horn (A,,4 > + Horn (A,A) is already internal so t$ = $A. The exponen- 

tial P is given by externalizing u(G) which is already external. To find the correspond- 

ing element of % we must apply it to S: A,,,. --+Aq.r. Thus, we consider 

?= G: Hom(A,,,A,,) -+ Horn@,,, Ag.r) and find 4,F such that i““‘=?rl+r). Then 

u( i^‘)(s)[O] = P7.qs)[o] 
=70?070 1 * . 0 &s)[O] 
=7 [f-%&r . my,‘. f . . . . @bArI 

= [Jn,“$q. 

Thus [ql-] = [rni$‘] where q, T: are as above. 

Thus, exponentiation in fi is not componentwise. The class [n,,] has many rep- 

resentatives Ei and n,: is one of them, i.e. [no,,-;] = [n,,.] in A,,. As the congruence 

q E q i r does not respect exponentiation, the classes [q&] are not all the same. But 

as the above discussion shows, it is possible to choose the representative correctly. 

It may be interesting to note the analogy with presheaf categories where sums and 

products are performed componentwise but exponentiation is not. 

We can get a better unde~tandin~ of 6 by considering & = A,+!.k!. There is always 

a morphism b, : Bk+l 4 Bk and this gives an initial subdiagram of (n,,). Thus fi 2 

‘gk Bk. 

An element of 6 can thus be considered as a singly indexed family of natural 

numbers ([nk])k which are compatible in the sense that for each k, either nk+] =nk or 

they are both greater than k! and k! 1 (n kfl - nk). Thus, if we are trying to build an 

element of N recursively and we have the first k members 

then. if nk <k! we have only one choice for [nA_,_l], namely f&+1 = rtk and so on for the 

remaining members. This corresponds to the standard numeral $. On the other hand 

if k! 5 nk t2 . k!, then we have k + 1 choices for [nk+l], namely [&I, [nk + k!],[nk + 

2 . k!], . . . ) [nk + k . k!]. Of these, the first is one that becomes constant and the others 

admit k + 2 choices at the next stage. Thus, we can see that apart from the standard 

numerals we have an uncountable set of dinatural numbers. In fact, 6 may be identified 
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with N Ij 2 where 2 is the set of adic numbers 2 = lim,+a Z/(n). To ([mk]) E 2 we 

associate the dinatural number ([k! + ~1). 

For instance, corresponding to 0 in Z, we have the dinatural number w = ([k!]). 

o + CDL)= w w = w but o + 1 fo. This w is the dinatural number used in Peter 

Johnstone’s example of Section 2.2. Our example was ([k!!]) where k!! = 1!2! . ..k!. 

But in Bk, [k!] = [m . k!] for any m >O, so our example is also w. 

There is a result of Peter Hoffman (see [4]) that the congruence q = q + Y respects 

exponentiation if and only if for every prime p, 

Ply * (P- I)lr. 

If q = r = n!, then both of these conditions hold so that exponentiation is defined on our 

algebras B,. Furthermore the transition morphisms C#I : B,+I + B, obviously preserve it, 

thus in 6, exponentiation is componentwise on the B,,. 
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