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Why effective equations in LQG?

Dynamics is not yet under control (Hamiltonian operator or
propagator, quantization ambiguities)

Even in symmetry reduced models the analysis of the
dynamical difference equations has proved difficult to deal with

Effective classical systems are easier to work with. They have
been used successfully in QFT

Use effective equations (which are in closer contact with
classical space-time notions) to explore possible implications
from corrections expected from a loop quantization:

Inverse triad corrections
Holonomy corrections
Quantum back reaction effects



Strategy/Goals

Complete derivation of effective equations in LQG is out of reach,
but we can extract information by imposing consistency conditions,
particularly anomaly-freedom to derive candidate effective
equations. This serves several purposes:

To do a quick consistency check and to get insights of the full
model of LQG (anomaly problem, semiclassical limit),

to check for robustness of the predictions of homogeneous
models in LQC,

to obtain physically relevant information arising from the
specific quantum corrections (phenomenology), and maybe
even tackle some more fundamental questions...

Unless effective equations are derived rigorously, their predictions
should be taken with care!
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Geometrical Formulation of Quantum Mechanics

Quantum Mechanics may be formulated in the language of
symplectic geometry in close analogy with classical mechanics.The

Hilbert space of quantum states may be seen as a manifold:
quantum phase space (QPS) with a symplectic structure inherited

from the inner product 〈·, ·〉. Hermitian operators define
observables or functions on quantum phase space through

expectation values. Specifically:

Hilbert space H can be seen as a real vector space (with
complex structure).

〈Φ,Ψ〉 = 1
2~g(Φ,Ψ) + i

2~Ω(Φ,Ψ)

Hermitian operators F̂ define functions on H:

F := 〈F̂ 〉, F (Ψ) = 〈Ψ, F̂Ψ〉



Geometrical Formulation of Quantum Mechanics
Quantum Unitary Evolution

Associated Hamiltonian vector field ”XF = ΩabdFa”:

XF (Ψ) =
1

i~
F̂Ψ

Poisson Bracket for F = 〈F̂ 〉, G = 〈Ĝ 〉:

{F ,G} :=
1

i~
〈[F̂ , Ĝ ]〉

For physical Hamiltonian Ĥ, its flow XH gives Schrödinger
equation: dΨ

dt = XH(Ψ) = 1
i~ ĤΨ

For a general observable F :

Ḟ =
d

dt
〈F̂ 〉 =

1

i~
〈[F̂ , Ĥ]〉 = {F ,H}



Geometrical Formulation of Quantum Mechanics



Geometrical Formulation of QM
”Coordinates” for H

Particularly for basic operators q̂
and p̂ with canonical
commutation relations:
{q, p} := 1

i~〈[q̂, p̂]〉 = 1. The
variables q := 〈q̂〉, p := 〈p̂〉
define a fiber bundle structure
on quantum phase space, and
we may embed the classical
phase space as a cross section.

We may put ”coordinates” on QPS adapated to these
structures, using expectation values of basic operators for
fibers and higher moments to identify points on each fiber:

G a,n = 〈(q̂−〈q̂〉)n−a(p̂−〈p̂〉)a〉Weyl , 1 < n ∈ N, 0 ≤ a ≤ n



Geometrical Formulation of QM
Quantum Evolution

Quantum Hamiltonian

HQ(q, p,G a,n) : = 〈H(q̂, p̂)〉Weyl

=
∞∑
n=0

n∑
a=0

1

(n − a)!a!

∂nH(q, p)

∂qn−a∂pa
G a,n

q̇ = {q,HQ}, ṗ = {p,HQ},

Ġ a,n = {G a,n,HQ}



Effective Equations

Infinite number of coupled ODE’s. Use approximations to

Truncate system to a finite number of equations and degrees
of freedom (ignore higher moments quantum back reaction),
or decouple equations (no quantum back reaction)

Different ways to derive/obtain this reduced set of effective
classical equations (with the same number of classical degrees
of freedom or higher). Use semiclassical or coherent states,
~-expansions, addiabatic approximation, etc.

Effective Classical Hamiltonian Systems

Symplectic or Poisson manifold P (submanifold of QPS) with
Hamitonian Heff, whose flow XHeff

’approximates’ in some sense the
quantum unitary flow XHQ





Effective Equations
Applications

Simple systems: linear systems (harmonic oscillator),
anharmonic oscillator.

Successfully used in Loop Quantum Cosmology. Classical
equations containing corrections from LQG (some more or less
rigorous derivations, ”holonomization”: c → sin δc

δ , etc.), more
later today ...



Effective Constraints

Constraint surface

Gauge
Orbits

Phase Space

Figure : Classically, first class
constraints restrict dynamics to the
submanifold of phase space where the
constraints vanish. Their Hamiltonian
flow is tangential to this ’constraint
surface’ and determines the ’gauge
orbits’.

What about?

Ĉi |Ψ〉 = 0

Proposals

< Ĉi
2
>= 0 for

HPhys ⊂ H
Infinite tower of
constraints:
Ci ,f :=< f (q̂, p̂)Ĉi >= 0
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Anomaly-free Effective constrained systems

Bypass complications, study particular or symmetry-reduced
models and ask a more basic question:

Is there a consistent (first-class) effective system with constraints
implementing (some of) the quantum corrections expected from
LQG?

In other words, can we ”deform” the H and D constraints (insert
corrections) and still get a closed algebra?



Why Anomaly Freedom?
Role of constraints

Restrict initial values of the fields to those which make the
constraints vanish

Generate gauge transformations which in the case of GR
coincide with coordinate transformations

Provide equations of motion for the fields in any coordinate
time parameter.

Consistency: constraints must be preserved under the time
evolution they generate. Guaranteed if they generate a closed
Poisson algebra. Quantum corrections to constraints cannot
appear in arbitrary forms, but must be restricted so that the
deformed Poisson algebra closes.



Implementation

Parameterize our ignorance with general correction functions
αi [A,E ] i.e. substitute

Hclass → Hαi
eff

Imposing anomaly freedom, {H,H} and {H,D} brackets give
consistency conditions for the corrections (PDE’s for the αi ’s)

Consistent deformations exist. Different models show generic
form

{Hαi
eff[M],Hαi

eff[N]} = D[β qab(M∂bN − N∂bM)]

Extract information from the consistent effective equations



Hypersurface Deformation Algebra

N n
Na

a

tα

{H[M],H[N]} =D[qab(M∂bN − N∂bM)]

{H[N],D[Na]} =− H[Na∂aN]

{D[Na],D[Mb]} =D[[Na,Mb]]

This algebra is a fundamental object, encoding not only the gauge
symmetries of Einstein’s theory but the structure of spacetime.
The Poisson bracket relations express the fact that dynamics takes
place on spacelike hypersurfaces embedded in a
pseudo-Riemannian spacetime (Hojman,Teitelboim,Kuchar). In a
Hamiltonian formulation the dynamics of a general field are
obtained by prescribing the field on a spacelike hypersurface and
then deforming this hypersurface through spacetime.



Hypersurface Deformation Algebra

The deformations of hypersurfaces in a pseudo-Riemannian
spacetime observe a simple geometrical pattern, and any
dynamics taking place on such a spacetime must reflect the
structure of this pattern. The closing relations ensure that
consecutive deformations of hypersurface embeddings result in
the same final embedding.



Hypersurface Deformation Algebra

Figure : The commutator of the generators of ’pure deformations’ or
’translations’: [HδM ,HδN ] = DδNa . The ’stretching’
δNa = qab(δM∂bδN − δN∂bδM) is needed to compensate reverse order
of the two ’translations’ δM and δN.



Hypersurface Deformation Algebra

Figure : The commutator of a ’pure deformation’ and a ’stretching’ or
spatial diffeomorphism: [HδN ,DδNa ] = −HδM . A ’translation’
δM = −δNa∂aδN compensates for reversing the order of a ’translation’
δN and a ’stretching’ δNa.



Deformed space-time structures????

{Hαi
eff[M],Hαi

eff[N]} = D[β qab(M∂bN − N∂bM)]

Two cases β = 1 or β 6= 1 and two options:

Discard the β 6= 1 solutions as nonsense!

Take this deformed algebras as hints of some emergent
modified structure of space-time??
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Spherically Symmetric Ashtekar Variables
Adapted Spatial Coords. (x , ϑ, ϕ)

Ax(x), Kϕ(x), η(x) E x(x), Eϕ(x), Pη(x)

{Ax(x),
1

2γ
E x(y)} = {Kϕ(x),Eϕ(y)} = {η(x),

1

2γ
Pη(y)} = Gδ(x , y)

Metric

dq2 =
Eϕ 2

|E x |
dx2 + |E x |dΩ2

Angular part of Spin Connection

Γϕ = − E x ′

2Eϕ



Constraints

Gauss Constraint

Ggrav[λ] =
1

2Gγ

∫
dx λ(E x ′ + Pη)

Diffeomorphism Constraint

Dgrav[Nx ] =
1

2G

∫
dx Nx(2EϕK ′ϕ − KxE

x ′ +
1

γ
η′(E x ′ + Pη))

Hamiltonian Constraint

Hgrav[N] = − 1

2G

∫
dx N|E x |−

1
2 (K 2

ϕE
ϕ+2KϕKxE

x+(1−Γ2
ϕ)Eϕ+2Γ′ϕE

x)



Modified Effective Hamiltonian

Heff
grav[N] = − 1

2G

∫
dx N

(
α |E x |−

1
2Eϕf1 + 2sᾱ |E x |

1
2 f2 + α |E x |−

1
2Eϕ

− αΓ |E x |−
1
2EϕΓ2

ϕ + 2sᾱΓ |E x |
1
2 Γ′ϕ
)
.

Correction functions α’s depending on triad variables [E x ,Eϕ],
f1[Kϕ,E

x ,Eϕ] and f2[Ax + η′,Kϕ,E
x ,Eϕ].

Classically f1 = K 2
ϕ, f2 = Kϕ(Ax + η′). α = ᾱ = αΓ = ᾱΓ = 1



Inverse Triad Corrections

{Heff
grav[M],Heff

grav[N]} = Dgrav[ᾱᾱΓ|E x |(Eϕ)−2(MN ′ − NM ′)]

− Ggrav[ᾱᾱΓ|E x |(Eϕ)−2(NM ′ −MN ′)η′]

+
1

2G

∫
dx (MN ′ − NM ′)(ᾱαΓ − αᾱΓ)

sKϕ(E x)′

Eϕ

+
1

2G

∫
dx (MN ′ − NM ′)(ᾱ′ᾱΓ − ᾱᾱ′Γ)

2Kϕ|E x |
Eϕ

.

gives

ᾱαΓ − αᾱΓ − 2E x

(
ᾱΓ

∂ᾱ

∂E x
− ᾱ ∂ᾱΓ

∂E x

)
= 0



Inverse Triad Corrections

{Heff
grav[N],Dgrav[Nx ]} = −HQ

grav[NxN ′]

− 1

2G

∫
dx N(Nx)′Eϕ

( ∂α

∂Eϕ
|E x |−

1
2K 2

ϕE
ϕ + 2s

∂ᾱ

∂Eϕ
KϕKx |E x |

1
2

+
∂α

∂Eϕ
|E x |−

1
2Eϕ − ∂α

∂Eϕ
|E x |−

1
2 Γ2
ϕE

ϕ + 2s
∂ᾱ

∂Eϕ
Γ′ϕ|E x |

1
2

)
.

gives

α−1 ∂α

∂Eϕ
= α−1

Γ

∂αΓ

∂Eϕ
= ᾱ−1

Γ

∂ᾱΓ

∂Eϕ



’Holonomized’ version

Heff
grav[N] = − 1

2G

∫
dx N|E x |−

1
2

[
sin2(δγKϕ)

δ2γ2
Eϕ + 2

sin(2δγKϕ)

2δγ
KxE

x

+ (1− Γ2
ϕ)Eϕ + 2Γ′ϕE

x

]

{Heff
grav[M],Heff

grav[N]} = Dgrav[cos(2δγKϕ)|E x |(Eϕ)−2(MN ′ − NM ′)]

− Ggrav[cos(2δγKϕ)|E x |(Eϕ)−2(NM ′ −MN ′)η′]

{Heff
grav[N],Dgrav[Nx ]} = −HQ

grav[NxN ′]
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Conclusions and Remarks

Effective equations are a powerful tool that allows to extract
information from the underlaying quantum theory

The geometrical formulation of effective systems is very useful
for canonical quantum systems, particularly LQG

Rigorous derivations of effective equations for more interesting
systems are lacking but we can still impose some consistency
conditions like anomaly-freedom to gain some insight.

Consistent anomaly-free deformations of the classical first
class constraint algebra exist (incorporating both possible
inverse triad and some holonomy effects).

Even with these simple approximations lessons can be learned:

Phenomenology: Bounces not obvious in inhomogeneous
situations, obstructions for homogeneous solutions, etc.
Interpretation of effective ”geometries” requires more careful
analysis.



...I think these are good reminders that we have a long way to go...
THANKS!
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