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CRITICAL PERCOLATION AND THE EMERGENCE OF THE GIANT COMPONENT

Rather : Some of their associated Branching Processes .

Past 1- : Introduction

- Bond Percolation

- Critical Percolation ( Id )

- Branching Processes
- Exploration of clusters

Pet 2- : Erdos -Rényi Graphs : Emergence of the giant .
- Edits- Rényi graph process .

- Subcritical
, Upper bound proof

-
Subcritical , lower

bound proof

- Supercritical , key ideas .

Pet ≥: Hyper cubic graphs : Heuristic for its critical probability

- Setup for generalized branching process

- (Unknown) properties and
threshold

Wishist :
_ Proof of corollary for Pc

(d)
_

- key ideas for the analysis of thms .

Other models :
Their associated branching processes .

Party : - Erdos-Rényi : k - core emergence .

- d-
processes : giant component emergence .
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Part d- 1

General Assumptions : G = ( V ,
E) is connected and transitive

EE } how} :
u.vey} ee E : unv neighbors ,

e is incident to M<
also written uv=e

× is the endpoint of e
Examples .
- -

kn = ( [ n] , tux : u.ve In]} )
complete : → 41,2 . . . _ n}# nearest neighbors

w = (w , , - - - - Wd)Hyper . Lattice : ≥ᵈ=( Id ,
Luv : to-v1 -_ I })

a

Iwl = Itwit
i -5

② = ( to , yd , / on : Iu-v1 = 17)
Hypercube :

Note : Transitive graphs have constant degree R.

Definition ofcon-dnponertc.lv)=C(v1 = / well : Uaw in G}
G

U←•W if there is a path in C- connecting
U and w

.

Transitive graphs
V-u.VEV there is automorphism Cf : V-V 414=4

that maps edges into edges .



Part d- 2
BondPecobh process

-
generally fixed

For G=(V. E)
, p c- [0,1] let Gp = (V.Ep ) ≤ G suchthat

S
eet :

ee Ep independently with prob . punderlying
graph Case is open ( otherwise closed)
↓

may also
be random

What about the size of connected components
€

there is a pathin Gp ? Chi)= Cap (v ) = } w :

of open edges
connecting v tow}

→ A Property / Evert P is increasing if for Hi C- Az EG
-
-

-'
≤ bit :H≤a } H

,
E P ⇒ Hz C- P

Exercise 1 : • { H : H contains a triangle} is increasing

• / H : H has no cycles } is decreasing

• } H : 1C (v ) / = k } is neither inc /decrees .
H

• { H : 1C # ( v) / ≥ k } is increasing

If G is finite then the probability space may
be

( 10.11'" ,
P( go, ,}

'")
,
P) p( w )=p

opera-piked
open = # Wi

=L

closed = # Wi = 0

For G infinite we may
extend such

probability spaces (of independent
coin- flips) to an infinite one .

implicit
• Recall that Ctv) = Ccu ,w) where wer in thistle space

of the probability space .



Part d- 3
→ A NEupKy for increasing events

( Gp )pe[◦ ,, is defined by
( Ue)

eee independent drift.it r.v. 's

letting e c-Ep ⇔ Ue≤p- arrival time of e into

the
process

Exercises: If P is increasing ,

for A
< Pz

Pl Gp, c- P ) ≤ PC Gp, c- P)
.

→ Percolation probability : ④(f) =P/ Ichi)1=o) vev
fixed

.

→ Critical probability : pc = sup { p :@(
p
) -_ o}

Facts : ② (01=0
,
⑥(11=1

,
④(p) is non-decreasing and

right - continuous → Than 2.5 in Steif 's notes

D-(
p)
= lin Pl there is k- path starting at origin ) = dim gem (p)k→ nok→oo

%Cp) is a polynomial in p , g , Cpl
-1 Ocp)

+ non -decreasing upper - semicont.
function ⇒ is right continuous .



the-eest-neighb-E.AZ
d Part d- 4

Write ⑥
d.
(
p
) and Rcd ) ; we use origin

5 as the fixed vertex .

Thm1_ . For d ≥2
,
⊕d ( p) is continuous in ( Rcd) . 1)

and ¥,

≤ R( d) < so .

Exercises : pc (1) =L and peed -11) ≤ Pa (d)

^

Be •

:

'

forPd"

#g
↳ known for d=2

,
d ≥ 19

* so @ ( Pelz)) -_ 0

* Hera and Slade proved Olpdd)) -0 for d ≥ 19

1994



Proofoftowebund Part d- 5

Let E- (K) = # self- avoiding paths in Id ↑→•
✓

of length K starting at J o • ↳
→

Pk = # " "

in 7% TI
o -

×

00

Since } 1C (E) 1=0 } = N {P
,
≥ ,}

,
② ( p

) = lion PCB ≥ ' )
K-N

1<=1

We
prove

that if p< ¥,

then PCP
,
≥ ,) - o ask-00

.

PCP
,
≥ 1) ≤ ELP

,
] =p

" -04<1 ≤
p
"
.
2d (2d- i)

""

-
Moka's ing

= ,¥,
( pczd- d)

K

= (pkd- 1) +0" )
"

as k→oo
☐

Qdpl = dim PCP, ≥ ,) ≤ liminf ( pled- it + old)
"

if plzd- 1) < 1
k→oo K→oo

P(P* ≥ 1) Oplp)



Proofslathfuppebound Part d- 6

If suffices to
prove 1

> f. (2) ≥ pal d)
d ≥ 3

⊖, ( p
) ≥ f- £ Hp )

"

KECK) ≥ £ for
p
close

to 1
.

1<=1 ~ My✓ ti
k closed bound on

22 duality argument : edges dual cycles length
K

?⃝/ Clot / < • ⇔ 5 surrounded
☐

by closed cycle

•
if X-p) (2d- c) < 1 equiv . p >

1- ¥,
then

K

00

£ ( Kp)
"

K ☐ (k) ≤ I K / a-piled
- e) +041) < no

K= I

1<=1

• Continuity of ② ( p)
in Section 4 of Steif 's notes .



Part d-7

Remix

,?⃝
• %" """" "

" """ " °" """
"" " """" """ "

{
• Factor d- 1) may

be replaced by Hd)
"

Harris - Kesler
where 7(d) = him ECKIYK

k→oo

• For 722 Yg ≤ p, (a) ≤
g-

duality argument in 1960

equality 20years later !

• Hofstad
,
Slade p,

(d) = ¥,

+ É⇒ + O( (2d-15
") as d-•

a 2005ÑÉ{
• Kester 1988 obtained first - order term :

1-
2d

• Expansion for d=2 would give pace) ≈ .

42

• ✗ (d) is known as connective constant .



ci-dper-E-spher-idlysym.IS Bonus2

Consider a tree 1- with root r and ao children each of which

has a
,
children

,

and vertices in generation K have ak children .

K- I

Thn_* Let Ain = # vertices in generation in ( this case Ak-- IT a ;)
5=0

Then p, (T
) =#

(liminf A )
K→ no

Proofoftowerb.vn#: Essentially the same proof as for 2d

IPC / Ccp) / = a) ≤ ☒[# paths to ger k from p]
= pʰAk ,

if p < ( liminf A I 7 subsequence ke for which Aiqpke → 0 .

If
p < ( liminf A,%)

"

then liminf (Ai!
"

p)< L
K→ oo

* Proof for general trees by lyons in early 90's



BONUS 2Poo#fuppobdvia2ndmonnt_ .

Let ×
,<
= #- vertices in guk connected top P(Xp> o) ≥E[

E-1×12
so it suffices to obtain C >0

such that

largeELXK]
≥

≥ CE/✗ I] for any
er#

°' soft.

We just computed EIXK] =p"Ak .
let Paw = EH,up,wp}]

then E-[ ✗I] = I Pow = I p
"- muiw where mu,w is

↳win win
≤ A+

the level at which

Sen k guk Ae
U and w split .

≤AÉ&EiEA:p"É¥iñe
1=0 Wingert

with split
at l

00

That is
, E-[✗E) ≤ E-[✗if [ ( p Ai" )

"

1=0

If
p > ( limit Apik ) then the series converges

( yields C > 0!k→• ↳ exponential decay ≤ ¥1

PCICCT)1=o)=ÑP( ✗
×
≥ 1) = line PCX,<≥s) ≥ C > o

ful f k→oo
Crux

&

inequality# w ingests •
i
-e

since w =/ U
.with split ate ≤ A :

,from u Ae

If
p > ( fiz.info A'%)

"

then lininffp" A.)
"K
> 1+8 so

K - o

P¥< ≤ (stor)
-k



PIESP (Zx)
,≥ ,

with offspring dist 7 Part d- 8

-2k

Let 2-0=1 ,
-2kt

,

= I %
""

where (%
"")

.ae ≥ ,
are iid-7

f- I
← f. #

an initial £ # of 's all individuals reproduce
at generation 1<+1 identically and independently .

Do the lineage of the initial £ survives forever ?

E×ts probability : 2 --P( Fn≥
, :Zn=o )

Lie4 : R is a fixed point of Gz ( s) --ZskP(9=k ) .

THI . If P( 3=11--11 then E[7) ≤ I ⇒ 2=1

*[3] > s ⇒ 2<1 .

00

P( extinction) = -2 PCZ ,=k)P( extinction of Iz ,=k )
Z , independent1<=0
subfamilies

Note that G} /
11=1 so

conclusion in thin 2 follows

from showing that 7 is
smallest fixed point ( there are

exactly two if E- [ 5] > 1 and exactly one if
E[314

but P( 3=1 ) =/ 1 ;
otherwise GCS)=s ) .



The Genealogy1 ( Embedded in Ulan-Harris tree) Part d- 9
-

U 101

An example : geno ∅
e.g.

Individual yÉ lives in god
a ÷:-. .

it has 4 older relatives in
Jen 1 ,

• z• z• F - - - - - -- -
- (2)

/ /it iii i. generation 2 and hes:} children

@ 2
, ,• ,z• ai , % 93

"
-→
5

named
421

, .
. . ,
42T

@̂ •

fer 3 21 , 212 (or no children if 7=0 )
00

Obs .
From T we recover

( Zsa)
#≥ , ,

ITI = I ZK
.

k=O

The indexing %
"

suggests a construction
of T through

a Breadth- first - search process



go.ithnt.constructionol-T-lt.ms Um )m≥o Part d- 10

from

sequentially sample the number of children of each £
(gym≥ ,

In- queue
vertices : Am 1--5-301 Sm =/ Aml

Used /explored vertices : Um U◦=∅ 10m / = m

→• At step m : Select Vm€Am-i Create V1 , . . . .rmTm children
for Vn

Am -_ Am,
UhVm1 , -Amen} ) him} Um __ Um

. .

Uhm}

→ Stop when Am __ ∅ .

Set-top : Depth -
Firsts

.

if Vm is lexicographically smallest .

Breadth -Firsts .
" " length , then lexie . smallest .

Since (2)
n≥ ,
are iid .

the choice of rn does not

affect the law of (Am .
Um)m≥☐ but it does

affect how we recover T from (Sm)m≥o
.



E-xploratioisRandomwalk-CS.mn≥ , Part d- 11

This is defined by 50=1 Sm - Sm. . = 7m - I

¥ps of B.Walk .
have I -1

IT / = inf { m : -1m __ ∅ } = inf { m : Sn=0}

If selection rule is explicit then we recover
T from Csm)m≥◦

µ÷÷÷i÷÷smExercises :
n

Plitt --n)=±P(I3m=n- ') gu
m= I



Atgoith-t-xplo-i-i-V.tl Part d- 12

Sequentially explore the number of ' children ' of each vertex

In- queue
vertices : Am A-

◦
= {v1

Used vertices : Um U
◦
= ∅

→ At step m : Select vme An_ ,
,

let Pm be its neighbors in G

An = Am. . U / Fml (An.ioUm-d)\ tvml

Um = Um
. .
Uh Um}

- Stop when Am = ∅

Then (Am
,
Um)m≥ ◦ recovers a spanning tree of Ecu) and Icall



t⇒e : * Vertices labeled in order of exploration Part d- 13

5

a 3☒j5 [
Ñ

.

"

ftp.?-.i.IAnl
. landings

' "

¥ !/
→

"¥79. •_÷÷;m4 .
\
._%

. •
8
•

9 G-
p

i m

G.

E±pbatGp i.Replace ELLE .
) with tin"T(Am. . Uhh,)

conditional on (Ami , Un- i) I fY\Um1=ᵈBi 1 , p )

- Edges that close cycles are not relevant to counting

the number of vertices in the
current explored component .

-In Gp we can

'

sample
' the edges as we explore

Ccu)
.

This means that we don't sample /generated

beyond Ccu) and its boundary edges .



Part d- 14
A-Brachiy.pro#- for ≤ Eld)

When exploring CGI with Algorithm 2 ,
I Fml = 2d ed m ≥2

I XP
"

\ Um , / ≤gt Bin ( 2d_ , ,#
needs more

'
coin -flips

'

P( × ≥ a) ≤ PCY≥ a) V-ac.IR

✗ ≤sitthen / Clint ≤st 11-1-11

where T is the genealogy tree of a
BP with offspring

{ÉBin(2d - i. p) ,
if p < ¥,

then 11-1 < • •
• so



Part 2



Part2- 1Erdos - Rényi Graph Process .
( GGP) ) pecan

GCn.pl -_ ( [ n] , Ep ) such that eetp ⇔ We ≤ p
- iidunifco.it

New parameter : n= /V1

-
whp

A property P holdsa if PCGG.pk D)→ I , n- ao
-%- i yn dos%n

A brief story¥Ép
of thresholds : comp .

of / unique giant /
si2ek# giant +

( a. a. S. ) ( n ) isolates

trees and unicycles ±

hitting timecomponent
* If P=tn the sizes Ollognl for connectivity

components are ② ( n%)carrot this week

= what does it mean to be ' infinite '/giant ? =

* Hani/ tonicity threshold : Path minds 'd

§kk mindegz

*¥
:

the critical window is invisible in this scale en .

The critical window has width ( ri%) , larger then ñ?

Critical point ± is equivalent to ±,
:

if
p= 1¥ then p=1n_ E'=E+0( ri ')

= E + ◦ ( n
-"3)

1 + E
'
= ( ite) (1- %) =/+ E- Elite)



Part2- 2
GIANT =\/ 1St BLE on the scale of /V1 = n

.

Scaling p=≤n makes
# neighbors of 1

E- Binh- i. c) ≈Poi (c)
n→É

El# neighbors oft] ≈ C

Branching Process
' heuristic suggests the threshold

lies at 0=1 .

Thnx: For c- I let Io = c- d- loge > 0 then in

Gln
, E) , all components are Ollogn) a. a. s and

- LargeDev .
Rate Function .

Component
'
%"

JG.mg#-pI , , as n→

for# (c) ""

☆ Cma, = max /Clu) / is well defined
.

UE[n7

whereas 6mn
,
= largest component containing
smallest labelled vertex

.

needs to
break ties litany ) .

☆ Thnx E >07 force,c) sit .

PC /Knaxl - Ii 'logn / > elogn) ≤ Oln
-d)



Part2- 3

Exercised :
If ZK = I 1141cal/= k } then

ve [n]
# components of = Z÷

size &

{ Cma
,
≥k} =/ Z≥k≥k} where Z≥k =I 1111cal≥k}

VE[n]

EEZ : Verify that it suffices to prove
that if k -_ talognj

Upper bound :
a > Ie

"

then Z≥k=O a.a. s
.

Lower bound : a < Ii
"

then Z
≥ ,<
≥ I a. a. S

.

We will use the first and second moment method .



70¥f Z
≥ 1<=0 a.a. s . for k > Ié

'

logn Part2- 4

Let T be a
Bin / n

, E) branching process . We will

show that
it ii)

P( ICC 'll >b) ≤ PC ITI > k ) ≤ e-
KIC

Then PCZ≥k ≥ 1) ≤ EL -2≥ ,]=nP( ICHI≥k)

≤ nt - ◦Ic → 0
,

as n→•

if a >Ii
'



Part2- 5
Couplings.s Recall the random walk

exploration of [ (1) : Sj=L for m ≥ 1
=

Sin- Sin. ,¥Bin( n- i - xm , E) -1 {+ Bin In , E)

So
,
if T is a Binh , E) branching Process then

/ call ≤ IT / → implies it .
st

Exercises : If he /N and T '
is a Bin (n - k , E) b.p.

then

IPCT ' ≥k) ≤ P( Icc , , , ≥k)-
if k=◦G1 then /Tlad

IT 't are close
.

• We
may couple T and T

'

a
Poi (c) Branching.P

so that P( IT I > b) = PATY > b) + en.dk)

K- I

2 PIT '

≥ s) or ten .dk/ ≤ KIwith /en.dk/ ≤ ¥
, ,

n

see
Tim3.20 RGCNI Ch.

3.7
.↳

Technique uses for lower bound on E[Z≥k] K >Ii "lqgn
• Co-opting foese : Up to verifying that ICC 'll ≥k

( / Am . Ulla ,
/ < K ) all explored vertices have at least

lPmYAm→U Um. .) I ≥ n- k edges to be tested

so we use these first n - ka coin- flips for reproduction

in T
'

and the remaining coin- flips makes Sm ≤stsm ¥ as

long as IT
'

/ < k
.



P-ofof.ci) For the construction
of T

,

Part2- 6

m

50=1 Sm = Sm
. . -1%-1 = I% _ (m- t ) ( fete

≥ ,
iid

1=1
↓

IT I = inf { m : Sm = 0} Binln.cn )

then { ITI > k}≤ { Sen> o } = { ¥
,

%≥kBinlnk . E)

use the large deviations
rate : since c- 1

,

≥ @
-KIC (1+001)

P(Bin /nk , g-) ≥ k ) ≤ e-
RI
,

→
PIT ' ≥k)

☐

if p<a≤ 1
* PC Bin cnn.pl ≥ ma) ≤ e-mtpca

)

Ip /a) =p - a - a log (E)
take m=nk

p= %

a = Yn
then

mIpla)=kIc

• Also PC Po; (ck) > k ) ≤ e-
KI
' for c- 1 .



ÉÉZ≥kas .

k < Ii
'

logn Part2- 7

By Chebyshev's inequality :
PC Z

≥ ,
=o) ≤ V•(Z¥

☒ [Z≥k]

Goal : Upper bound for Var (Z≥k) of sane order as

E[ Z≥"] = n PC 1cal I ≥
k ) ≈ n'

-•Ic

← exponential decay .

Exercises : If ×≥ 0 is integer valued + PIX≥ s ) ≤ e-SIC

E/✗ 14 × ≥ a}] = k PCX ≥ k) + ZPCX
≥ s)

s>k

✗=/Call ≤ fk + A) e-
ʰI '

some
constant A

By Chebyshev's inequality

PC Z
≥ 1<=0
) ≤ PC I Z≥ ,

- EIZ≥ it ≥ EIZ≥k]) ≤ Va(Z≥
☒ [Z≥k]

Also : PC ✗ so ) ≥

• S 00 00

E×ˢ : E [ ✗ 11h, ≥ ,,] = I [ P( ✗⇒1=2 I
PCX=s)

5-k 1=1 1=1 5- Luk

= KPIX≥k) + ZPCX ≥e)
l > R

≤ kk-k-ie-gk-l-kk-k-K.TT
= K

-
" ( k +

A
, K = etc

.



With foresight Part2- 8

Exercises
.

Use a coupling of (G(m.pl )m≥, to show

Pflccill≥k , catch) ≤ P( Kent≥k)P(k( e) I≥k )1C (2) ≥ k

In what follows
, change PCANB) to E / that this}]

.

Recall that Z≥k=I Micah ≥k}
VEIN]

and Ya / Z≥k)=E/✗7-11=-1×12

There is nuance in the claim since T
'

hes offspring

Binln-k.cn ) which
may

be approximated to

TP" with offspring Poi ( c /1- ¥)) and c / 1-E) ≈ c



Part2- 9

Ya ( Z≥k)=Z I (E[Hikari ≥kM Ethical > k}] )
vein]vve[n] [ 1111%11≥k} )

-

II/ fly lawn> k}]

≤ n E Eltham ≥ silk we can]
WE [n]

= h E-[ 1cal / 11 ,,ca,,≥
>Truncated Suceptibility

≤ (align #A) n
"- ◦¥ for some A.

☐



S-uperci-X.SI#ad.kegi-6sPart2-10Thm4-
.

For c >1 ,
let % (zeta) satisfy 1- 9. = e-

'%

[ survival prob .then kma# Iq of a Poi (c)

branching proc.

A-B.lt?heuristic- : It is likely that ICC 'll is large-↳
with prob? = infinite

then
,
in GGG) ☒[# vertices in ' large

' components] ≈nI
* Uniqueness of Cmax follows after '

large
'
is precised .

* Full statement : neck . 1) F f- dcc.ir)

PCI lcnaxl - In / ≥nr)=0( n-9

* In addition Ici / = Oclogn) a.a. s ti ≥2

Duality : if d
is the dual parameter of the

dual

distribution of Po:(c) ( satisfies déᵈ=cé)
d-1

then Gcn
, E.) lcmax I Glm ,¥) with m=(1-7) n

* Dual distribution p:< =É%Yʰ= e-"¥!
"

then D= ya
= c. e-
"""

= c e-
' + "
⇔ de

-d=cé'

◦ ≤ f-G)⇒ e-
× f'G)= e-

✗ ( 1 - x) maximum at 1 .

f"(×1=e-✗ ( x- 2) ¥7



Part 2
_

11
(Naive)proofEgy : suppose h=kln) is

so large that ① PC I call ≥ b) ≈ To
↳ large/close to

infinite .

and ② / Cnax / EZ≥k if 7- only one
'

large
' component .

③ P( IZ≥k - ELZ≥ if / > en)- o as n→oo

↳
Concentration needs upper bounds : Var(Z≥k )

lower bounds : EIZ≥k]
then PC / kmaxl - n% / > en ) → o as n→ -

Recall : Focus on 10.20.30 first

then add other details .

D.ua#yPatFP(Z,=k
1 extinction )= g- Plz ,=k ,

extinction)

= P PC extinction)k=z
"

"p
,

R

For an edge uv in GCap) conditional on m=n - lcmaxl

and u.VE/Cmax

its edge probability is ≈ 1 since F-≈ It-%)

2- = 2- • ≈ = £ • ¥5 and

↑ c. ( 1-% )=d=C2
conditional or '

knowing



Part 2
_
12

Key Estimates.in/hepoof-
We actually choose k= klogn for k suitably large !

recall
① PC I call ≥ Klogn ) ≈ PATI ≥ Klogn )

= PC 11-1=00) + ◦ ( Yn )

NIT
,

② Follows for a < % since E /Z≥an - Z≥g)→ 0 no

middle

ground !

and a.a. s .

I Z
≥ r
- E /7≥ er] / ≤ ri e- %

.

③ For concentration :Karl Z≥ er) ≤ (ckti)nE / I call Hidaka]

③ Compare upper bounds
for Var CZ≥k) in the supercritical

Phase Myka, , ≥ pep is very likely . replace with Akaka}
and logarithmic term

②
* Once we know there is no middle ground then
if there were more than one giant then EIZ≥k] =/ n°1
( it would be more

, say
twice

,
as likely to be in giant

-type
components) .

①
* Important that error probability

is ◦( Yn) to be

overall negligible in the next bound EfZ≥É= In + ◦G)
.

Nog : All other components are
of logarithmic size !!!



Part 3



IARTZ
_

I
#ipercobigraphs -

_
Towards their geometry

consider the following example of exploration of Qdp :
- • Exploration starts at

-0

to their exploration time .

¥8k / → open edges
→ closed ( and tested) edges:E*÷•÷⇒÷⇐:÷÷: .

Ob_s . If an exploration

we could avoid
'clashes

'

(there are two in example) %



'

standard
'

coupling to
IARTS -2

Moral :

branching process ;Bin(d- ' 'P) ① gone
'
cousins

' should
merge

riY¥¥•∅ ② Some children weren't born

/
to I • On the lookout for a

i.%"/ \ proper description
of a

*2
.

/\
. '

good
'

process :11
•

12 21 1 22

descendant
For this / ga→w! belong pld- 1) = I + p p > 0

vertex there
.

'
-

•Tzu to Cco) [
so that branching

• ↳°

corresponds tow
has chance to

risks#
Survive

and mergers ?
and deletions ?12%

•

'2¥ corresponds to ✗ →!÷?⃝ could differ, in principle .ii.ghosts
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A-nopen-p-rob.hn#workshep
To the Poi (HP) branching process incorporate

merges
of
any pair

of cousins
, independently with prob .

Create each generation ① generate ② identify
with 2 steps : children individuals

IGz : ⇐

%, \
.

↳
i.1¥!

A.÷!
•

4! ¥ !%!
. . .
..

!
,
! not cousins

Goal : Give sufficient conditions
for a_ s .

extinction
.

Thm 5 (E. P.io.) Tor fixed p (small ) : > 2- p+Cp
≥

impliesT

GoodreI : Relation between p and q
is linear

which is nice
.

Bad : This threshold does not coincide with

critical percolation for Id nor Qd

( recall they coincide in at least 3 terms)
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N-n-bocktackingwalks.tt
radar walk on a graph G is a sequence

of

edges eo , e , , ez , ez e.◦ = Wow, ,
E,=U, Uz ,

ez -_ 0203 - - - -

such that P(uj+,= " luj . - --4)
= jy.TT/tv-Uj }

Non - backtracking if :

P(Uj+,=V / Uj ,Uj. . - - - -4) = T%v~uj,v≠uj-7

Exercises : If 4.u, , . . . us
form a non- backtracking walk

then p( walk forms
a 4- cycle/

= { ¥12
if G=Q,

This is a (z÷z -¥1,3
G=≥ᵈ

good
' analogue

' for ✓

* A non- backtracking walk in Qd boils down ,
at

each step on selecting one of d- 1
coordinates

and ' flip
' it from 0 to I or viceversa .

a- charge one

without loss of generality (0,0, . . _ .
-0) → ( 1,0, . . . . )

coordinate

↑ f-

? ← ( 1,1, .. . . . )
the 3rd and 4ᵗʰ steps are ←change a

different one
forced to choose precisely one
coordinate to close the cycle .

* Some argument works for Ed where argument fails

if the first two step were co,o , . . -0)
→ ( 1,0. - - - -0)

↑ f-

as there is no way
to close back : ✗← (2,0, - - - - O)
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Recall that mergers
are not the only way of clashing

!

-0

I €¥¥¥7k 1-
there is symefy !

Case 1 Case 2

Prien : Clashing risk depends
on genealogy !

Case 2*42

If ve Gn) Gn. . ( v lives in generation n )
then

kv = A- { we can_ , : minimal path
btw W and V}

has three edges

-0 : why exactly
the non -backtracking walk help us

encode our deletions ?

②

g.
→£1

.

↑ ¥!
↑
.
. .

! i.÷
'

'
-
. .
.
_

-

O-fenQvest.ci . Why doesn't the non -backtracking give

heuristic for site percolation
?

*In site percolation vertices (and not edges
) are

tested to be open
/closed so edges incident in

to a common vertex are not independently open /closed .
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Add an

intermediate step for deletions

① generate ② Delete ③ identify
children inhomogeneous individuals

%% :

.

#i.
"
%; ÷% .

\
. /☒ I • I /\

-

.

:: : ÷
-

•

% ! ¥ !%!
. . .
.

! ¥÷¥\
←

offspring of
d

V

up
: Given ku and { = Poi ( HP )

•

~
killed

Try and kill each children
% times

,
each indep. with prob /§_→ ANÉF+p)a-ai")

✗The distribution of surviving children is explicit
due to the thinning property of Poisson

v.v!s

OIEN ELEM :

Can
you

find a coupling of (BIFF
))p,

such that Bcp.gl re in p
or 9- ?

in terms of : generation sizes
◦' number of mergers
°'

; ?
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Finally

THI (E. ,P:S . ) There is
C>0 and p.

c- Con) such
that

for Ocp < Po :

• 9- < Ép( 1- Cp ) then Blp.gl
survives with positive prob .

• 9- > f- p(1+Cp)
then Blpif) dies out a.s .

Cay( Heuristic for Qr ,p or I} ) If I is

large enough and p is
'

good'* then letting

ltpf ) =G- i)p
and g- =D

- 1)
-2

then & =¥,

+ ¥ ,

is an
(approx . )

threshold

for extinction /survival

of Bcp. g)

* Many more details ,
at several meth - levels , on

slides

accessible from Laura Eslava's website .


