F Lecture notes for minicourse
by Laura Eslava.

I EPPE, MExico August, 2022

Critical Percolation and the Emergence of the giant Component Rather: Some of their associated Branching Processes.

Port 1: Introduction

- Bond Percolation
- Critical Percolation (\mathbb{Z}^{d})
- Branching Processes
- Exploration of clusters

Part 2. Erdös-Rényi Graphs: Emergence of the giant.

- Erdös-Rényi graph process.
- Subcritical, Upper bound proof
- Subcritical, lower bound proof
- Supercritical, key ideas.

Part 3: Hypercubic graphs: Heuristic for its critical probability

- Setup for generalized branching process
- (Unknown) properties and threshold

Wishlist : - Proof of corollary for $\rho_{c}(d)$.

- Key ideas for the analysis of thus.

Other models: Their associated branching processes.
Port 4: - Erdös-Rényi: k-core emergence.

- d-processes: giant component energence.

References:
Part 1:

* Grimmett, Percolation. Springer 1980
- Steif. A minicourse on percolation, le cure Notes, 2009
- Hofstad, Chapter 3 of

Random Graphs and
Complex Networks Vol. Cambridge Univ. Press. 2016
Part 2:

* Svante, Tomasz, Andrzej, Random Graphs, Wiley 2000
- Hofstad, Chapter 4 of

Random Graphs and
Complex Networks Vols. Cambridge Univ. Press.
Part 3:

- Eslava, Penington, Skerman,

Survival for a Gatton-Watson tree with cousin mergers, Procedia Compute Science, 2021.

- Eslava, Penington, Skerman,

A branching process with deletions and mergers that matches the threshold for hypercube pere. arxiv:2104.04407

* Hegdenreich, Hofstad,

Progress in high-dimensional percolation and random graphs.

Springer 2017.

[

Part 1_1

General Assumptions: $G=(V, E)$ is connected and transitive $E \subseteq\{\{u, v\}: u, v \in V\} \quad e \in E: u \sim v$ neighbors, $<$ also written uv =e
Examples.
Complete: $K_{n}=([n],\{u v: u, v \in[n]\})$
Hyperc. Lattice: $\mathbb{Z}^{d}=\left(\mathbb{Z}^{d},\{u v:|u-v|=1\}\right)$
Hypercube: $Q_{d}=\left(\{0,1\}^{d}\right.$, Hov: $\left.\left.|u-v|=1\right\}\right)$
Note: Transitive graphs have constant degree Ω.
Definition of corrected component

$$
C(v)=C_{G}(v)=\{w \in V: U \longleftrightarrow w \text { in } G\}
$$

$U \leftrightarrow W$ if there is a path in G connecting u and w.

Transitive graphs
$\forall u, v \in V$ there is automorphism $\varphi: V \rightarrow V \quad \varphi(u)=v$ that maps edges into edges.

Bond Percolation process
For $G=(V, E), p \in[0,1]$ let $G_{\rho}=\left(V, E_{\rho}\right) \subseteq G$ generally fixed such that underlying $e \in E: \quad e \in E_{\rho}$ independently with prob. ρ graph
\downarrow
may also What about the size of connected components be random in G_{ρ} ?

$$
C(v)=C_{G_{p}}(v)=\left\{\begin{array}{l}
\text {, there is a path } \\
\text { of opes edges } \\
\text { connecting } v \text { to } w
\end{array}\right\}
$$

\rightarrow A Property/Evert \mathcal{P} is increasing if for $H_{1} \subseteq H_{2} \subseteq G$

$$
\bar{q}_{\leq}\{H: H \subseteq G\} \quad H_{1} \in \mathcal{P} \Rightarrow H_{2} \in \mathcal{P}
$$

Exercise 1: - $\{H: H$ contains a triangle $\}$ is increasing

- $\{H: H$ has no cycles $\}$ is decreasing
- $\left\{H:\left|C_{H}(v)\right|=k\right\}$ is neither inc/decrees.
- $\left\{H:\left|C_{H}(v)\right| \geqslant k\right\} \quad$ is increasing

If G is finite then the probability space may be

$$
\begin{array}{r}
\left(\{0,1\}^{|E|}, P\left(\left\{0,13^{|E|}\right), \mathbb{P}\right) \mathbb{P}(\omega)=p^{\text {open }}(1-p)^{\text {closed }}\right. \\
\text { open }=\# \omega_{i}=1 \\
\text { closed }=\# \omega_{i}=0
\end{array}
$$

For G infinite we may extend such probability spaces (of independent coin-flips) to an infinite one. implicit

- Recall that $C(v)=C(v, w)$ where $w \in \Omega$ in the state space of the probability space.
\rightarrow A Natural Coupling for increasing events
$\left(G_{\rho}\right)_{\rho \in[0,1]}$ is defined by $\left(U_{e}\right)_{e \in E}$ independent Unif $(0,1)$ r.v.'s letting $e \in E_{p} \Longleftrightarrow U_{e} \leqslant p \quad$ arrival time of e into the process
Exercise 2: If P is increasing, for $\rho_{1}<\rho_{2}$

$$
\mathbb{P}\left(G_{p_{1}} \in P\right) \leq \mathbb{P}\left(G_{p_{2}} \in P\right)
$$

\rightarrow Percolation probability: $\theta(\rho)=\mathbb{P}(|C(v)|=\infty) \quad v \in V$ fixed.
\rightarrow Gitical probability: $\quad \rho_{c}=\sup \{p: \Theta(\rho)=0\}$
Facts: $\Theta(0)=0, \Theta(1)=1, \Theta(\rho)$ is non-decreasing and right-continuous \longrightarrow The 2.5 in Steif's notes

$$
\begin{aligned}
\partial(p)= & \lim _{k \rightarrow \infty} \mathbb{P}(\text { there is } k \text {-path starting at origin })=\lim _{k \rightarrow \infty} g_{k}(p) \\
& g_{k}(p) \text { is a polynomial in } p, g_{k}(p) \downarrow \theta(p)
\end{aligned}
$$

+ nondecreasing upper-senicont. function \Rightarrow is right continuous.

The Nearest-neighbors lattice \mathbb{Z}^{d}
Write $\Theta_{d}(\rho)$ and $P_{c}(d)$; we use origin $\overline{0}$ as the fixed vertex.
The 1. For $d \geqslant 2, \Theta_{d}(\rho)$ is continuous in $\left(\rho_{c}(d), 1\right)$ and $\frac{1}{2 d-1} \leqslant \rho_{c}(d)<1$.

Exercise 3: $\rho_{c}(1)=1$ and $\rho_{c}(d+1) \leqslant \rho_{c}(d)$

known for $d=2, d \geqslant 19$

$$
\star \text { so } \theta\left(\rho_{c}(2)\right)=0
$$

* Hera and Shade proved $\theta\left(\rho_{c}(d)\right)=0$ for $d \geqslant 19$ 1994

Proof of lower bound
Let $\sigma(k)=\#$ self-avoiding paths in \mathbb{Z}^{d} of length k starting at $\overline{0}$

$$
P_{k}=\# 1 " \quad " \quad \text { in } \mathbb{Z}_{\rho}^{d} \quad \prod_{0}^{d} \downarrow \times
$$

Since $\{|C(\overline{0})|=\infty\}=\bigcap_{k=1}^{\infty}\left\{P_{k} \geqslant 1\right\}, \quad \theta_{d}(\rho)=\lim _{k \rightarrow \infty} \mathbb{P}\left(P_{k} \geqslant 1\right)$
We prove that if $\rho<\frac{1}{2 d-1}$ then $\mathbb{P}\left(P_{k} \geq 1\right) \rightarrow 0$ as $k \rightarrow \infty$.

$$
\begin{aligned}
\mathbb{P}\left(P_{k} \geq 1\right) \leq \mathbb{E}\left[P_{k}\right] & =\rho^{k} \in(k) \leqslant \rho^{k} \cdot 2 d(2 d-1)^{k-1} \\
& =\frac{2 d}{2 d-1}(\rho(2 d-1))^{k}=(\rho(2 d-1)+0(1))^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \Theta_{d}(\rho)=\lim _{k \rightarrow \infty} \mathbb{P}\left(P_{k} \geq 1\right) \leqslant \liminf _{k \rightarrow \infty}(p(2 d-1)+0(1))^{k} \text { if } p(2 d-1)<1 \\
& \mathbb{P}\left(P_{k} \geqslant 1\right) \downarrow \Theta_{p}(\rho)
\end{aligned}
$$

Proof Sketch of upper bound
If suffices to prove $1 \geqslant \rho_{c}(2) \geqslant \rho_{c}(d) \quad d \geqslant 3$

- if $(1-\rho)(2 d-1)<1$ equiv. $\rho>1-\frac{1}{2 d-1}$ then

$$
\sum_{k=1}^{\infty}(1-\rho)^{k} k \sigma(k) \leqslant \sum_{k=1}^{\infty} k((1-\rho)(2 d-1)+\infty(1))^{k}<\infty
$$

- Continuity of $\theta_{d}(p)$ in Section 4 of Steif's notes.

Remarks
$\rightarrow\left\{\right.$ - $\Theta_{d}(\rho)$ continuity on $\left(\rho_{c}(d), 1\right)$ uses uniqueness of infinite cluster.

- Factor (2d-1) may be replaced by $\lambda(d)^{-1}$
where $\lambda(d)=\lim _{k \rightarrow \infty} \sigma(k)^{1 / k} \quad$ Herris-Kesten
- For $\mathbb{L}^{2} \quad 1 / 3 \leq \rho_{c}(2) \leq 1 / 2 \quad$ duality argument in 1960
$\stackrel{H}{亡}\left\{\begin{array}{r}\text { - Hofstad,Slade } \\ 2005\end{array} \rho_{c}(d)=\frac{1}{2 d-1}+\frac{5}{2(2 d-1)^{3}}+O\left((2 d-1)^{-4}\right)\right.$ as $d \rightarrow \infty$
- Kesten 1988 obtained first-order term: $\frac{1}{2 d}$
- Expansion for $d=2$ would give $\rho_{c}(2) \approx .42$
- $\lambda(d)$ is known as connective constant.

Critical percolation for spherically sym. trees
Consider a tree T with root r and a_{0} children each of which has a_{1} children, and vertices in generation k have a_{k} children.
Tho* Let $A_{k}=\#$ vertices in generation k (this case $A_{k}=\prod_{i=0}^{k-1} a_{i}$)
Then

$$
P_{c}(T)=\frac{1}{\left(\liminf _{k \rightarrow \infty} A_{k}^{1 / k}\right)}
$$

Proof of lower bound: Essentially the same proof as for \mathbb{Z}^{d}

$$
\mathbb{P}(|C(\rho)|=\infty) \leq \mathbb{E}[\# \text { paths to gen } k \text { from } \rho]=p^{k} A_{k} \text {, }
$$

if $p<\left(\operatorname{limint} A_{k}^{y_{k}}\right)^{-1}, \exists$ subsequence k_{l} for which $A_{k_{l}} p^{k_{l}} \rightarrow 0$.
If $p<\left(\operatorname{limint} A_{k}^{y_{k}}\right)^{-1}$ then $\liminf _{k \rightarrow \infty}\left(A_{k}^{1 / k} p\right)<1$

* Proof for general trees by lyons in early 90's

Proof of upper bound via 2nd moment.
Let $X_{k}=\#$ vertices in gen k connected to $\rho \quad \mathbb{P}\left(X_{k}>0\right) \geq \frac{\mathbb{E}\left[X_{k}\right]^{2}}{\mathbb{E}\left[X_{k}\right]^{2}}$
so it suffices to obtain $C>0$ such that

$$
\mathbb{E}\left[X_{k}\right]^{2} \geqslant C \mathbb{E}\left[X_{k}^{2}\right] \quad \text { for any } k \in \mathbb{N} \quad \text { or soff. } \text { large }
$$

We just computed $\mathbb{E}\left[X_{k}\right]=p^{k} A_{k}$. Let $P_{u, \omega}=\mathbb{E}\left[\|_{1 v \rightarrow \rho, \omega \rightarrow \rho]}\right]$ then

$$
\begin{aligned}
& \mathbb{E}\left[X_{k}^{2}\right]=\sum P_{u, \omega}=\sum P^{2 k-m_{u, \omega}} \quad \text { where } m_{0, \omega} \text { is } \\
& \text { the level at which } \\
& u \text { and } \omega \text { split. } \\
& \leq A_{k} p^{2 k} \sum_{l=0}^{k, \omega \text { in }} \sum_{\substack{\text { wingenk } \\
\text { with split } \\
\text { at } l}} P^{-l} \leq A_{k}^{2} p^{2 k} \sum_{l=0}^{k} \frac{1}{\left(P A_{l}^{-1 / l}\right)^{l}}
\end{aligned}
$$

That is, $\mathbb{E}\left[X_{x}^{2}\right] \leq \mathbb{E}\left[X_{k}\right]^{2} \sum_{l=0}^{\infty}\left(p A_{l}^{-1 / l}\right)^{-l}$
If $p>\left(\liminf _{k \rightarrow \infty} A_{k}^{-k}\right)$ then the series converges (yields $C>0$). $\left\langle\right.$ exponetitid decay $\leqslant \frac{1}{1-s}$.

$$
\mathbb{P}(|C(T)|=\infty)=\bigcap_{k=1}^{\infty} \mathbb{P}\left(X_{k} \geqslant 1\right)=\lim _{k \rightarrow \infty} \mathbb{P}\left(X_{k} \geqslant 1\right) \geqslant C>0
$$

\# w in gent
$\begin{gathered}w \text { in gent } \\ \text { with split at } l \\ \text { from } 0\end{gathered} \leq \frac{A_{k}}{A_{l}}$

inequality since $\omega \neq u$.

If $p>\left(\liminf _{k \rightarrow \infty} A_{k}^{1 / k}\right)^{-1}$ then $\liminf _{k \rightarrow \infty}\left(p^{k} A_{k}\right)^{1 / k}>1+\delta$ so

$$
\frac{1}{p^{k} A_{k}} \leq(1+\delta)^{-k}
$$

Branching Process $\left(Z_{k}\right)_{k \geqslant 1}$ with offspring dist $\{$ Part 1 - 8 Let $z_{0}=1, z_{k+1}=\sum_{l=1}^{z_{k}} \xi_{l}^{(k)}$ where $\left(\xi_{l}^{(k)}\right)_{k, l \geqslant 1}$ are id $\left.\sim\right\}$ an initial 옫
\# of 星's all individuals reproduce at generation $k+1$ identically and independently.
Do the lineage of the initial I survives forever?
Extinction probability: $\quad \eta=\mathbb{P}\left(\exists n \geqslant 1: Z_{n}=0\right)$
Exercise 4: η is a fixed point of $G_{\eta}(s)=\sum s^{k} P(\xi=k)$.
Thy 2. If $\mathbb{P}(\xi=1) \neq 1$ then $\mathbb{E}[\xi] \leqslant 1 \Rightarrow \eta=1$

$$
\mathbb{E}[\zeta]>1 \quad \Rightarrow \quad \eta<1 .
$$

$$
\mathbb{P}(\text { extinction })=\sum_{k=0}^{\infty} \mathbb{P}\left(Z_{1}=k\right) \mathbb{P}\left(\begin{array}{c}
\text { extinction of } \\
z_{1} \text { ind } \\
\text { subrionilies }
\end{array}\right.
$$

Note that $G_{\eta}(1)=1$ so conclusion in the 2 follows from showing that η is smallest fixed point (there are exactly two if $\mathbb{E}[\xi]>1$ and exactly one if $\mathbb{E}[\xi] \leq 1$ but $P(\eta=1) \neq 1$; otherwise $G(s)=s)$.

The Genealogy tree T (Embedded in Ulom-Hterris tree) Port 1 - 9
An example: gen

$$
\operatorname{gen} 1
$$

gen 2
$\operatorname{gen} 3$

e.g. Individual 42 lives in gent it has 4 older relatives in generation 2 and has $\xi_{5}^{(2)}$ children named $421, \ldots, 42 T$
(or no children if $\xi=0$)
Obs. From T we recover $\left(Z_{k}\right)_{k \geq 1} ;|T|=\sum_{k=0}^{\infty} Z_{k}$.
The indexing $\xi_{l}^{(k)}$ suggests a construction of T through a Breadth-first-search process

Algorithm 1: Construction of $T \quad\left(A_{m}, U_{m}\right)_{m \geqslant 0} \quad$ Port $1-10$
Sequentially sample the number of children of each of from
In-queve vertices: Ann
Used/explored vertices: Um_{m}

$$
\begin{array}{ll}
A_{0}=\{\phi \mid & S_{m}=\left|A_{m}\right| \\
U_{0}=\varnothing & \left|U_{m}\right|=m
\end{array}
$$

\rightarrow At step $m:$ Select $\gamma_{m} \in A_{m-1}$ Create $\chi_{m} 1, \ldots . V_{m} \xi_{m}$ children for V_{m}

$$
A_{m}=A_{m-1} \cup\left\{v_{m} 1, \ldots, r_{m} q_{m}\right\} \backslash\left\{v_{m}\right\} \quad U_{m}=U_{m-1} \cup\left\{v_{m}\right\}
$$

\rightarrow Stop when $A_{m}=\varnothing$.
Selection: Depth-First S. if V_{m} is lexicographically smallest. Breadth-First S." "length, then kexic. smallest.

Since $\left(\zeta_{m}\right)_{m \geqslant 1}$ are cid. the choice of V_{m} does not affect the law of $\left(A_{m}, U_{m}\right)_{m \geqslant 0}$ but it does affect how we recover T from $\left(S_{n}\right)_{m \geqslant 0}$.

Exploration's Random Walk $\left(S_{m}\right)_{m \geqslant 1}$
This is defined by $S_{0}=1 \quad S_{m}-S_{m-1}=\underbrace{q_{m}-1}_{\text {steps }}$ of R.Walk.

$$
|T|=\inf \left\{m: A_{m}=\phi\right\}=\inf \left\{m: S_{m}=0\right\}
$$

If selection rule is explicit then we recover T from $\left(S_{m}\right)_{m \geqslant 0}$
Exercise 5:

$$
\mathbb{P}(|T|=n)=\frac{1}{n} \mathbb{P}\left(\sum_{m=1}^{n} \zeta_{m}=n-1\right)
$$

Algorithm 2 Exploration of $C(v)$ in $G=(V, E)$
Sequentially explore the number of 'children' of each vertex
In-queve vertices: $A_{n} \quad A_{0}=\{v\}$
Used vertices: $U_{n} \quad U_{0}=\phi$
\rightarrow At step m : Select $V_{m} \in A_{m-1}$, let Γ_{m} be its neighbors in G

$$
\begin{aligned}
& A_{m}=A_{m-1} \cup\left(r_{m} \backslash\left(A_{m-1} \cup U_{m-1}\right)\right) \backslash\left\{v_{m}\right\} \\
& U_{n}=U_{m-1} \cup\left\{v_{m}\right\}
\end{aligned}
$$

\rightarrow Stop when $A_{n}=\varnothing$
Then $\left(A_{m}, U_{n}\right)_{m \geqslant 0}$ recovers a spanning tree of $C(v)$ and $|C(v)|$

Example: * Vertices labeled in order of exploration Part 1 - 13

Exploration in $G_{\rho}:$ Replace $\Gamma_{m} \backslash\left(A_{m-1}^{\cup} U_{m-1}\right)$ with $\Gamma_{m}^{\text {open }} \backslash\left(A_{m-1} \cup U_{m-1}\right)$ conditional on $\left(A_{m-11} u_{m-1}\right)\left|\Gamma_{m}^{\text {open }} \backslash u_{m-1}\right|^{\stackrel{d}{=} \operatorname{Bin}(1 \cdot 1, \rho))}$

- Edges that close cycles are not relevant to counting the number of vertices in the current explored component.
- In Ge we can 'sample' the edges as we explore $C(v)$. This means that we don't sample/generated beyond $C(v)$ and its boundary edges.

A Branching-Process proof for $\frac{1}{2 d-1} \leqslant \rho_{c}(d)$
When exploring $C(\overline{0})$ with Algorithm 2, $\left|\Gamma_{m}\right|=2 d$ and $m \geqslant 2$

$$
\left|\Gamma_{m}^{o p e n} \backslash U_{m-1}\right| \leqslant s t B_{i n}(2 d-1, \rho)
$$

then $|C(0)| \underline{s}_{s t}|T|+1$ needs more 'coin-flips'

$$
\begin{gathered}
\mathbb{P}(X \geqslant a) \leqslant \mathbb{P}(Y \geqslant a) \forall a \in \mathbb{R} \\
X \leqslant s t Y
\end{gathered}
$$

where T is the genealogy tree of a BP with offspring $\xi \stackrel{d}{=} \operatorname{Bin}(2 d-1, \rho)$; if $\rho<\frac{1}{2 d-1}$ then $|T|<\infty \quad$ ass.

Erdös-Rényi Graph Process. $(G(n, \rho))_{\rho \in[0,1]}$
$G(n, p)=\left([n], E_{p}\right)$ such that $e \in E_{p} \Leftrightarrow U_{e} \leq p$
New parameter: $n=|V|$
, whop
A property P holds a.a.s. if $\mathbb{P}(G(n, \rho) \in P) \rightarrow 1, n \rightarrow \infty$

A brief story of thresholds:
(a.a.s.)

* If $\rho=\frac{1}{n}$ the

components are $\Theta\left(n^{2 / s}\right)$
= What does it mean to be 'infinite'/ giant? =
- Hamiltoricity threshold: Path \hookrightarrow minder 1 Glcle \leftarrow mindeg 2

the critical window is invisible in this scale $\frac{c}{n}$.
The critical window has width $\Theta\left(n^{-4 / 3}\right)$, larger then n^{-2}.
Critical point $\frac{1}{n}$ is equivalent to $\frac{1}{n-1}$:

$$
\begin{aligned}
\text { if } \rho=\frac{1+\varepsilon}{n} \quad \text { then } \rho=\frac{1+\varepsilon^{\prime}}{n-1} \quad \varepsilon^{\prime} & =\varepsilon+O\left(n^{-1}\right) \\
& =\varepsilon+O\left(n^{-1 / 3}\right)
\end{aligned} \quad \begin{aligned}
1+\varepsilon^{\prime}=(1+\varepsilon)(1-1 / n)=1+\varepsilon-\frac{1}{n}(1+\varepsilon)
\end{aligned}
$$

GIANT $=$ Visible on the scale of $|V|=n$. Part 2 -2
Scaling $\rho=\frac{c}{n}$ makes \#neighbors of $1 \stackrel{\partial}{=} \operatorname{Bin}(n-1, c) \approx P_{0 i}(c)$.

$$
\mathbb{E}[\text { treighbors of } 1] \approx C
$$

Branching Process' heuristic suggests the threshold lies at $c=1$.
Thu 3: For $c<1$ let $I_{c}=c-1-\log c>0$ then, in $G\left(n, \frac{c}{n}\right)$, all components are $O(\log n)$ a.a.s and \longleftrightarrow Large Div. Rate Function.

$$
\frac{\left|C_{\text {max }}\right|}{\log _{n}} \longrightarrow I_{c}^{-1} \text { as } n \rightarrow \infty \text { Large Nev. Rate }{ }_{n} \text { for } P_{0 i}(c) \text { r.v. }
$$

* $C_{\max }=\max _{u \in[n]}|C(u)|$ is well defined.
whereas $C_{\text {max }}=$ largest component containing smallest labelled vertex.
needs to
break ties (if any).
t Thy 3 . $\forall \varepsilon>0 \quad \exists \delta=\delta(\varepsilon, c)$ sit.

$$
\mathbb{P}\left(\left|\left|C_{\max }\right|-I_{c}^{-1} \log n\right|>\varepsilon \log n\right) \leq O\left(n^{-\delta}\right)
$$

Exercise 1: If $z_{k}=\sum_{v \in[n]} \|_{\{|c(v)|=k\}}$ then

$$
\left\{C_{\max } \geqslant k\right\}=\left\{Z_{\geqslant k} \geqslant k\right\} \quad \text { where } \quad z_{\geqslant k}=\sum_{v \in[n]} \mathbb{1}_{\{|C(v)| \geqslant k\}}
$$

Exercise 2: Verify that it suffices to prove that if $k=\lfloor a \log n\rfloor$
Upper bound: $a>I_{c}^{-1}$ then $Z_{\geqslant k}=0$ a.a.s.
lower bound: $a<I_{c}^{-1}$ then $Z_{\geqslant k} \geqslant 1$ a.a.s.
We will use the first and second moment method.

Proof of $Z_{\geqslant k}=0$ a.a.s. for $k>I_{c}^{-1} \log _{n} \quad \operatorname{Part2}-4$
Let T be a $\operatorname{Bin}\left(n, \frac{c}{n}\right)$ branching process. We will show that

$$
\mathbb{P}(|C(1)|>k) \leqslant \mathbb{P}(|T|>k) \stackrel{i i}{\leqslant} e^{-k I_{c}}
$$

Then $\mathbb{P}\left(Z_{\geqslant k} \geqslant 1\right) \leqslant \mathbb{E}\left[Z_{\geqslant k}\right]=n \mathbb{P}(|C(1)| \geqslant k)$

$$
\begin{array}{ll}
\leqslant n^{1-a I_{c}} \rightarrow 0, & \text { as } n \rightarrow \infty \\
& \text { if } a>I_{c}^{-1}
\end{array}
$$

Couplings to RW's Recall the random walk exploration of $C(1): S_{0}^{1}=1$ for $m \geqslant 1$

$$
S_{m}^{\prime}-S_{m-1}^{\prime} \stackrel{d}{=} B_{i n}\left(n-1-x_{m}, \frac{c}{n}\right)-1 \underset{s t}{ } B_{i n}\left(n, \frac{c}{n}\right)
$$

So, if T is a $\operatorname{Bin}\left(n, \frac{c}{n}\right)$ branching Process then

$$
\left.|C(1)| \leqslant_{s t}|T| \quad \longrightarrow \text { implies } i\right) \text {. }
$$

Exercise 3. If $k \in \mathbb{N}$ and T^{\prime} is a $\operatorname{Bin}\left(n-k, \frac{c}{n}\right)$ b.p. then $\mathbb{P}\left(T^{\prime} \geqslant k\right) \leqslant \mathbb{P}(|C(1)| \geqslant k)$.. if $k=0(n)$ then $|T|$ and $|T|$ are close.

- We may couple T and T^{\prime} a Poi (c) Branching P.
so that $\mathbb{P}(|T|>k)=\mathbb{P}\left(\left|T^{\prime}\right|>k\right)+e_{n, c}(k)$
with $\left|e_{n, c}(k)\right| \leqslant \frac{c^{2}}{n} \sum_{s=1}^{k-1} \mathbb{P}\left(T^{\prime} \geqslant s\right)$ or $\left|e_{n, c}(k)\right| \leqslant \frac{k c^{2}}{n}$
see The 3.20 RgCN1 Ch. 3.7.
Technique uses for lower bound on $\mathbb{E}\left[Z_{\geqslant k}\right] \quad k>I_{c}^{-1} \operatorname{lognn}^{1}$
- Coupling for exercise: Up to verifying that $|C(1)| \geqslant k$ ($\left|A_{m-1} \cup U_{m-1}\right|<k$) all explored vertices have at least $\left|\Gamma_{m} \backslash\left(A_{m i n} \cup \cup_{m-1}\right)\right| \geqslant n-k$ edges to be tested so we use these first $n-k$ coinflips for reproduction in T^{\prime} and the remaining coin-flips makes $S_{m} \leqslant_{s t} S_{m}^{\prime}$ for as long as $\left|T^{\prime}\right|<k$.

Proof of ii) For the construction of T,

$$
\begin{array}{ll}
S_{0}=1 & S_{m}=S_{m-1}+\xi_{m}-1=\sum_{l=1}^{m} \xi_{l}-(m-1) \\
|T|=\inf \left\{m: S_{m}=0\right\} & \left(\xi_{l}\right)_{l \geq 1} i i d \\
& \operatorname{Bin}\left(n, \frac{c}{n}\right)
\end{array}
$$

then $\quad\{|T|>k\} \subseteq\left\{S_{k}>0\right\}=\left\{\sum_{l=1}^{k} \xi_{l} \geqslant k\right\} \quad \operatorname{Bin}\left(n k, \frac{c}{n}\right)$
use the large deviations rate: since $c<1$,

$$
\begin{array}{ll}
& \mathbb{P}\left(T^{\prime} \geqslant k\right) \\
\mathbb{P}\left(B_{i n}\left(n k, \frac{c}{n}\right) \geqslant k\right) \leq e^{-k I_{c}} \longrightarrow e^{-k I_{c}(1+o(1))}
\end{array}
$$

- $\mathbb{P}(\operatorname{Bin}(m, p) \geq m a) \leqslant e^{-m I_{p}(a)}$

$$
I_{p}(a)=p-a-a \log \left(\frac{p}{a}\right)
$$

take $m=n k$

$$
\begin{aligned}
& p=c / n \\
& a=1 / n
\end{aligned}
$$

then $m I_{p}(a)=k I_{c}$

- Also $\mathbb{P}\left(P_{0 i}(c k)>k\right) \leqslant e^{-k I_{c}}$ for $c<1$.

Proof Sketch for $Z_{\geqslant k} \geqslant 1$ a.a.s. $k<I_{c}^{-1} \log n$ Part 2 -7
By Chebyshev's inequality: $\mathbb{P}\left(Z_{\geqslant k}=0\right) \leq \frac{\operatorname{Var}\left(z_{\geqslant k}\right)}{\mathbb{E}\left[z_{\geqslant k}\right]^{2}}$
Goal: Upper bound for $\operatorname{Var}\left(z_{\geqslant k}\right)$ of same order as

$$
\mathbb{E}\left[Z_{Z_{k}}\right]=n \mathbb{P}(|C(1)| \geqslant k) \approx n^{1-a I_{c}}
$$

Exercise 4: If $x \geqslant 0$ is integer valued $+\mathbb{P}(x \geqslant 5) \leqslant e^{-s I_{c}}$

$$
\begin{aligned}
\mathbb{E}\left[X \mathbb{1}_{\{x \geqslant k\}}\right]= & k \mathbb{P}(X \geqslant k)+\sum_{3>k} \mathbb{P}(X \geqslant s) \\
X=|C(v)| \quad & \leqslant(k+A) e^{-k J_{c}} \quad \text { some constant } A
\end{aligned}
$$

By Chebyshev's inequality

$$
\mathbb{P}\left(z_{\geqslant k}=0\right) \leqslant \mathbb{P}\left(\left|z_{\geqslant k}-\mathbb{E}\left[z_{z_{k}}\right]\right| \geqslant \mathbb{E}\left[z_{\geqslant k}\right]\right) \leq \frac{\operatorname{Var}\left(z_{\geqslant k}\right)}{\mathbb{E}\left[z_{\geqslant k}\right]^{2}}
$$

Also:

$$
\mathbb{P}(X>0) \geqslant \frac{\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

Ex 4: $\mathbb{E}\left[X \mathbb{1}_{\{x \geq k\}}\right]=\sum_{s=k}^{\infty} \sum_{l=1}^{s} \mathbb{P}(X=s)=\sum_{l=1}^{\infty} \sum_{s=l v k}^{\infty} \mathbb{P}(X=s)$

$$
=k \mathbb{P}(X \geqslant k)+\sum_{l>k} \mathbb{P}(X \geqslant l)
$$

$$
\leqslant k k^{-k}+\sum_{l>k} k^{-l}=k k^{-k}+\frac{k^{-k+1}}{1-k}
$$

$$
=k^{-k}\left(k+\frac{k^{-k}}{1-k} A, k=e^{I_{c}}\right. \text {. }
$$

With foresight 2
Exercise 5. Use a coupling of $(G(m, p))_{m \geqslant 1}$ to show

$$
\mathbb{P}\binom{|C(1)| \geqslant k, C(1) \neq C(2)}{\mid C(2) \geqslant k} \leqslant \mathbb{P}(|C(1)| \geq k) \mathbb{P}(|C(2)| \geq k)
$$

In what follows, change $\mathbb{P}(A \cap B)$ to $\mathbb{E}\left[\left\|_{\{A\}}\right\|_{\{B\}}\right]$.
Recall that $Z_{\geqslant k}=\sum_{v \in[n]} \|_{\{|c(v)| \geqslant k\}}$
and $V_{a}\left(z_{\geqslant k}\right)=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}$

There is nuance in the claim since T^{\prime} has offspring $\operatorname{Bin}\left(n-k, \frac{c}{n}\right)$ which may be approximated to Poi with offspring $P_{0 i}\left(c\left(1-\frac{k}{n}\right)\right)$ and $c\left(1-\frac{k}{n}\right) \approx c$

$$
\begin{aligned}
& V_{a s}\left(Z_{\geq k}\right)=\sum_{V \in[n] w \in[n]}\left(\mathbb{E}\left[\begin{array}{l}
\left.\|_{\{1 c(v) \mid \geq k\}}\right] \\
\mathbb{\|}\{|c(w)| \geq k\}
\end{array}-\begin{array}{l}
\mathbb{E}\left[\mathbb{1}_{\{|c(v)|>k\}}\right] \\
\mathbb{E}\left[\mathbb{1}_{\{|c(w)|>k\}}\right]
\end{array}\right)\right. \\
& \leq n \sum_{\omega \in[a]} \mathbb{E}\left[\mathbb{1}_{\{|C(1)| \geqslant k\}} \mathbb{1}_{\{\omega \in C(1)\}}\right] \\
& =n \mathbb{E}\left[|C(1)| \mathbb{\|}_{\{|C(1)| \geq k} \longrightarrow\right. \text { Truncated Susceptibility } \\
& \leq\left(a \log _{n+A}\right) n^{1-a I_{c}} \quad \text { for some } A \text {. }
\end{aligned}
$$

Supercritical Phase: Statement and key ideas Part - 10
Thy 4 . For $c>1$, let φ_{c} (zeta) satisfy $1-\xi_{c}=e^{-c \xi_{c}}$
then $\frac{\left|C_{\text {max }}\right|}{n} \xrightarrow{\mathbb{P}} \varphi_{c}$
C survival prob. of a Poi (c) branching proc.
A B.P. heuristic: It is likely that $|C(1)|$ is large ${ }_{\omega}$ with prob ξ_{c}
then, in $G\left(n, \frac{c}{n}\right) \quad \mathbb{E}\left[\#\right.$ vertices in 'large' components] $\approx n \xi_{c}$

* Uniqueness of $C_{\max }$ follows after 'large' is precised.
* Full statement: $\forall r \in(1 / 2,1) \quad \exists \quad \delta=\delta(c, r)$

$$
\mathbb{P}\left(\left|\left|C_{\text {max }}\right|-\varphi_{c} n\right| \geqslant n^{2}\right)=O\left(n^{-\delta}\right)
$$

a In addition $\left|C_{i}\right|=O(\log n)$ a.a.s $\forall i \geqslant 2$
Duality. if d is the dual parameter of the dual distribution of $P_{0}(c)$ (satisfies $d e^{-d}=c e^{-c}$) $d<1$
then $G\left(n, \frac{c}{n}\right) \backslash C_{\text {max }} \cong G\left(m, \frac{d}{n}\right)$ with $m \cong\left(1-z_{c}\right) n$

* Dual distribution $p_{k}^{\prime}=\frac{e^{-c}}{\eta} \frac{(\eta c)^{k}}{k!}=e^{-\eta c} \cdot \frac{(\eta c)^{k}}{k!}$ then $d=\eta c=c \cdot e^{-c(1-\eta)}=c e^{-c+c \eta} \Leftrightarrow d e^{-d}=c e^{-c}$
$0 \leqslant f(x)=x e^{-x} \quad f^{\prime}(x)=e^{-x}(1-x) \quad$ maximum of 1 .

$$
f^{\prime \prime}(x)=e^{-x}(x-2)
$$

(Naive) proof strategy: Suppose $k=k(n)$ is Part2_II so large that (i) $\mathbb{P}(|C(1)| \geqslant k) \approx \varphi_{c}$
large/close to infinite.
and (2) $\left|C_{\max }\right| \cong Z_{k_{k}}$ if \exists only one 'large' component.
(3) $\mathbb{P}\left(\left|Z_{\geqslant k}-\mathbb{E}\left[Z_{\geqslant k}\right]\right|>\varepsilon n\right) \rightarrow 0$ as $n \rightarrow \infty$
\longrightarrow concentration needs upper bounds: $\operatorname{Var}\left(z_{\geqslant k}\right)$
lower bounds: $\mathbb{E}\left[z_{2 k}\right]$
then $\mathbb{P}\left(\left|C_{\text {max }}\right|-n \varphi_{c} \mid>\varepsilon n\right) \rightarrow 0$ as $n \rightarrow \infty \quad{ }_{0}^{\prime \prime}$

Recall : Focus on (1).(2).(3) first then add other details.

Duality (Pot 2)

$$
\begin{aligned}
\mathbb{P}\left(Z_{1}=k \mid \text { extinction }\right) & =\frac{1}{\eta} \mathbb{P}\left(Z_{1}=k, \text { extinction }\right) \\
& =\frac{P_{k}}{\eta} \mathbb{P}(\text { extinction })^{k}=\eta^{k-1} P_{k}
\end{aligned}
$$

For an edge w in $G(n, p)$ conditional on $m=n-\left|C_{\text {max }}\right|$ and $u, v \notin C_{\text {max }}$
its edge probability is

$$
\approx 1 \text { since } \frac{m}{n} \approx\left(1-\varphi_{c}\right)
$$

$$
\frac{c}{n}=\frac{c}{n} \cdot \frac{m}{m}=\frac{d}{m} \cdot \frac{c m}{d n}
$$

and

$$
c\left(1-\varphi_{c}\right)=d=c \eta
$$

Key Estimates in the proof
We actually choose $k=k \log n$ for k suitably large!
(1)

$$
\begin{aligned}
\mathbb{P}(|C(1)| \geqslant K \log n) & \approx \mathbb{P}(|T| \geqslant K \log n) \\
& =\mathbb{P}(|T|=\infty)+o(1 / n)
\end{aligned}
$$

(2) Follows for $a<\xi_{c}$ since $\mathbb{E}\left[Z_{\geqslant 0 n}-Z_{\geqslant k}\right] \rightarrow 0$ middle ground! and a.a.s. $\left|Z_{\geqslant k}-\mathbb{E}\left[Z_{\geqslant k}\right]\right| \leqslant n^{\varepsilon} \quad \varepsilon<y_{2}$
(3) For concentration : $\operatorname{Var}\left(z_{\geqslant k}\right) \leq(c k+1) n \mathbb{E}\left[|C(1)| \|_{\{|c(1)|<k \mid}\right]$
(3) * Compare upper bounds for $\operatorname{Var}\left(z_{k k}\right)$ in the supercritical phase $\|\{|C(1)| \geqslant k\}$ is very likely, replace with $\mid\{|c(1)|<k\}$ and logarithmic term
(2) Once we know there is no middle ground then if there were more than one giant then $\mathbb{E}\left[Z_{\geqslant k}\right] \neq n \cdot T_{c}$ (it would be more, say twice, as likely to be in glant-type components).
(1). Important that error probability is $O(1 / n)$ to be overall negligible in the next bound $\mathbb{E}\left[z_{\geqslant k}\right]=\sum_{c} n+o(1)$.
Now: All other components are of logarithmic size !I!.

$$
{ }_{0} 1 \text { Part } 3
$$

Hipercubic graphs: Towards their geometry
Consider the following example of exploration of $Q_{d, p}$:

- Exploration starts at $\overline{0}$
* Edges are numbered according to their exploration time.
\rightarrow open edges
\rightarrow closed (and tested) edges
Obs. If an exploration could record all geometry we could avoid 'clashes' (there are two in example)
'Standard' coupling to branching procesS; Bin ($d-1, p$)
 are two

Moral :
(1) Some 'cousins' should merge
(2) Some children weren't born

On the lookout for a proper description of a 'good' process:

$$
\rho(d-1)=1+p \quad p>0
$$

so that branching has chance to and mergers? and deletions? could differ, in principle.

An open-problen for a workshop
To the Poi $(1+p)$ branching process incorporate merges of any pair of cousins, independently with prob q.
Create each generation with 2 steps:
G_{2} :

(1) generate children

(2) identify individuals

Goal: Give sufficient conditions for a.s. extinction.
Tho $5\left(E ., P, S_{\text {. }}\right)$ For fixed p (small): $q>\frac{1}{2} p+C p^{2}$ implies $\overline{\text {) }}$
Good news: Relation between p and q is linear which is nice.
Bad news: This threshold does not coincide with critical percolation for \mathbb{Z}^{d} nor Q_{d} (recall they coincide in at least 3 terms)

Non-backtracking walks
A random walk on a graph G is a sequence of edges $e_{0}, e_{1}, e_{2}, e_{3} e_{0}=v_{0} u_{1}, e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3} \ldots$.
such that $\mathbb{P}\left(u_{j+1}=v \mid u_{j} \ldots v_{0}\right)=\frac{1}{\operatorname{deg}\left(u_{j}\right)} \|_{\left\{v \sim u_{j}\right\}}$
Non-backtracking if:

$$
\mathbb{P}\left(u_{j+1}=v \mid u_{j}, v_{j-1} \ldots u_{0}\right)=\frac{1}{\operatorname{deg}\left(u_{j}\right)-1} \|_{\left\{v \sim v_{j}, v \neq v_{j-1}\right\}}
$$

Exercise 1: If $u_{0}, v_{1}, \ldots u_{s}$ form a non-backtracking walk then $\mathbb{P}\binom{$ walk forms }{ a 4 -cycle }$= \begin{cases}\frac{1}{(d-1)^{2}} & \text { if } \\ \frac{1}{(2 d-1)^{2}}-\frac{1}{(2 d-1)^{3}} & G=Q_{d} \\ \text { This is a }\end{cases}$
This is a

* A non-backtracking walk in Q_{d} boils down, at each step on selecting one of $d-1$ coordinates and 'flip' it from 0 to 1 or viceversa. change one without loss of generality $(0,0, \ldots \ldots) \rightarrow(1,0, \ldots)$ change one coordinate the $3^{\text {rd }}$ and $4^{\text {th }}$ steps are forced to choose precisely one $\begin{array}{cc}\uparrow & \perp \\ ? & \leftarrow(1,1, \ldots .)\end{array}$ change a different ore coordinate to close the cycle.
* Some argument works for \mathbb{Z}^{d} where argument falls If the first two step were $(0,0, \ldots-0) \rightarrow(1,0, \ldots .0)$ as there is no way to close back: $\quad \stackrel{\uparrow}{x} \longleftarrow(2,0, \ldots .0)$

Talking to others about difficulties
Recall that mergers are not the only way of clashing!

Case 1

Case 2

there is symefy! Case $2+1 / 2$

Problem: Clashing risk depends on genealogy!
If $v \in G_{n} \backslash G_{n-1}(v$ lives in generation $n)$ then

$$
k_{v}=\#\left\{w \in G_{n-1}: \underset{\text { minimal path btw } w \text { and } v\}}{\text { has three edges }}\right\}
$$

Q: Why exactly the non-backtracking walk help us encode our deletions?

Open Question: Why doesn't the non-backtracking give heuristic for site percolation?

* In site percolation vertices (and not edges) are tested to be open/closed so edges incident in to a common vertex are not independently open/closed.

Generalized Process Remodelled $(\underline{A l g} 3$ B $\underline{B}(p, q)) P_{A A} T_{3} _6$ Add an intermediate step for deletions
(1) generate children

(2) Delete
inhomogereously

(3) identify individuals

offspring of
Close up: Given k_{v} and $\xi_{v} \stackrel{د}{=} P_{0 i}(1+p)$ Try and kill each children k_{v} times, each indef with prob of

* The distribution of surviving children is explicit due to the thinning property of Poisson r.v.'s

OPEN PROBLEM:
Can you find a coupling of $(B(p, q))_{p, q}$
such that $B(p, q)$ is monotone in p or q ?
in terms of: generation sizes or number of mergers ${ }^{o r}: ?$

Finally
Thu $6\left(E . P_{0}, S.\right)$ There is $C>0$ and $p_{0} \in(0,1)$ such that for $0<p<p_{0}$:

- $q<\frac{2}{5} p\left(1-C_{p}\right)$ then $B(p, q)$ survives with positive prob.
- $q>\frac{2}{5} p(1+C p)$ then $B(p, q)$ dies out a.s.

Corollary (Heuristic for Q_{Ω}, p or $\mathbb{Z}^{\frac{\Omega}{2}}$) If Ω is large enough and ρ is 'good' then letting

$$
1+p(\rho)=(\Omega-1) \rho \quad \text { and } \quad q=(\Omega-1)^{-2}
$$

then $\hat{\rho}_{c}=\frac{1}{\Omega-1}+\frac{5}{2} \frac{1}{(\Omega-1)^{3}}$ is an (approx.) threshold for extinction/survival of $B(p, q)$

* Many more details, at several math-levels, on slides accesible from Laura Eslova's website.

