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Problem C. Determine all pairs (p, q) of odd primes with q ≡ 3 (mod 8)
such that 1

p
(qp−1 − 1) is a perfect square.

claim. The pair (p = 5, q = 3) is the only one that satisfies the given
constraints.

Proof. Let us suppose that

1

p
(qp−1 − 1) = n2

for some n ∈ N. Then, if we write p as 2k + 1 the above equation becomes

(qk − 1)(qk + 1) = p · n2. (1)

Since (qk − 1, qk + 1) = 2, we have that qk − 1 = 2A and qk + 1 = 2B for
some coprime natural numbers A and B: from this and the equation (1) we
obtain that

4AB = p · n2

and whence

AB = p(n/2)2.

This equation indicates that we must analyze the following two cases sepa-
rately:

Case I. p|A and p - B and Case II. p - A and p|B.

Case I. If A = p · `1 then (`1, B) = 1 and this implies, in the light of (2),
that both `1 and B are perfect squares. Hence, we have in this case that

qk − 1 = 2(p ·M2) and qk + 1 = 2N2

for some M,N ∈ N. The second equality in the previous line implies that 2
is a quadratic residue modulo q, which is plainly absurd because(

2

q

)
= (−1)

q2−1
8 = −1.

Case II. If B = p · `2 then, proceeding as in the previous case, we obtain
that both A and `2 are perfect squares. Hence,

qk − 1 = 2M2
1 and qk + 1 = 2(p ·N2

1 )
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for some M1, N1 ∈ N.
There are two subcases to consider here:

Subcase 1: 3|M1. It follows that qk ≡ 1 (mod 3) and that 3 can’t be
a divisor of q. Fermat’s Little Theorem allows us to ascertain that q2 ≡ 1
(mod 3). Then, we have that k = 1 or k = 2` for some ` ∈ N. The former
possibility is ruled out easily by resorting to the equality qk +1 = 2(p ·N2

1 ) =
2(2k + 1)N2

1 . The latter possibility implies that

(q` − 1)(q` + 1) = 2M2
1. (2)

The greatest common divisor of q` − 1 and q` + 1 is 2 and this allows us to
write q` − 1 = 2a and q` + 1 = 2b for some coprime natural numbers a and
b. Substituting this back into (2), we get

2ab =M2
1

which implies that M1 = 2M2 for some M2 ∈ N and whence

ab = 2M2
2.

Since a and b are relatively prime, the previous equation implies that either
2|a and 2 - b or 2 - a and 2|b. In the first scenario we obtain that q` +1 = 2T 2

for some T ∈ N, which is absurd (2 is not a quadratic residue modulo q). In
the second one, we conclude that q` + 1 = 4T 2 for some T ∈ N. This implies
in turn that q` = (2T − 1)(2T + 1): since q is an odd prime number, it can’t
divide 2T − 1 and 2T + 1 simultaneously. Hence T = 1 and q = 3, which is
also absurd.

Subcase 2: 3 -M1. Then qk = 2M2
1 + 1 ≡ 0 (mod 3) and this implies

that q = 3. The equation in (1) becomes

(3k − 1)(3k + 1) = p · n2. (3)

The greatest common divisor of 3k − 1 and 3k + 1 is 2 and this allows us to
write 3k − 1 = 2c and 3k + 1 = 2d for some coprime natural numbers c and
d. Substituting this back into (3), we get that

cd = p(n/2)2.

Once again, we have two subcases to consider:

Subcase 2.1: p|c and p - d. Proceeding as in Case I above, we
conclude in this subcase that 3k − 1 = 2(p ·M2

3) and 3k + 1 = 2M2
4 for some
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natural numbersM3 andM4. The latter equality contradicts the fact that
2 is a quadratic non-residue modulo 3.

Subcase 2.2: p - c and p|d. In this subcase we obtain that 3k −
1 = 2M2

5 and 3k + 1 = 2(p · M2
6) for some natural numbers M5 and M6.

According to a celebrated result attributed to T. Nagell and W. Ljunggren1,
the equation

3k − 1

3− 1
=M2

5

admits only one solution in the range k > 2: namely, k = 5 and M5 = 11.
This leads to the conclusion that p = 11 and qp−1 − 1 = 310 − 1 = 59048;
nevertheless, the pair (11, 3) is inadmissible because 59048/11 = 5368 is not
a perfect square.

It remains to determine if we get a valid pair (p, q) when k = 1 or k = 2.
If k = 1 then p = 3; since we have that q = 3, p doesn’t even divide qp−1 − 1
in this case. If k = 2 then p = 5 and whence

35−1 − 1

5
=

(32 − 1)(32 + 1)

5
= 8 · 2 = 16 = 42.

The validity of our initial claim follows now from the exhaustive analysis
which we have just completed. �

1See, for instance, the introduction to this paper: Y. Bugeaud & P. Mihăilescu, On
the Nagell-Ljunggren equation xn−1

x−1 = yq. Math. Scand. 101 (2007), pp. 177–183.
Bugeaud and Mihăilescu mention therein that, building on previous work of T. Nagell
(and K. Mahler), W. Ljunggren proved in a 1943 paper published in the Norsk Matema-
tisk Tidsskrift that the Diophantine equation

xn − 1

x− 1
= y2

doesn’t admit solutions in integers x > 1, y > 1, n > 2 except when n = 4, x = 7 and
n = 5, x = 3. Additionally, it is noteworthy that the resolution of the Diophantine equation
3m = 2n2 +1 in nonnegative integers m and n was the subject matter of Problem 10873 of
The American Mathematical Monthly. The solution chosen by the editors of the Problems
and Solutions section of the Monthly depended on basic facts about Pell equations. The
exact reference is: B. J. Venkatachala and Doyle Henderson, An exponential Diophantine
equation: 10873, Amer. Math. Monthly Vol. 110, No. 3 (March 2003), p. 243.


