Solution to Problem C in the March 2015 issue of the NAW

José Hernández Santiago

Problem C. Determine all pairs (p, q) of odd primes with $q \equiv 3(\bmod 8)$ such that $\frac{1}{p}\left(q^{p-1}-1\right)$ is a perfect square.

CLAIM. The pair ($p=5, q=3$) is the only one that satisfies the given constraints.

Proof. Let us suppose that

$$
\frac{1}{p}\left(q^{p-1}-1\right)=n^{2}
$$

for some $n \in \mathbb{N}$. Then, if we write p as $2 k+1$ the above equation becomes

$$
\begin{equation*}
\left(q^{k}-1\right)\left(q^{k}+1\right)=p \cdot n^{2} \tag{1}
\end{equation*}
$$

Since $\left(q^{k}-1, q^{k}+1\right)=2$, we have that $q^{k}-1=2 A$ and $q^{k}+1=2 B$ for some coprime natural numbers A and B : from this and the equation (1) we obtain that

$$
4 A B=p \cdot n^{2}
$$

and whence

$$
A B=p(n / 2)^{2}
$$

This equation indicates that we must analyze the following two cases separately:

$$
\text { Case I. } p \mid A \text { and } p \nmid B \quad \text { and } \quad \text { Case II. } p \nmid A \text { and } p \mid B .
$$

Case I. If $A=p \cdot \ell_{1}$ then $\left(\ell_{1}, B\right)=1$ and this implies, in the light of (2), that both ℓ_{1} and B are perfect squares. Hence, we have in this case that

$$
q^{k}-1=2\left(p \cdot M^{2}\right) \quad \text { and } \quad q^{k}+1=2 N^{2}
$$

for some $M, N \in \mathbb{N}$. The second equality in the previous line implies that 2 is a quadratic residue modulo q, which is plainly absurd because

$$
\left(\frac{2}{q}\right)=(-1)^{\frac{q^{2}-1}{8}}=-1
$$

Case II. If $B=p \cdot \ell_{2}$ then, proceeding as in the previous case, we obtain that both A and ℓ_{2} are perfect squares. Hence,

$$
q^{k}-1=2 \mathcal{M}_{1}^{2} \quad \text { and } \quad q^{k}+1=2\left(p \cdot N_{1}^{2}\right)
$$

for some $\mathcal{M}_{1}, N_{1} \in \mathbb{N}$.
There are two subcases to consider here:
Subcase 1: $3 \mid \mathcal{M}_{1}$. It follows that $q^{k} \equiv 1(\bmod 3)$ and that 3 can't be a divisor of q. Fermat's Little Theorem allows us to ascertain that $q^{2} \equiv 1$ $(\bmod 3)$. Then, we have that $k=1$ or $k=2 \ell$ for some $\ell \in \mathbb{N}$. The former possibility is ruled out easily by resorting to the equality $q^{k}+1=2\left(p \cdot N_{1}^{2}\right)=$ $2(2 k+1) N_{1}^{2}$. The latter possibility implies that

$$
\begin{equation*}
\left(q^{\ell}-1\right)\left(q^{\ell}+1\right)=2 \mathcal{M}_{1}^{2} . \tag{2}
\end{equation*}
$$

The greatest common divisor of $q^{\ell}-1$ and $q^{\ell}+1$ is 2 and this allows us to write $q^{\ell}-1=2 a$ and $q^{\ell}+1=2 b$ for some coprime natural numbers a and b. Substituting this back into (2), we get

$$
2 a b=\mathcal{M}_{1}^{2}
$$

which implies that $\mathcal{M}_{1}=2 \mathcal{M}_{2}$ for some $\mathcal{M}_{2} \in \mathbb{N}$ and whence

$$
a b=2 \mathcal{M}_{2}^{2} .
$$

Since a and b are relatively prime, the previous equation implies that either $2 \mid a$ and $2 \nmid b$ or $2 \nmid a$ and $2 \mid b$. In the first scenario we obtain that $q^{\ell}+1=2 T^{2}$ for some $T \in \mathbb{N}$, which is absurd (2 is not a quadratic residue modulo q). In the second one, we conclude that $q^{\ell}+1=4 T^{2}$ for some $T \in \mathbb{N}$. This implies in turn that $q^{\ell}=(2 T-1)(2 T+1)$: since q is an odd prime number, it can't divide $2 T-1$ and $2 T+1$ simultaneously. Hence $T=1$ and $q=3$, which is also absurd.

Subcase 2: $3 \nmid \mathcal{M}_{1}$. Then $q^{k}=2 \mathcal{M}_{1}^{2}+1 \equiv 0(\bmod 3)$ and this implies that $q=3$. The equation in (1) becomes

$$
\begin{equation*}
\left(3^{k}-1\right)\left(3^{k}+1\right)=p \cdot n^{2} \tag{3}
\end{equation*}
$$

The greatest common divisor of $3^{k}-1$ and $3^{k}+1$ is 2 and this allows us to write $3^{k}-1=2 c$ and $3^{k}+1=2 d$ for some coprime natural numbers c and d. Substituting this back into (3), we get that

$$
c d=p(n / 2)^{2} .
$$

Once again, we have two subcases to consider:
Subcase 2.1: $p \mid c$ and $p \nmid d$. Proceeding as in Case I above, we conclude in this subcase that $3^{k}-1=2\left(p \cdot \mathcal{M}_{3}^{2}\right)$ and $3^{k}+1=2 \mathcal{M}_{4}^{2}$ for some
natural numbers \mathcal{M}_{3} and \mathcal{M}_{4}. The latter equality contradicts the fact that 2 is a quadratic non-residue modulo 3 .

Subcase 2.2: $p \nmid c$ and $p \mid d$. In this subcase we obtain that $3^{k}-$ $1=2 \mathcal{M}_{5}^{2}$ and $3^{k}+1=2\left(p \cdot \mathcal{M}_{6}^{2}\right)$ for some natural numbers \mathcal{M}_{5} and \mathcal{M}_{6}. According to a celebrated result attributed to T. Nagell and W. Ljunggren ${ }^{1}$, the equation

$$
\frac{3^{k}-1}{3-1}=\mathcal{M}_{5}^{2}
$$

admits only one solution in the range $k>2$: namely, $k=5$ and $\mathcal{M}_{5}=11$. This leads to the conclusion that $p=11$ and $q^{p-1}-1=3^{10}-1=59048$; nevertheless, the pair $(11,3)$ is inadmissible because $59048 / 11=5368$ is not a perfect square.

It remains to determine if we get a valid pair (p, q) when $k=1$ or $k=2$. If $k=1$ then $p=3$; since we have that $q=3$, p doesn't even divide $q^{p-1}-1$ in this case. If $k=2$ then $p=5$ and whence

$$
\frac{3^{5-1}-1}{5}=\frac{\left(3^{2}-1\right)\left(3^{2}+1\right)}{5}=8 \cdot 2=16=4^{2}
$$

The validity of our initial CLAIM follows now from the exhaustive analysis which we have just completed.

[^0]
[^0]: ${ }^{1}$ See, for instance, the introduction to this paper: Y. Bugeaud \& P. Mihăilescu, On the Nagell-Ljunggren equation $\frac{x^{n}-1}{x-1}=y^{q}$. Math. Scand. 101 (2007), pp. 177-183. Bugeaud and Mihăilescu mention therein that, building on previous work of T. Nagell (and K. Mahler), W. Ljunggren proved in a 1943 paper published in the Norsk Matematisk Tidsskrift that the Diophantine equation

 $$
 \frac{x^{n}-1}{x-1}=y^{2}
 $$

 doesn't admit solutions in integers $x>1, y>1, n>2$ except when $n=4, x=7$ and $n=5, x=3$. Additionally, it is noteworthy that the resolution of the Diophantine equation $3^{m}=2 n^{2}+1$ in nonnegative integers m and n was the subject matter of Problem 10873 of The American Mathematical Monthly. The solution chosen by the editors of the Problems and Solutions section of the Monthly depended on basic facts about Pell equations. The exact reference is: B. J. Venkatachala and Doyle Henderson, An exponential Diophantine equation: 10873, Amer. Math. Monthly Vol. 110, No. 3 (March 2003), p. 243.

