163. Find all positive integers *m* and *n* such that the integer

m times *n* times

is a perfect square.

Solution. Since

$$\underbrace{2\dots 2}_{m \text{ times}} \underbrace{5\dots 5}_{n \text{ times}} = 2\left(\frac{10^m - 1}{9}\right)10^n + 5\left(\frac{10^n - 1}{9}\right),$$

the problem reduces to determining all $(m, n, x) \in \mathbb{N}^3$ such that

$$2\left(\frac{10^m - 1}{9}\right)10^n + 5\left(\frac{10^n - 1}{9}\right) = x^2.$$

Clearing the denominators in the left-hand-side of this equation and grouping the like terms afterwards, the equation under consideration becomes

(1)
$$2 \cdot 10^{m+n} + 3 \cdot 10^n - 5 = 9x^2.$$

In the light of the fact that for any $m, n \in \mathbb{N}$, with $n \ge 3$, the expression in the left-hand-side of (1) is congruent to -5 modulo 8 whereas the right-hand-side is either 0, 1 or 4 modulo 8, we see that, if $(m, n, x) \in \mathbb{N}^3$ is a solution of (1), then n = 2 or n = 1.

The case n = 2 can be discarded by an analogous analysis modulo 8, too: in this situation, the left-hand-side of (1) is congruent to 7 modulo 8.

In the case n = 1, equation (1) becomes

(2)
$$5^2(2^{m+2} \cdot 5^{m-1} + 1) = 9x^2.$$

When m = 1 we obtain the solution (m = 1, n = 1, x = 5). In the event that m > 1, we proceed as follows. Firstly, we notice that equation (2) can be rewritten as

$$2^{m+2} \cdot 5^{m-1} = (3X-1)(3X+1)$$

for some odd natural number X; from this and the observation that (3X - 1, 3X + 1) = 2, we see that we only need to consider the following two subcases:

a)
$$3X - 1 = 2^{\alpha} \cdot 5^{m-1}$$
, $3X + 1 = 2^{\beta}$ for some $\alpha, \beta \in \mathbb{N}$ such that $\alpha + \beta = m + 2$.

b)
$$3X - 1 = 2^{\alpha}$$
, $3X + 1 = 5^{m-1} \cdot 2^{\beta}$ for some $\alpha, \beta \in \mathbb{N}$ such that $\alpha + \beta = m + 2$.

The equations in **a** imply that $2 + 2^{\alpha} \cdot 5^{m-1} = 2^{\beta}$; from this and the straightforward inequalities $2^{\alpha} < 2 + 2^{\alpha} \cdot 5^{m-1} = 2^{\beta}$, we infer that $\alpha = 1$ (otherwise, $2 + 2^{\alpha} \cdot 5^{m-1} \equiv 2 \pmod{4}$ while $2^{\beta} \equiv 0 \pmod{4}$). Hence, *m* satisfies $2 = 2^{m+1} - 2 \cdot 5^{m-1}$, wherefrom we obtain the inequality $(5/2)^m < 5$, which is absurd since we are pondering the case in which m > 1.

On the other hand, the conditions in **b** give that $2 + 2^{\alpha} = 5^{m-1} \cdot 2^{\beta}$. This equality allows us to infer that, in this subcase, β cannot be greater than 1. Hence, we arrive at the equation $2 + 2^{m+1} = 5^{m-1} \cdot 2$, from which we distill the inequality $1 + 2^m = 5^{m-1} > 2^{2(m-1)}$. Since in the range m > 1, the latter inequality holds true only when m = 2, we have a second solution to the equation in (1): (m = 2, n = 1, x = 15).

In conclusion, there are only two natural numbers of the form in question: $25 = 5^2$ and $225 = 15^2$.

José Hernández Santiago. Morelia, Michoacán, MÉXICO. November 22, 2016.