163. Find all positive integers m and n such that the integer

$$
\underbrace{2 \ldots 2}_{m \text { times }} \underbrace{5 \ldots 5}_{n \text { times }}
$$

is a perfect square.
Solution. Since

$$
\underbrace{2 \ldots 2}_{m \text { times }} \underbrace{5 \ldots 5}_{n \text { times }}=2\left(\frac{10^{m}-1}{9}\right) 10^{n}+5\left(\frac{10^{n}-1}{9}\right)
$$

the problem reduces to determining all $(m, n, x) \in \mathbb{N}^{3}$ such that

$$
2\left(\frac{10^{m}-1}{9}\right) 10^{n}+5\left(\frac{10^{n}-1}{9}\right)=x^{2} .
$$

Clearing the denominators in the left-hand-side of this equation and grouping the like terms afterwards, the equation under consideration becomes

$$
\begin{equation*}
2 \cdot 10^{m+n}+3 \cdot 10^{n}-5=9 x^{2} \tag{1}
\end{equation*}
$$

In the light of the fact that for any $m, n \in \mathbb{N}$, with $n \geq 3$, the expression in the left-hand-side of (1) is congruent to -5 modulo 8 whereas the right-hand-side is either 0,1 or 4 modulo 8 , we see that, if $(m, n, x) \in \mathbb{N}^{3}$ is a solution of (1), then $n=2$ or $n=1$.

The case $n=2$ can be discarded by an analogous analysis modulo 8 , too: in this situation, the left-hand-side of (1) is congruent to 7 modulo 8.

In the case $n=1$, equation (1) becomes

$$
\begin{equation*}
5^{2}\left(2^{m+2} \cdot 5^{m-1}+1\right)=9 x^{2} \tag{2}
\end{equation*}
$$

When $m=1$ we obtain the solution $(m=1, n=1, x=5)$. In the event that $m>1$, we proceed as follows. Firstly, we notice that equation (2) can be rewritten as

$$
2^{m+2} \cdot 5^{m-1}=(3 X-1)(3 X+1)
$$

for some odd natural number X; from this and the observation that $(3 X-1,3 X+1)=2$, we see that we only need to consider the following two subcases:

$$
\begin{aligned}
& \text { a) } 3 X-1=2^{\alpha} \cdot 5^{m-1}, 3 X+1=2^{\beta} \text { for some } \alpha, \beta \in \mathbb{N} \text { such that } \alpha+\beta=m+2 \\
& \text { b) } 3 X-1=2^{\alpha}, 3 X+1=5^{m-1} \cdot 2^{\beta} \text { for some } \alpha, \beta \in \mathbb{N} \text { such that } \alpha+\beta=m+2 .
\end{aligned}
$$

The equations in a imply that $2+2^{\alpha} \cdot 5^{m-1}=2^{\beta}$; from this and the straightforward inequalities $2^{\alpha}<2+2^{\alpha} \cdot 5^{m-1}=2^{\beta}$, we infer that $\alpha=1$ (otherwise, $2+2^{\alpha} \cdot 5^{m-1} \equiv 2($ mód 4$)$ while $2^{\beta} \equiv 0$ (mód 4)). Hence, m satisfies $2=2^{m+1}-2 \cdot 5^{m-1}$, wherefrom we obtain the inequality $(5 / 2)^{m}<5$, which is absurd since we are pondering the case in which $m>1$.

On the other hand, the conditions in \mathbf{b} give that $2+2^{\alpha}=5^{m-1} \cdot 2^{\beta}$. This equality allows us to infer that, in this subcase, β cannot be greater than 1 . Hence, we arrive at the equation $2+2^{m+1}=5^{m-1} \cdot 2$, from which we distill the inequality $1+2^{m}=5^{m-1}>2^{2(m-1)}$. Since in the range $m>1$, the latter inequality holds true only when $m=2$, we have a second solution to the equation in (1): $(m=2, n=1, x=15)$.

In conclusion, there are only two natural numbers of the form in question: $25=5^{2}$ and $225=15^{2}$.

