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Abstract Let p be a prime, ε > 0 and 0 < L + 1 < L + N < p. We prove that if
p1/2+ε < N < p1−ε, then

#{n! (mod p); L + 1 ≤ n ≤ L + N } > c(N log N )1/2, c = c(ε) > 0.

We use this bound to show that any λ �≡ 0 (mod p) can be represented in the form
λ ≡ n1! · · · n7! (mod p), where ni = o(p11/12). This refines the previously known
range for ni .

Keywords Factorials · Congruences · Exponential and character sums ·
Additive combinatorics
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1 Introduction

In what follows, p is a large prime number. For integers L and N with

0 < L + 1 < L + N < p
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we consider the set

A(L , N ) = {n! (mod p); L + 1 ≤ n ≤ L + N }.

From the observation

{1} ∪ {L + 2, . . . , L + N } (mod p) ⊂
{
a1
a2

; a1, a2 ∈ A(L , N )

}
, (1)

it follows that

|A(L , N )| ≥ N 1/2.

In particular, we trivially have |A(0, p−1)| ≥ (p−1)1/2. The result of García [8] on
the cardinality of product of two factorialsmodulo p implies that |A(0, p−1)| > cp1/2

for any constant c <

√
41
24 and any sufficiently large prime p. The conjecture is that

|A(0, p)| asymptotically behaves like (1 − e−1)p, see [5,10].
Improving on the trivial estimate, Klurman and Munsch [11] proved the bound

|A(L , N )| ≥ cN 1/2 (2)

with c =
√

3
2 and p1/4+ε < N < p. We note that the condition N > p1/4+ε can be

relaxed, see the remark at the end of the present paper.
Here, using a consequence of Bombieri’s bound on exponential sums over algebraic

curves, we show that if p1/2+ε < N = o(p), then the constant c in (2) can be taken
arbitrarily large. We then apply this result to the problem of representability of residue
classes as a product of seven factorials with small variables.

Further in the text, we use the notation

A(L , N )

A(L , N )
=

{
a1
a2

; a1, a2 ∈ A(L , N )

}
.

Theorem 1 For p1/2+ε < N < p, we have the bound

∣∣∣∣A(L , N )

A(L , N )

∣∣∣∣ > c0N log(p/N )

for some c0 = c0(ε) > 0.

From Theorem 1 it follows, in particular, that if p1/2+ε < N < p, then

|A(L , N )| > c0(N log(p/N ))1/2

for some c0 = c0(ε) > 0.

123



A note on n! modulo p 25

Garaev et al. [7] proved that any λ �≡ 0 (mod p) can be represented in the form

7∏
i=1

ni ! ≡ λ (mod p),

where ni ≤ c1 p11/12+ε for some c1 = c1(ε) > 0. García [9] improved this condition
to ni 	 p11/12. Here and below A 	 B means that |A| ≤ cB for some constant
c > 0. Using Theorem 1 we can improve this as follows.

Theorem 2 Any λ �≡ 0 (mod p) can be represented in the form

7∏
i=1

ni ! ≡ λ (mod p),

where the positive integers n1, ..., n7 satisfy

max{ni |i = 1, ..., 7} 	 p11/12

(log p)1/2
.

2 Lemmas

We need the following special case of the results of Bombieri [1, Theorem 6] and
Chalk and Smith [2, Theorem 2]. As usual, Fp denotes the field of residue classes
modulo p.

Lemma 1 Let (b1, b2) ∈ Fp × Fp be a nonzero vector and let f (x, y) ∈ Fp[x, y]
be a polynomial of degree d ≥ 1 with the following property: there is no c ∈ Fp for
which the polynomial f (x, y) is divisible by b1x + b2y + c. Then

∣∣∣∣∣∣
∑

f (x,y)=0

e2π i(b1x+b2 y)/p

∣∣∣∣∣∣ ≤ 2d2 p1/2.

We remark that the factor 2 on the right hand side can be removed, but it is not
essential in our application.

The following lemma is due to Ruzsa, see [12] or [13, Lemma 2.6]. It will be used
in the proof of Theorem 2.

Lemma 2 For any finite nonempty subsets X,Y, Z of an abelian group we have

|X − Y | ≤ |X + Z ||Z + Y |
|Z | .

In the proof of Theorem 2 we will also need the following estimate of character
sums with factorials from the work of García [9, Theorem 3.1].
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Lemma 3 For any positive integer N the following bound holds:

max
χ �=χ0

∣∣∣∣∣∣
∑
n≤N

∑
m≤N

χ((n + m)!)
∣∣∣∣∣∣ 	 N 7/4 p1/8.

3 Proof of Theorem 1

By shortening the range of N , if necessary, we can assume that p/N is sufficiently
large in terms of ε. Let

M = 
min{p0.1ε, (p/N )0.1}�.

For a positive integer j ≤ M we define the set

X j =
⎧⎨
⎩

j∏
i=1

(x + L + i) (mod p); 1 ≤ x < 0.6N

⎫⎬
⎭ .

Since the polynomial
∏ j

i=1(x + L + i) has degree j , we have that

|X j | ≥ N

2 j
. (3)

Let us prove that for any j ≥ 2 the following bound holds:

#{X j\(X1 ∪ · · · ∪ X j−1)} ≥ N

3 j
.

Note that

#{X j\(X1 ∪ · · · ∪ X j−1)}
= #{X j\((X j ∩ X1) ∪ · · · ∪ (X j ∩ X j−1))}
≥ |X j | − |X j ∩ X1| − · · · |X j ∩ X j−1|.

Therefore, in view of (3) we get

#{X j\(X1 ∪ · · · ∪ X j−1)} ≥ N

2 j
− |X j ∩ X1| − · · · − |X j ∩ X j−1|. (4)

We shall now prove that |X j ∩ Xk | ≤ N/(6 j2) for 1 ≤ k ≤ j − 1. Let J ( j, k) be the
number of solutions to the congruence

j∏
i=1

(x + L + i) ≡
k∏

i=1

(y + L + i) (mod p), 1 ≤ x, y < 0.6N .
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Clearly,
|X j ∩ Xk | ≤ J ( j, k). (5)

Denote

f (x, y) =
j∏

i=1

(x + L + i) −
k∏

i=1

(y + L + i) ∈ Fp[x, y].

Following standard arguments, we write J ( j, k) in the form

J ( j, k) =
∑

x<0.6N , y<0.6N
f (x,y)=0

1

≥ 1

p2

p−1∑
b1=0

p−1∑
b2=0

∑
u<0.6N

∑
v<0.6N

∑
f (x,y)=0

e2π i(b1(x−u)+b2(y−v))/p.

From the trivial bound we have that the number of solutions to the equation

f (x, y) = 0, (x, y) ∈ Fp × Fp

is not greater, than j p. We also recall the elementary estimate

p−1∑
b=0

∣∣∣∣∣
∑

z<0.6N

e2π ibz/p
∣∣∣∣∣ < p log p,

see, for example, the exercises and their solutions in [14, Chapter 3]. Thus, separating
the term that corresponds to b1 = b2 = 0, we obtain

J ( j, k) ≤ j N 2

p
+ (log p)2 max

(b1,b2)

∣∣∣∣∣∣
∑

f (x,y)=0

e2π i(b1x+b2 y)/p

∣∣∣∣∣∣ ,

where the maximum is taken over the integers 0 ≤ b1, b2 ≤ p−1 such that (b1, b2) �=
(0, 0). Since j > k ≥ 1, we have that for any a1, a2, a3 ∈ Fp the polynomials
f (X, a1X +a2) and f (a3, X) have degrees j and k respectively in Fp[X ]. Therefore,
by considering the cases b2 �= 0 and b2 = 0 separately, it follows that f (x, y) is not
divisible by b1x + b2y + c in Fp[x, y]. Thus, the condition of Lemma 1 is satisfied.
Hence, taking into account that j ≤ M , from Lemma 1 we get

J ( j, k) ≤ j N 2

p
+ O((log p)2 j2 p1/2) ≤ N

6 j2
.
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This bound and (5) imply that |X j ∩ Xk | ≤ N/(6 j2). Inserting this into (4), we get
that

#{X j\(X1 ∪ · · · ∪ X j−1)} ≥ N

2 j
− ( j − 1)N

6 j2
≥ N

3 j
.

Now we observe that

X j ⊂ A(L , N )

A(L , N )
, j = 1, 2, . . . , M.

Hence
∣∣∣∣A(L , N )

A(L , N )

∣∣∣∣ ≥ #{X1 ∪ X2 ∪ · · · Xm}

= |X1| +
m∑
j=2

#{X j\(X1 ∪ · · · ∪ X j−1)}

≥
M∑
j=1

N

3 j

 N logM 
 N log(p/N )

and the result follows.

4 Proof of Theorem 2

Let p0.51 < N < p0.99. For the brevity, denoteA = A(0, N ). By Theorem 1 we have

∣∣∣∣AA
∣∣∣∣ 
 N log p, |A| 
 (N log p)1/2.

Application of Lemma 2 in the multiplicative form gives the bound

∣∣∣∣AA
∣∣∣∣ ≤ |AA|2

|A| .

Hence,
|AA| ≥ c1(N log p)3/4 (6)

for some absolute constant c1 > 0.
Denote I = {1, 2, . . . , N }. Let J be the number of solutions to the congruence

(n1 + m1)!(n2 + m2)!(n3 + m3)!xy ≡ λ (mod p),

in variables n1, n2, n3,m1,m2,m3, x, y satisfying

n1, n2, n3,m1,m2,m3 ∈ I, x, y ∈ AA.
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To prove Theorem 2 it suffices to show that there is a constant C > 0 such that J > 0
for N = �Cp11/12(log p)−1/2�. We express J via character sums and get

J = 1

p−1

∑
χ

∑
n1,n2,n3,m1,m2,m3∈I

∑
x,y∈AA

χ((n1+m1)!(n2+m2)!(n3+m3)!xy)χ(λ−1).

Separating the term that corresponds to the principal character χ = χ0 and following
the standard argument we obtain

J ≥ N 6|AA|2
p − 1

− 1

p − 1

∑
χ �=χ0

∣∣∣∣∣∣
∑

n,m∈I
χ((n + m)!)

∣∣∣∣∣∣
3 ∣∣∣∣∣

∑
x∈AA

χ(x)

∣∣∣∣∣
2

.

Application of Lemma 3 and the identity

1

p − 1

∑
χ

∣∣∣∣∣
∑

x∈AA
χ(x)

∣∣∣∣∣
2

= |AA|

gives

J ≥ N 6|AA|2
p − 1

− c2N
21/4 p3/8|AA|,

where c2 > 0 is an absolute constant. Using (6) we obtain

J ≥ N 21/4|AA|
p − 1

(
|AA|N 3/4 − c2 p

11/8
)

≥ N 21/4|AA|
p − 1

(
c1N

3/2(log p)3/4 − c2 p
11/8

)
.

Hence, taking N = �2(c2/c1)2/3 p11/12(log p)−1/2�, we get J > 0, which finishes
the proof of our theorem.

5 Remarks

As we have mentioned in the introduction, Klurman and Munsch [11] proved that

in the range p1/4+ε < N < p the estimate (2) holds with c =
√

3
2 . The condition

N > p1/4+ε can be relaxed using the results from the works [3,4,6]. Indeed, let
N < p2/3 be sufficiently large. Denote

I = {L + 2, L + 3, . . . , L + N } (mod p).
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According to (1) we have

I ⊂ A(L , N )

A(L , N )
, I−1 ⊂ A(L , N )

A(L , N )
.

On the other hand, the results from [6, Theorem 3] or [4, Theorem 1] imply that
|I ∩ I−1| < N 1−δ for some absolute constant δ > 0. Hence,

∣∣∣∣A(L , N )

A(L , N )

∣∣∣∣ ≥ |I ∪ I−1| = |I| + |I−1| − |I ∩ I−1| ≥ 2N − 2 − N 1−δ.

Thus, we have |A(L , N )| > (
√
2 + o(1))N 1/2 as N → ∞ and N < p2/3.

In the proof of Theorem 2 we used the fact that for N < p1−ε one has

|A(0, N )A(0, N )| 
 (N log N )3/4.

We note that this bound can significantly be improved for small values of N . For
example, let N < p1/2. For any positive integers n,m ≤ N we have

n

m
(mod p) ⊂ A(0, N )A(0, N )

A(0, N )A(0, N )
.

Note that in the range n,m < p1/2 for distinct rational numbers n/m correspond
distinct residue classes n/m (mod p). Therefore,

∣∣∣∣A(0, N )A(0, N )

A(0, N )A(0, N )

∣∣∣∣ ≥ #
{ n

m
; n,m ∈ [1, N ] ∩ Z, gcd(n,m) = 1

}

=
(

6

π2 + o(1)

)
N 2

as N → ∞. Thus, in the range N < p1/2 we have |A(0, N )A(0, N )| 
 N .
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