63 (2014), 503-534

Points on Curves in Small Boxes and Applications
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ABSTRACT. We introduce several new methods to obtain upper bounds
on the number of solutions of the congruences

fx)=y (mod p) and f(x)=»* (mod p),
with a prime p and a polynomial f, where (x, y) belongs to an arbi-
trary square with side length M. We give two applications of these re-
sults to counting hyperelliptic curves in isomorphism classes modulo
p and to the diameter of partial trajectories of a polynomial dynamical
system modulo p.

1. Introduction
1.1. Motivation

Studying the distribution of integer and rational points on curves and, more gener-
ally, on algebraic varieties that belong to a given box is a classical topic in analytic
number theory. For the case of plane curves with integer coefficients, essentially
the best possible results are due to Bombieri and Pila [6; 32; 33]. Furthermore,
recently remarkable progress has been made in the case of hypersurfaces and va-
rieties over the rationals; see the surveys [8; 21; 36] and the original works [27;

; 34].

Significantly less is known about the distribution of points in boxes on curves
and varieties in finite fields. For reasonably large boxes, bounds on exponential
sums, which are based on deep methods of algebraic geometry, lead to asymptotic
formulas for the number of such points; see [17; 18; 26]. Certainly, when the size
of the box is decreasing, beyond a certain threshold no asymptotic formula is
possible (in fact, the expected number of points can be less than 1). In particular,
for such a small box, we can only expect to derive upper bounds on the number
of points on curves that hit it. This question has recently been introduced in [13],
where a series of general results has been obtained (we also mention the works [9;

; 42], where this question has been studied for some very special curves).

In this paper, we introduce new ideas and make significant advances in this
direction. We find connections between the problem of distribution of points in
small boxes on modular curves with some delicate combinations of results from
geometry of numbers, Diophantine approximation theory, the Vinogradov mean
value theorem, and the Weyl method.
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Note that in the case of curves modulo p, it is not quite clear what can be
expected as an “optimal” result (in contrast to the case of estimating integer points
in boxes on plane curves over Q). Yet in some parameter ranges, our results are
the best possible and can be considered as modulo p analogues of the results of
Bombieri and Pila [6; 32; 33].

Although our results are related to classical problems, here we also give two
further applications:

First of all, we study the distribution of isomorphism classes of hyperelliptic
curves of genus g > 1 in some families of curves associated with polynomials
with coefficients in a small box. In the case of elliptic curves, this question has
been studied in [14]. Here we improve some results of [14] and also use new
methods to study the case of g > 2. Surprisingly enough, in the case of the genus
g > 2, we obtain estimates and use methods that do not apply to elliptic curves
(thatis, to g =1).

Second, we consider polynomial dynamical systems and study for how long a
particular trajectory of such a system can be “locked” in a given box. In particular,
we extend and improve several results of [10; 11; 13; 19].

1.2. Basic Definitions and Problem Formulation

For a prime p, let I, denote the finite field of p elements, which we assume to
be represented by the set {0, 1, ..., p — 1}

Let f € F,[X] be a polynomial of degree m > 2. Then for 1 <M < p, we
define J¢(M; R, S) as the number of solutions to the congruence

y=f(x) (modp), (x,y)e[R+1,R+M]x[S+1,5+M].

This quantity has been the primal object of study in [13]. Here we consider a
substantially more complicated case.

Given a polynomial f € F,[X] of degree m > 3 and a positive integer M < p,
we denote by I7(M; R, S) the number of solutions to the congruence

y2=f(x) (mod p) (1)
with
(x,y)e[R+1,R+M]x[S+1,5+ M]. 2)

If the polynomial y2 — f(x) is absolutely irreducible, it is known from the Weil

bounds that
2

. _M_ 172 2

where the implied constant depends only on m; see [37; 41]. It is clear that
the main term is dominated by the error term for M < p3/ 4 log p, and for
M < p'/%(log p)?, the result becomes weaker than the trivial upper bound
Ip(M; R,S) <2M. Here we use a different approach and give a nontrivial es-
timate of Iy(M; R, S) for M < p1/3_8 when m > 3. In particular, in the case
m = 3, our result improves on the range of M the bound obtained in [14].
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Furthermore, we also obtain a new bound on J¢(M; R, §), which improves
that of [13].
We also mention that nontrivial bounds on the number of solutions (x, y) to
the congruences
xy=a (mod p)
and
y=1v* (mod p)
satisfying (2) have been given in [9] with further improvements in [12]. Similar
results for the congruence

QO(x,y)=0 (mod p),

where Q(x, y) is an absolutely irreducible quadratic form with a nonzero discrim-
inant, can be found in [42].

1.3. General Notation

Throughout the paper, any implied constants in the symbols O, < and >> may
occasionally depend, where obvious, on the degree of polynomial f € IF,[X],
on the genus g, and on the real positive parameters ¢ and §, and are absolute
otherwise. We recall that the notations U = O(V), U < V,and V > U are all
equivalent to the statement that |U| < ¢V with some constant ¢ > 0.

The letters h, m, n, r, s in both upper and lower cases always denote integer
numbers.

2. Main Results

2.1. Points on Curves in Small Boxes

We combine ideas from [12; 13; 14] with some new ideas and derive the following
results.

THEOREM 1. Uniformly over all polynomials f € IF,[ X] of degree deg f =3 and
1 <M < p,we have

MS/3+o(D)

Iy(M; R, S) < M0 4 ——
‘ P

as M — oo.

One of the implications of Theorem | is that for elliptic curves, that is, when
the polynomial f in (1) is cubic, the bound I¢(M; R, S) < M1/3+eM) holds for
M < p'/8, while [14, Theorem 5.1] guarantees this bound only for M < p'/°.
The range in which we have 17(M; R, S) < M1/3+°M) 5 of interest because this
bound is essentially the best possible. In fact it is easy to see that for any positive
M < p and, say f(X) = X", examining the points (x, y) = (", t2), 1<tr<
MY™ we conclude that
15(M;0,0) > M'/™,
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We also note that when deg f = 3, our upper bounds for /(M; R, S) imply the
same bounds for N (H; *B) in the case of elliptic curves.

Further, when M < p'/4~¢ for some & > 0, Theorem | guarantees a nontrivial
bound I7(M; R, S) K M =% with some § > 0 that depends only on &, improving
upon the range M < p'/3~¢ obtained in [14]. However, using a new approach, we
obtain the following bound, which is nontrivial in the range M < p'/37¢.

THEOREM 2. Uniformly over all polynomials f € IF,[ X] of degree deg f =3 and
M > 1, we have

M3 1/16
I;(M;R,S) < M3+ 4 <_> M+
' B p

The proof of Theorem 2 is based on combinations of results from the geometry
of numbers, the current state of art on Vinogradov’s mean value theorem due
to Wooley [39; 40] and the Diophantine approximation theory. Our use of the
geometry of numbers is close to the ideas of Bourgain et al. [7].

The combination of Theorems | and 2 gives the following estimate.

CoRrOLLARY 3. Uniformly over all polynomials f € F,[X] of degree deg f =3
and 1 <M < p, we have

M—2/3 lfM <pl/8’
If(M, R,S) <M1+0(1) (M4/p)1/6 lfpl/S <M <p5/23’
VPV i p5 < M < plP,

as M — oo.

Our next result shows that when deg f > 4, we also have a nontrivial bound for
I (M; R, S) in the range M < p1/3_8.

To formulate our result, we define J ,, (H) as the number of solutions of the
system of m Diophantine equations in 2k integral variables x1, ..., x2k:

m m __ ..m m
B e A e e 13

Xpt X = X1+ X2
1<xy,....,x0% <H. (@]

We also define «(m) to be the smallest integer « such that for any integer
k > K, there exists a constant C(k,m) depending only on k and m and such
that

Jim(H) < C(k, m)H*=mm+D/2+0() 5)
as H — oo. Note that by a recent result of Wooley [40, Theorem 1.1], which

improves the previous estimate of [39], we have «(m) < m*> — 1 for any
m > 3.
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THEOREM 4. Uniformly over all polynomials f € F,[X] of degree deg f =m >4
and 1 <M < p, we have

If(M, R, S) < M(M3/p)1/21((m)+()(1) +M1—(m—3)/2/((m)+0(1)

as M — oo.

In particular, for any & > 0, there exists § > O that depends only on ¢ and deg f
such that if M < p'/3~¢ and deg f > 4, then If(M;R,S) K M9,

2.2. Polynomial Values in Small Boxes

We also prove a new estimate on J¢(M; R, §).

THEOREM 5. Let f € IF,[X] be a polynomial of degree m > 2. Then for 1 <M <
p, we have

M? 1-1/2m=1 o(1)
Jf(MQR,S)<<7+M p
as p — o0.

We remark that for large values of m, some bounds of [13], obtained by a different
method, are better than Theorem 5. However, for small values of m (for example,
for m =2, 3), Theorem 5 gives stronger estimates.

3. Applications
3.1. Isomorphism Classes of Hyperelliptic Curves in Thin Families

A special case of equation (1) is hyperelliptic curves over F,,. The problem of
concentration of points on hyperelliptic curves and polynomial maps is connected
with some problems on isomorphisms that preserve hyperelliptic curves. Let g
be a fixed positive integer constant. We always assume that p is large enough so
that, in particular, we have gcd(p, 2(2g + 1)) = 1. Any hyperelliptic curve can be
given by a nonsingular Weierstrass equation

Hy: Y?=X*"'gap, (X7 4. 4 a1 X +a,

where a = (ag,...,a24-1) € Fég (we recall that the nonsingularity condition
is equivalent to nonvanishing of the discriminant of the polynomial XZ$+! 4
azg1X 214 X+ ap). We refer to [1] for a background on hyperelliptic
curves and their applications.

It follows from a more general result of Lockhart [25, Proposition 1.2] that
isomorphisms that preserve hyperelliptic curves given by Weierstrass equations
are all of the form (x, y) — (a2x, a28*1y) for some o € ]F’;; see also [23, Sec-
tion 3]. Thus, H, is isomorphic to Hy, which we denote as H, ~ Hy, if there
exists a € IF; such that

ai=a®22p; (mod p), i=0,...,2¢g—1. (6)
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It is known (see [23; 30]) that the number of nonisomorphic hyperelliptic
curves of genus g over I, is 2 p*~ 1+ 0(gp*$?). We address here the problem
of estimating from below the number H, of nonisomorphic hyperelliptic curves
of genus g over F,, when a = (ao, ..., azg—1) belongs to a small 2g-dimensional
cube

B=[Ro+1,Ry+M]x--x[Rayg1+1,Rog_1 +M] 7
with some integers R; and M satisfying 0 < R; < R; + M < p, j=0,...,
2g — 1.

In particular, we note that all components of a vector a € 5 are nonzero mod-
ulo p. Our methods work without this restriction as well; however, they somewhat
lose their efficiency.

We also give an upper bound for the number

N(H;B)=#a=(ao,...,az—1) €B: Hy~ H]} ®)

of hyperelliptic curves H, with a € B that are isomorphic to a given curve H.

In particular, our estimates extend and improve some results of [ 4], where this
problem has been investigated for elliptic curves (that is, for g = 1).

First, we observe that for large cubes, we easily derive from the Weil bound
(see [22, Chapter 11]) the asymptotic formula
2g

M
N(H;*B) =

172 2
21 + O(p/“(log p)°*)

(see also the proof of [22. Theorem 21.4]). So we have an asymptotic formula for
N(H;*B) as long as M > p!~1/@4&)+¢ for any fixed & > 0.

However, here we are mostly interested in small values of M.

We note that we always have the trivial upper bound

N(H;*B) <2M.
To see this, let H = Hy, b= (b, ...,bg_1) € ]Fig, be given by a Weierstrass
equation. We observe that if H, ~ H and H = Hy,, where b= (bg, ..., bye_1) €
Ff,g , then a,_1 can take at most M values in %, and each ap,_; determines two

possible values for a2 in (6).
It is also useful to remark that one cannot expect to get a general bound stronger
than
N(H;B)=0(M" D),

To see this, we consider the set Q of quadratic residues modulo p in the interval
[1, M/C&+D] Tt is well known that for almost all primes p (that is, for all except
a set of relative density zero), we have

#O~05MY2HD 2 M — oco.

For example, this follows from a bound of Heath-Brown [20, Theorem 1] on av-
erage values of sums of real characters.
Consider now the set

A={aecF,: a*cQ},
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the curve H: Y% = X%+l 4 x2-1 4 x28=2 4 ... 4 X + 1, and the 2g-
dimensional cube B = [1, M]?8. It is clear that (a*, a®, ..., a*12) € B for all
a € A. On the other hand, #.4 = 2#Q ~ M!/(2s+D)

We now turn to estimates on N(H;3) given by (8). A simple observation
shows that in the case of hyperelliptic curves with g > 2, the quantity N (H; B) is
closely related to the problem of concentration of points of a quadratic polynomial
map. Then we can apply the general result of [13] and get a nontrivial upper bound
for N(H; ®8) for any range of M. However, here we use a different approach and
obtain a better bound.

Using (6), from Theorem 5 and the bound of [13]

Jr(M; R, S) < M'/mHo) ©9)

which holds for M < p?/ (’"2+3), we derive the following consequence.

THEOREM 6. For any hyperelliptic curve H of genus g > 2 over I, and any cube
B given by (7) with 1 < M < p, we have

M2
N(H;B) <« — + M2l
p

Furthermore, as we have mentioned before, when g = 1, the problem of estimat-
ing N(H;*B) is equivalent to estimating the concentration of points on certain
curves of degree 3 (which are singular and thus are not elliptic curves), and Theo-
rem | applies in this case. Using the idea of the proof of Theorem I, we establish
the following result, which is valid for any hyperelliptic curve.

THEOREM 7. For any hyperelliptic curve H of genus g > 1 over F,, any cube ‘B
given by (7) with 1 < M < p, and any odd integer h € [3,2g + 1], we have

N(H;B) < (MY" + MM? ) p)* h+1y pgo

as M — oo.

We observe that if M < p!/28°+26+4) then, taking h = 2g + 1 in Theorem 7, we
obtain the estimate N (H: B8) < M/ @s+tD+o() which, as we have seen, is sharp
up to the o(1) term.

Let 7 (®B) be the collection of representatives of all isomorphism classes of hy-
perelliptic curves Hy, a € ‘B, where ‘B is a 2g-dimensional cube of side length M.
In [14], the lower bound #7£(8) > min{p, M>+t°(D} has been obtained for ellip-
tic curves (that is, for g = 1). We extend this result to g > 2. Certainly, the upper
bounds of our theorems lead to a lower bound on #H(°8). However, using a dif-
ferent approach, we obtain a near optimal bound for #(*8).

THEOREM 8. For g > 1 and any cube *B given by (7) with 1 <M < p, we have
#H(%) >> min{ng—l , M2g+0(1)}

as M — oo. Furthermore, if g > 2, then the o(1) term can be removed when
M > pl/2e),
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3.2. Diameter of Polynomial Dynamical Systems

Results about concentration of points on curves are also closely related to the
question about the diameter of partial trajectories of polynomial dynamical sys-
tems. Namely, given a polynomial f € F,[X] and an element ug € IF,, we con-
sider the sequence of elements of I, generated by iterations u, = f(u,—1),
n=20,1,.... Clearly, the sequence u, is eventually periodic. In particular, let
T4, be the full trajectory length, that is, the smallest integer ¢ such that u, = u;
for some s < ¢. The study of the diameter

Dyyy(N)= max |ug — tp]
0<k,m<N-1
has been initiated in [19] and then continued in [10; 1 1; 13]. In particular, it fol-

lows from [19, Theorem 6] that for any fixed ¢ and for Ty, > N > pl/ 2+e we
have the asymptotically best possible bound

D yy(N) = plTo®

as p — o0. For smaller values of N, a series of lower bounds on Dy, (N) is
givenin [10; 11; 13].

The following estimate can be easily derived from Theorem 5; it improves
several previous results to intermediate values of N (and is especially effective
for small values of m).

COROLLARY 9. For any polynomial f € IFp[X] of degree m > 2 and positive in-
teger N < Ty, we have

: m—1__
D4y (N) > min{N1/2p1/2 N1F1/@"7 =D o)y

as p — oo.

On the other hand, we remark that our method and results do not affect the super-
polynomial lower bounds of [10; 11] that hold for small values of N.

4. Preparations
4.1. Uniform Distribution and Exponential Sums

The following result is well known and can be found, for example, in [29, Chap-
ter 1, Theorem 1] (which is a more precise form of the celebrated Erd6s—Turan
inequality).

LEmMMA 10. Let y1, ..., ym be a sequence of M points of the unit interval [0, 1].

Then for any integer K > 1 and an interval [, 8] C [0, 1], we have

#n=1,....M: y,ela,Bl} —M(B —)

M
Zexp(Znikyn)

n=1

M Er
< +1§<? + min{B — «a, 1/k})
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To use Lemma 10, we also need an estimate on exponential sums with polynomi-
als, which is essentially due to Weyl; see [22, Proposition 8.2].

Let |&|| = min{|§ — k|: k € Z} denote the distance between a real & and the
closest integer.

LEmMA 11. Let f(X) € R[X] be a polynomial of degree m > 2 with the leading
coefficient & # 0. Then

M
ZeXP(hif(n))‘

n=1

21—m

<« M1—m/2'"—'< Z min{M, ||#m! £, -~~3m—1||_1})
—M<ly,..., Lbn—1<M

4.2. Integer Points on Curves and Varieties

We also need the following estimate of Bombieri and Pila [6] on the number of
integral points on plane polynomial curves.

LEMMA 12. Assume that C is a plane absolutely irreducible curve of degree d > 2
and H > exp(d®). Then the number of integral points on C and inside a square
[0, H] x [0, H] does not exceed

H'/4 exp(lZ dlog H loglog H).

The following statement is a particular case of a more general result of Wooley
[40, Theorem 1.1].

LEMMA 13. The number of solutions of the system of Diophantine equations
x{+~~~+x§=x;+~'~+X{6, j=123,

in integers x; with |x;j| <M,i=1,...,16, is at most M10+o(D),

Proof. Writing x; = X; — M — 1 with a positive integer X; <2M + 1, i =

1,..., 16, after some trivial algebraic transformation, we see that the number

of solutions to the above equation is equal to Jg 3(2M + 1). Since by the re-

sult of Wooley [40, Theorem 1.1] we have « (3) < 8, the bound (5) applies with
H=2M +1. O

We note that Lemma can be formulated in a more general form with «(3)
instead of eight variables on each side, but this generalization (assuming possible
improvements of the bound « (3) < 8) does not affect our main results.

4.3. Congruences with Many Solutions

The following result is used in the proofs of Theorems | and

LEMMA 14. Let f, g € Fp[X] be two polynomials of degrees n and m such that
m { n. Assume that the integers xi, ..., x, are pairwise distinct modulo p and



512 M.-C. CHANG ET AL.

Y1, ..., Y are arbitrary integers. Then the congruence
f@)=g(y) (modp), O0=<x,y<p, (10)
has at most mn solutions with
Xt ot x oy
n n—1
det| "1 Y1 o XL YL (mod p). an
X x;:_l eee Xn  Yn
Proof. Since
xf x'f_l e X
det =X1-Xp 1_[ (xi —x;)#0 (mod p),
Xy x,’f_l Xn I<i<j<n

we deduce that, for any x and y, the last column in (1) is a unique modulo
p linear combination of the previous columns. In particular, for every solution
(x,y) to (10) and (11), we have y = h(x) (mod p) for some nontrivial polyno-
mial h(X) € F,,[X] that does not depend on x and y.

Now we insert this into (10). We observe that now the right-hand side of (10),
that is, g(h(x)), is a nontrivial polynomial of degree m degh. Thus, the congru-
ence (10) is a nontrivial polynomial congruence of degree d with n < d < mn.
Therefore, it has at most mn solutions modulo p. O

4.4. Symmetric Multiplicative Congruences

For given positive integers i, j, we define T; ;(R, S; M) as the number of solu-
tions to the congruence

rivi =uls) (mod p)
with (r,s), w,v) e[R+1, R+ M]x[S+1,S + M].

It has been shown in [ 14, Theorem 4.1] that for a positive M < p, we have

M4
T+ o (M?p°WM) (12)

T.;(R.S: M)=d

as M — oo, where d = gcd(i, j, p — 1). We need a slight modification of that
statement, where p°(!) is replaced by M°(.
LeEmMA 15. For any prime p and any integers M, R, S with

R,S>0, M>1 and R+M,S+ M < p,

we have,
4

T, j(R, $; M) =d

-+ oMo

as M — oo, where d = gcd(i, j, p — 1), and the implied constant depends only
oniandj.
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Proof. We note that for M > p'/2, the result follows from (12). For M < p'/?, the
result is equivalent to the upper bound 7; ; (R, S; M) <M 2+o() gince the implied
constant is allowed to depend on d.

As in the proof of [14, Theorem 4.1], using the orthogonality of multiplicative
characters, we write

R+M R+M
LR SMy= 3 > — ) x(/w'w/s))
rau=R+1s,v= S+1 XeX
R+M ) S+M
——Z > x‘(r) > xf(s)
x€X 'r=R+1 s=S+1

We estimate the contribution to the above sum from at most i + j characters
x with x! = xo or x/ = xo, where o is the principal character, as O(M*/p) =
O( M2+0(1)).

The rest of the sum can also be estimated as O (M2+°(D) by following exactly
the same argument as in [14, Theorem 4.1] and using [14, Lemma 2.2]. O

4.5. Background on Geometry of Numbers

We recall that a lattice in R” is an additive subgroup of R” generated by n lin-
early independent vectors. Let D be a symmetric convex body, that is, D is a
compact convex subset of R” with nonempty interior that is centrally symmetric
with respect to 0. Then, for a lattice in ' CR" and i =1, ..., n, the ith succes-
sive minimum A; (D, T") of the set D with respect to the lattice I" is defined as the
minimal number XA such that the set AD contains i linearly independent vectors
of the lattice I'. In particular, A; (D, T") <--- <A, (D, I'). We recall the following
result given in [3, Proposition 2.1] (see also [35. Exercise 3.5.6] for a simplified
form, which is still enough for our purposes).

LEMMA 16. We have

n

2i
#DNT) < ]_[<7 + 1).
AN

Using that
2i 1 i }
Ai(D,T") 2(D,T)’
and denoting, as usual, by (2n + 1)!! the product of all odd positive numbers up
to 2n + 1, we derive the following:

+1=<Q@i+ 1)max{

COROLLARY 17. We have

[ [min{ai(D.1). 1} < @n+ D@D NT) L
i=1
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5. Proofs
5.1. Proof of Theorem

For brevity, in this section we denote I = I¢(M; R, S). We can assume that [ is
large. We fix some integer L such that

1<L<0.011, (13)

to be chosen later. By the pigeonhole principle, there exists Q such that the con-
gruence

y2=f(x) (mod p), Q4+1<x<Q+M/L,S+1<y<S+M,

has at least 7 /L solutions. We can split the interval [Q + 1, Q + M /L] into kg =
[1/(30L)] intervals of length not greater than 30M /1. Since there are at most two
solutions to the above congruence with the same value of x, and since we have at
least 1 /L > 20k solutions in total, from the pigeonhole principle it follows that
there exists an interval of length 30M /I containing at least 10 pairwise distinct
values of x. Let x( be the first of these values, and let (xg, yo) be the corresponding
solution. It is clear that //L is bounded by the number of solutions of

Do+ y)? = flxo+x) (mod p),
~M/L<x<M/L,—-M<y<M,

which is equivalent to

y2 = 63x3 + czx2 +c1x +coy (mod p),
—M/L<x<M/L,-M<y=<M, (14)

with (c3, p) = 1. Besides, there are at least 10 solutions (x, y) with pairwise dis-
tinct x and such that 0 <x < 30M /1. From these 10 values we fix three solutions
(x1, 1), (x2, y2), (x3, y3) and rewrite the congruence (14) in the matrix form

Xz xi X y c3 yz
X3 X3 X3 )3 c) Y3

3 =|"5 (mod p). (15)
X5 Xy X2 W Cq y3

3 2 2
Xy xy x1 y1) \0 i

By Lemma 14 we know that at most six pairs (x, y), with pairwise distinct x,
satisfy both the congruence (15) and the congruence

x° x* x y
3 2
X3 X3 X3 )3
3 5 =0 (mod p).
Xy Xy X2 »

Xy Xy Xt 1
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Since there are at least 10 solutions to (15), for one of them, say (x4, y4), we have

Xy Xy X4 Y4
3 2
X X X3 y3
A=3 73 £0 (mod p).
Xy Xy X2 W2
3 2

X1 Xy X1

Note that 1 < |A| < (M/I)°M. Now we solve the system of congruences

3 2 2

Xy Xy X4 )4 c3 Yy

3 2 2

x3 x5 x3 y3il|c

305 Y e 31 (mod p) (16)
X5 Xy X2 2 1 D)

3 2 C| 2

xX; x; X1 oy 0 i

with respect to (c3, ¢2, c1, o). We write A; for the determinant of the matrix
on the left-hand side, where we have substituted the column j by the vector
( yf, y%, y%, y%). With this notation we have that
CjEA4_jA* (I’IlOd p), j:O,...,3,
where A* is defined by AA* =1 (mod p), and the congruence (14) is equivalent
to
ALXD + Aox? + Asx + Ayy — Ay?> =0 (mod p).

In particular, since, as we have noticed, ¢3 % 0 (mod p), we have that A; £ 0
(mod p). We can write this congruence as an equation over Z:

A1x3+A2x2+A3x+A4y—Ayzzpz, (x,y,z)€Z3- (17)

We can easily check that
|Asl < (M/ D) M?
and .
|Ajl < M/DPIMP, j=1,2,3.

Thus, collecting the above estimates and taking into account L < I, we derive

1
Iz < ;(|A1|<M/L>3 + [Aal(M/L)* + |A3[(M/L) + |AsIM + |A|M?)

M3 [ M Mc  M® MO M°
< 7(13L3 trEetert 7) NYYETER

Since Ay # 0 and A # 0, for each z, the curve (17) is absolutely irreducible,
and thus by Lemma it contains at most M!/3+o() integer points (x, y) with

|x], |y| < M. Hence,
9
£<M1/3+0(1) 1+ M
L~ pI3L3

for any L satisfying (13). This implies that
M7/3+0(1)

[<LM'V3+o® 4 —
= plUALL2

(18)
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If M < 10p'/®, then we take L = 1 and derive from (18) that
M 7/3+o(D)

I < M1/3+0(1) + 7

< pm1/3+o)
» =<
Let now M > 10p'/8. We can assume that I > M>/3p~1/6 since otherwise
there is nothing to prove. Then we take L = | M*/3 p~1/6| and note that condition
(13) is satisfied. Thus, we derive from (18) that
M7/3+o(1)
1/340(1) 5/3+0(1) ,—1/6
I<LM +p1/4L1/2 <M )4 ,

and the result follows.

5.2. Proof of Theorem

Clearly we can assume that
M > p/3 (19)

since otherwise
M3/3+o()

3, 11/16
R

and the result follows from Theorem |. We can also assume that M = o(p'/3).

We fix one solution (xg, yp) to the congruence (1), and by making the change of
variables (x, y) — (x — xg, ¥y — yo) we see that it is enough to study a congruence
of the form

y2—60y563x3+02.x2+€]x (mod p), |x|,|y| <M. (20)

Let W be the set of pairs (x, y) that satisfy (20), and let X denote the set of x for
which (x, y) € W for some y. Let

o= #X
M
We now fix some ¢ > 0 and assume that
p= M/ p)1ome. @n
We also assume that M is sufficiently large. In view of (19) and (2 1), we also have
o> M0 (22)

For & > 0, we define the intervals
IV,T?Z[_IBMV’I?MU:L U:1,2,3,

which we treat as intervals in [F),, that is, sets of residues modulo p of several
consecutive integers.
We now consider the set

SChgxhgxlg
of all triples
s=(x 4+ +xg, xf -+ xF a4 +x3) (mod p),  (23)
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where x;, i = 1,..., 8, independently run through the set X'. We observe that the
system of congruences
X 4tx]=x{+-+x], (modp), j=1,2,3, 24)

has at most M 10+ golutions in integers x;, y; with |x;|, |y;| < M. Indeed, since
M = o(p'/3), the above congruence is converted to the system of Diophantine
equations
x4 txl=xl 44 xf, =123,

which by Lemma 13 has at most M 10+o(1) solutions in integers x; with |x;| < M,
i =1,...,16. Therefore, the congruence (24) has at most M10+o(D) golutions in
xieX,i=1,...,16, as well. Thus, collecting the elements of the set X’ 8 that
correspond to the same vector s given by (23) and denoting the number of such
representations by N (s), by the Cauchy inequality we obtain

1/2
#X)® = ZN(S) < (#SZN(S)Z) < (#SM0+oy1/2
seS seS

Thus,

(#X)' 16 3/6+0(1)

Hence, there exist at least p'® M6+ triples
(z1,22,z23) € g x g x I3 8

such that
323+ cza+c1z1 =72 —coz1 (mod p)
for some 75 € I,g and 7| € I} g. In particular, we have that the congruence

323+ + 22+ c1z1+¢z1 =0 (mod p),
(z1,21,22,22,23) € 1 s x 1§ x s X I X I3 3,
has a set of solutions S with
4S > pl6 oo, (25)

The rest of the proof is based on the ideas from [7].
We define the lattice

I ={(X2, X3, X2, X1, X)) € Z°:
Xo+c3X3 4+ Xo+c1 X +coX1 =0 (mod p)}
and the body
D = {(x2, x3,%,x1,5%1) € R:
lx1], 1511 < 8M, |xa|, [%2] < 8M?, |x3| < 8M3}.
We see from (25) that
#DNT) = plomotod.
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Therefore, by Corollary 17, the successive minima A; = A;(D,I'),i=1,...,5,
satisfy the inequality

5
[ [min{t, 2} < p~"0M =00, (26)
i=1
From the definition of A; it follows that there are five linearly independent
vectors
Vi = (V2,, V3,4, V2,i, V1,i, V1,)) €EADNT, i=1,...,5. 27

Indeed, we first choose a nonzero vector vi € A1 D N I'. Then assuming that, for
1 <i <5, the vectors vy, ..., v;_q are chosen, we choose v; as one of the vectors
v e A;DNT that are not in the linear space generated by vy, ..., v,_1.

We now note that

A< 1.
Indeed, otherwise from (26) we obtain
min{l, A3} < min{1, A1} min{1, 15} < p~ 10y =60,

Thus, recalling (22), we see that

M= Toae
Then the vector vi must have vy | =721 = v1,; = v,; = 0. In turn, this implies
that v3,1 =0 (mod p), and since we assumed that M = 0(p1/3), we obtain v3 | =
0, which contradicts the condition that v; is a nonzero vector.

We consider separately the following four cases.

Case I: A5 < 1. Then by (26) we have

5
i=1
We now consider the determinant A of the 5 x 5 matrix that is formed by the
vectors (27). It follows that

5
i=1
which, by our assumption (21), implies that |A| < p. On the other hand, since
v; € ', we have A =0 (mod p); thus, A =0, provided that p is large enough,
which contradicts the linear independence of the vectors in (27). Thus, this case
is impossible.
Case 2: Ay < 1,15 > 1. Let

V31 Va1 vl U1 —v2,1 3
v v v v —U C
V= 3,2 ~2,2 1,2 ~1,2 i W= 2,2 , c= 2
v33 U223 V13 Ul3 —U23 C1

V34 V24 V14 Vl4 —V2.4 co
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We have
Ve=w (mod p).
Let
A =detV,
and let A ; be the determinant of the matrix obtained by replacing the jth column
of Vbyw, j=1,...,4.
Recalling (26), we have

Al K MAaAzhg MATHIHL < p—16M1+o(1) 28)
and, similarly,
|A1] < p~ oMo, 1Ay] < p~10p1H+oD)
|A3] < p oMo |Ag] < p~ 16 pg2+o0) (29)

Note that, in view of (21), in particular, we have
AL Al <p, j=1,...,4

If A =0 (mod p), then since ¢ is nonzero modulo p, we also have A; =0
(mod p), j =1,...,4, implying that A = A; = 0 (in fact, this holds regard-
less whether ¢ is zero or not modulo p). Then the matrix formed by vy, ..., v4 is
of rank at most 3, which contradicts their linear independence. Therefore, A % 0
(mod p), and thus we have

AV,

i =
A

Since ¢3 £ 0 (mod p), we have A1 # 0. We now substitute this into (20) and get
that

(mod p), i=0,1,2,3.

Ay2 —Agy = A1x3 + Agxz + Azx  (mod p), |x|,|y| <M.
We see from (21), (28), and (29) that for sufficiently large M, the absolute values
of the expressions on both sides are less than p/2, implying the equality
AY? — Agy = A1 4 Aox® + Asx, Il [yl < M.

Now we use Lemma and conclude that the number of solutions is at most
M1 /3+o(h)
Case 3: A3 < (10M)~!, A4 > 1. By (26) we have
3
H)‘i < p—l6M—6+o(l)_
i=1

Since A3 < (10M)~!, we also have

vi = (v2,i, v3,,024,0,0), i=1,23. (30)
In particular,
v v31 U2 1 0
v v32 w22 |3 =10 (mod p).
v23 V33 U23 c2 0
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Thus, for the determinant
V2,1 V31 U2
A=det|{v22 v32 52,2 R
V23 V33 123
we have
A=0 (mod p).
On the other hand, from (22) we derive that
M1+0(1)

2.640(1)
<M .
pl6

A € AAarsMT <

Hence, A = 0, which together with (30) implies that the vectors vy, v, v3 are

linearly dependent, which is impossible.
Case4: 10M) L <a3<1,24 > 1. By (26) we have

3

i=1
and since A3 > (10M)~!, we obtain

A.])\.2<,0_16M_5+0(1).

We again note that Ay > (10M 2)_1 since otherwise v; should have vy; =71 =
v1,1 = 01,1 = 0. In turn, this implies that v3,; =0 (mod p), and since we assumed
that M = o( pl/ 3), we obtain v3 1 = 0, which contradicts the condition that v; is a

nonzero vector.

Since A > (10M?)~! and o> M0 we get that Ay < (10M)~'. Thus, we

have
vi=(v2,;,v3,,02;,0,0), i=12.

v31 U2 (€3 _ (V21 (mod p)
V32 V22 Cc2 —U2,2

Now we observe that

Next,

~ Mo
A=det V) «aaMd < .
V32 V22 plo
Furthermore,
_ ~ M—1+0(1)
Ay =det V2! 3“) < hphaM* < T
—v22 V22 0
and
_ o
A, = det <”3’1 ”“) < AMMaM® < —
V32 —U22 0

€19}

(32)

(33)

In particular, |A|, |A1], |Az| < p. Therefore, if A =0 (mod p), then A| = A =
0 (mod p), and we see that A = A; = Ay = 0. Thus, in this case, the rank of
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the matrix formed by vectors vy, v, is at most 1, which contradicts the linear
independence of the vectors vy, v3.
Hence, A #£0 (mod p), and we get that

21 (mod p) 22 (mod p)
c3=— (mo , cp=—(mo .
3 A P 2 A p
We now substitute this into (20) and get that
Ay? —agy = A1x’ + Agx® + box  (mod p),  |x],|y| < M

for some integers ag, bg. We observe that the condition ¢3 %0 (mod p) implies

that A1 #0.
1/3
p 16/3
T=|[|— .

Let now
Note that M%/3 < T < T? < p/2. By the pigeonhole principle there exists a pos-
itive integer 1 <1fy < T2 + 1 such that

P P
f <z, tobo) | < =,
[(toao) p| < T [(tobo) p| < T

where (x), is the element of the residue class x (mod p) with the least absolute
value; see also [ 14, Lemma 3.2]. Hence,

toAY* — (toao) py = toA1x° + toA2x? + (tobo) px  (mod p), ||, |y| < M.
By (31), (32), and (33) the absolute values of the expressions on both sides are
bounded by pM !+ T=1 Thus, we get

toAY? — (toao) py = toA1x> + 1o Aox? + (tobo) px + pz,
where
Iyl =M, el < MHOTL

Now we use Lemma 12 and conclude that the number of solutions is at most

4/3
(% " 1>M1/3+0(1) - (M1//3 o163 4 1>M1/3+0(1)
T p

3\ 1/16
= 2o _ (%) M.
P

Since ¢ > 0 is arbitrary, the result now follows.

5.3. Proof of Theorem

Let X be the set of integers x € [R + 1, R + M] such that the congruence (1) is
satisfied for some integer y € [S + 1, S + M]. In particular, letting X = #X, we
have

I7(M;R,S) <2X. (34)

Fix some integer k > 1 and consider the set

Vi={yi+--4+y: (modp): S+1<y,<S+M,i=1,... k).
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By making the change of variables y; =S 4+ z;,i =1, ..., k, we observe that
Ve={zi+- -+ 22 +2S@ +--+z) +kS*  (mod p):
l<zi<M,i=1,...,k}.
In particular,
#V <#{r +2Ss+kS%: 1<r <kM* 1<s<kM}<k>M>.
For any (x1,...,x¢) € Xk, there exists A € )y such that
fx)+--+ f) =i (mod p).

Thus,
X<y,

reVk

where

r(A\) =#{(x1,...,x0) €[R+1, R+ M]*:

S+ + fx) =2 (mod p)}.
Using the Cauchy inequality, we derive
XK <#V Y P S EPMPTi(R, M),
Ak
where T (R; M) is the number of solutions of
)+ + fOr) = fkt1) + -+ fxx)  (mod p),
(x1,...,x0) € [R+ 1, R+ M.

The quantity Tx(R; M) has been defined and estimated in [13] for R = 0, but
making a change of variables, it is clear that the same bound holds for any R. In
particular, it is proved in [13] that

Ti(R; M) < (M™ /p + 1)M™ "=V (M),

where, as before, Ji ,, (M) is the number of solutions of the system of equations
(4) with H =M.
Taking k = « (m) so that the bound (5) holds, we derive
X2k < M3(Mm/p + I)Mm(m—l)/2M2k—m(m+l)/2+o(l)
S (Mm/p + 1)M2k+3—m+0(1)
and obtain
X S M(M3/p)1/2l(+0(1) + Ml*(l’l’l*iﬁ)/ZK‘l’()(l)’

which together with (34) concludes the proof.
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5.4. Proof of Theorem

Let J =J¢(M; R, S).
Without loss of generality we can assume that

O<M+1<M+S<p.

Applying Lemma to the sequence of fractional parts y, = {f(n)/p}, n =
1,..., M, with

a=(S+1)/p, B=(E+M+1)/p, K= |p/M],
so that we have
1 . M
— 4+ min{8 —a, 1/k} < —
K P

fork=1,..., K, we derive
2 K

M2 M
J<<7+?Z

k=1

M

Zexp(zmkfm)/p)‘.

n=1

Therefore, by Lemma || we have

2 Mz—m/z"H
JL—+———
p p

K
X Z( Z min{M,
k=1 —M<€y,...lp_1 <M

_1})21—/11

where a is the leading coefficient of f. Now, separating the contribution from the
terms with £1 - - - £,,_; = 0, we obtain

Comtkey -,
p

M2 p2m2mt o pp2—m/2m!
JL—4+———KM" )Y " —W,

p p p
iR
Mm2-m/2m!

M2 1 12m—l
JL— M2 o w. (35)
p p

where

W:?j( > min{M,

=1 0<|ly],...[lpm_1|<M

Eotkey -,
p

Hence, recalling the choice of K, we derive

The Holder inequality implies the bound
Wzm—l << K2m—1 —1

x i > min{M,

k=10<l[£1],..., m—11<M

Y

Lotk -,
p

Collecting together the terms with the same value of

z=m!lkly---Lyp—1 %0 (mod p)
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and recalling the well-known bound on the divisor function, we conclude that

-1
W2m—1 < K2m—1_1p0(1) Z min{M, }

|z|<m! K Mm—1
Since the sequence |lam/p|| is periodic with period p, we see that

a
22
p

z#£0 (mod p)

p—1 -1

-1

w2 « Kz’”’]—lpf’(l)iKMm 3 4,

P P

z=1
_iply -1
- KMm—1 % -

— K2 1—1po(1) Z z < K2 le—lpo(l).

P =i p

Thus, recalling the choice of K, we derive

W< KM(m—l)/zm—'pa(l) < M(m—l)/2m_1—lp1+o(l)’

which, after substitution into (35), concludes the proof.

5.5. Proof of Theorem

Assume that H = Hy, for some vector b = (bg, ..., b2g—1) € Fig. We recall that
all components of any vector a € ®8 are nonzero modulo p. Hence, by € IF’;,, and
we see from (6) (combining the equations withi =2g+ 1 —handi =2g — 1)
that

h 52
Qye_ =Mapey_y (mod p),

Rogy1—n+1 < asgr1-n < Rogr1-n + M, (36)
Rog—1+1=<ax_1<Ry—1+M,

where
h 2
A =b2g—l/b2g+l—h' (37
We also observe that
at = bag—1/a2g-1.

Thus, each solution (ag41-p, azg—1) of (36) determines at most two values of a2,
each of which in turn determines all other values of ag, a1, ..., azg_1.

Thus, we have seen that N(H; B) < 2T, where T is the number of solutions
(x, y) of the congruence

x"=1y> (mod p), R+1<x<R+M,S+1<y<S+M, (38)

where R =Ry 11, S = Ryg_1,and A is given by (37).
We now observe that the congruence (38) taken with & = 4, which is admissi-
ble for g > 2, implies

x’=py (modp), R+1<x<R+MS+1<y<S+M,
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where p is one of the two square roots of A (we recall that g > 2). Applying
Theorem 5 for M > p?/7 and also (9) for M < p?/7 with a quadratic polynomial
f, we immediately obtain the desired result.

5.6. Proof of Theorem

As in the proof of Theorem 6, we let H = Hy, for some b = (b, ..., b2, 1) € ]Ff,g.

We can assume that M < p'/# since otherwise the results are weaker than the
trivial upper bound N (H; 8) < M.

Let T be the number of solutions (x, y) to the congruence (38).

We follow the proof of Theorem |. We can assume that 7 is sufficiently large
(recall that g is a fixed integer constant). We fix some integer L with

T
I<L<——F——,
T T 12(h+ 1)

to be chosen later. Thus, there exists Q such that the congruence

(39)

"=1y? (mod p), Q+1<x<Q+M/L,S+1<y<S+M,

has at least T/ L solutions. We can split the interval [Q 4+ 1, Q + M /L] into kg =
[T/(6(h+1)L)] intervals of length at most 6(h+ 1) M/ T . Since there are at most
two solutions to the above congruence with the same value of x, and since we
have at least T/L > 4(h 4 1)ko solutions in total, from the pigeonhole principle
it follows that there exists an interval of length 6(h + 1) M /T containing at least
2(h 4 1) pairwise distinct values of x. Let xo be the first of these values, and
(x0, yo) the solution. It is clear that 7/L is bounded by the number of solutions
of

(xo+ )" =xr(o+y)* (mod p),
—M/L<x<M/L,-M<y=<M,

which is equivalent to
cpx" + -+ erx +coy=y*  (mod p),
~M/L<x<M/L,-M<y<M, (40)
where

A
co=—2yp and q:k*(j)xé’ I j=1,...,h,

with A* defined by A*A =1 (mod p) and 1 < A* < p. In particular, ¢, # 0
(mod p). Besides, there are at least 24 + 1 solutions (x, y) of (40) with pair-
wise distinct x and such that 1 < x < 6(h + 1)M/T. From these 2k + 1 values

we fix h: (x1, y1), ..., (X, yr) and rewrite (40) in the form
Xt x y Ch y2
x;Z .o Xho Yn Cl = yi (mod p). (4D
x{’ X1y €0 y12
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Since A is odd, by Lemma 14, we know that at most 24 pairs (x, y), with pairwise
distinct x, satisfy both the congruence (4 1) and the congruence

X" x y

h

Yheo YRl — 00 (mod p).
x{‘ oo X1 )

Since there are at least 24 + 1 solutions of (4 1), for one of them, say (x;+1, Yr+1),
we have

xf+1 <o Xh41 Yh+1
h

A=|*n - Xi Yh 10 (mod p).
x{l X1 i

Note that 1 < |A| K (M/ T)h(h+1)/2M. Now we solve the system

h 2
Xpy1 oo Xh+l o Yh+l cp Y1
h cr 2
X, e Xn Yh h—1 = Yh (mod p) (42)
x{’ X1 Y1 €0 y%
with respect to (cy, ..., c1,¢co). We write A; for the determinant of the matrix
on the left-hand side where we have substituted the column j by the vector
(y}zl+1 AU ylz). With this notation we have that
Apyr1—j
ci=———, j=0,...h,
J A J

and the congruence (40) is equivalent to
Ax" 4+ Apx" N Apx 4+ Appy — Ay? =0 (mod p).

In particular, A; £ 0 (mod p). We can write this congruence as an equation
over Z:

A"+ Apx" b Apx + Ay — AyP=pz, zeZ. (43)
We can easily check that
| A1l < (M/ T2 12

and
|A; | < (M)T)! DRI =1, k.

Thus, collecting the above estimates, we derive

h
1 .
2l < ;(Z A M/ At M+ |A|M2>
j=1
M3 [
< —(Z(M/T)’“’“V”f1 (M/L)" I+ (M/T)’“’””/z)
p

j=1
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h

< E(Mh(h+l)/2T—h(h—l)/2L—h Z(T/L)—j+1 n (M/T)h(h+1)/2)
p =
MhB+D/243
< m
since by (39) we have
h Mh+1)/2

—j+1 _ h(h+1)/2
Z(T/L) =0() and (M/T) < DAL
Jj=1
Since k& is odd and A # 0, A; # 0, we have that, for each z, the curve (43) is
absolutely irreducible. Thus, by Lemma 12 it contains at most M !/#+°() integer

points (x, y) with |x|, |y|] < M. Hence,

U hso(l) MEB+D/2+43
0
T<LM (1 + W) 44)
for any L satisfying (39).
We can assume that the following lower bounds hold for 7':
T>MY" and T >24(h+1)(M(M*/p)*"+D 1) (45)

since otherwise there is nothing to prove.
Take L = |1 + (M#*+D/2 p)2/h+1) | We note that (39) holds since other-
wise L > 2 and we should have
M) /2N 2/ h(h+1) L T
e >L—1>—>_——
p 2 24+ 1)

MA\ 2/ 1+ M D /244N 2/ h(h+1)
> M| — e [ — ,
R ey

which is impossible.
If M < p¥"*+D_ then we have L = 1 and, in view of (45), also

h(h41)/243 h(h+1)/2+3 (R2+7)/2
M M M |
< 1.

pTh=D/2[h = pMB=D]2 = »
In this case, the bound (44) yields
If M > p?"*+D_ then we have
(M(h2+7)/2/p)2/h(h+l) <L« (M(h2+7)/2/p)2/h(h+l)’
and, recalling our assumption (45), we obtain
MDD /243
pThh=D/2h

Mh+1)/243
<

=1
th(h—l)/2(M4/p)(h—1)/(h+1)(M(h2+7)/2/p)2/(h+1)
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Hence, in this case we derive from (44) that
T < (M(h2+7)/2/p)2/h(h+1)Ml/h+u(1)

which concludes the proof.

5.7. Proof of Theorem

Clearly,
> N(H:B)=M*. (46)
HeH(®B)
We also set
T(B)= Y N(H:B) (47)
HeH(B)

As in [14], using (46), (47), and the Cauchy inequality, we derive
#H(B) > M*8T(B)" .

From (6) we observe that T (®8) is the numbers of pairs of vectors (a, b),

a, b € B, such that there exists « such that
ai=a*?2p;, (mod p), i=0,...,2¢g—1.
In particular,
a3y b3y =03, b3, ;| (mod p).
Now by Lemma |15 we see that there are only O(M*/p + M?>+°() possibilities
for the quadruple (azg—1,a24-2, b2g—1, b2g—2). When it is fixed, the parameter «

in (6) can take at most four values, and thus for every choice of (ao, ..., a2;—3),
there are only four choices for (bo, ..., byg—3). Therefore,
T(B) < M%7 2(M*/p + M>°W), (48)

When M < p'/28 we obtain T(B) < M2+t and #H(B) > M28+o),
which proves Theorem & in this range.
When M > p!'/(28) | we use a different approach. Using the notation
Ni(A) =#{(ai, bi): ai/bi=X (mod p), Ri + 1 <a;,bi <R + M},
we can write
p—1
T(B) =) No(@$")Ni(@*) - Nog_1(a*).
a=1

Thus,

p—1
ng(%) < <Z Ngg(a4g+2)) - ( N22§—1 (a4)>

a=1 a#0

p—1 p—1
< ((4g +2) > N® (a)) = (4 Y ONE <a)>,
a=1 a=1
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and then we have
p—1
2g
T(%B) < max 2 N8 (@).
o=
We observe that for any o % 0 (mod p), there exist integers r, s with 1 < |r|,
s < pl/z, (r,s) =1 and such that @« =r/s (mod p). Thus,

p—1
YonNF@= Y NE@sm+ Y NE(=r/s).
a=1

1<r,s<pl/2 1<r,s<pl/2
ged(r,s)=1 ged(r,s)=1

Our estimate of N;(r/s) is based on an argument that is very close to that used
in the proof of [2, Lemma 1]. Namely, we observe that N;(r/s) is the number of
solutions (x, y) to the congruence

x/y=r/s (modp), R +1=<x,y<R +M,
which, after the change of variables, is equivalent to the congruence
sx—ry=c (mod p), 1<x,y<M,
for a suitable c. We can write the congruence as an equation in integers
sx —ry=c+zp, 1<x,y<M, ze€Z.
We observe that

S|IM + |r|M + |c s|+|rhM

IZISH Ir| IIS(IIII)
4 p

For each z, we consider, in case it has, a solution (x;, y,), 1 <x,,y, < M. The

solutions of the Diophantine equation above is given by (x, y) = (x; +rt, y, +51),

t € Z. The restriction 1 < x, y < M implies that |t| < M/ max{r, s}.
Thus, we have

Ni(r/s) < (1 + i) <1 + M)

+ 1.

max{r, s} p
4M max{r, s} 2M 4M?
<1+ + .
p max{r, s} p
Therefore,
2
> NE/s)
lfr,s<p1/2
ged(r,s)=1
M?28 (max{r, s})?8 M2 M8
<« Z 1+ ( 2{ D 4
p-8 (max{r,s})¢ = p=8
I<r,s<pl/2
M52 M2 M
< (1+ % + ST + ng)

I<r<s<pl/2
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Mng2g+1 M2g M4gs
< Y s+ = +s28_1+p2g

1<s<pl/?
M ) 1 M*s
<<P+pg71+Mg Z ?—FF

I1<s<pl/?

The estimate of the sum with Nl.zg (—r/s) is fully analogous.
Assume that M > pl/ (28) and observe that

1 logM ifg=1,
<
Z s28=1 {1 if g >2.

I<s<pl/2

Thus, we have
M*logM + M*/p ifg=1,

49
M8 4 M4/ p2! if g > 2, @)

T(B) < {
which gives

min{p, M*HoM}  ifg=1,

#H(B) = M*T(B) ™!
= METE > {min{ng‘,wg} ifg>2,

and proves Theorem & in the range M > p'/2¢.

6. Comments

The problem of obtaining a nontrivial upper bound for I¢(M; R, S) in the range
p'/3 < M < p'/? is still open.

On the other hand, we note that using bounds of exponential sums obtained
with the method of Vinogradov instead of Lemma (see [5; 16; 31; 38] and
references therein) also leads to some nontrivial bounds on J¢(M; R, ), but these
results seem to be weaker than a combination of Theorem 5 with the bounds
from [13].

Similar ideas can be exploited to obtain lower bounds for the cardinality of
the set Z(3) of nonisomorphic isogenous elliptic curves H, with coefficients in a
cube B.

Indeed, let us denote by Z; the isogeny class consisting of elliptic curves over
I, with the same number p + 1 — ¢ of IF,-rational points. By a result of Deuring
[15], each admissible value of #, that is, with |f] < 2p1/ 2 is taken, and hence
there are about 4 p'/? isogeny classes. Furthermore, Birch [4] has actually given a
formula via the Kronecker class number for the number of isomorphism classes of
elliptic curves over a finite field F; lying in Z;. Finally, Lenstra [24] has obtained
upper and lower bounds for this number and, in particular, shown that

#I, < p'/?log p(loglog p)>. (50)

Observe that once again bounds for N(H;*B) can be translated into bounds
for the number of isogenous nonisomorphic curves with coefficients in B, via
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multiplication by p!'/?t°() However, as we have done before, one can obtain
better bounds in terms of 7' (°B) given by (47).

Thus, using (49) with g = 1 and also (50), we see that for the set H(t, B) of
elliptic curves H, € Z, with a € B, we have

#M(t,B)= > N(H.B)
HeH(B)NL,

s(#I,>”2< > N(H,%f)]/:<#Iz>”2T<%)‘/2
HeH(B)
L (M*p~1/4 4 pl/4M10g1/2 M)(logp)l/2 loglog p.
This improves the trivial bound
#H (1, B) < min{M?, p3/2 log p(loglog p)z}

(it follows from (50) that there are at most O( p3/ 2 log p(loglog p)z) Weierstrass
equations of elliptic curves in the same isogeny class) for p!/4+¢ < M < p7/8-¢
with any fixed ¢ > 0. Furthermore, it also implies the lower bound

2

#IL(B) >
maX|t|62p1/2 H(l, %)

> min{p'/*, Mp~'/*log™"/* M}(log p)~'/*(loglog p)~".
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