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Our scenario is the complex plane C = {z = x + iy} or
the Riemann sphere Ĉ .

= C ∪ {∞},
our objects are the complex functions

f : Ĉz −→ Ĉw

z 7−→ f (z) = Re (f (z)) + iIm (f (z)) .

The simplest cases are

• monomials P(z) = zn,

• polynomials P(z) = a0 + a1z + . . .+ an−1zn−1 + zn,

• rational functions
P(z)
Q(z)

=
a0 + a1z + . . .+ an−1zn−1 + zn

b0 + b1z + . . .+ bm−1zm−1 + zm

such that P(z) has no common factors with Q(z).
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An elementary example:

Figure: platonic-solids-22.pdf An elementary idea, the octahedron.

. . . From a famous book:
F. Klein,
Lectures on the Icosahedron and the Solution of the Equations of Fifth
Degree, (1884).
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Figure: platonic-solids-3.pdf First assertion, the octahedron determines a continuous
function ftop : S2 −→ S2.
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Figure: platonic-solids-31.pdf Second assertion; the octahedron determines a
complex rational function f(z) : Ĉz −→ Ĉw.
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Figure: platonic-solids-31.pdf Third assertion; in fact the octahedron determines an

explicit complex rational function f(z) =
z4 − 1

2z2 : Ĉz −→ Ĉw.
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Let Γ ⊂ Ĉz be the octahedron as a graph in the sphere.

Fortunate facts about the tessellation

Ĉz\Γ = T1 ∪ T2 ∪ T3 ∪ T4︸ ︷︷ ︸ ∪ T ′
1 ∪ T ′

2 ∪ T ′
3 ∪ T ′

4︸ ︷︷ ︸
.
= MΓ.

blue tiles white tiles

1 A point z ∈ Ĉz is cloured in blue if and only if f (z1) ∈ Ĉw is blue.
2 Along each edge of Γ, a blue tile and a white tile are glued in a

continuous fashion.
3 The blue tiles and white tiles are adjacent at the edges of Γ, in an

alternate way.
4 The number of blue tiles is equal to the algebraic degree of f .

The same holds for white tiles.
5 The number of tiles at the vertices of Γ is even.
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Figure: platonic-solids-2.pdf Fortunate facts about the octahedron as a tessellation
MΓ of the sphere.
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Which are the important/significative points of the function

f(z) =
z4 − 1

2z2 ?

• zeros 1, i, −1, −i,
• poles 0, 0, ∞, ∞,
• critical points

z1 = 1√
2
+ i 1√

2
z2 = − 1√

2
+ i 1√

2

z3 = − 1√
2
− i 1√

2
z4 = 1√

2
− i 1√

2
z5 = 0 z6 =∞,

• critical values

w1 = f(z1) = f(z3) = i
w2 = f(z2) = f(z4) = −i
w3 = f(z5) = f(z6) =∞.
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Let us recall that f ′(z) = df
dz (z) denotes the complex derivative.

Lemma.
Let f be a polynomial (real or complex),
f ′(z0) ̸= 0 if and only if f is a local bijection in a neighborhood of z0.

Lemma.
For f a complex polynomial, if f ′(z1) = 0,
then f is k to 1 in a punctured neighborhood of z1, where k ≥ 2.

A critical point z1 of f is such that f ′(z1) = 0.

The critical value of a critical point z1 is t1 = f (z1).

A cocritical point of f is a point zcc such that
f ′(zcc) ̸= 0 and f (zcc) = t1 is a critical value.
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Figure: platonic-solids-4.pdf The important/significative points of the function

f(z) =
z4 − 1

2z2 are just its critical points (since they are the vertices of Γ). Moreover,

the critical points are the pull–back of the critical values under f .
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How lucky have you been?

In other words;
we can construct analogous tessellations for other functions/surfaces?

Our objective is explore the correspondence
complex holomorphic functions f : M −→ Ĉw←→ tessellations MΓ on M
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A question1 by William P. Thurston in 2010:

What is the shape of a

complex rational function?

1See; What’s Next? The Mathematical Legacy of William P. Thurston, Ed. by Dylan P.
Thurston, Annals of Mathematics Studies vol. 205 (2020), page 215.
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Figure: thurston-album.pdf William P. Thurston (1946 – 2012) was an American
mathematician. In 1982 the International Mathematical Union awarded him the
Fields Medal.

The above question is surprising, because in 2010, Thurston had already
found very profound results for complex rational functions and their
dynamics.
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What is the shape of a

complex functions?
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Figure: complex-functions1.pdf A complex rational function
f (z) = (z2−1)(z−2−i)2

(z2+2+2i) : Cz −→ Cw. Source: Wikipedia
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Figura

Roberto
Figure:
A complex rational function f (z) = (z2−1)(z−2−i)2

(z2+2+2i) : Cz −→ Cw. Source: Wikipedia
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Figure: complex-functions.pdf A complex rational function
f (z) = (z2−1)(z−2−i)2

(z2+2+2i) : Cz −→ Cw. Source: Wikipedia
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A surprise:

There are at least three equivalent ways (coordinate systems) to write
complex monic polynomials of degree n

coefficients roots

critical points .
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Coefficients and roots lead us to algebra.
The critical points (those where the derivative vanishes) lead us to
differential/integral calculus, and analysis.
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The object is Viète’s map V2 for quadratic monic polynomials.

roots 7−→ roots without order 7−→ coefficients

C2 −→ C2

Sym(2)
V2−−−→ C2

V−1
2←−−

(z1, z2) 7−→ [z1 : z2] 7−→ (c, b)

=
(

z1z2,−(z1 + z2)
)

= z1z2︸︷︷︸
c

+(−z1 − z2)︸ ︷︷ ︸
b

z + 1︸︷︷︸
a

z2

Sym(n) is the symmetric group whose elements are the possible exchanges in
n positions.
V−1 is the application of taking the roots.
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Figure: aplicacion-vieta.pdf Geometry of the Viète’s map V2, for real quadratic
monic polynomials.

V2 : R2
roots with order −→ R2

coefficients
(x1, x2) 7−→

(
x1x2, −x1 − x2

) .
= (c, b),

using our elementary knowledge
(x− x1)(x− x2) = x1x2 + (−x1 − x2)x + x2.

22 / 127



The Viète’s map Vn for monic polynomials of degree n.

roots 7−→ roots without order 7−→ coefficients

Cn −→ Cn
Sym(n)

Vn−−−→ Cn

V−1
n←−−−

(z1, . . . , zn) 7−→ [z1 : · · · : zn] 7−→ (a0, . . . , an−1)

=
(
(−1)n(z1 · · · zn),

.

.

.
−(z1 + . . . + zn)

)
= (−1)n

(z1 · · · zn)︸ ︷︷ ︸
a0

+ . . .−(z1 + . . . + zn)︸ ︷︷ ︸
an−1

zn−1 + zn
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From critical points to monic polynomials an ancient idea, . . . R. Thom2:

critical points critical points coefficients
with order without order

Cn−1 → Cn−1

Sym(n) → Cn
coeff

(c1, . . . , cn−1) 7→ [c1, . . . , cn−1] 7→ n
∫ z

0 (z− c1) · · · (z− cn−1)dz

= ( a0︸︷︷︸
=0

, a1, . . . , an−1) .

Note that, we only use n− 1 critical points for degree n.

2See; Polynomials with preassigned values at their branching points, J. Mycielski, Amer.
Math. Montly 77:8 (1970), page 853–855.
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For rational functions R(z) : Ĉz −→ Ĉw, we have a complete diagram 3

coefficients roots

critical points critical values .

-�

?

6

?

6

-�

A polynomial is determined by
its critical points.

3See; Polynomials with preassigned values at their branching points, J. Mycielski, Amer.
Math. Montly 77:8 (1970), page 853–855.
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Example. Critical points, critical values and cocritical points.

Figure: cuartica-real.pdf A quartic polynomial P(z) : Cz −→ Ct with 3 critical points
c1, c2, c3 ∈ Cz, 3 critical values t1, t2, t3 ∈ Ct (all in red ) and 4 cocritical points in Cz

(in green).
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Local normal form theorem meromorphic functions
Let us consider a meromorphic function

Ψ(z) : U ⊂ Cz −→ Ĉw

non identically constant At each point zj ∈ U, up to local holomorphic change
of coordinates {z 7−→ h(z) = z} (in the domain U) and Moebius
transformation in Ĉz, Ψ is reduced to

z 7−→
{

zµ µ ≥ 1
zµ = 1

z|µ|
µ ≤ −1.

The integer number µ = µ(zj) ∈ Z\{0} locally controls Ψ near of zj.

The critical points of Ψ occurs for µ ∈ Z\{−1, 0, 1}.
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1

Ψ(z) ≡ a0, {µ = 0}.
2

Ψ(z) = a1z1 + a2z2 + a3z3 + · · ·︸ ︷︷ ︸
regular point, a1 ̸=0 {µ=1}.

3

Ψ(z) = aµzµ + aµ+1zµ+1 + aµ+2zµ+2 + · · ·︸ ︷︷ ︸
zero of order, {µ≥1}.

4

Ψ(z) =
a−µ

zµ
+

a−µ+1

zµ+1 + · · ·+ a−1

z1 + a0 + a1z1 + · · ·
︸ ︷︷ ︸

order pole, {µ≤1}.

5

Ψ(z) = · · ·+ a−k

zk + · · · a−1

z1 + a0 + a1z1 + · · ·
︸ ︷︷ ︸

essential singularity, {µ=−∞}.
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The points





interesting,
important,
distinguished · · ·

{zj} of a meromorphic function

Ψ : Cz −→ Ĉt

{zj ⊂ Cz} are the critical points of Ψ.
{Ψ(zj)} ⊂ Ĉt are the critical values of Ψ.
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Figure: lista-de-ceros-mosaicos.pdf The critical points of Ψ (and their orders) are
visible using γ and Γ = Ψ−1(γ).
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Figure: mosaicos-z2-z3-z4.pdf Critical points of Ψ in normal form.
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Schwarz–Klein’s algorithm:

Let f : M −→ Ĉw be a meromorphic function.
1 Localize the critical points of f , say

{z1, . . . , zm} ⊂ M.
2 Localize the critical values of f ,

{w1, . . . ,wm} ⊂ Ĉw.
3 Construct a Jordan trajectory

γ ⊂ Ĉw by {w1, . . . ,wm}.
4 Compute

Γ = f−1(γ) in M.
5 The tessellation is

MΓ = M\Γ.
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Schwarz–Klein’s algorithm:

.
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Figure: klein-schwarz.pdf Felix Klein (1849 – 1925) and Hermann Schwarz (1843 –
1921), german mathematicians who pioneered the construction of tessellations for
complex functions and for complex differential equations.
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Figure: klein-protokolle.pdf Klein Protocols page. Chislenko E.; Tschinke Y.: The
Felix Klein protocols, Notices of the AMS, vol. 54, núm. 8 (2007), 960–970.
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Example. The monomial P(z) = z2.

Figure: monomio-cuadratico.pdf The monomial P(z) = z2 has a critical point at
0 ∈ Cz and a critical value at 0 ∈ Ct.
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Let us remember that P(z) = z2 is a map of the plane in the plane, as shown in
the diagram

R2 -
(

x2 − y2
︸ ︷︷ ︸
Re(z2)

, 2xy︸︷︷︸
Im(z2)

) R2

Cz
-z2

Ct

6

?

T−1 T

where T(x + iy) = (x, y) is the translator.
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Figure: mosaico-monomio-cuadratico.pdf The “Theorem” is: a point z0 ∈ Cz is blue
if and only if Im

(
z2

0

)
> 0, a point z0 ∈ Cz is white if and only if Im

(
z2

0

)
< 0. The

four tiles in Cz determine a tessellation MΓ.

The tessellation MΓ is the shape of P(z) = z2!
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Example.
What happens for a general monic quadratic polynomial?

Figure: cuadratica-real.pdf The quadratic polynomial P(z) = a0 + a1z + z2 has a
critical point c1 ∈ Cz and a critical value t1 ∈ Ct (both in red).

39 / 127



Two equivalent ways to write a monic quadratic polynomial P(z).
The algebraist’s form: using your coefficients (a0, a1), i.e.

P(z) : Cz −→ Ct

z 7−→ a0 + a1z + z2 .

The analyst’s form, using critical points and a constant term (c1, a0), i.e.

P(z) : Cz −→ Ct

z 7−→ 2
∫ z

0
(z− c1)dz + a0 = a0 + (−2c1)︸ ︷︷ ︸

a1

z + z2 .

c1 is the critical point from P(z),
equivalently
c1 is the zero of the derivative P′(z).
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Given a polynomial P(z) we assign blue and white colors to the points of
the plane Cz in a continuous and simple way.

We consider the polynomial

P(z) = a0 − 2c1z + z2 ,

with critical point c1
.
= c1 + ic2

and critical value t1 = P(c1)
.
= t1 + it2.

We consider the horizontal line γ that passes through the critical value t1,
i.e.

γ =
{

t | Im (t) = t2
}
⊂ Ct.
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γ determines a tessellation or mosaic Mγ of the plane Ct as follows

Ct\γ = T︸︷︷︸ ∪ T ′
︸︷︷︸

.
= Mγ .

blue
tessellation

white
tessellation

(1)

A point t0 ∈ Ct is blue if and only if Im (t0) > t2,

a point t0 ∈ Ct is white if and only if Im (t0) < t2.

The curve Γ in Cz that under P(z) coincides with γ is called the
generating curve of P(z),

P : Cz −→ Ct

Γ 7−→ γ.

How is the curve Γ?, are there equations that describe Γ?
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The generating curve Γ is algebraic4

Γ
.
=
{
Im (P(z)) = t2

}
=

{
Im

(
a0 − 2c1z + z2

)
= t2

}

=
{
a2 + 2(xy− c2x− c1y) = a2 − 2c1c2

}

=
{

xy− c2x− c1y + c1c2 = 0
}

=
{(

x− c1︸ ︷︷ ︸
vertical

line
by c1

)(
y− c2︸ ︷︷ ︸

horizontal
line

by c1

)
= 0

}
.

4This means that Γ is the zero of a polynomial of two variables x and y. Not every curve in
R2 is algebraic, being algebraic is a simplicity condition.
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The generating curve Γ is algebraic4

Γ
.
=
{
Im (P(z)) = t2

}
=

{
Im

(
a0 − 2c1z + z2

)
= t2

}

=
{
a2 + 2(xy− c2x− c1y) = a2 − 2c1c2

}

=
{

xy− c2x− c1y + c1c2 = 0
}

=
{(

x− c1︸ ︷︷ ︸
vertical

line
by c1

)(
y− c2︸ ︷︷ ︸

horizontal
line

by c1

)
= 0

}
.

4This means that Γ is the zero of a polynomial of two variables x and y. Not every curve in
R2 is algebraic, being algebraic is a simplicity condition.
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Figure: curva-generadora-grado-2.pdf The generating curve Γ of the polynomial
P(z) = a0 − 2c1z + z2 is the union of the horizontal and vertical lines that pass by the
critical point c1 ∈ Cz.
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Figure: mosaico-cuadratico-suspenso-afin-aranas.pdf The polynomial P(z)
continuously determines the colors blue or white in Cz\Γ. Given a blue point in Cz

the neighboring points are blue as long as there is a path between them that does not
cross Γ.

45 / 127



The generating curve Γ determines a tessellation MΓ of the Cz plane as
follows

Cz\Γ = T1 ∪ T2︸ ︷︷ ︸ ∪ T ′
1 ∪ T ′

2︸ ︷︷ ︸
.
= MΓ.

blue
tiles

white
tiles

(2)

A point z0 ∈ Cz is blue if and only if P(z0) is blue in Ct,

a point z0 ∈ Cz is white if and only if P(z0) is white in Ct.

The tessellation MΓ is

the shape of P(z) = a0 − 2c1z + z2 !
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Figure: mosaico-cuadratico-afin.pdf
The tessellation MΓ in the plane Cz of the polynomial P(z) = a0 − 2c1z + z2; we
coloured red the critical point c1 ∈ Cz and the critical value t1 ∈ Ct.
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Properties of the tessellation of P(z).

Lemma
Given Tℓ and T ′

ℓ blue and white tiles of MΓ, there exists

P−1(t) : T ∪ T ′ ⊂ Ct −→ Tℓ ∪ T ′
ℓ ⊂ Cz

i.e. a branch of the inverse function of P(z).

Do you remember
−b±

√
b2 − 4ac

2a
?
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Observation

Figure: orientacion.pdf When we traversing an oriented trajectory, say γ or Γ, in C,
it makes sense to decide which is the region to its left; the one pointed to by e2, the
tangent vector of the trajectory. This left region is by definition a blue tile.
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Example (object/experiment). A cubic polynomial P(z).

Figure: cubica-real.pdf The cubic polynomial P(z) = z3 − 3z has 2 critical points
c1, c2 ∈ Cz and 2 critical values t1, t2 ∈ Ct (all in red). Additionally, it has 2 cocritical
points in Cz (in green).
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Figure: puntos-valores-criticos-grado-3.pdf The cubic polynomial P(z) = z3 − 3z
has 2 critical points c1, c2 ∈ Cz and 2 critical values t1, t2 ∈ Ct (all in red).
Additionally, it has 2 cocritical points in Cz (in green).
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Two equivalent ways to write a monic cubic polynomial P(z)

The algebraist´s form: using your coefficients (a0, a1, a2), i.e.

P(z) : Cz −→ Ct

z 7−→ a0 + a1z + a2z2 + z3 .

The analyst form: using your critical point and your constant term (c1, c2, a0),
i.e.

P(z) : Cz −→ Ct

z 7−→ 3
∫ z

0
(z− c1)(z− c2)dz + a0

= a0 + 3c1c2︸ ︷︷ ︸
a1

z + −3(c1+c2)
2︸ ︷︷ ︸
a2

z2 + z3 .

c1, c2 are the critical point from P(z),
equivalently
c1, c2 are the zeros of the derivative P′(z).
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We assign blue and white colors to the points of the plane Cz in a
continuous and simple way.

We consider the polynomial

P(z) = 3
∫ z

0
(z− 1)(z + 1)dz = z3 − 3z ,

with critical points
c1 = 1, c2 = −1

and critical values
t1 = P(1) = −2, t2 = P(−1) = 2.

We consider
γ = R ⊂ Ct

the horizontal line that passes by the critical values t1 and t2.
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γ determine a tessellation Mγ of the Ct as follows

Ct\γ = T︸︷︷︸ ∪ T ′
︸︷︷︸

.
= Mγ .

blue
tessellation

white
tessellation

(3)

A point t0 ∈ Ct is blue if and only if Im (t0) > 0,

a point t0 ∈ Ct is white if and only if Im (t0) < 0.

The trajectory Γ in Cz that under P(z) coincides with γ is the generating
trajectory of P(z),

P : Cz −→ Ct

Γ 7−→ γ.

Are there any equations that describe Γ?
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The generating trajectory Γ is algebraic!

Γ
.
=
{
Im (P(z)) = 0

}
=

{
Im

(
z3 − 3z

)
= 0}

=
{

3x2y− y3 − 3y = 0
}

=
{

y︸︷︷︸
real
axis

(3x2 − y2 − 3︸ ︷︷ ︸
hyperbola
centered

at 0

) = 0
}
.

What lucky we are;
the cubic algebraic curve
Γ = {Im (P(z)) = 0} is easy to describe!

Γ is the union of a curve of degree one and a curve of degree two.
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The generating trajectory Γ is algebraic!

Γ
.
=
{
Im (P(z)) = 0

}
=

{
Im

(
z3 − 3z

)
= 0}

=
{

3x2y− y3 − 3y = 0
}

=
{

y︸︷︷︸
real
axis

(3x2 − y2 − 3︸ ︷︷ ︸
hyperbola
centered

at 0

) = 0
}
.

What lucky we are;
the cubic algebraic curve
Γ = {Im (P(z)) = 0} is easy to describe!

Γ is the union of a curve of degree one and a curve of degree two.
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Figure: curva-generadora-grado-3.pdf The generating curve Γ of the polynomial
P(z) = z3 − 3z is the unin of the real line {y = 0} with the hyperbola
{x2 − y2/3 = 1}.
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Figure: mosaico-colores-afin-grado-3.pdf The polynomil P(z) determines the colors
blue or white in Cz\Γ. Given a blue point in Cz the neighboring points are blue as
long as there is a path between them that does not cross Γ.
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Figure: mosaico-cubico-suspenso-afin.pdf The polynomial P(z) continuously
determines the colors blue or white in Cz\Γ. Given a blue point in Cz the neighboring
points are blue as longs as there is a path between them that does not cross Γ.

58 / 127



The generating curve Γ determines a tessellation MΓ of the plane Cz as
follow

Cz\Γ = T1 ∪ T2 ∪ T3︸ ︷︷ ︸ ∪ T ′
1 ∪ T ′

2 ∪ T ′
3︸ ︷︷ ︸

.
= MΓ.

blue
tessellations

white
tessellations

(4)

A point z0 ∈ Cz is blue if and only if P(z0) is blue in Ct,

a point z0 ∈ Cz is white if and only if P(z0) is white in Ct.

The tessellation MΓ is the form of P(z) = z3 − 3z!
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Figure: mosaico-cubico-afin.pdf The “Theorem” is: tessellation MΓ in the plane Cz

for the polynomial P(z) = z3 − 3z, critical points and critical values in red, cocritical
points in green.
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Example (object/experiment). A quartic polynomial P(z).

Figure: cuartica-real-sin-cocriticos.pdf A quartic polynomial P(z) : Cz −→ Ct; with
3 critical points c1, c2, c3 ∈ Cz and 2 critical values t1, t2 ∈ Ct (all in red), without
cocritical points.
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Observation. A general quartic polynomial P(z)

Figure: cuartica-real.pdf A quartic polynomial P(z) : Cz −→ Ct has 3 critical points
c1, c2, c3 ∈ Cz y 3 critical values t1, t2, t3 ∈ Ct (all in red). Furthermore, there can be
up 6 cocritcal points in Cz (in green).
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Two equivalent ways to write a monic quartic polynomial P(z).

The algebraist´s form: using your coefficients (a0, a1, a2, a3), i.e.

P(z) : Cz −→ Ct

z 7−→ a0 + a1z + a2z2 + a3z3 + z4 .

The analyst form: using your critical point and your constant term
(c1, c2, c3, a0), i.e.

P(z) : Cz −→ Ct

z 7−→ 4
∫ z

0
(z − c1)(z − c2)(z − c3)dz + a0

= a0 + (−4c1c2c3)︸ ︷︷ ︸
a1

z + 2(c1c2 + c1c3 + c2c3)︸ ︷︷ ︸
a2

z2 + −4(c1+c2+c3)
3︸ ︷︷ ︸
a3

z3 + z4 .

c1, c2, c3 are the critical point from P(z),
equivalently
c1, c2, c3 are the zeros of the derivative P′(z).
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We assign blue and white colors to the points of the plane Cz in a
continuous and simple way.

We consider the polynomial5

P(z) = 4
∫ z

0
z(z− 1)(z + 1)dz = z4 − 2z2 ,

with critical points
c1 = 0, c2 = 1, c3 = −1

and critical values

t1 = P(0) = 0, t2 = P(1) = P(−1) = −1.

We consider
γ = R ⊂ Ct

the horizontal line that passes by the critical values t1 and t2.

5simple, symmetrical, to facilitate calculations.
64 / 127



γ determine a tessellation Mγ of the Ct as follows

Ct\γ = T︸︷︷︸ ∪ T ′
︸︷︷︸

.
= Mγ .

blue
tessellation

white
tessellation

(5)

A point t0 ∈ Ct is blue if and only if Im (t0) > 0,

a point t0 ∈ Ct is white if and only if Im (t0) < 0.

The curve Γ in Cz that under P(z) coincides with γ is the generating
curve of P(z),

P : Cz −→ Ct

Γ 7−→ γ.

Are there any equations that describe Γ?
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The generating curve Γ is algebraic!

Γ
.
=
{
Im (P(z)) = 0

}
=

{
Im

(
z4 − 2z2

)}

=
{

x3y− xy3 − xy = 0
}

=
{

x︸︷︷︸
imaginary

line

y︸︷︷︸
real
line

(x2 − y2 − 1︸ ︷︷ ︸
hyperbola
centered

at 0

) = 0
}
.
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Figure: curva-generadora-grado-4.pdf The generating curve Γ of the polynomial
P(z) = z4 − 2z2 is the union of the real line {y = 0}, the imaginary line {x = 0} and
the hyperbola {x2 − y2 = 1}.
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Figure: mosaico-cuartico-suspenso-afin.pdf The polynomial P(z) continuously
determines the colors blue or white in Cz\Γ.
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The generating Γ determines a tessellation MΓ of the plane Cz as follow

Cz\Γ = T1 ∪ T2 ∪ T3 ∪ T4︸ ︷︷ ︸
blue

tessellation

∪ T ′
1 ∪ T ′

2 ∪ T ′
3 ∪ T ′

4︸ ︷︷ ︸
white

tessellation

.
= MΓ (6)

A point z0 ∈ Cz is blue if and only if P(z0) is blue in Ct,

a point z0 ∈ Cz is white if and only if P(z0) is white in Ct.

The tessellation MΓ is the form of P(z) = z4 − 2z2!
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Figure: mosaico-cuartica-afin.pdf The “Theorem” is: tesselation MΓ in the plane Cz

for the polynomial P(z) = z4 − 2z2, critical points and critical values in red, critical
points in green.
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Ĉw

Ĉw
Ĉz

Ĉz

∞

∞

∞z3

Figure: polinomios-grado-3-mosaicos.pdf Topological zoo for degree three
polynomials.
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Ĉw

Ĉw

Ĉw

Ĉz

Ĉz

Ĉz

∞

∞

∞

∞

∞z4

Figure: polinomios-grado-4-mosaicos.pdf Topological zoo for degree four
polynomials.
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On the topology of polynomial tessellations.

.
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Conclusions/problems:
1 Consider the correspondence

polynomial P(z) −→ γ −→ Γ −→ tessellation MΓ.

Which theorem/result can be done?

2 For a fixed degree n, can we topologically characterize the graphs
{Γ ⊂ Ĉz} that origin from polynomials?

3 What happens for rational functions R(z)?

4 What happens for transcendental functions Ψ(z)?
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Paste

Definition
An admissible paste of the collection of triangles {△α | α ∈ I} ⊂ R2

satisfies the following conditions,
1 A side ℓα ⊂ △α is identified with at most one side ℓβ ⊂ △β for α ̸= β,

or is not identified with any other side of△β in the collection.
2 Each identification Iαβ : ℓα −→ ℓβ is a bijective linear function between

the line segments ℓα, ℓβ .
3 Side identifications are made in such a way that the surface is locally

homeomorphic.
to an open disk D(0, ϵ) ⊂ R2 ó
to an half disk D(0, ϵ) ∩H2

= {(x1, x2) ∈ R2 | x2 ≥ 0}.
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Figure: pegados.pdf (a)–(b) admissibles pasting of triangles, (c) pasted thar the not
admissible of triangles.
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Lemma
(Paste for sides) Given two sides ℓα ⊂ ∂△1 and ℓβ ⊂ ∂△2. Si ℓα, ℓβ are
identified by Iαβ : ℓα −→ ℓβ , then the resulting space S is homeomorphic to a
quadriateral.
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Lemma
(Paste for vertices.) Given a finite collection of triangles△1, . . . ,△k. If 2k
sides are identified as follows:

1 A vertice is selected from each triangle vα ∈ △α and identify v1, . . . , vk
to a single point.

2 Additionally, one side is identified ℓα ⊂ △α (where vα is one endpoint of
ℓα) with one side ℓα+1 ⊂ △α+1 (where vα+1 is an endpoint of ℓα+1).

3 The identification is done in a “cyclical way to from a disk”, i.e. the side
ℓk ⊂ △k (where vk is an extremun of ℓk) is identified with the side
a1 ⊂ △1 (where v1 is an extremun of a1);

then the resuling space S is homeomorphic to a k–agono with its border.
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The role of the

Uniformization Theorem (Poincaré, Koebe)
Let M be a simply connected Riemann surface.
Then M is biholomorphic to one of the following

• the complex plane C,

• the Riemann sphere Ĉ,

• the half plane H = {z | Im (z) > 0}.
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Figure: aplicacion-riemann.pdf
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Figure: uniformizacion.pdf Meaning of r–gonality. In complex analysis any r–gon is
conformally equivalent to a disk in the Riemann sphere (the corners of the r–gon
disappear under a holomorphic map).
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Conjecture

There exists a “correspondence” between

{
rational functions
f : Ĉz −→ Ĉt

}
←→





certain kind of
embeded graphs

Γ ⊂ Ĉz



 .

The correspondence depends on the choice of γ.
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Figure: Platonic-solids.pdf Platonic solids; which of they are maps Γ?
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Applications

85 / 127



Figure: solidos-platonico.pdf The platonic tessellations determine rational Belyı̆
functions.
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Theorem (B. Riemann, H. A. Schwartz, XIX century)

1. A rational function f : Ĉz 7−→ Ĉt and a suitable γ determine a map
Γ = (V,E) as above.

2. A map Γ = (V,E) determines a rational map

f : Ĉz −→ Ĉt

having vertices,

{critical points of f} ∪ {cocritical points of f} = V.

In assertion (2) the vertices V of Γ are canonical.

However, the edges E of Γ are not canonical, they depend of γ.
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The two families of objects are of a very different nature:

Γ = (V,E) f(z) =
aαzα + . . .+ a1z + a0

bβzβ + . . .+ b1z + b0
d = max{α, β} d = max{α, β}
2 ≤ r ≤ 2d − 1 2 ≤ {#critcal values} ≤ 2d − 1

d = d the number of blue tiles,

r number of corners or vertices of Γ in the boundary of each tile.

. . . the role of the cocritical points.
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Corollary
A polynomial or rational tessellation MΓ has tiles Tℓ with the same number r
(= the number of critical values in Ĉw) of edges.

We are considering the cocritical points as edges of the tiles Tℓ in MΓ.
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Example. A cubic polynomial f.

Figure: cubica-0.pdf A cubic polynomial f : Ĉz −→ Ĉt Generically, f ′ has two zeros
in Cz, and two respective values in Ct (both in red). In this case d = d = 3, r = 3.

90 / 127



Figure: cubica-compleja.pdf Let f be a generic cubic polynomial. The
Schwarz–Klein’s algortihm recognize Ĉt as the union of two 3–gons . . . The Klein
tessellation MΓ for a generic cubic polynomial f , in red critical points, in green
cocritical points.
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Figure: cubica-compleja-1.pdf Meaning of r = 3: the critical and cocritical points
allow us to identify each tile of Mγ and MΓ as triangles.
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Example. A quartic polynomial f .

Figure: cuartica-0.pdf A generic quartic polynomial f : Ĉz −→ Ĉt is a map between
spheres, f(∞) =∞.
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Figure: cuartica-real-2.pdf For a quartic polynomial f : Cz −→ Ct; in red, 3 critical
points in Cz, 3 critical values in Ct; in green cocritical points in Cz.
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Figure: cuartica-compleja.pdf Klein tessellation for a generic cubic polynomial f , in
red critical points, in green cocritical points. The degree is 4 and 4–gonality.
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• Bad news:
the tessellation MΓ depends of the choice of γ in an strong way.

• Good news:
the algorithm of Schwarz–Klein applies for
many other functions (with essential singularities) and
on any Riemann surface, not just on Ĉz.
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a) b) c)

d)
e)······

···
···

···

Figure: mosaicos-2.pdf Three Schwarz–Klein tessellations (a), (b), (c) from rational
functions on Cz, and two tessellations on the plane (d) and the torus (e) from the
Weierstrass ℘ function.
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Theorem of Belyı̆, Grothendieck et al.
There are correspondences between:

Rational functions f : Ĉz −→ Ĉt having three critical values, up to a
Mobius transformation, 0, 1,∞ ∈ Ĉt.

Dessin d’ enfants f
−1[0, 1] ⊂ Ĉz.

Tessellations by triangles with blue & white alternated colors
Mf∗γ = Ĉz\{f∗γ}, for γ teh circle R ∪ {∞} ⊂ Ĉt by 0, 1, ∞.

16

6See; Belyı̆ G. V.: On Galois extensions of a maximal cyclotonic field, Mah. USSR
Izvestija, vol. 193, núm. 14 (1980), 247–256.
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Where are problems for more general hypothesis?

The correspondence
from tessellations (without cocritical point information) to rational
functions
is not fully understood.

For tessellations having as tiles r–gons, r ≥ 4.
The cocritical points and critical points in the r–gons must be match globally.

The labelling problem

Starting with a two color tessellation M of Ĉz or Mg.

How can we compute the r–gonality?

How can we attach new vertices at the boundary of the tiles and label
them using {1, . . . , r}, in order to match them globally?
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Example
A polynomial of degree four

Figure: Contraejemplo.pdf Case r = 4. A bad choice for the sequences of critical
points (and cocritical points) in the boundary of the tiles ... A re–labelling is
necessary.

It illustrated a forbidden distribution of the cocritical points.
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Thuston’s example 2010

Figure: Thurston.pdf The above tessellation can not be realized by any a rational
function f : Ĉz 7−→ Ĉt. In fact the sequences of critical points (and cocritical points)
in the boundary of the tiles become always contradictory. Degree d = 5, and
polygons with 2 ≤ r ≤ 4 · 5?

17
7See; Koch S. ; T. Lei: On balanced planar graphs, following W. P. Thurston, In What’s

Next The Mathematical Legacy of William P. Thurston, D. Thurston Ed. Ann. of Math.
Studies, 205, Princeton Univ. Press U. S. A. (2020), 215–232.
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Figure: ejemplo-complicado.pdf A non trivial example of the labelling problem;
starting with the tesellation; how can label the tiles in order to get 8 vertices in their
boundaries? Degree d = 8 and 8–gonality.

Theorem (L. Johanna Gonzalez Cely, 2019.)
If a tessellation M has only saddles in C and every tile has∞ in its boundary,
then it is realized by a polynomial function.
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Now, we search some applications . . .

Figure: complex-functions.pdf A complex rational function
f (z) = (z2−1)(z−2−i)2

(z2+2+2i) : Cz −→ Cw. (Source Wikipedia). Can we read this figure?
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Proposition. The dictionary (Klein, ..., Ahlfors, Strebel, Kerkoff ...)
On any Riemann surface M and for any complex analytic function h(z) (i.e.
meromorphic, with essential isolated singularities, accumulation of poles,
zeros, essential singularities),
there exists one to one correspondences

X(z) = 1
h(z)

∂
∂z

ωX(z) = h(z)dz ΨX(z) =
∫ z h(z)dz

�
�	�
�� @@I@@R

�
���
��

A
AKA
AU

ωX ⊗ ωX(z) = h2(z)dz2 ((Ĉ, gX),Re (X)).-�

,

18

8See J. Mucino–Raymundo, Complex structures adapted to smooth vector fields,
Mathematische Annalen, vol. 322 (2002) 229–265.

104 / 127



We can apply tessellations in order to study differential equations and
problems of integration.
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Figure: Holomorphic vector fields on Ĉ.

a) ∂
∂z corresponding to the function Ψ(z) = z.

b) z ∂
∂z corresponding to the function Ψ(z) = log(z).

c) (z− a)(z− b) ∂
∂z .

They generate the Lie algebra psl(2,C) of the Moebius transformation group
PSL(2,C).
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Figure: EsferaExpFlujoSinCampo.pdf Tessellation for the function f (z) = ez at∞.
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Figure: EjemploNoTipoFinito1.pdf Tessellation for the function f (z) =
∫ z ee

z
dz at

∞
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The transcendental function cosine.

Figure: funcion-1.pdf Tessellation for the function cos(z).
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The transcendental function ℘.

Figure: funcion-2.pdf Tessellation for the function ℘.
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The Weierstrass’s function

℘(z) =
1
z
+

∑

λ∈Λ\0

(
1

(z− λ)2 −
1
λ2 ) : T −→ Ĉw

and its tessellation in T =
C
Λ

.

.
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The transcendental function ℘′.

Figure: funcion-3.pdf Tessellation for the function ℘′
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The elliptical integral.

A meromorphic function Ψ : M2 −→ Ĉw and its tessellation.

Figure: genero-dos.pdf
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The elliptical integral.

A tessellation of the hyperelliptic Riemann surface

M2 = {y2 − (x− p1)(x−2)(x− p3) = 0} ⊂ C2
x,y,

it is related to the famous integral
∫ x dx

(x− p1)(x−2)(x− p3)

according to Jacobi and Abel.

.
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New roads after Riemann–Schwarz–Klein:

80’s G. V. Belyı̆, A. Grothendieck et al.
study functions f : Mg −→ Ĉt with 3 critical values (r = 3).

2010 W. Thurston et al.
study tessellations M on Ĉz (without vertex information), in order to
decide which tessellations come from rational functions.
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Figure: cubica-compleja-2.pdf Three graphs associated to f . a) The map Γ
Riemann–Schwarz–Klein. b) The map Γ deleting the cocritical points Thurston. c)
The dessin d’enfant (by definition f

−1[1, 2]), Belyı̆–Grothendieck .
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Future projects.
Open as far as we know.
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Project 1.

Given a realizable tessellation M in Ĉz (Thurston 2011 et al. provide the
combinatorial conditions):
compute explicitly the corresponding rational function, finding suitable

coefficients f(z) =
aαzα + . . .+ a1z + a0

bβzβ + . . .+ b1z + b0
.
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Project 2.

Given a two color tessellation M in a compact Riemann surface of genus
g ≥ 1. Extended the results of
• Thurston et al. (affirmative conditions) and/or
• J. González–Cely (constructive for polynomials),
asserting under which conditions a good labelling exists, i.e. M determines a
meromorphic map f : Mg −→ Ĉt.
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Project 3.

If all the critical values are in a line on a circle, then f
∗γ has an algebraic

equation (up to Mobius transformation)

{Im (f) = 0} ⊂ Ĉz.

Study these algebraic curves.
Classify the rational functions f with the above property.

• Relate clearly, the monodromy of a rational function to its tessellation.

• Relate the zoo’s of topological tessellations to other enumerative questions
for polynomial and rational functions.
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Project 4.

Use triangulations or r–gonality to construct/classify rational or
transcendental vector fields on Ĉz or Mg.
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Figure: solidos-platonico.pdf
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Figure: triangulos-mitad-4.pdf
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Figure: solidos-platonico.pdf
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Matemática Sociedad Matemática Mexicana, vol. 70 (2020) 77–108.

Alvarez–Parrilla, A.; Muciño–Raymundo, J.; Dynamics of singular
complex analytic vector fields with essential singularities I, Conform.
Geom. Dyn. Vol.21 (2017) 126–224.

Alvarez–Parrilla, A.; Muciño–Raymundo, J.; Dynamics of singular
complex analytic vector fields with essential singularities II, J. Singul.
Vol.24 (2022) 1–78.

Alvarez–Parrilla, A.; Muciño–Raymundo, J.; Symmetries ofcomplex
analytic vector fields with an essential singularity on the Riemann sphere,
Adv. Geom. Vol.21, no. 4. (2021) 483–504.

125 / 127



References II

Alvarez–Parrilla, A.; Muciño–Raymundo, J.; Solarza–Calderón, S.;
Yee–Romero C.: On the geometry, flows and visualization of singular
complex analytic vector fields on Riemann surfaces, Proceedings of the
2018 Workshop in Holomorphic Dynamics. (2018), 21–109.
arXiv:1811.04157

Belyı̆ G. V.: On Galois extensions of a maximal cyclotonic field, Mah.
USSR Izvestija, vol. 193, núm. 14 (1980), 247–256.
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