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Abstract—Singular complex analytic vector fields on the Riemann surfaces enjoy several geometric
properties (singular means that poles and essential singularities are admissible). We describe
relations between singular complex analytic vector fields X and smooth vector fields X . Our approx-
imation route studies three integrability notions for real smooth vector fields X with singularities
on the plane or the sphere. The first notion is related to Cauchy–Riemann equations, we say that
a vector field X admits an adapted complex structure J if there exists a singular complex analytic
vector field X on the plane provided with this complex structure, such that X is the real part of X.
The second integrability notion for X is the existence of a first integral f , smooth and having non
vanishing differential outside of the singularities of X . A third concept is that X admits a global flow
box map outside of its singularities, i.e. the vector field X is a lift of the trivial horizontal vector field,
under a diffeomorphism. We study the relation between the three notions. Topological obstructions
(local and global) to the three integrability notions are described. A construction of singular complex
analytic vector fields X using canonical invariant regions is provided.
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1. INTRODUCTION

Our aim is to characterize dynamically the real vector fields that coincide with the real parts of
singular complex analytic vector fields. Let S

2 = R2 ∪ {∞}, we consider a set S ⊂ R2, having at
most a finite number of accumulation points. Let X ∈ X∞(R2\S) be a C∞ vector field with two kind
of singularities smooth zeros at Z(X) ⊂ R2\S, and wide singularities, i.e. points in S where X is
undefined or non C∞.

Consider P = S ∪ Z(X), thus R2\P is a plane with topological punctures. There are plenty of
complex structures {J} such that (R2\P, J) is a Riemann surface.

Let X ∈ X∞(R2\S), under which conditions are there a complex structure J and a singular
complex analytic vector field X on the Riemann surface (R2\P, J), such that

ρX = Re (X) ? (1)

Here ρ is a C∞ non vanishing reparametrization on R2\P and Re (X) denotes the real part of X. The
adjective singular means that X may have poles and essential singularities at S ∪∞. For affirmative
cases, we say that J is an adapted complex structure to the vector field X. In fortunate situations,
J defines conformal punctures at P and a maximal Riemann surface (R2, J) emerges (conformally
equivalent to the plane C or the Poincaré disk Δ). The problem (1) for meromorphic vector fields X

on compact orientable surfaces, was studied in [11].
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INTEGRABILITY AND ADAPTED COMPLEX STRUCTURES 111

Secondly, we define that X is integrable if there exists an integrating factor μ and a Hamiltonian
vector field Xf of a function f , with df non vanishing on R

2\P, such that

μX = Xf , (2)

here μ and f are C∞ on R
2\P. Under which conditions X is integrable?

In fact, the non vanishing of df on R
2\P is the innovative condition, looking to other integrability

concepts in the literature.
Our third notion is as follows. A vector field X admits a global flow box if there exists an scaling

factor ρ and a probably multivalued map such that

(g, f) : R2\P −→ R
2, (g, f)∗(ρX) =

∂

∂τ
, (3)

here ρ and (g, f) are C∞ on R2\P. Under which conditions X admits a global flow box?
Geometrically, (3) means that, outside of its singularities the vector field X is a lift of the horizontal

vector field ∂/∂τ on R
2 under a probably multivalued map. Liftable vector fields appear in singularity

theory Arnold [4] p. 561 or du Plessis et al. [14] p. 120, and in Riemann surface theory [5, 6].
In our framework, a singular complex analytic, additively automorphic, single valued or multi-

valued function Ψ : (R2\P, J) −→ C has meromorphic local branchs and single valued differential dΨ.
In some cases, Ψ extends to S ∪∞ meromorphically and/or having essential singularities. A source of
nice affirmative examples for equations (1)–(3) is as follows.

Theorem 1 (A dictionary). There exists a one to one correspondence between

1) Singular complex analytic vector fields X on a Riemann surface (R2\P, J).

2) Singular complex analytic (additively automorphic, single valued or multivalued) functions

Ψ = g +
√
−1f + c on (R2\P, J), c ∈ C.

3) Integrable C∞ real vector fields X on R2\P.

4) C∞ real vector fields X admitting a global flow box (g, f) on R
2\P.

Moreover, the correspondence is such that

ρX = Re (X), Ψ∗X =
∂

∂t
, f = Im (Ψ) and df(X) = 0,

here t = τ +
√
−1σ denotes the complex time of X.

What does a singular complex analytic vector field X look like? As usual let us denote, H2

the open half plane, ΔR the open disk of radius R ≥ 1 in C, and ( ) the topological closure. A
dynamical/constructive characterization of vector fields X is as follows.

Theorem 2 (Decomposition for singular complex analytic vector fields). Let M ⊆ S2 be an open
connected surface.

1) Assume that M is obtained by the paste of a finite or infinite number of closed canonical
regions of type(

H
2
,
∂

∂z

)
,

(
{0 ≤ Im (z) ≤ h}, ∂

∂z

)
,

(
Δ1,

−2πiz

r

∂

∂z

)
,

(
ΔR\Δ1,

−2πiz

r

∂

∂z

)
,

h, r,R ∈ R∗. Then there exist a complex structure J and a singular complex analytic vector
field X on (M,J), extending the vector fields of the canonical regions.

2) Conversely, let X be a singular complex analytic vector field on (M,J), having at most a
locally finite set of real incomplete trajectories {zϑ(τ)}.

Then X admits a locally finite decomposition in regions as above.
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112 LEÓN-GIL, MUCIÑO-RAYMUNDO

As a novel aspect we present decompositions with an infinite number of pieces. In order to study the
questions (2) and (3) we require some concepts.

A vector field X ∈ X∞(R2\S) has the following remarkable trajectory sets:

The separatrix trajectories Γ(X) = {qj} ∪ {ζς} of X are points1) qj ∈ (P ∪ {∞})\{topological
centers, sources or sinks}, non stationary ζς = ζς(τ) trajectories, such that do not admit an open
neighbourhood in R2\P filled by trajectories having the same topology.

The separatrix skeleton X is Γ(X) = {qj} ∪ {ζς}, a graph with vertices {qj} and edges {ζς}.

The attractors A(X) of X are points qj ∈ P which admits topological parabolic sectors (in
particular, topological sources or sinks), periodic trajectories and polycycles (union of separatrices ζς ,
points qj ∈ P ∪ {∞} homeomorphic to a circle S

1 ⊂ R
2), whose holonomy germ is different from the

identity.
Corollary 1 (Global flow box for C∞ real vector fields). Let X be a complex analytic vector

field on (R2\P, J) with a locally finite set of incomplete real trajectories. Then the vector field
X = Re (X) ∈ X∞(R2\S) be a vector field that satisfies the following conditions

1. The separatrices Γ(X) determine a locally finite set of trajectories in R
2\P.

2. The periodic trajectories and polycycles in Γ(X) have C∞ identity as holonomy or first
return maps.

3. The holonomy of each hyperbolic sector at qj ∈ P ∪ {∞} is a C∞ diffeomorphism.

4. For each qj ∈ P ∪ {∞} a topological multi–saddle with 2k + 2 ≥ 2 topological hyperbolic
sectors, X is C∞ equivalent to

Re

(
1

zk
∂

∂z

)
= Re

(
1

zk

)
∂

∂x
+ Im

(
1

zk

)
∂

∂y
, k ∈ N ∪ {0},

in a punctured neighbourhood of qj .

In particular, the limit cycles are obstructions in order to get affirmative solutions questions (1)–(3).
About our hypothesis “X having locally finite set of incomplete real trajectories”: on Ĉ this set is finite
if and only if X is rational, see Corollary 5. In particular the existence of an essential singularity for X
implies an infinite number of incomplete real trajectories. Let us recall that our vector fields enjoy two
geometric properties.

Corollary 2. Let X ∈ X∞(R2\S) be a vector field as in Theorem 1.

1. There exists a C∞ flat Riemannian metric gX on R2\
(
Z(X) ∪S ∪ A(X)

)
, such that X is a

geodesic vector field.

2. X is one of the two linearly independent infinitesimal generators of a C∞ local (R2,+)-
action on R2\

(
Z(X) ∪S ∪A(X)

)
.

Among the families of C∞ vector fields satisfying the hypothesis in Theorem 1 there are; Hamiltonian
vector fields Xf and gradient C∞ vector fields ∇f , from f ∈ C∞(R2,R), having all its zeros of Morse
type.

The Uniformization Theorem asserts that any complex structure J on R
2 makes it conformally

equivalent to C or the Poincaré disk Δ; however the recognizing problem is hard. Using vector fields X
with adapted complex structures (R2, J) as in Theorem 1, we want to recognize the induced complex
analytic structure. Let us define that X has a finite trajectory gap if in

(
(R2, J),X

)
there exists a

1)Here we abuse of the notation, since a non smooth point is not a trajectory of X.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 1 2022



INTEGRABILITY AND ADAPTED COMPLEX STRUCTURES 113

holomorphic local flow box Ψ : U ⊂ R2 → C such that the image of the ideal boundary of R2 under Ψ is
a simple path β in C, see Definition 3 and Figure 5.

Corollary 3. Let X ∈ X∞(R2\P) be real a vector field which is the real part of a singular
complex analytic vector field X on (R2\P, J).

1) If X has a finite trajectory gap at a point q of P, then q is a conformal hole.

2) If J extends to P (i.e. all the points in P are conformal punctures) and the respective (R2, J)
has a finite trajectory gap, then it is biholomorphic to the Poincaré disk Δ.

Convention. By notational simplicity, we work in the C∞ category, however all the results remain
valid under C1 hypothesis.

The authors are very grateful with Alvaro Alvarez-Parrilla by several illustrative conversations.

2. FIRST INTEGRALS AND INTEGRATING FACTORS

We provide an explanation/review for the integrability equation (2). Let

X(x, y) = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
∈ X

∞(R2\S),

be a vector field, it has three associated objects:
• The sheaf of rings of first integrals of X

FI(X) = {f | LX(f) ≡ 0},

under addition and multiplication. As a matter of record: let {Uj} be the cover by open sets of R2\S, the
C∞ sheaf of rings FI(X) associates to each open Uj the ring of the C∞ first integrals fα : Uj −→ R

of X, considering addition fα + fβ and multiplication fαfβ as ring operations. Analogous C∞ sheaf
notions apply for groups and Lie algebras below.

• The sheaf of groups of integrating factors of X

IF(X) = {μ | μX is Hamiltonian},
under addition μ1 + μ2.

• The sheaf of Lie algebras of infinitesimal symmetries of X

Sym(X) = {Y | [X,Y ] = νX, ν function},
under the Lie bracket operation [Y1, Y2].

The classical relations between these objects are described by the operators

(4)

Here, the first operator and its inverse are

c1 : FI(X) −→ IF(X),

f 
−→ −1

a

∂f

∂y
=

1

b

∂f

∂x
,

(x,y)∫
μ(−bdx+ ady) ←−� μ. (5)

The second operator is not canonical, we use

c2 : FI(X) −→ Sym(X), f 
−→ Y =
1

−b∂f∂x + a∂f
∂y

(
−b

∂

∂x
+ a

∂

∂y

)
=

∇f

||∇f ||2 . (6)
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The right equality follows from LX = afx + bfy = 0, a = −b(fy/fx), b = −a(fx/fy) and a direct sub-
stitution in the first expression of Y . Note that c2 is not onto, since the resulting infinitesimal symmetries
c2(f) = Y and X are always orthogonal and this condition is not fulfilled for every Y ∈ Sym(X). In the
reverse direction, an usual choice is

c3 : Sym(X) −→ FI(X), Y = c
∂

∂x
+ d

∂

∂y

−→ f(x, y) =

(x,y)∫ −bdx+ ady

ad− bc
. (7)

The local geometric meaning of the first integral f = c3(Y ) is

f(x, y)− f(x0, y0) =

⎧⎨⎩time of Y required to travel between the

trajectories of X by (x, y) and (x0, y0)

⎫⎬⎭ .

The first integrals f = c3(Y ) are in general multivalued (for example when X has a source or sink).
Therefore, the sheaf structure on FI(X) allow us to use multivalued functions.

As an observation, c2 do not becoming the inverse operator to c3.
The remarkable Lie integrating factor μ, [7] p. 267, determines the operator

c5 : Sym(X) −→ IF(X), Y = c
∂

∂x
+ d

∂

∂y

−→ μ =

−1

ad− bc
. (8)

We propose the fourth operator as

c4 : IF(X) −→ Sym(X), μ 
−→ Y =

{
1

||∇μ||2∇μ if X is Hamiltonian
1

μ2div(X)
Xμ if X is non Hamiltonian.

(9)

If X is a Hamiltonian vector field, then each integrating factor is a first integral. However, c5 and c4 are
not inverse one of the other.

Example 1. In general, the domains where the first integrals, symmetries and integrating factors are
C∞ do not coincide. The Lotka–Volterra vector field is

X(x, y) = (αx+ δxy)
∂

∂x
+ (βy + ηxy)

∂

∂y
, α, β, δ, η ∈ R, α, β �= 0.

Let us consider

f(x, y) = α ln y − β lnx+ δy − ηx ∈ FI(X) on U1
.
= R

2\{xy = 0}.
The operators c1 and c2 determine an integrating factor and a symmetry

c1
(
f(x, y)

)
= − 1

xy
,

c2
(
f(x, y)

)
=

xy

(α+ δy)2x2 + (β + ηx)2y2

(
−(βy + ηxy)

∂

∂x
+ (αx+ δxy)

∂

∂y

)
on domains U1 = R2\{xy = 0} and U2

.
= R2\

(
0 ∪ (−β

η ,−
α
δ )
)
.

3. PROOF OF THEOREM 1

As motivation consider a naive question. Under what conditions the Hamiltonian and the gradient
vector fields of a function commute? Let J0 be the canonical complex structure on R2.

Corollary 4.

1) On C
.
= (R2, J0) the following assertions are equivalent.

i) The function V : R2 −→ R is a harmonic.
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ii) The Hamiltonian XV and the gradient vector field ∇V of V commute on R2 up to repara-
metrization by ρ = (V 2

x + V 2
y )

−1, thus [ρXV , ρ∇V ] = 0.

2) Moreover, for any Riemann surface (R2\S, J), the equivalence (i)–(ii) remains true for J–
harmonic functions, where ρ depends on J .

Proof. The function V determines a pair of 1–forms and its dual vector fields,

ωX
.
= Vxdx+ Vydy ωY

.
= −Vydx+ Vxdy

X
.
= ρ∇V =

1

V 2
x + V 2

y

(
Vx

∂

∂x
+ Vy

∂

∂y

)
Y

.
= ρXV =

1

V 2
x + V 2

y

(
−Vy

∂

∂x
+ Vx

∂

∂y

)
,

see Ahlfors [1], pp. 162–163. Now, the equivalence (i)–(ii) is a routine computation. �

Proposition 1.

1) On C there exists a natural one to one correspondences between singular complex analytic vector
fields X, singular complex analytic 1–forms ω and singular complex analytic maps Ψ (probably
multivalued but having single valued differential 2)), as the diagram shows

(10)

the correspondence with Ψ is up to additive constant.

2) Moreover, the following equalities hold

ω(X) = 1, dΨ = ω, Ψ∗X =
∂

∂t
, (11)

here t = τ +
√
−1σ is the target variable of Ψ and complex time of X.

3) For any Riemann surface (R2\P, J), the analogous correspondence (10) remains true. �

The left arrow in (10) is implicit in Ahlfors [1], pp. 162–163, see also [11, 12] and [3]. The accurate
application of (10) can be conducted as in the following possibilities 1–4, depending on the starting data.

1. Let X = u ∂
∂x + v ∂

∂y ∈ X∞(R2\S) be a real vector field satisfying the Cauchy–Riemann
equations.

Let Y .
= −v ∂

∂x + u ∂
∂y be the rotated vector field, under the canonical complex structure J0, we obtain

a complex analytic vector field

X =
(
u+

√
−1v

) ∂

∂z
=

1

2

(
X −

√
−1J0X

)
,

see Kobayashi et al. [10] p. 129, Prop. 2.11. By definition,

X
.
= Re (X) and Y

.
= Im (X) (12)

are the real and imaginary part of X. They commute and are linearly independent on M1
.
=

R2\(Z(X) ∪S).
The dual frame of real 1–forms is

ωX =
1

u2 + v2
(udx+ vdy), ωY =

1

u2 + v2
(−vdx+ udy),

2)These functions are called additively automorphic.
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satisfying

ωX(X) = 1, ωX(Y ) = 0,

ωY (X) = 0, ωY (Y ) = 1, (13)

that is the first equation in (11). The (multivalued) global flow box is

Ψ(x, y) =
(
U(x, y), V (x, y)

)
=

⎛⎜⎝ (x,y)∫
ωX ,

(x,y)∫
ωY

⎞⎟⎠ : R2\P −→ R
2

for X and Y respectively (U, V remain real analytic at the poles of X).
The third equation in (11) assumes the real form

(U, V )∗X =
∂

∂τ
, (U, V )∗Y =

∂

∂σ
. (14)

2. Let Ψ = (U, V ) : R2\S −→ R2 be a C∞ map, satisfying the Cauchy–Riemann equations.
Considering a critical points Σ(U, V )

.
= {(x, y) ∈ R2\S | U2

x + U2
y = 0}. We get two canonically

associated real vector fields

X
.
=

1

V 2
x + V 2

y

(
Vy

∂

∂x
− Vx

∂

∂y

)
=

−XV

V 2
x + V 2

y

,

Y
.
=

1

U2
x + U2

y

(
−Uy

∂

∂x
+ Ux

∂

∂y

)
=

XU

U2
x + U2

y

=
1

V 2
x + V 2

y

(
Vx

∂

∂x
+ Vy

∂

∂y

)
. (15)

The associated singular complex analytic vector field is

X =
1

2

(
X +

√
−1J2X

)
=

( 1

U +
√
−1V

) ∂

∂z
.

Note that J2 = J0, Y is linearly independent with X on M2
.
= R

2\
(
Σ(U, V ) ∪S

)
and [X,Y ] = 0.

The dual frame of 1-forms is
ωX = Uxdx+ Uydy = dU, ωY = Vxdx+ Vydy = dV

satisfying (13). Therefore (14) remains true in this case.
3. Let (g, f) : R2\S → R2 be a C∞ map, which is a local diffeomorphism and a set S with at

most a finite number of accumulation points. No Cauchy–Riemann conditions are required.
The singular set as a map is Σ(g, f) = {(x, y) ∈ R

2\S | gxfy − fxgy = 0}. Using equation (11), we
get two canonically associated real vector fields

X
.
= (g, f)∗

∂

∂t
=

1

gxfy − fxgy

(
fy

∂

∂x
− fx

∂

∂y

)
=

−Xf

gxfy − fxgy
,

Y
.
= (g, f)∗

∂

∂s
=

1

gxfy − fxgy

(
−gy

∂

∂x
+ gx

∂

∂y

)
=

Xg

gxfy − fxgy
.

Note that Y is linearly independent with X on M3
.
= R2\(Σ(g, f) ∪S) and clearly [X,Y ] = 0.

The dual frame of 1-forms is
ωX = gxdx+ gydy = dg, ωY = fxdx+ fydy = df.

We regard to the canonical complex structure, say J3, on the target {(τ, σ)} = {τ +
√
−1σ} of (g, f)

and the pull–back complex structure on the domain

J3(X)
.
= Y, J3(Y )

.
= −X. (16)

Note that, a priori J3 �= J0, it is different from the canonical structure on M3. As a result, the
map (g, f) : (M3, J3) −→ C becomes a local biholomorphism between Riemann surfaces, [10] p. 115.
Therefore,

X =
1

2

(
X +

√
−1J3X

)
LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 1 2022
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is a singular complex analytic vector field respect to J3, see [10] p. 122.

By definition given a pair (g, f) as above, g is the mate of f .

4. Let X = a ∂
∂x + b ∂

∂y ∈ X∞(R2\S) be a real vector field admitting a second one Y = c ∂
∂x + d ∂

∂y

that commutes, this is [X,Y ] ≡ 0.

TheC∞ singular set isSing(X,Y ) = {(x, y) ∈ R
2 | ad− bc = 0}. We considerM4

.
= R2\(Sing(X,Y )∪

S) and define an adapted complex structure J4 as

J4X
.
= Y, J4(Y )

.
= −X. (17)

Then the pair (M4, J4) is a Riemann surface. The dual frame of 1-forms is

ωX =
1

ad− bc
(ddx− cdy), ωY =

1

ad− bc
(−bx+ ady),

satisfying (13). They are closed 1-forms by the integrability hypothesis. There are two (probably
multivalued) first integrals

(
g(x, y), f(x, y)

)
=

⎛⎜⎝ (x,y)∫
ωX ,

(x,y)∫
ωY

⎞⎟⎠ : R2\
(
Sing(X,Y ) ∪S

)
−→ R

2 (18)

of Y and X respectively, such that the map (g, f) : (M4, J4) → C is a local biholomorphism, see [10]
p. 122. Therefore,

X =
1

2
(X +

√
−1J4X)

is a complex analytic vector field, respect to J4. The real form of (11) remains true.

X is the infinitesimal generator of a locally free (R2,+)–action on M4.

We summarize the diagram and the possibilities 1–4 as follow.

Proposition 2.

1) On the respective non singular loci Mι, ι ∈ 1, . . . , 4, there exists a natural one to one correspondence

= 0

(19)

here in the left column, z is a complex variable respect to the suitable adapted complex structure.

2) The complex analytic X, real Re (X) and Hamiltonian Xf vector fields in (19) admit

i) global flow box Ψ = g +
√
−1f ,

Ψ∗X =
∂

∂t
, (g, f)∗Xf =

∂

∂τ
,

ii) and the adapted complex structures Jι are such that

X = Re (X) = Xf .
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(a) (b) (c) (d)

Fig. 1. Real phase portraits of canonical regions of singular complex analytic vector fields X, in their boundaries, pieces
of trajectories and singular points (in red) appear.

Proof. By simple inspection, we start with the respective non singular object on (Mι, Jι) and
calculate the other three objects. �

Let us make some observations about (19). Two vector fields X, Y ∈ X∞(M4) are orthogonal and
|X| = |Y | if and only if the corresponding J4 is the canonical complex structure J0.

Remark 1 (Non uniqueness of the global flow box map (g, f) in (3), (19)). The group of C∞

diffeomorphisms of R2 = {(τ, σ)} preserving the vector field ∂/∂τ is generated by diffeomorphisms
of type; φι(τ, σ) = (τ + hι(σ), σ) called shear or Jonquière maps and φj(τ, σ) = (τ, hj(σ)), here
h(σ) ∈ Diff∞(R,R). Hence, the global flow box map (g, f)(x, y) = (τ, σ) of X is far from being unique,
i.e. the transversal structure of X is non canonical.

Proof of Theorem 1 follows by simple inspection of Proposition 2.

4. CANONICAL REGIONS FOR COMPLEX VECTOR FIELDS

Proposition 3. There exists a flat Riemannian metric gX associated to X on (R\P, J), such that the
real trajectories of Re (X) are unitary geodesics. �

Proof. For the proof see [11, 12], or/and [9, 15] for the quadratic differentials point of view. �

Definition 1.

1) The open canonical regions of are pairs (domain & holomorphic vector field) as follows

half plane H =

(
H

2,
∂

∂z

)
, strip S =

(
{0 < Im (z) < h}, ∂

∂z

)
,

half cylinder C =

(
Δ1,

−2πiz

r

∂

∂z

)
, annulusA =

(
ΔR\Δ1,

−2πiz

r

∂

∂z

)
, (20)

here H2 = {Im (z) > 0} is the open half plane and ΔR = {|z| < R} is an open disk.

2) Given X on (R2\P, J), a pair (U,X) is a canonical region of X when it is holomorphically equivalent
to one element in (20) and it is maximal. See Figure 1.

The canonical regions are Re (X)-invariant, in particular their real trajectories {τ 
→ z(τ)} are well
defined for all real time each canonical region. The boundaries of the canonical regions are geodesics
in the metric gX. The factor −2πiz/r in (20) makes the geodesic boundaries of gX–lenght r > 0, in the
case of half cylinder and annulus.

Definition 2. Let X be a singular complex analytic vector on (R\P), J), the separatrix skeleton
Γ(X) = {zϑ(τ)} of X is the union of its R–incomplete trajectories.

Example 2. A pole of order k. Let X be singular complex vector field on Ĉ, having a pole of order
k ≥ 1, the diagram from Eq. (19) is
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Table 1. Local analytic normal forms for poles and zeros of X

Normal
form of X

Analytic
invariants order

& residue
Flat metrics gX Ψ(z)

Top.
Invariants

words

∂

∂z
0 0 cone angle 2π z H · · ·H︸ ︷︷ ︸

2

1

zk
∂

∂z
−k ≤ −1 0 cone angle (2k + 2)π

zk+1

k + 1
H · · ·H︸ ︷︷ ︸

2k+2

λz
∂

∂z
s = 1 λ ∈ iR∗ S11π|λ| × (0,∞) λlog(z) C

λz
∂

∂z
s = 1 λ ∈ C\R S11π|λ| × (0,∞) λlog(z) P

zs

1− λzs−1

∂

∂z
2 ≤ s λ ∈ R

(2s−
2) copies (H

2
,∞)

1

(1− s)zs−1
+

λlog(z)
E · · ·E︸ ︷︷ ︸
2s−2

zs

1− λzs−1

∂

∂z
2 ≤ s λ ∈ C\R

(2s−
2) copies (H

2
,∞)

and a strip

1

(1− s)zs−1
+

λlog(z)
E · · ·E︸ ︷︷ ︸
2s−2

P

The canonical decomposition of X is

Ĉ\Γ(X) =
2k+2⋃
α=1

(
H

2,
∂

∂z

)
α

,

having complete separatrix skeleton

Γ(X) =
{
Im

(
zk
)
= 0

}
∪ {∞} ⊂ Ĉ.

Looking at ∞, 0 ∈ Ĉ, the germs3) of X and admissible words are(
(Cz, 0),

1

zk
∂

∂w

)
←→ H · · ·H︸ ︷︷ ︸

2k+2

,

(
(Cw, 0), w

k−2 ∂

∂w

)
←→ E · · ·E︸ ︷︷ ︸

2(k−2)

, for k ≥ 3.

Here H , E means the hyperbolic, elliptic angular sectors of Re (X), see Table 1 and Figure 4a–b.

3)The change of coordinates for ̂C is z �→ w = 1/z.
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(a) (b) (c)

···

··
·

Fig. 2. Decomposition in canonical regions without accumulation of singular points (in red) of X at ∞ ∈ ̂Cz . (a) and
(b) are rational vector fields, (c) is the complex exponential vector field (the small red circle denotes ∞).

Example 3. Consider the complex rational vector field as follows

X(z) =
z

z4 − 1

∂

∂z
, X(x, y)

.
= ρ(x, y)Re

(
z

z4 − 1

∂

∂z

)
,

for suitable ρ, the last is C∞ on R2. Using Figure 2a, we note that C\Γ(X) is a union de eight strips and
eight half planes.

Example 4. The complex exponential vector field on Ĉ. The diagram is

The vector field X = Re (X) have an infinite number of horizontal Reeb’s components on C,
Figure 2c. The decomposition in canonical regions is

Ĉ\Γ(X) >
∞⋃

α=−∞

(
H

2,
∂

∂z

)
α

,

having separatrix skeleton

Γ(X) = {Im (z) = kπ | k ∈ Z} ∪ {∞}.

Looking X at the point ∞ ∈ Ĉ, the germ and admissible word are(
(Cw, 0),−w2e−w ∂

∂w

)
←→ EE.

Here E means the entire sector of Re (X), see Eq. (22) and Figs. 4d–4e, the entire sectors come from X

on {z | Im (z) > 0} and {z | Im (z) < 0}.
Example 5. An infinite number of isochronous centers. Recalling that, a simple zero with pure

imaginary linear part determines an isochronous center, we consider
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(a)

f f f f f� � � � �

(b) (c) (d) (e) (f)

···

···

···

···

···

···

Fig. 3. Singular complex analytic vector fields X on a half plane, with an infinite number of canonical pieces,
accumulation of singular points (in red) and infinite number of real incomplete trajectories of Re (X) at ∞ ∈ ̂Cz.

see Fig. 3b. The canonical decomposition is

Ĉ\Γ(X) =
∞⋃
ς=1

(
Δ1,±iz

∂

∂z

)
ς

,

having an infinite number of half cylinders (isochronous centers).

5. PROOF OF THEOREM 2

Proof assertion (1) in Theorem 2. The main technical result for the proof is the following.

Lemma 1 ([15] p. 57, [11, 12]; Isometric glueing). Let (N1,X1), (N 2,X2) be two canonical regions
and let z1(τ) ⊂ ∂N1, z2(τ) ⊂ ∂N 2 be segments in trajectories of Re (X1) and Re (X2), having
the same length. The isometric glueing of them along these geodesic boundary preserving the
orientation of Re (X1) and Re (X2), is well defined, and provides a new flat surface (a Riemann
surface structure) on N1 ∪N2 arising from a new complex analytic vector field X. �

By hypothesis M , is obtained by the paste of closed canonical regions(
H

2
,
∂

∂z

)
,

(
{0 ≤ Im (z) ≤ h}, ∂

∂z

)
,

(
Δ1,

−2πiz

r

∂

∂z

)
,

(
ΔR\Δ1,

−2πiz

r

∂

∂z

)
,

h, r ∈ R
∗. Here the paste uses isometries that preserve the orientation of the real trajectories in their

boundaries. The assertion follows from the Corollary 1.
Proof assertion (2) in Theorem 2. By hypothesis, the incomplete trajectories of Re (X) are locally

finite in (M,J). Then, we remove the separatrix skeleton, thus M\Γ(X) is an finite or infinite union of
open sets invariant under the flow of Re (X). It is well known that interior of the open sets are necessarily
as in Definition 1. Thus, the Riemann surface (M,J) has a decomposition

M =
⋃
a

(
H

2
,
∂

∂z

)⋃
b

(
{0 ≤ Im (z) ≤ hb},

∂

∂z

)⋃
c

(
Δ1,

2πiz

rc

∂

∂z

)⋃
d

(
ΔRd\Δ1,

2πiz

rd

∂

∂z

)
. (21)

The Theorem 2 is done.
Example 6. Singular complex analytic vector fields having an infinite decomposition in

canonical regions. In Figure 3 drawing (a) is the complex exponential, (b) is isin(z) ∂
∂z . The (c)–(f)

use Theorem 2; they illustrate accumulation of poles and zeros to an essential singularity at ∞.
Some results on the set of incomplete trajectories Γ(X) are in order.
The local analytic normal forms for poles and zeros of meromorphic complex analytic vector fields,

Table 1, is well known, here in the right column H, E, P means topological hyperbolic, elliptic and
parabolic topological sectors for Re (X).

Corollary 5. Let X a singular complex analytic vector field on a simply connected Riemann
surface (M,J) as above. The following assertions are equivalent.

1) (M,J) = C or Ĉ and in any case X is (the restriction of) a rational vector field on Ĉ.

2) For each rotated vector field eiθX, its set of incomplete real trajectories Γ(eiθX) is finite.
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EH P

� � �

··· ···

··· ···

E  H
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··· ···

(a)

f

f f

f
f

f f

f

(f) (g) (h) (i)

(b) (c) (d) (e)

�

�

�

�

�

�

� � �

�

Fig. 4. Hyperbolic, elliptic and parabolic sectors are sketched in (a)–(c). Entire sector in (d)–(e). Other interesting
sectors in (f)–(i). The signs f and ∞ in the boundaries, describe the finite or infinite time of the boundary separatrix
to reach at the singularity at the vertex.

3) The decomposition of X on (M,J) has a finite number of canonical regions and no finite
trajectory gap, i.e. a segment of geodesic in the boundary of a canonical region that is not
identified in (M,J).

Proof. Assume Table 1 and let X be a complex rational vector field on Ĉz. The incomplete trajectories
are the separatrices at poles, hence they are finite number for each rotated vector field Re

(
eiθX

)
,

we perform the assertion (2). If we assume (2), then the separatrices are a finite number, and the
decomposition in canonical pieces is finite. Moreover, the poles and zeros are conformal punctures of the
complex structure (M,J), this is no gap trajectory can appear; see Corollary 1 and its proof in Section 6.
We leave the converse assertions for the reader. �

Moreover, a local version of Theorem 2 provides new non isolated singularities of complex analytic
vector fields, we give a very brief description. The topological hyperbolic, elliptic and parabolic sectors
for real vector fields of vector fields germs are illustrated in Figs. 4a–4c. Moreover they are analytic
germs and suitable flat metrics as follows.

The germs of singular complex analytic vector fields
(
(C, q),X

)
on angular sectors are as follows

a isochronous center at q = 0 C =

(
(C, 0),

iz

r

∂

∂z

)
, r ∈ R

+,

a hyperbolic sector at q = 0 H =

((
H

2
, 0
)
,

∂

∂z

)
,

an elliptic sector at q = ∞ E =

((
H

2
, ∞

)
,
∂

∂z

)
,

a parabolic sector, at q = +∞ P =

(
({0 ≤ Im (z) ≤ h},±∞) ,

∂

∂z

)
, h ∈ R

+,

a 1–class entire sector at q = ∞ E1 =
((

H
2
,∞

)
, ez

∂

∂z

)
. (22)

In order to recombine the angular sectors in Fig. 4 for perform new singularities, we consider as
combinatorial information a finite cyclic word

W = W1 · · ·Wk, Wι in the Fig. 4 alphabet. (23)

The following conditions are satisfied by W .
Each Wι can be interpreted also as a Riemannian manifold and an angular vector field germ

((Aι, qι),Xι) ∼= Wι.
The geodesic boundary of Wι has orientation and time to reach the singular point denoted f when is

finite or ∞, in our figures. We consider cyclic words in the sense that Wk+1
.
= W1. In order to perform
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(a)

z(t) = � z(t)�

(b) (c)

�

Fig. 5. A finite trajectory gap means that the ideal boundary of the metric gX (under a local flow box) is β.

the geometric paste of the angular sectors, we require the following additional rule; if the orientation and
the time t or ∞ coincide then the two trajectories can be pasted together. We have a new version of the
result in [3] p. 167:

Corollary 6.

1) The paste as above of a finite number of angular sectors W determines a germ of singular
complex analytic vector field

(
(C, 0),X

)
with singularity at 0.

2) The singularity 0 is a pole or zero of X if and only if a center, a finite number of hyperbolic,
elliptic and/or parabolic sectors appear at 0, recall Table 1. �

In the above, the vertex of the angular sectors is a conformal puncture, hence the singularity is a zero,
a pole or an essential singularity of X. The alphabet in Fig. 4 is far from begin complete, however it
shows the wealth of the theory.

6. ON THE CONFORMAL TYPE PROBLEM
Definition 3. Let J be complex structure on M ⊂ R

2 such that X = Re (X) is the real part of a
complex analytic vector field X on (M,J). X has a finite trajectory gap at the ideal boundary ∞ if there
exists a local (holomorphic) flow box

Ψ : (U ⊂ M,J) −→ C, such that lim
U�(x,y)→∞

ψ(x, y) = β ⊂ C,

where (x, y) → ∞ means that (x, y) tends to the ideal boundary of M , and β is a simple path in C

different from a point, see Fig. 5.
Proof of Corollary 3. Using the vector fields, we provide elementary arguments, compare with [2]

Ch. 10. Let X be a vector field on a simply connected (M,J) having a finite trajectory gap.
Case 1. The path β ∈ C, gap is a segment of trajectory of X. i.e. there exists in

(
(R2, J),X

)
a holomorphic local flow box Ψ : U ⊂ R2 → (0, ε) × (0, iε) ⊂ C such that Ψ−1(x+ i0) is in the ideal
boundary of R2, Fig. 5a.

We proceed by contradiction, let π : C → (R2, J) the uniformization of the adapted complex structure
to X. The map π−1 sends the ideal boundary of R2 to ∞ ∈ Ĉ. Then the composition (1z ) ◦ π ◦ ψ :
(0, ε)× (0, iε) → C is a biholomorphic map, continuous and real valued in {x+ i0}. Using the reflection
principle, we can extend (1z ) ◦ π ◦ ψ to a holomorphic φ : (0, ε)× (−iε, iε) → C, defining φ(x+ iy)

.
=

(1z ) ◦ π ◦ ψ(x− iy) for x+ iy in the lower rectangle, ( ) is the complex conjugation. As a result φ is a
local biholomorphism in the upper and low open rectangles and φ(x+ i0) ≡ 0, that is a contradiction.

Case 2. The path β ∈ C is a straight line segment. There exists a rotation eiθ, such that ψ−1(β)

coincides with a trajectory of eiθX, see Fig. 5b. Hence we can apply the above argument.
Case 3. The path β has arbitrary shape in C. Assume by a moment that there is a trajectory

z(t) of eiθX that determine a secant of β, see Fig. 5c. By case 2 the conformal structure on the
surface (M ′ ⊂ R2, J) bounded by z(t) has conformal hole. The region (U ′J) bounded by z(t) and β
is biholomorphic to the Poincaré disk Δ. If we consider the paste of (M ′ ∪Δ, J) obviously also has a
conformal hole.

The finite trajectory gap concept can be used for vector field germs X = Re (X) on ((R2\{0}, 0), J),
where the ideal boundary to be consider is 0. In this case, the existence of a finite trajectory gap, means
that 0 is a conformal hole of ((R2\{0}, 0), J). �
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p

V(H)

�1

q1

q2 (g, f )

q3

H

�2

�3

Fig. 6. The composition of holonomy maps, must be a C∞ diffeomorphism between transversals including their
boundary points q1, q2 ∈ Γ(X) inside of separatrices arriving or leaving p ∈ P ∪ {∞}, according to Definition 4.

7. COMPLEX STRUCTURES AROUND ISOLATED SINGULARITIES

Recall assertion (1) in Corollary 1. Let H ⊂ R
2 be a topological hyperbolic sector of X above, having

as boundary a vertex at p ∈ P ∪ {∞} and two separatrix trajectories ζ1, ζ2 ⊂ ∂H ∩ R
2, with α and

ω–limits at p (or viceversa). Let qj ∈ ζj j = 1, 2, be two nonsingular points of X and consider C∞

embedded transversals to X,

σj : [0, ε) −→ Σj ⊂ H, σj(0) = qj

as manifolds with boundary. There exists a holonomy map of X

hol : (Σ1, q1) −→ (Σ2, q2), (x, y) 
−→ φτ(x,y)(x, y), (24)

here φτ ( , ) is the flow of X and τ = τ(x, y) is a suitable time function on Σ1\{q1}. The map hol is a
C∞ diffeomorphism in the interior points of Σ1,Σ2.

Definition 4. The holonomy of an hyperbolic sector H is a C∞ diffeomorphism when the germ
hol : (Σ1, q1) −→ (Σ2, q2) is a C∞ diffeomorphism of manifolds with boundary, see Fig. 6.

As far as we known, Definition 4 is due to Kaplan [8] p. 224, it was called evenly spread, in Weiner
[16] p. 201 is ∞–normal, and also appeared in Zoladek [17].

Corollary 1 is now clear, we provide some interesting examples related to real vector fields.

Example 7. A prototype. The holonomy of a linear hyperbolic sector H of

X(x, y) = λ1x
∂

∂x
+ λ2y

∂

∂y
, λ1λ2 < 0,

is a C∞ diffeomorphism if and only if λ1 = −λ2. Moreover, in this case the first integral is f(x, y) = xy
and the infinitesimal symmetry is

Y (x, y) =
1

x2 + y2

(
y
∂

∂x
+ x

∂

∂y

)
.

Example 8. A holonomy map which is not a C∞ diffeomorphism, M.-P. Muller [13]. Let us consider

X(x, y) = −x4
∂

∂x
+ (x3y + 2xy + 2)

∂

∂y
∈ C∞(R2).

The holonomy of the hyperbolic sector H , with vertex in ∞ ∈ S2 which is bounded by the separatrices
ζ1 = {(0, τ) | τ < 0}, ζ2 = {(τ,−1/τ) | 0 < τ < 1 }, of the vector field X is not a diffeomorphism. For
this computation Muller used the Liouvillian first integral f(x, y) = (xy + 1)e−1/x2

. The infinitesimal
symmetry Y = ∇f/||∇f ||2 is not C1 at ζ1.

Example 9. The cusp; a removable singularity. The Hamiltonian vector field

Xf (x, y) = mym−1 ∂

∂x
+ nxn−1 ∂

∂y
on R

2
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of the function f(x, y) = xn − ym, where n,m ≥ 2 and (n,m) = 1, have at 0 a 2–saddle. The union of
the separatrices is the singular cusp {xn − yn = 0} at 0. If n is even ρ(x, y) = e−x/(mxm−1 + nyn) is a
scaling factor for Xf and there exists a second vector field

Yg(x, y) = −ex
∂

∂x
+ yex

∂

∂y

linearly independent with Xf , such that [ρXf , ρYg] ≡ 0 onR2. The Proposition 2 applies and there exists
a global flow box

Ψ(x, y) = (yex, xm − yn)

for ρXf on R
2\{0}. Analogously, if n is odd, there exist a scaling factor ρ(x, y) = e−y/(mxm + nyn−1)

and a global flow box Ψ(x, y) = (xey, xm − yn) for ρXf .

Example 10. Topological saddles with zero linear part. The vector field

X(x, y) = x3
∂

∂x
− y3

∂

∂y

determines a topological saddle on (R2, 0). Its foliation F(X) is symmetric respect to reflection on
both axes, hence the holonomy of each hyperbolic sector is a C∞ diffeomorphism on a punctured
neighbourhood of 0. There exists a single valued local diffeomorphism Ξ : (R2\{0}, 0) −→ (R2 −{0}, 0)
such that

Ξ∗(ρ2(x, y)X(x, y)) = x
∂

∂x
− y

∂

∂y
,

for suitable ρ2. The flow box around 0 exists, and is Ξ ◦Ψ.

Example 11. The saddle node. Let X ∈ X∞(R2, 0) be a saddle node

X(x, y) = x2
∂

∂x
− λy

∂

∂y
, λ ∈ R

+.

The function f(x, y) = eλ/x/y is a Liouvillian first integral. The holomomy of the hyperbolic sectors is
not a C∞ diffeomorphism. Hence, even in the punctured germ domain (R2\{0}, 0) does not exist an
adapted complex structure making X the real part of a singular complex analytical vector field. Using a
reparametrization

ρ(x, y)X(x, y) =
1

(x2 + y2)

(
x2

∂

∂x
− λy

∂

∂y

)
,

the trajectories of ρX arrives 0 at finite time. Moreover, if we remove the origin and the positive real x
axis; there exists an adapted complex structure making to ρX the real part of a holomorphic vector field
on (R2\{(x, 0) | x ≥ 0}, J), see Fig. 7. In fact, we consider an embedded transversal to ρX,

σ : (−ε, ε) −→ Σ1 ⊂ R
2\{(x, y) | (x, 0), x ≥ 0}.

The vector field Y tangent to Σ1 is transversal to ρX. We extend this transversal data over the whole
domain R2\{(x, 0) | 0 ≤ x} using the flow of ρX; this produces a vector field Y , such that [ρX, Y ] = 0.
Figure 7 shows the target of the global flow box Ψ = (g, f) and the shape of the associated flat surface.
When we identify the two right boundaries of the regions H , the origin 0 becomes a finite trajectory gap
(a conformal hole) of the resulting (R2\{0}, J) where J(ρX) = Y and J(Y ) = −ρX.

The converse of Corollary 1 is the goal of a future work.
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H

(g, f )
H

P

�1

�'

Fig. 7. The saddle node X(x, y) = x2 ∂
∂x

− λy ∂
∂y

determines the word HPH at 0; a global flow box exists on the plane
minus a ray {(x, 0) | 0 ≤ x}, here ρX becomes the real part of a holomorphic vector field.
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