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KALUZA-KLEIN MODEL FOR THE UNIFICATION OF THE BOSONIC SECTOR
OF THE ELECTROWEAK MODEL WITH GRAVITATION
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A 5ber bundle treatment for the unification of gravitation with the bosonic sector of the standard
! electroweek theory is presented, and the full quadretic Legrangian is given. It is shown that the Higgs and
Yang-Mills fields arise naturslly from the torsion. The formalism suggests the possibility of obtaining 2
prediction for the velues of the {’&ng—Miﬂs coupling constanis by means of the spontaneous compactification
of the base menifold.

shall give here only the main idezs; the detuils will be published elsewhere. )
In the specific case of SU(2) x U(1), the theory requires five different PTB’s that are inter-related
according to the diagram

Y , ' 1. The Bundle Framework For SU(2) x U(1)
: 7= Ay :

- B . A . - «

EY ' ‘\"*} We shall present here the appropriate iber bundle formalism for SU(2) x U{1) which leads to = gencral

N = G-invariant Keluze-Xlein type Lagrangian which unifies geometrically the bosonic pest of the electroweak

e X {; mode] with gravitation. To arrive at the approprizte theory requires a mew_prescription for the law of

~ "‘m.‘“ wy \'\} trensformation of the torsion as well 25 a very cereful cheice of connections. Due to space restrictions we -
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 Here M denotes an n-dimensional oriented manifold, which we teke to be space-time and which acts as
the base space of the following PFB’s :

1) % : F(M) — M | is the orthonormal frame bundle of M with group O(r,3). For u € F(M). 2nd the
usual beasis {¢;},7 = 1,...,n of R”, we choose an orthonormel frame at'z € U € M by means of the linear.
isomorphism u : ®" — Tu M, ie., ule) = B;i=1,..,n, cre orthoncrmal vector felds with respect to the
metric g on M, defined in  neighborhood U of z = #{x) in such 2 way that the local section ¢ : U — F{3)
determined by By, ..., £, is tangent to the borizontsl subspace of T,(ZJF(M) relative to the connection 8(g).

The curveture of this connection 8{g) €A (F(M}, Ofr, s}) is given by ;

080 = poladglg) = dé(g) + E[@(g), 6{g)] € R*(F(M),0(r,5)}, ) (1.1)

and we czn write

Q%) (0. By, 0 By (ex) = RPrijlo(=))en- S (1.2)

Note that for X, € T, F(M) we can define the canonicel 1-form oa € BMF(M),R") by

orelXa) = wHr (X)) €R : (13)
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In terms of this canonical 1-form the torsion 2-form €%} of 6(g) is given by
D A PIVISP STy W P(F(M), %), St
where the quantity 8{g)Apas is defined by
{8(9)Aoar) (KXo, ¥o) = 8(0)(Xu) - pre (Vo) = 8(9) (Yu) - oac(X), (1.5)

and the "dot” operation denotes the left action of O(r, £) on R™. Purthermore, since 6%(¢) (0eBi 0. B;) € »n

b
we can write

99(”)(U.E;,U.Ej) = S";‘;(a(:))ck. (1.8) -

If we now let @5, be the 1-forms dual to E;, e e () = 6%, then the pull-back with the local section o of
the canonical I-forms allows us to relate the curvet

ture 22d torsion tensors in F(M), zs given by (1.2) and -

(1.8), to the corresponding tensors in T=(M). Indecd, acting with o* ox (1.1) 2nd using (1.2) we get
RPs(o(2) = B uij(a). , (1.7)
Proceeding in a similar fashion with the torsion, we get, from (1.4),
§5(z). } ’ (1.8)

2) %1 : Py — M, is & PFB with group Gy = 5U(2)

and connection wy € AP, G1), where G is the
Lie aigebra of Gy. The curvature of the connectjon wy is

R 1 —a
O =Dy = dwy + E{wl,wx} € AP, G1). (1.9)

Note that if £, {a = 1,2, 3) is & basis for Gy, we can write wy = wfl,, and

1
0y = (dwf + Ecaﬁ,wf Aw])la, (110
where ¢¥. are the structure constants of G;. Morcover, if we let E_gl)
the horizontal subspace of T, Fy relative to wy, such that TI.E‘-U)
I-forms dual to El(l)

seos EX be an orthonormal basis of
= F;, and we also let géz;), « @1 be the
y e E',(,l), then we can zlso write

01 = 2{0)%te @ (o) A 2); o (1.13)

(SRS

where {11)%;; is 2 real function in x T HU).

3 %3 0Py — M is a PFB with group Gy = U{1) and connection wq € ‘AX(P;, Ga), where §; ie'the Lie
algebra of G,. Since U(1) is AbeBan, the curvature of the connection wq is .
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Similarly to 11; we can write 3 a3

s real function defined on =z~ U).
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w3 Pyo Py — M. We introduce zdditionzl structure on Pio by defning 2 non-degenerate bundle
metric & as follows: Let ky end kg be A§-imvexiant metrics on G; nné G5 respectively, and set

hewxl, g4k @ © ks (114

where &;= 7°w;. Relative to this metric, an orthonormal frame at {p1,p2) € P, o Py is given by
e

a o 0. 0
Ey, . Eny Ensty oy Enss, the horizontal lifts of the orthonormal basis £y, .., En on (3, g) such thet 712. Ei=
N o

E; and (:;1 =] :J;)(_QE.) =0, while Ensa=8 0 (a= 1,2,3) and EZ'“.H= 0@ f7 are fundamental vertical
fields on Py o P;. With this particular chosce of an orthopormal besis on 2 neighborhood of (p1,p3), the
czlculations in the folléwing sections will simplify considersbly. The curvaiure Q:"e;’ g L*(PyoP2, s ® G4)
of Wy © @y is given by ‘

ghieds = phsds (3, 6 8,) =+ (A ) @ () € B(Pio By G e F(Pie Py Gl (1.15)
We can write ’

0588 = ()% (L) @ (7 aiy) A (r7ely) © (el ) @ (7 dn) A (=" ol) (1.18)
] < o . Q.
={(01)%;la © (Qa)iss] ©@ & A &7,
where . . .
, ()% = (@)% ox,  (Da)y = (Ma)iy o
The one other construction which appears in our dingram is the orthonormal bundle of frames [T : F[P; o
Py} = P, o P;, for which Py o P, acts s a base manifold. I we let 6(h) € A {(F(Pro P),0(r +4,9))

denote 2 general connection on F(P; o Py}, we can now choose the vectors EL,...,%,._H‘ &3 ax orthomormal
frame for the horizontal subspace of T(lepz)F(P; o Py} relative to g(*). Furtbermore, i O = DGR €
A3(F({PioPs),O(r+4, 1)) is the curvebure of 8{h}, &: -Y(U) — F{P 0Py} is a local section determined by
the zbove orthonormal felds, and &; are stzndard horizontal vectors on F(Py 0Py} associated with ¢q € R

then .
0 (g, 85) {es) = RBeea (@(p1,p3))ea- NS Y))
If we now Write )
. o °
(0fhye, = §2°ud(Pz,.P2)$5= A%, , ’ {1.18)
2nd make use of {1.17}, we get :
R (p1,p2)) = R%bea(p1sp3)- ) {1.19)

We can use the local section & to define canonical 1-forms € AM{F(Pie P}, RPH), and corresponding to
@, we have that the torsion 2-form g L¥{F(Py o Py), &) of 8{h) is given by

S0 = DHM S= d b +H(AJA B, , (1.20)

i.e.'\ )
. ° ’ . o o N
890 (5, .5, Ba) = S%ual5(pr, p))ear - ' {221)
{from where
$®ealpr, pa) = S%ealFlprp2)} (1.22)

With these basic delnitions znd results, and choosing an’ appropriate real inear representation of the
' : o ° o

infinitesimal generators of SU(2) X U(1), one can compute the components relative 20 Ey, oy B, Ent1

° . ) o .
) ooy Enaa of the curvature snd torsion temsors for the metric k on P; o P;. We shall impose the restriction
of vanishing torsion on the base spsce M, ie. -

. Sie=0 : : o © (129
Furthermore, we tuke s3 ansatz the following expression for some of the connection components:
e L
T nrs = —(olla)) 2 2770 (124

o
where the matrices p{lg) comstitute the representation of the infnitesimel gemerators of SU(2Z) X U{1)
mentioned above. ‘
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I1. The Unified Lagrangian

Recall that the components of the Riemann tensor on Py o Py are releted to the connection 1-forms
§(k) = &*0(k) by means of (1.18). In matrix notation :

1 o ?.c 2 A a . a 3 G [
7R %ses(p1, Pa) A @t = df(h)% + B(R)5. AG(R)%,. (2.1)

Also, as mentioned previously, the Higgs felds may originate directly from torsion by assuming that the
connection §(A) is semi-symmetric. With this in mind, we make the following additionzl ensatz

1
S5~ = 2ot - (2.2)

and
et 2 3 : n+4 :7
Sty = ()%, STy = ((a)s (2.3)
Tvaluating el the components R%yq of the curvature tensor for the metric & on Py o Py relative to our
o o
orthonormel besis Ey, ..., Epss, as well as those of the torsion tensor, the Ricei tensor, and the Ricci sczler,
we may construct the most genersl G-invariant Lagrangizn density on Pro Py up to quadrztic terms in these
8 . s . ! y on . i X
quantities by adding up all the G-invariant terms which cen be odteined from them. The result is

B D = S IS J=Uatp, 4 (27
A 2
+ o Bijem B - ;E(q’A.‘I’A) + (- 1)(%s 247 | (2.0

o o ..

. Q o . . ’
= o (@) 755(0)7 7 = o Q)i (02)7 + as(DT94)(D:%4)

. 9 3
TH N CaAy L )
+ ag[Bi; R = (n—1)R(QAE") =

n—1,

+ o &,0% + K}

where Vy is the volume of the n-4 compact ”internal” coordinates of the base manifold, snd X is a constant
that contributes to the cosmological constant. The Lagrangisn density {2.4) is a well defined Tunction on the
base menifold A, and we can write an uction by integrating it over & volume element gg on M determined
by g =nd the orientztion of M i.e. . )

I= [ L g, (2.5)
Ju

where U in sn cpen subset of M with compact closure. . .

We now turn to the physical interpretetion of the curvatures Oy and Q. If we let {o1)o znd (o2)a be
loczl sections {01)u : M — P, {03}u : M — P, such that o1)u-Bi € Tp, Py and (02)un Bs €T, P, and
if we further choose the orthonormal basis at each = € U € M to be a coordinate besis E; =8, we then

have . R
(Q5)%:5 = &:({04) 705 (8;)) — 35((02) 2w (8:)) + capm{(on)awt (8:)) (o) 2] (85)) (2.6)
=g(r3;W-“_,-— BJ-W“;—‘rgcaﬁ.,W";W",-), '
(02)i5 = 8i((oa)5 (~iwa)(8:)) = &;{{ea)i{—iwa){80)) = ¢'(8:B; = 8;B5).. (2.7

where we have used the definitions

oW = ((oa)iws)(85) 7'B

Al

= {(oa}u(—iwa))(8:), (2.8)
end g, ¢ denote the dimensionless coupling constznts for the SU(2) and U(1) factors, respectively. Hence

pe. .= i(n,)a-,- =W, = B, W e, + geap WP W, (2.9)

Fy
g
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{(Qa)e; = 8:B; - 3; B,

are the feld tensors for the SU(2) and U(1) vector bosons, respectively.
To conclude this section we have only to properly dimension and inter

in (2.4) in order to bring it into the usual form of Einstein-Carten gravi

Higgs fields for the electrowesk model. After combining terms our act

pret the prrameters which occur
ravity coupled to the Yang-Mills and
ion becomes

= [ VorR+ @B + 02 R R 4 00, B
-

1 i _ 1o oy 1 :
= FuF = 2RGFY 4 5 (Di%4)(D'8%) (2.11)

2 A 2
+ Tz—@m/* - St - n—_"—l,\@m* +rA} dz,.

where we have made the following obvious identifications in order to fix the physical
401)r* = £ (the proportionality factor in the Einstein-Hilbert Lagrangizn), Zh;—‘l(ayr’ —-x)=mf>0
(square of the mass parameter associzted with the Higgs field), 2 [ain{n — 1} + 2oy + as(n~1)]=21>0
{coupling constant of the self-interaction term of the scalar field), A = the cosmological constant, asg? =
a? =31 o5 = 1. Note that the above provides a relation between the parameters &y and o 2nd the
Weinberg angle. Indeed,

I — '
tanfy = S = \/E‘S‘: (?“12)'
g Qg

The Legrengian for the scalar fields given above can be related via a unitery transformation to the form
in which it usually appears in the electrowesk model.

| parameters (g + .




