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Connection 1-forms on principal fiber bundles with arbitrary structure groups are considered,
and a characterization of gauge-equivalent connections in terms of their associated holonomy
groups is given. These results are then applied to invariant connections in the case where the
symmetry group acts transitively on fibers, and both local and global conditions are derived
which lead to an algebraic procedure for classifying orbits in the moduli space of these connec-
tions. ‘As an application of the developed techniques, explicit solutions for SU(2) x SU(2)-
symmetric connections over §* x $2, with SU(2) structure group, are derived and classified into
non-gauge-related families, and multi- mstanton solutions are identified.

1. Introduction

The principle of minimal coupling in physical theories translates, in the language of -
fiber bundles, into the requirement of invariance of the action density under the group
GA(P) of gauge transformations (i.e. of base-preserving automorphisms of a prlnClpaI '
fiber bundle P). Given a connection 1-form w on P, an important subgroup of GA(P)
is its internal symmetry group I,(P) = { f € GA(P)| f*® = w}, because it is the genera-
tor of internal conservation laws. In studying this group Fischer [1] has shown that,
if P is a connected manifold, then I,(P) is a finite-dimensional Lie group that acts
smoothly, freely, and properly on P, and it is isomorphic to the centralizer of the .
holonomy group of w. '

In the present work we analyse the more general case where a gauge transformation
is not necessarily an element of the internal symmetry group of the connection; i.c. we
consider those automorphisms f such that f*w, = w,, with w,, w, two given connec-
tion 1-forms, and arrive at results which generalize some of those obtained by Fischer
and for which the latter appear as corollaries. We study in addition the space of
connections which are invariant under a group S of symmetry transformations which
- project to a given action on the base manifold, and establish both global and local
conditions for two gauge-related connections to be S-invariant. We are therefore
concerned with the finite-dimensional moduli space of symmetric connections .# =
{#(P)/GA(P)|s * w = w}. There are many important results which arise from the under-
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standing of this space, and from the non-trivial relationship between local trivializa-
tions and symmetry-transformations in gauge theories (see e.g. Jackiw [2] for a review
and bibliography on some previous work on the subject).

An algebraic procedure for constructing symmetric connections in the fiber bundle
formalism was developed by Wang [3], and is also described in Kobayashi and
Nomizu [4]. Wang’s treatment assumes that there is an action of the symmetry group
on the bundle which projects to a given action of the group on the base space. He also
assumes that this action is transitive, so that the base space is homogeneous. However,
the general problem of determining all the inequivalent lifts of the symmetry group
action on the base space to an action on the principal fiber bundle is a difficult one
and no general results are known [5]. In some specific cases, such as when S is compact
and semisimple and the structure group G is solvable and connected, it has been shown
that an essentially unique lifting exists [6]. Also, when the orbit structure is regular
enough, and G is compact, Harnad et al. [7] have obtained a classification procedure
for inequivalent lifts of the action of the symmetry group. Another case when such a
classification can be obtained [8] is when S acts transitively on the base manifold M,
so that the latter may be identified with the homogeneous space M = S/J, with J = J,,
the isotropy subgroup of S at a chosen point x, = 7(p,). This last situation is the one
considered in the present work.

A differential version of the solution to the problem of finding the most general
gauge fields invariant under an infinitesimal symmetry transformation was presented
in an independent fashion by Forgacs and Manton [9], several years after the work
of Wang appeared in the mathematical literature. The mathematical statement of this
condition is contalned in the following relation given by these authors '

»%4/14 =D, W, ’ 1.1)

where £, are the Killing vectors associated to the symmetry group; 4, are the Lie
‘algebra-valued gauge fields of the problem under consideration; and W, are auxiliary
gauge fields introduced with the explicit purpose of making the symmetry condition
(1.1) covariant under the choice of gauge, and are required to satisfy the comnsistency
condition

gng;; - génWm - [Wma VV;A] - fmnpw/;y = 09 (12)

with f,,,, the structure constants of the symmetry group.

We shall here give a geometric interpretation of these auxiliary fields as the differen-
tial of the function which lifts the symmetry action on the base space to a left action
on the bundle, and show that, the differential formalism of Forgacs and Manton is
strictly equivalent to the one given by Wang only when certain global conditions hold,
(as would be the case, for instance, when S is simply connected). In the case of multiply
connected symmetry groups, there are restrictions to this equivalence in the sense
that (1.1) and (1.2) do not integrate to an action of the symmetry group on the
bundle.
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With the intent of making it as self-contained as possible we have organized the
paper as follows: in Sec. 2 we consider a principal fiber bundle P and discuss the
problem of lifting a given symmetry action on the base manifold to a fiber transitive
action on P. We derive local expressions for these actions and give a classification
(along the lines of the work of Harnad et al.) in terms of conjugate classes of homo-
morphisms from the isotropy group to the characteristic group of the bundle. This
result is contained in Proposition 2.1, and an explicit local formula for the lifting is
given in (2.9). We also investigate in this section the relation between the fiber bundle
formulation of symmetric connections and the one used more often in the physics
literature, based on a differential approach which generalizes the condition for in-
variance of a field to gauge fields. We give necessary and sufficient conditions for the
integrability of Egs. (2.24) and (2.26) in Proposition 2.5, in terms of linear integrals over
a finite set of generators of the homotopy group at the identity of the symmetry group
S. In the case where S is simply connected, these conditions are always satisfied. To
conclude the section we give the geometric interpretation of the scalar field ¥y of
Forgacs and Manton in terms of the matrix A associated to the symmetry connection
according to Wang’s theorem, deriving a relation between the gauge field and the
covariant derivative of Wy (see also [9]).

In Sec. 3 we prove that two connections are gauge-equlvalent iff their holonomy
functions at some point p, of P are conjugate (see Proposition 3.2), using this result
we obtain as corollaries some results of Fisher (see [1]) describing the gauge transfor-
mations f such that f*w = w for some fixed connection o (see Corollaries 3.3 and 3.4).

In Sec. 4 we apply the above results to the study of gauge-equivalence of S-invariant --

connections. In Proposition 4.7, we give necessary and sufficient conditions for the
local gauge-equivalence of two S-invariant connections. We show that if w; and w,
are S-invariant connections, and A, A, : L(S) — L(G) are the associated linear trans-
formations of w,; and w,, respectively, then these two connections are locally gauge
equivalent in some G-invariant neighborhood of p, € P iff A, = u*(A; + v,|.)u for
Vi — CG(H01° (®,)), where ¥ -is a certain open neighborhood of e in S, and
Hol; (a) 1) is the group generated by the w,-holonomy of closed loops in M at 7(p,)
whlch are homotopic to the trivial loop. We also derive the restrictions which u and
v must satisfy, and generalize the above conditions to the global case. For this situation
it turns out that two S-invariant connections @, and @, are gauge equivalent iff
A, =u(A; + v, ] Juwherev:S — CG(H01° (»)) and u must satisfy conditions similar
to those for the local case. Moreover, here the restrictions on u and v can be expressed
in a nicer way (see Proposition 4.11) and, if the connections are generic (Cg(Hol(w)) =
Z(G)), the restriction on v is that it must be a homomorphism.

As an application of our formalism, we end in Sec. 5 with an explicit derivation of
SU(2) x SU(2)-invariant connections for principal fiber bundles with base space $? x
52 and gauge group SU(2). The solutions correspond to a total of five non-gauge-
equivalent families with 3 free parameters and characterized by a second Chern number
given by 2rs, with r, s integers. It is also noted that of these five families of solutions
only the ones corresponding to the canonical connection allow for self-duality when
r = s, and thus lead to multi-instantons with second Chern number equal to 2r2.
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'l

In general our notation follows the one used by Kobayashi and Nomizu [4].
However, for the sake of clarity, we list the most important symbols used in the paper:

Symbols

All the objects are smooth (C*®).

M—a differentiable paracompact base manifold -
n: P — M or P(M, G)—a principal fiber bundle with structure group G.
7! (x)—the fiber over x € M in P(M, G). .
§—a Lie group (the group of symmetry which acts on P). -
J or J,.—a Lie subgroup of S (the isotropy group).

M = §/J—the manifold M as an homogeneous space.

o, : U, » P—a system of local sections for P(M, G).

B U; n U, — G—a function which describes how the action of § lifts to P.

u:J - G—an homomorphism of Lie groups.

L(G), L(S), L(J)—the Lie algebras associated to the groups G S, J.

ad(X) = jXj', for je S, X € L(S)—the adjomt action. -

A:L(S)—> L(G)—a linear map. '

Af—the components of A.

Fy—the Lie derivative with respect to Y. ‘

w—the S-invariant connection in P(M, G) associated to A.

Aj—the components of the gauge potential.

Q or Q®—the curvature associated to w.

Dy—the covariant derivative.

W: M — L(L(S), L(G))—a C* map of M to the linear functions of L(S) in L(G).

W, : L(S) — L(G)—the associated map at x € M.

W —the components of W.

C(P, G)—the space of equivariant maps 7: P — G.

f: P — P—a gauge transformation (given by f(p) = pt(p), t as above).

C(x, y)—the collection of paths in M from x to y (x, y € M).

H®(x,y): C(x,y) > Homg(n " (x), z~*(y))—the holonomy maps of the connection w.
h®(x,y) () : 7~ (x) » =~ *(y)—the holonomy map of the connection w associated to the

path « in M with end points x and y.

hy (y)—the holonomy map of the connection w associated to the loop (), where the

basis point is p € P.

Hol,, (w)—the holonomy group of w based at p, € P.

Holgo(co)—the restricted holonomy group of w based at p, e P.

Ce(Hol, (w))—the centralizer group of the holonomy group of w in G.

L(Hol, (w))—the Lie algebra of the holonomy group of w based at p, € P.

2. Lifting of Actions

Let n: P — M be a principal fiber bundle with gauge group G. We shall say that a
Lie group S acts on P by bundle automorphisms if for se S and p € P, we have
s(pg) = (sp)g. That is, the action of S commutes with the right action of G. The
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transformation on M induced by this S-automorphism is defined by sn(p) = w(sp).
Note that the action on the base manifold is well defined, since for p’ = pg and 7(p) = x,
we have 7(sp") = n(s(pg)) = n((sp)g) = n(sp).

As we pointed out in the introduction, determining all the inequivalent actions of S
on P which induce a given action on M is, in general, an open topological problem.
Some special cases have been dealt with in the literature [5-8], and in particular when
S acts fiber-transitively on P, it is known that the problem reduces to a classification
of group homomorphisms. The analysis in this paper will be restricted to such homoge-
neous base spaces, with M = S/J,and J, the isotropy subgroup of S at x, = 7(p,)
(Jy, = {s€8|sxo = Xo}). We shall also assume that M is paracompact in order to
ensure the existence ‘of a connection. For a discussion of a generalization of the
above-mentioned problem to inhomogeneous spaces we refer the reader to the work
of Harnad, Shnider and Vinet [7]. -

Specifically, our purpose in this section is to obtain a local expression for the action
of S on P. This expression will be one of the basic tools that we shall resort to in the
remainder of our work. It will allow us, in addition, to clarify the relation between the
Forgacs-Manton differential formalism and Wang’s theorem, in the case where the
base space M is homogeneous.

Leto,: U, — P, € I, be a system of local sections. For x € U, n U,, we have o,(x) =
05(X)g5,(x), With gg,(x) € G. Then, if s € §, x € U, sx € Uj, the local action of Son Pis -
given by

(x) = ay(sx)p(s), - @D

where % (s) € G describes how the action of S on U, has been lifted to the fibers.
It is easy to verify that for s, t €S, xel,sxe U and tsx € U,

P (ts) = oL P () (s). : (2.2)
Also, ifxeU,nU,and sx € Usn Uy
| L) = gpp (53)PF " %(5) g (%) 7. (2.3)
In particular, if x € U,, sx € U, and tsx € U,, Eq. (2.2) becomes |
@:(ts) = (D)3 (s), _ : 24

where @Z(s) has been used to denote p?(s) with x € U, and sx e U,.
Similarly, if x and sx € U, n U,., Eq. (2.3) becomes -

PHS) = Gou () 9L () ()" (2.5)

Note that if jeJ,, and 6,(xo) = Po, then jo,(xo) = 0,(%o)tp,(f), With p,(j) =
@3 (J) € G. It clearly follows from (2.4) that

/-"po(jljz) = .u'po(jl).upo(jz)a jl: jZ E.Jx’ (26)
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SO fy, : Jy, = G is a homomorphism of Lie groups. Note also that

Hpog(7) = 97 11, (7)g - 2.7

Assume now that S acts transitively on M and consider the space S Xtz G given by
the product S x Gmodulo the equivalence relations (s, g) ~ (s, u(j) *g),forse S,g€ G
and je J. Tz with p:J - G a homomorphism of Lie groups.

Let #:§ x G— M be the transformation given by #(s,g) = sx,, we then have
that #(sj, u(j)"1g) = sjxe = sxo = n(s g) and, thus, # induces the transformation
w:Sx,G> M.

We shall show that the space S x, G > M is a principal fiber bundie with gauge
group G. To this end, let (5, g) denote the equivalence class of (s, g), and define the action
of Gon S x, G by (5,9)g, = (5,9g;)- This action is well defined since it preserves the
equivalence relation. On the other hand we know that S 5> M (=8/J,,) is a principal
fiber bundle, and we consider a system of local sections 7, : U, — S in this bundle. We
can then define 7,: U, = S x, G by T,(x) = (7,(x),e). Observe that if (5,g) is such that
7(s,9) = n(T,(x)) = x, then there is a local trivialization T,: z7*(U,) = U, x G given
by T,(7.(x),9) = To(z,(x), 9) = (n(7,(x),9),9) = (x,9). So S x, G has indeed a bundle
structure. )

Reciprocally, assume that Pis a principal fiber bundle over M with gauge group G.
Then the map D:SxG>P given by ®(s, g) = Spog 1s such that (I)(SJ, Mool 7)™ 9y =
SiPo k()19 = SPog = ®(s, g). Consequently ® induces a transformation @ ; S X; G-
P, which is a homeomorphism.

The above establishes the following result [8]:

Proposition 2.1.  There is a one-to-one correspondence between equivalence classes
of principal fiber bundles with gauge group G over M = S§/J.,, admitting an S-action
which projects on a given action of S on M, and the conjugate classes of homomorphisms
Uyt dy, =G

Given the above constructed sections 7,: M — S x, G, we shall now derive the
corresponding functions @(s). Let s € S with sx € U, and denote by $3(s) e J,, the
transformations corresponding to the section t,:U,— S. We then have s7,(x) =
(574(x), ) = (T(sX)B(s)s €) = (T,(5X), 1y, (B(5))) = (5%, @)y (FE(S)) = Tols3) o (BH(S)):
Consequently :

0(8) = ppy(B2(5))- (2.8)
In order to calculate @Z(s), note thatif 5: S — S/J, is the natural projection glven by
n(y) =y = yJ,, thennr, = 1dS/, and #n(z,(sx)” s-ca(x)) = (sx)"lsxJ,_ = = eJ,,, which in

turn implies t,(sx) " 1st,(x) €Jy, Thus since s7,(x) = 'c,,(sx)(‘ca(sx) st,(x) it clearly
follows that @Z(s) = (t,(sx)” sra(x)). Substituting this result in (2.8) we finally have

P2(8) = Mo TalsX) (X)) (2.9)

This last expression proves the following:
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Corollary 2.2. Assume that the Lie group S acts transitively on M. If P is a principal
fiber bundle over M with gauge group G, and S is an automorphism on P which projects
on the given action of S on M, then there exist sections T,: U, — U, x, G = P such that
the corresponding functions Z(s) are equal to p, (1,(sx) 7 s7,(x)), with ©,: U, — S local
sections of the bundle S > M and o, * S, = G the transformation function corresponding
to the action of J, on P.

Another consequence of Proposition 2.1 is:

Corollary 2.3. (see [7]) The bundle P 5 M is trivial iff p: J, — G extends to a
smooth morphism I : S — G such that T'(sj) = T'(s)u(j), s € S, j € Ly,

Proof. Let 0: M — P be a global section and let ¢.(s) be the function asso-
ciated to the action of S on P then, if jeJ, , 0, () = @i, () 0x,(7) = 9x,(9) 5, (J)-
Therefore ¢, (s) = I'(s) satisfies the condition of the corollary. Reciprocally, assume
that such a I exists. Define a(x) = (t,(x), I(z,(x)) ™) e S x, G for xeU,. If xe
U, U;, we have 14(x) = 7,(x)j5(x) where j,(x) € J,. Hence (z4(x), T(zp(x)7") =
(Ta()Jup (X)s e (Jap () T(24(%)) 1) = (24(x), T(z,(x)) ™). Consequently o(x} is indepen-
dent of the neighborhood U,, which implies in turn that ¢ is a global section. |

We shall describe next an algebraic procedure for constructing gauge fields from
S-invariant connection 1-forms (ie. for s*w = w) on principal fiber bundles with
arbitrary gauge groups, such that they posses the symmetry of the underlying base
manifold for the case when S acts transitively on the latter. ‘

We begin by defining local invariance of a connection:

Definition 24. Let N = M be an open set with x, € N, and o a connection 1-form ™
defined on n*(N). We shall say that w is locally S-invariant at x, if for all s € § with
X € N there exists a connected neighborhood ¥, of x, contained in N ns™'N and
such that

' S*le(s) = le(s) :

Remark. Let # = {s € S|sx, € N}. Clearly #'x, = N. According to the above
definition, for each s € #” we have a connected open subset ¥, of N. One can indeed
show that there exists a neighborhood K of e € S such that N n s™*N is connected for
all s € K if N is small enough, and that in this case ¥, = N ns™'N. An outline of a
proof of this fact is a follows: ‘

Since M is paracompact, it is therefore metrizable and we may choose an open ball
N(x,) € M with normal coordinates with respect to x,, such that its boundary is
orthogonal to the geodesics emmanating from x,. If K is a sufficiently small neighbor-
hood of the identity in S, then the open sets s *N(x,) can be made very close to N(x,)
and, in particular, their boundaries (s *N(x,)) will be transverse to the geodesic rays
emmanating from x, and will intersect each one only once. (Note that by the Transver-
sality Theorem (cf. e.g. Hirsh [10]) the condition of transversality is open in the
parameter s, so the construction of K is always possible.) It can then be shown that,
given q,, g, € N(xo) N s™*N(x,), the union of geodesic arches from ¢, to x, and from
X, to g is contained in N(x,) N s IN(x,). Hence, this intersection is convex for all
se kK.
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Recall now Wang’s theorem (see [3] and [4]) which states that there is a bijective
correspondence between S-invariant comnections and linear transformations A:
L(S) = L(G) of Lie algebras which satisfy the following conditions:

(A) A(Y) = p, (Y), for Y € L(J,,) (the Lie algebra of J,)

(2.10)
(B) A(@§(X)) = ad,, ;(AX)), forXeL(S),jel,,.
If w is the S-invariant 1-form connection corresponding to A, we have
s i 5 d
AX) = 0, (X,,), with X, = E(exp tX  po)l=o, X € L(S). (2.11)

~ 5~ d
Denote now by X the vector field on M defined by X, = %(exp tX - x)|,—. For

x € U,, and sx € U,, the relation between X, and X 18

-~

d ‘ d
Ko = 7 [exptX - 0,(0)]li=0 = 7 [ou(exp X - X)p(exp 1X)]|e=o

= (@)X + [WE(X) 120 (2.12)

where W7 = (¢f),,, so that x— W7 gives rise to a function from M to Z(L(S), L(G)),

and [W#(X)]¥ ,,is the fundamental field associated with W*(X) e L(G). Consequently

()
(G:w)x()?x) = a)a'a(x)()?al(x)) - VVJ?(X) (213)

In addition, using the S-invariance of @, we have

D i50) X)) = ¥ 020y Kr) = Dsrso) S Kimrey)- (2.14)
But
" d -1 5 ‘
S (K)o = d_t[s "exptX 57 50,(x0)li=0 = (a0, X)ss, (x> @15)
)
R . A . N
Do) (X, 20)) = Ds,:0)( 305 X s0,50)) = Do 52030,, (205 Ko (52008 5))
AN
= a5¢§co<s)-1a’msxo)(aéstu(sxo)) ’
ie.

~ 2\
wo'a(sxo) (X a‘,(sxo)) = aé(agc 0(s)a)o'a(xo) (aas' 1 a,(xo)) . (2 1 6)
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Since S acts transitively on M we can set x = sx, and substituting (2.16) into (2.13)
yields

4,X,) = (F0)(X,) = ad,5 oM@ X) — WiX). @.17)

Equation (2.17) is the general algebraic expression for our S-invariant gauge fields,
and isin fact the integrated form of (1.1). That this is indeed so can be shown as follows:

Take g, : U, — P to be a local section, x € U,, and a fixed s € S such that sx € U,. We
can then find a neighborhood V, of x such that sV, = U, and so that for s: (V) >
7 *(sV,), both (V) and n~(sV,) are contained in z~*(U,). v

Making use of (2.1) we have sa,(y(t)) = 0,(sy(t)) @5 (s), from where it easily follows

(54 Oas Exdsoscy = (@) LX) + Rops 5T Ssc s (2.18)

where & is a vector field on M tangent to the curve (), and £[pZ(s)] denotes the
directional derivative of @Z(s) along £. Applying now o to both sides yields

(5*0) (004 oy = P2 (8) T ELPE(S)] + A0 5)1 D0z S E)orgsy - (2.19)
Furthermore, taking 4,(£,) = (6 w)(¢,) and recalling that s* = o, (2.19) results in
Ay(5,:8,) = 039 A8 0E(s) ™ — ELoE()] ps(s) 7 (2.20)

Consequently,

d
(F3A)(Ex) = 2 (A(exp 1Y), C)li-o

d d )
= GH 4IPS =0 — 7 (E:Lozlexp V) Dli=o

= —&IWAY)] — [4.(85), Wi(Y)]
= D), 2.21)

for ¢ € T(M), Y € L(S) and all o. This expression is indeed the same as (1.1), and is the
differential form on the base manifold of the S-invariance requirement of the connec-
tion 1-forms on the bundle.

Consider now the differential version of (2.4). For this purpose write ts = texp(eY) =
exp(etYt™)-t, so (2.4) reads @Z(exp(etYt ') 1) = 9% en () @i(exp(eY)). Applying
(2.4) once more to the left side of this last equation, gives

qota;c(exp(St Yt_l))qog(t) = ¢:xp(sY)-x(t)¢;(exp(s Y))' (2'22)
Differentiating (2.22) with respect to ¢ and evaluating at ¢ = 0, results in

W2(a8, Y)2(t) = oX@) WX(Y) + L5 ol (0). (2.23)
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"~ Now write ¢ = exp(nX) and differentiate (2.23) with respect to 5 and evaluate at
n = 0. For the left-hand side we get

d
Jy "EO + 70X YDlo

d
E;]'[ (05 Y)QD (t):”q—o - [ xp(rlX) x(Y)] Ir] 0 +
+ Wa(Y)W(X)
= L W(Y) + WX, Y1) + WZ(NWH(X).

Similarly for the right-hand side of (2.23) we have
—[<p OWY) + Loi()ly=0 = WEX)WH(Y) + L WEHX).

Thus, combining results, we arrive at
LWHY) — HBWHX) + WX, YD) — [We(X), W (Y)] = 0. 224

Therefore (2.24) is a consequence of the algebraic relation (2.4). We shall now observe
that (2.24) is also closely related to (2.21). In fact, :

—(Lx, A7) = (Lz,0n47)(0)
=(FHLH — H LAY ()
= SDWHY) — LD WE(X).
Using now (2.22) and the Jacobi identity we have
—D;WX([X, Y]) = DL WiHY) — L Wi(X) — [W(X), WH(Y)]),

which is satisfied identically if (2.24) holds.
The difference in sign between some of the terms in (2.21) and (2.24), and the
corresponding expressions found in [9], are due to the fact that in our discussion we

. . > _d ' .
consider S as a left action on M, so for X, = —(exp tX - x)|,=o (left action) we have

[X.,¥]1=—-[X,, x] Had we considered a right action of S on M the results would
have been identical.

Note that (2.24) is a consistency equation for the linear functions W2 An additional
local expression in terms of the transition functions which may be useful for explicit
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calculations, can be derived from an infinitesimal version of (2.5). We thus have

d ) _
WHX) = 7 L9 (€XP LX - X) 9 (eXP 1X) G (%)™ o

= (L290e (N oz () + o VW (X) G ()7, (2.25)

or

WEX) = = 0o () (LG () + G (%) WHX) G (). (2.26)

Note furthermore that, given a principal fiber bundle = : P'— M with structure group
G, such that the ¢J(s) are the transformation functions corresponding to an action of
§ on P which induce a given action of S on M, Egs. (2.24) and (2.26) are necessary
conditions for the linear transformations W7 to arise from such an action of S on P.

To establish sufficiency, we need to examine the integrability of Eqs. (2.24) and (2.26).
We will say that the system of equations (2.24), (2.26) is integrable if there is an action
of S on P inducing the given action of S on M, such that if ¢ are the corresponding
functions with respect to o, then (¢Z), = W2

As the following simple example shows, the system (2.24), (2.26) is not always
integrable: Take S = S, x J, with S, J Lie groups, M = S, x J/e x J =S, and P =
So X G. Then L(S) = L(S,) ® L(J). In the general situation there are Lie algebra-
homomorphisms W : L(J) — L(G) such that there is no homomorphism of Lie groups )
¢:J — G with ¢, = W. Take one such W and define for our example W : L(S) » L(G)
with W\, = W and W5, = 0. Then define W, = W for all x e M = S,. Clearly Eq.
(2.24) holds for W, but it is not integrable because W is not integrable ((2.26) is empty
since P is trivial and we take only one section).

In order to have integrability for the system (2.24), (2.26), some additional global
conditions are required. Note first thatif W : M — L(L(S), L(G)) we can define a 1-form

d
on S with values in L(G) by putting W(X ls) = W,u(X) with X ls = Eexp tX -sl—o-

Recall now that if y is a closed curve starting at e and 7:[0, 1] — P is a w-horizontal

lift of y (for w a connection on P), then §(0) = (@) and §(1) = o, (e)h(y), where h(y) is

the holonomy of y at g, (e). If y,, 7, are closed curves at e and y, y, their composition,
then A(p;y,) = h(y,)}h(p,) (see Sec. 3). We then have

Propeosition 2.5. Equations (2.24) and (2.26) are integrable if and only if there are
closed curves vy, ..., y, starting at e € S with their images generating m,(S,e), the
homotopy group at e, such that for each y e {y,,...,7} there are 0 =t, <t; <
<lpyg = Lwithy(t) en ™ (U,) ng (U, )yt tig] < 1 (U,,) (n: S — M the projec-
tion map) and

€= g, (M, 1))? (exp f W=y @) dt) N () (exp J 1 W' () dt)-
’ 2.27)
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Proof. Assume the system (2.24), (2.26) is integrable. Then there is an action of §
on P lifting the given action on M. Moreover if ¢Z(s) are the functions given by

s6,(x) = 6,(x)p%(s) for x, sx € U,, then (qo;‘)* W2, Consider now the G-principal fiber .

bundle P over S with sections &, : ¥, = ~(U,) — P and transition functions gap(s) with
Gup(1(5)) = gopls) for s € 7 HU) 0 n_l(Uﬁ). We have @ : P — P, a map of G-fiber bun-
dles such that the following diagram is conmutative:

P P
j 1 (2.28)
S M

LetyA(s) = p%8(s) for x € V, and sx € V. Clearly these functions satisfy conditions
(2:2) and (2.3) for the transition functions g,g. ‘Consequently this gives an action of §
on P lifting the left action of S'on S given by the multiplication in S. By (2.2) we have
Y A(ts) = YLP (YLD (s) withx € V,, sx € Vp,tsx € V,. Then takingx = e € V,s € V,
tse Vy, y= B, we have '

—>

L BN

YP(e) = hylts)hy(s)™? with hy(s) = Yyul(s),5e V5. (2.29)
IfseV,nV,;

hy(s) = YP*(s) = gp (P “o)(s)

= GpulSIh(5). (2:30)

Thus, if we put 7,(s) = &,(s)h,(s), thenforse V,nV}

15(5) = Gy(S)g(s) = Gu(8)gup($)hy(s) = Gy (S)ha(s) = 7als)-

Consequently the t, defines a global section 7 in P. On the other hand if X;, i =

d
1, ..., s is a basis for L(S), the Xl = 7P tX;5l,=0 form a ba51s for T(S). We may . .

therefore set
A = = W2 (X)) = =YXy = —dh(Kil ) () ™) = h ()Xl ((h1) ()

s0 A"‘()f,—]s) is a pure gauge.
.On the section 1,(s) = 6,(s)h,(s) we have:

(@) (Xil) = B () Xil(hy(9) + b7 () [y (5) Xl (h 2 (8) 1 ()

= 17 (5) X 1s(a(5)) + (Xl (7 ($))h(s) = O
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Therefore w is the flat connection on P. Now for each closed loop y the integrals in
the right-hand side of (2.27) give the holonomy h(y) which in the present case is e,
proving our result.

Conversely, suppose that the conditions of our proposition hold. We define W*(X;) =
Wi (X;) for X; € L(S) and s € V. As before, we may define A%(X,|,) = —WHX;) for
X; € L(S), giving a connection w, on P. If Q is the curvature of this connection we
have

(X, X)) = XA (X)) — X(45(X)) — ([ X, X}]) + [4(K), 45(X,))]
= X{A"(X) — X (4*(X)) + 4K, X, + [A4%(X), 4]
= — XKW (X)) + K (W2(X) — WX, X,1) + [WEA(X), W(X;)] = 0.
Then, because the connection o, is locally flat, the holonomy of every loop homo-
topic to the identity is trivial, and consequently the holonomy % defines a function
h:m,(S,e)— G by h(3) = h(y), where 7 denotes the image of y in 7, (S, e). Now, since by
hypothesis the 7, ..., 7, are generators of 7, (S, e), h is 2 homomorphism of groups and
the right-hand side of (2.27) is just h(y,) = h(7,) = e, so h is trivial. Therefore the

holonomy of the connection wj is trivial and thus w, is the flat connection, so there
is a global section 7: § — P such that t*w, = 0. But then if |y, = o,h,

0 = (*wo)(Xily) = It dhy(X,),) + 7 4K\ )b,
therefore
WA X)) = — 4%(X|,) = dh,(X,| )"
Let us now sef |

Y@ B(g) = KO (es) (h*(s))™* forseV,tseV;.

- For seV, and tseV,, y@(t) = h*(ts)h*(s)™ and (lps("")*(X,.)=(X',~h“)s(h“(s))‘1. =

WHX;). Itis easy to check that the functions Y &P satisly conditions (2.22) and (2.23).

We next make use of the bundle homomorphism (2.28) in order to derive the
" integrability of (2.24) and (2.26) for n: P — M. For this purpose, we need to use the
following results relating properties of the functions W and y:

Lemma 2.6. If X e L(S), then

WD (Xily) = By (X)) sy (2:31)

Jor y € V, and s such that sy € V,.
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Proof..
9, () = L ye(exp X, oo = LS exp LX 5
(W) ils)—Elﬁy(eXpt sS)It=o—E¢sy(eXpt DYy (S)e=0

= (E/s;(Xi))xﬁg,(s) - [
Lemma 2.7. If yeV,sycVyand jeJ then
YoP = b, (2-32)

and in particular y; = ;.

Proof. Consider first the case f = a, then by Lemma 2.6,
WUsa(Kile) = Ways (X ys = W) (Kil)-

Thus y;; = ¥, (here V,y~* is connected). Now take y € ¥, and s € S with sy € V. For
S connected, there are elements s4, ..., 5, € S such that s;ye V, 0V, , s,8,y€V, N
Ve 535281y €V, 0V, 8,5y €V, OV, .85 ,...51Y€ Ve .0V

We will prove our statement by inductiononr. Forr = 2,5 = 5,51,y € V,,5,y € V., n

V,, and 5,5,y € ¥, N Vj, we have by (2.2) that
PP (s251) = Yl s )PP (s2)- (2.33)

51y

Furthermore from (2.3) we also have that Yy/&*(s,) = Gua, (5251 YD (s2), so
YEHI(52) = Gy (5251 Y1)Y5(52)
= Qaa1(5251Y)¢;(52) = §‘f’y“1)(82)-

In a similar way y&-9(s,) = ¢P(s,). ‘

Consequently, substituting in (2.33), we get ¥ (s) = §:#(s). The induction step is
proved in the same fashion. : O

We can now complete the proof of proposition 2.5:

For x € U, define ¢&#(s) = y*#(s) with 7(y) = x and sx € Uy (here y € ¥, sy € V).
It is easy to verify (2.2) and (2.3) for these ¢{*#(s) which, therefore, determine an action
of S on P such that for x € M and y in S, with 5(y) = x, we have (¢3),, = (05), = Wy =
we

To end this section we make use of (2.17) and (2.21) to derive an expression for ¢*Q
in terms of the linear transformation A associated to w, and of the functions ¢ related
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to the lifting of the action of the symmetry group on M. We get
(X, ¥) = X[4%(D)] ~ Y[4* (D] - 44X, T1) + [4%(D), 45(D)]
= (LA7)(Y) - FLAE)] — [4%(T), 401
= Dy[W¥(X) + A*(%)].
But according to (2.717) we have W*(X) + A%X) = b, 0(S)A(aés_l X). Consequently,
(0xQ)(X, ¥) = Dy(ad,, (A@d-X)). A (2.34)

This result provides a criterion for S-invariance equivalent to (2.21). In addition,
when (2.24) and (2.26) are integrable Eq. (2.34) gives a clear relation between Wang’s
algebraic formalism and the differential version of Forgics and Manton; furthermore,
it allows us to give a geometrical interpretation of the scalar field Wy introduced by
these last authors, since ¥y = ad,,; 0(S)A(aéis-l X). Several direct and interesting physical
interpretations have been found for this scalar field, such as in the “spin-from-isospin”
phenomenon (cf. [2] and references therein), and the dimensional reduction of the
Yang-Mills action to a gauge theory with Higgs fields related to the Wy (cf. [9]).

3. Gauge-Equivalent Connections

In this section we give a characterization of gauge-equivalent connections in terms
of their associated holonomy groups. We shall then apply these results to S-invariant
connections in the next section, which will give us a classification of gauge fields.

Let P(M, G) be a principal fiber bundle with structure group G and projection
operator z : P — M. Denote by C(P, G), the space of all maps 7: P — G which satisfy
7(pg) = g '1(p)g for all g-€ G, p € P. This space is isomorphic to the space of sections |
of the associated bundle P x; G —» M with standard fiber G. A diffeomorphism
f:P— P which satisfies f(pg) = f(p)g for all pe P, g€ G, is called a fiber bundle
automorphism. Note that such an automorphism induces a diffeomorphism on M,
f:M — M, given by f(n(p)) = n(f(p)). We define a gauge transformation to be an
automorphism f: P — P such that f = 1,,. If we now let GA(P) denote the group of.
gauge transformations on P, then it is easy to show (see Bleecker [11]) that there is a
natural isomorphism between GA(P) and C(P, G) given by f(p) = pt(p), with t(p) e
C(P, G) as above.

We now introduce some more notation: Given two points x, y € M, let C(x,y)
denote the collection of paths in M from x to y. For two paths « € C(x, y), f & C(y,2),
we have the composition of paths C(x, y) x C(y,z) — C(x, z), given by (&, §) > f o a..

A map f: 77 (x) > =7 (y) is called a G-morphism iff f(pg) = f(p)g for all peni(x)
and all g € G. We shall denote by Homg(n ™ (x), 72(y)) the set of G-morphisms from
71 (x) to ©7L(y).
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Given now a connection w in P(M,G), and two points x, y € M, we can define a
function H(x, y) : C(x, y) » Homg(z ™ (x), 7 1(y)) as follows: let a(t) € C(x, y) and de-
note by &(t) the horizontal lift relative to w of « which passes through p € n7*(x). Then
H®(x,y)(p) = end-point of & = g € =~*(y).

Note that since & o R, = R; o & (because a horizontal curve is mapped onto a
horizontal curve by R,) we have that Rgo‘c(O) = pg is the starting point of R d. Conse-
quently H*(x,y)(pg) = (R, ° )(1) = d(1)g = q9 = H*(x, y)(p)g, and H*(x, y) is indeed
a G-morphism. Also, given x, y,ze M, 2 € C(x, ), f € C(y, z), we have

H(y,2)(B) o H(x,))(@) = HO(x,2) (B o ). (3.2)

Thus taking fixed elements r, € n~*(x) for each x € M, so.that H*(x, y) () () = r,g for
some g € G, and setting g = h®(x, y)(«) we get

H®(x,2)(B o 0)(r) = H*(y,2)(B) o H (%, ) (%) ()
= H(y, 2)(B) (= (x, y) ()
= 7.h2(3,2) (B)h°(x 9)@).
That is
(o) (Bo0) = RO )BRN@; | (3-3)
from where it follows that, if x = z, h® = h®(x; x) is a homomorphism from C(x, x) into
¢ To see how the h“(x, y) depend on the chosen {r, } . 5, consider anéfher sef éf points

s, €1} (x), x € M, with 5, =r.a, for some a, e G, and let hf(x,y) symbolize the
elements taken with respect to {s, }, .- Then

H?(x, yH) (s5) = 8, h{5(x, ) (®)-

Furthermore, since H?(x, y) is 2 G-morphism we also have

He(x,y) (@) (ry)a, = H*(x,y) (@) (r.a,) = 1,a,h (X, y)(@)-
Hence |
H(x, ) (@) (ry) = 1ya,hE(x, y)(@)a;?
and

he(x,y) (@) = a,hd(x, ) (@az*. | (3.4)




CLASSIFICATION OF GAUGE-RELATED INVARIANT CONNECTIONS 85

Note that for a closed path in particular, writing g =r,, ¢’ = qa, and denoting
h)(x, x) and hé)(x, x) by h?: C(x,x) > G and hg : C(x,x) — G, respectively, the above
expression yields _

hg = a'hPa. : (3.4a)

This is the well-known result which states that the holonomy groups with reference
points g and ¢’ = ga are conjugate in G.
We are now ready to prove the following

Proposition 3.1. Let w,, e, be two connections on P and suppose that there exists
u € G such that h?> = uh?'w™; that is, for all y e C(x,) = C(x4,x,), the loop space at
xo = 7(p), we have '

hea(y) = uh@s()u . | 39
Then, for any o, B € C(xq, x) it is true that
He2(x0, X)(@) L, H (x, x0) (¢1) = H*(xo, X)(B)LH*'(x,30)(B%), (3.6

where the action L, : ™" (x,) — n*(x,) above is defined by L,(pa) = pua.

Proof. Take the fixed set of poihts '{rx}xe M such that Tey = D-
Since 7o € C(x,) we have, from (3.5),

he=(B ™) = uhg (B o)u™,
ie.

h2(x, %0) (B~ Yh2(xg, X) (@)u = uh™(x, X0)(B™)h(x,, %) ().
This result in turn implies that
ho2(xo, X)(BYuh® (x, X0) (B™) = h2(xo, X) (@)uh (X, x0) (™). 3.7

- Observing now that both sides of Eq. (3.6) are formed by a composition of G-
transformations, it is sufficient to show that this equation holds at any point r, = g,
say. But then we get precisely (3.7) multiplied on the left by 4. O

Thus if (3.5) is satisfied, we can define a map f:P—P by f(g=
H®2(x, x) (@) L, H®*(x, x)(¢"*)(g), where o is any path from x, = 7(p) to x = 7(g).
By Proposition 3.1 f does not depend on the chosen path. It is easy to verify from
this definition that f(gg) = f(q)g for all ge G. It also follows that {9) =
h2(xo, x) (®)uh®*(x, X,) ('), and that t(qg) = g *1(g)g, so f is a gauge transformation.

To conclude this section we make use of the above results to derive the requlrements
for two connections to be related by a gauge transformation. »
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Note first that if ¢ is a ,-horizontal lift of «, through p, then by construction fd is
a w,-horizontal lift through pu. Thus, if (®,),(X) =0 then (©,);(f,X) =0, and
therefore Ker(f *w,), = Ker(w;),. On the other hand, we must have dim Ker(w,), =
dim Ker(f*w,), since this is just the dimension of the horizontal subspace of the
tangent space of the bundle. Thus, for any g € P we have Ker(w,), = Ker(f*w,),,
which means that

fro,=wfy=0,. (39)

This proves half of the following

Proposition 3.2. - Let w,, w, be two connections ona principal fiber bundle P(M, G).
Then, a gauge transformation f exists with the property f*w, = w, if and only if at
some point p € P we have

hez = uhPw™" (3.9

withu € G such that f(p) pu. For a fixed p, and f such that f*w, = w, and u(p) = u,
f is unique. ' .

Proof. The paragraph leading to (3.8) proves the result one way. It remains to be
proved that if f*w, = w; for some gauge transformation f then (3.9) holds. That this
is so is seen as follows. Let x, = n(p) and let & be a w,-horizontal lift of « € C(x,),
through p. Since w, f, = @, f © & is a w,-horizontal lift of & through f(p) = pu. But
then R,-: o f o & is a w,-horizontal lift of « through p, and therefore

phg(e) = (Rys o f 0 8)(1) = fl@(D)u™
= flphy (@)u™ = puhg(0u™,

from which (3.9) follows. The uniqueness of f is proved in a similar way. O
Two interesting results given by Fischer [1] can now be obtained as corollaries:

Corollary 3.3. Let p be a fixed point in P, f € GA(P), and suppose that f*w» = .
Then there exists u = u(p) € Co(Hol(w)) with f(p) = pu. Conversely, for every ue
Cs(Hol(w)) there exists a unique gauge transformation f: P — P such that ffo=w
and f(p) = pu. (Here, Cg(Hol, (w)) denotes the centralizer in G of the holonomy group
of w with reference point p.)

Proof. Assume that f*w = w, and define u € G by f(p) = pu. By Proposition 3.2
it then follows that A9 = uh2u™". Thus for any o € C(7z(p)) we have h@(«) = uh2(@)u™",
which implies u € CG(Hol (a)))

Conversely, given u € Cg(Hol,(w)) we have h? = uh?u™" and by Proposition 3.2
there exists a unique gauge transformation f satisfying f*@w = w and f(p) =pu. 0O
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Corollary 3.4. If f € GA(P) and t is the associated function in C(P, G) the following
conditions are equivalent:

) ffo=w

il) 7 is constant on each w-horizontal curve in P;

iii) 7 is constant on the holonomy sub-bundle P(p,) of P.

Proof. If f*w = wand &(r)is a w-horizontal curvein P starting say at p; and ending
at p,, then R, , o &(z) and f(é(t)) are both w-horizontal lifts of m(¢(z)), starting at the
same point p,t(p;) in P. Consequently for each ¢ e [0,1] we must have f(é@)) =
é(t)yt(p,), from where it follows that (é(¢)) = z(p,), i.e. T is constant on &(z).

Conversely, if 7 is constant on each w-horizontal curve in P, then f(é(t)) = é()t(p,)
for t € [0, 1], and f{é(z)) = Ry,  £(¢) which is also a w-horizontal curve. Therefore
f*w = . We have thus.completed the proof of i)« ii).

Now ii) =>1ii) is obvious, and if iii) holds and ¢(¢) is a horizontal curve in P, then
R, o ¢(t)isin P(py) forsome g € G. Thus T(R o &(t)) = g *1(&(t))g is constant, so (¢(£))
must be constant. Hence iii) < ii). : O

4. Gauge Equivalence of S-Invariant Connections'

Section 2 considered the lifting of a symmetry action to an action on principal fiber
bundles with arbitrary characteristic groups and homogeneous base spaces, and an
algebraic procedure was given for constructing gauge fields from them, possessing the
symmetry of the underlying base manifold was given. Section 3 discussed gauge
transformations on connection 1-forms, and characterized their gauge equlvalence in
terms of their holonomy groups.

We shall here examine the following problem: given two connectlons both required
to be S-invariant, what are the conditions for them to be related by a gauge transforma-
tion? The answer to this question will provide us with a means of classifying symmetric
gauge fields into classes modulo gauge transformations, and will be here given in both
the local and global domains, in terms of their associated linear transformations (cf.
Sec. 2). We start with some definitions.

Definition 4.1. Let U < M be an open subset of our base manifold and w,, o, two
connection 1-forms in P. We then say that “w, is gauge-equivalent to w, on U” iff there
exists a gauge transformation

feGA@(U)) such that  f*®;lp-1) = Oslr-11)-

Let now A; and A, be the linear transformations associated to fwo S-invariant
connections w; and w, respectively. Recall that if X e L(S) (the Lie algebra of S) then

~ ~ d :
Ay(X) = [wy(X)];, where X, = Ei(exp tX - p}l;=o. In order to show that f*w, = w, for

f e GA(x™*(U))itis sufficient to show that i) f *w, is locally S-invariant at some Xo € U,
and 1) (f*w,),, = (@2),,- In fact for ii) it is enough to show that (f *wl)(X)
@,(X),, = Ax(X) for X e L(S)
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Writing f(p) = pt(p) one obtains [11]

(f*01)p, = ©(Po) *@17(Po) + T(Po) 1, “.1)

from where we must have

7(po) A1 (X)T(Po) + T(po) 1, (X) = AL(X). 4.2)

-In order to find the desired relation between A; and A, it is then sufficient to find
those gauge transformations f: P — P which send an S-invariant connection w, into
another S-invariant.connection w,. We shall first study this situation locally:

Recall that Holf,o(a)) is the subgroup of Hol, (w) generated by loops at x, which are
homotopic to the identity. (Here, and in what follows, x, = 7(p,).) Then, given any
x € M, x = n(p), there exists a neighborhood U, = M of x such that Hol}(w) =
Hol,(w)(n™*(U,)) = Hol (w)(z~*(V)) for any simply connected neighborhood ¥ of x
contained in U,. In what follows we shall take neighborhoods V of x, such that
Hol5(w) = Hol, (w)(z*(V)).

The conditions for the local S-invariance of f*w (cf. Definition 2.4) will be given in
terms of some functions A,(q) which we define by

g =<sge@™ @3

for all s € S, g € n *(N), such that sq € 7~} (N).

These functions satisfy several properties which we give below. Given a neighbor-
hood U’ of s and a neighborhood N’ of ¢, with U’'-N’ < z7Y(N), then the func-
tion (s,q") > A,(g") is C*. Also given s, t € # then l;s(q)T(q) = 1((ts)q) = t(t(sq)) =
A(sq)t(sq) = 2.(sq)A(q)t(q), ie. ‘ ' '

@) = DA, (4.4)

and therefore
Ag=e ) (4.5)
In ad(dition, since 7(pg) = g~ t(p)g, with g € G, it follows that
As(a9) = 97 A(@)g-
More properties for 4 will be obtained from the following lemmas:

Lemma 4.2. If s€ ¥ then A(p,) € Cz(Holj (w)).

Proof. V) is a connected neighborhood of x, with s¥,,’= N. Given g € n7*(V,) we
have

(A Q) = sTsgr(@) ™) = sTH(s(9)1 (@)

= 57's(g)t(sq)t(9) ™" = qr(sq)r(g)~".
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Note that (s 1fsf ~*(q)) = n(g). Thus the induced diffeomorphism on M is the identity
transformation so s~*fsf " is a gauge transformation from n™*(Vy) to =~1(¥,) whose
associated function in C(n™*(V), G) is precisely A,(q) = t(sq)t(g)™".

Now, taking X € T,(n"*(V)) and using the S-invariance of o,

(00 = (5B 00) = (F4) (5 5, X)
Ul ) = (£ )
= (£ *0(X) = o(X),
and by Corollary 3.3 this means that
.(po) € ColHol,(@)(x™ (V) = Co(HolE,(@)). =
Lemma 43. Letsc S and g € x~(N) such that sq € n*(N). Then
1) € ColHolz(@)).

Proof. Wehave g € n71(N), then g = rp withr € S and n(p) = xo Asin 4.3 one can
prove that 4,(p) € Cg(Holj(w)). Here sq € 7 (N), so sr € #. Thus A,(p) € Cs(Hol3(w)).
On the other hand one has A,(p) = A,(rp)4,(p), and consequently A(q) = Arp) €
Ce(Holj(w)) = Co(Holp,(w)) = Cg(Holg(w)). e O

Note that if J = S denotes the isotropy group which fixes x, (glven the action of § -

on M) then, for j e J we have
4i(Po) = T(jpo) (o) = T(Pos(5))7(po)”
= p(i)  t(po)(t(po) ™,

where uwas defined in Sec. 2. This means that Ai(po) for j € J is not arbitrary, but must
satisfy

A(po) = u(jy "up(j)ut € Co(Holy (@),  withu=r(py). - (46)
Also, for s € #" and j € J, by Eq. (4.4) we have

Asi(Po) = As(jP0)2(Po) = H(}) ™ 2s(Po)1(7)A1(Po)- “.7)

We have thus seen that if f * is required to be S-invariant then 4, satisfies Eqgs. (4.6),

(4.7). Reciprocally, suppose we have defined a function v : #~ — Cg(Hol, (w)) satisfying
Egs. (4.6, 4.7) for a certain u € G. We will now show that in this case we can construct
7 € C(n *(N), G) with the properties

©(po) =u,  T(spo)t(Po) ™t = vs = V(s).
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Indeed, let g€ n~1(N) and write g = spyg, withs € #/, g € G. We define 7(q) := g *v,ug. -

To see that it is well defined, suppose that g = tp,h with t e %, ge G. Then t = sj,
h=pu(j)"'g and

©(tpoh) = t(sipo ()7 g) = g7 () veup() g

= g7 u(Hp() vep () vup() g

_ _1 o - _1 » - —1 o —1 - _1

=g~ p(Nu() vt (Np() up(Nu up( )™ g

= g7 'v;ug = T(spog)-
Now note that, if ¢ = spog € n*(N) and r € S is such that rq = rsp,g € 7~ *(N), then

74(g) = tra)e(@) ™ = g vugg g = gty (48)

so that v also determines 4,. The properties mentioned above for 7 follow trivially. We
now want to find further necessary conditions for = which, together with the previous
ones, are also sufficient conditions for the existence of a transformation with associated
T leaving the connection S-invariant. To this effect, recall that, by Corollary 3.4, the
functions 4,(g) with g € n7*(V) are constant in g over w-horizontal curves in 7~ (V).
~This property on 4,(g) can be translated into a condition on.v as follows: Recall that
if 9, = n7!(V) then the holonomy subbundle Q,(p,) of p, in Q; is given by all p € Q,
which can be joined to p, by an w-horizontal curve in Q.. Its structure group is
Hol,, (w) (n (V) = Hol; (w). Let ¥, be a sufficiently small neighborhood of x, =
n(p,) satisfying i) and ii) of Definition 2.4, such that a section o : ¥, —» Q.(p,) exists.

Given x € ¥, and s € S with sx € V, we can write so(X) = o(sx)@.(s), with ¢,(s) e G
and these functions satisfy

0:(5t) = 0,(5) (1) 49)

whenever tx, sx, stx € V. Also, using the constancy of A, we have, for t € S with
txo € Vi and stxy € N, : ‘

ha(0(x0)) = A4(t0(%0)) (o (o))
= 20 (X0) 9y (M) (0 (%o))
= G (0 (E%0)) Py 0 50))

= 05, (1) 25(0(%0)) 9, (D} Ar(0(0)).
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so that v(s) = A,(o(x,)) (cf. Eq. (4.8)) satisfies the following conditions
v(s) € Cg(Hol; (w)) (4.10a)

v(st) = @, (¢ “y(s)o, OV, forse # andtxyeVy,ste ¥  (4.10b)

1

- v(j) = p() tup()ut,  forjel. (4.10c)

Before we arrive at the result we are after, we have a lemma and a straightforward
proposition. - ’

Lemma 44.

1) ¢.(t) € Ng(Hol; (@))
ii) Forse# andt e S with tx, € V), we have

GurolS) = Bs,D0sy(s),  with h(s,2) € Holg, (o). @.11)
Proof. Since o(sx,) € Q(po), we have Hol, \(w) = Holy, ,(@) = Holg,, (@) =
HOI:'(sx05¢XO(s)(m) = (D,éo(S)_l qug(sxo)(w)(pxo(s); i'e;r(Pxo(S) e N, G(IIOlz(xo)(w))’ WhiCh proves

the first part. For the second part we may assume that there exists a section o : N —
Q(g), the holonomy subbundle of z~*(N) containing g. Now,

$6(t5%0) = 0(51X0) i (5) € 00 (%0))
0(51%0) 9, (5) € Q0 (X0) P (5)) = Q(55(x0)).

But o(stxo)e,,(s) and o(stxé)(ptxo(s) both project onto stx,. Therefore there exists
(s, t) € Holg, (@) = Holy (w) such that @, (s) = @, (s)k'(s,7). Using the fact that

SPo

@x(s) € Ng(Hol, (w)) we finally get

Pexo(8) = P (I (5:1) Do ()7 P () = RS, D (5),

with k(s, ?) € HolS () so defined. ' O

When the section o is defined over all of N, conditions (4.10) may be restated in
terms of functions which are nearly group homomorphisms, as follows:

Proposition 4.5. Let
Y(s) = @ (Iv(s), (4.12)
then v(s) € Cg(Hol, (w)) satisfies (4.10b) iff

Y (st) = h(s, O ()Y (t) (se# and txy € V), | (4.13)
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where h(s,t) are the functions defined in Lemma 4.4.
N.B. For j € J we clearly have

W) = up(yut. 414

Proof. It follows by straightforward calculation, and we omitit. [J

We can combine our results so far relating to the existence of a gauge transformation
which leaves w S-invariant in the following

Proposition 4.6. Let w be an S-invariant connection, and N an open neighborhood
of xo. Take W = {s € S|sx, € N}. Then a gauge transformatzon f € GA(n ™ (N)) exists,
with f*w locally S-invariant at x,, iff
1) For each s €W there exists a connected neighborhood Vi, of x,, with Vg Nn
s™IN, and a local section o Ve = P with o(V,) = Q(po) (the holonomy subbundle
of Po in O, =17 (Vy)

ii) The associated function te C(n"*(N),G) is determined by a function v:¥ —
Ce(Hol; (w)) satisfying Egs. (4.10b, ¢).

N.B. The conditions (4.10b, c) on v can be translated into conditions (4.13), (4.14) on

Y(5) = @y, (s)V(s), when the local section o is defined over all of N.

Proof. The proposition has been proved above one way by construction, that is,
assuming that f* is locally S-invariant and for each s € #" taking ¥, so that it fulfills
conditions i) and ii) of Definition 2.4. Reciprocally, suppose conditions i) and ii) of the
proposition are satisfied, then v determines both t € C(r(N), G) and A (qg) for g€
7 *(N), as shown by Eq. (4.8) and the paragraph preceding it. Thus, to show that
Sf(p) := pt(p) is such that f*ew is locally S-invariant at x, it is sufficient to show that
4s(q) so defined is constant for all ¢ in Q,(p,). To this end, note first that, fors,t € #~
with tx, € ¥,

A0 (tx0)) = 25(t0(x0) o (£) 1) = 0o (1) As(t 0 (%)) 0, ()
= Py (D 2(0(x0)) 10 (x0)) " 004, ()
= @, (IV(SOVE) T 0, () = v(5) = A(a(Xo)),
so that A(a(x)) is constant in x over V. Now, if q € O4(p,) then it is of the form

q = o(x)h, with x € ¥y and h € Hol;, (), and using the fact that A,(c(x)) € Ce(Holj (w))
we have

45(q) = Ao (x)h) = h™ Ao (x))h = Ao(x)) = A(o(xo))

which gives the required result. Ol

We may now answer, in the local domain, the question posed at the beginning of
this section:
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Proposition 4.7. Let w, and w, be two S-invariant connections, and let Ay and A, be
- their associated linear transformations, respectively. Then an open set Vi = M exists
containing x, and such that o, and w, are gauge equivalent over 1 (V,)) if and only if
there exists u € G with the following properties:
T ) p(j) rup(jyuTt e Ce(Holy, (w)) for all je J.
ii) There exists a local section o : Vi — Qy(po) for @, = n (V).
ili) There exists a function v: # — Cg(Hol; (w)) satisfying Egs. (4.10b, c).
iv) A, =uHAL + v, l)u
N.B. The conditions (4.10b, ) on v in iii) can be translated into conditions (4.13), (4.14)
on Y (5) = @, (¥ (s)- '

Proof. We have seen above that conditions i) to iv) are necessary. We now prove
sufficiency. Suppose then that conditions i) to iv) are satisfied, and let r € C(z*(N), G)
be the transformation associated to v as in the paragraph preceding Eq. (4.8). Given
g € n7*(V,,) we know that if f(g) = q7(g) then f*w,|,-y,, is S-invariant. Using Eq.
(4.1) we have, for X € L(S),

(F*01)po(X) = 1(Po) ™ (@1),,(X)T(Po) + (Do) 4 (X).
But t(s0(xo)) = A0 (o)) = ¥(s)s, 50 7, (X) = %v(exp £X)|,—ott = v,,(X)u. Therefore

(F¥0)po(B) = 4 Ay (Xt + 1™, (X = Ay(X) = (@3),,(%),

where we have used iv). Now S-1nvar1ance over ¥y gives (f*w )l = D2le1ry»
as required. O

Examples. As an application of our previous results, we consider here two exam-
ples, containing well-known results, which serve to illustrate the content of Proposition
4.7.

a) Let w,, and w, be two flat connection 1-forms which are required to be S invariant.

We want to prove that these are locally gauge-equivalent.

We begin by recalling [ Chap II, Theorem 9.1 of Kobayashi-Nomizu] that a connec-
tion on a principal fiber bundle is locally flat in P}, if and only if the curvature form
vanishes identically in that region. Consequently ‘

Q(X, Y) = do(X, ¥) + [w(X), o(7)]
= X[w(Y)] — Y[o(X)] — o([X, Y1) + [o(X),0(Y)] =0
Moreover, since for S-invariant connections %z = %o = 0, it readily follows that

0, ([%, 1) + [0, (B), 0, ()] = 0,
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and since X — X is an algebra anti-homomorphism,

A(LX, YD) = [AX), A(Y)]. (4.15)

Thus, for locally flat connections the linear transformations A; and A, associated to ~

o; and w,, respectively, are homomorphisms of Lie algebras from L(S) to L(G).

Let us then consider the local sections g;: V) — Q,, (p,) on the holonomy sub-
bundles of Q; = n7(V,).

Sice the w; (i = 1, 2) are locally flat, we have that Hol,, (;) = Hol, (@;)|,-1x = {€}
and the h(s, ) of Lemma (4.4) are equal to the identity. It then follows from (4.11) and
(4.9) that ¢, (s) is a local homomorphism. Furthermore since

A P o P .
Xy = E(CXP tX)o;(xo)e=0 = i Lo:((exp £X) - xo){(®;)x, (€xp tX)],—0

= 04 + [(@)ee )T ey » | (4.16)

and (ai)*()?) are horizontal lifts relative to w;, we get

mi(X)a,-(xo) =A(X) = ((Di)xo*(X)' 4.17)

Setting now A, = u™ (Y, )u, and recalling that A,|; = p,, we get ¥, |, = up u™.
Therefore Y(j) = up(j)u~"; and thus (4.14) is satisfied. In addition, since A, is a Lie
algebra homomorphism we must bave :

[AL(X), Ax(Y)] = A,([X, YD),
ie.
uT Y, (X), ¥ (V)] = u™ Y ([X, Y])u.

Consequently ¥ is a local homomorphism of Lie groups and thus it also satisfies
(4.13). Finally, since v(s) = ((¢1),(5)) "¥(s) we have v, = —(@1)xgx + uA,u~". Hence
Ay + v, = uA,u™?, and so iv) of Proposition 4.7 is verified too.

b) Let @ be an S-invariant connection 1-form, andletu € Cg(Hol, (w)). We shall prove
here that there exists a neighborhood ¥ of x, and a local gauge transformation
f1a (V) = n (V) such that f(p,) = pou and f*w = .

Indeed, since ue Cg(Hol; () and p(j) € Ng(Hol, (w)) it is easy to show that

p() up(j)ut € Co(Holy (w)). Let now ¥, be a simply connected neighborhood of

xo with Hol,, (@)(z™*(Vy)) = Hol}_(w), and such that there exists a section ¢ : Vo—

Q.(p,) on the holonomy subbundle of Q, = 1 (V). Operating on (4.16) with the

connection 1-form, we get A(X) = @, ,(X) = w(o, X)) + @, %(X), with X € L(S).

Note that since o(V,) is in the holonomy subbundle Q(p,), its structural group is
Hol;, (), so that A(X),, = w(0, X, ) € L(HOL, ().
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If we now take Y(s) = up, (sju™ for se W = {s e S|sxy = N} then, since ue

Ce(Hol; (w)), it clearly follows from (4.11) that (4.13) is satisfied.
Furthermore since t(sp,) = v u, we have that 1:*(X)p0 = v, (X)u. Also since v, =

¢xo (S) ! .p (S) goxo (S) uqoxo (S) u Consequently T* (X) o qoxo* (X) u+ u(pxo* (X)z and
substituting this expression into (4.1) yields

(f*0)se)(X) = 4™ (A(K,,) + PeulX) — Gl X) + s £ (X))
= u AR Ju + 9, ulX). |
But u e Cg(Hol; (w)) and A(X),, € L(Hol;, (w)), so u™*AX),,u = A(X),,. Hence
(f* )y (X) = AX)sy + Pl X) = AX) = 0,5,(X),
ie.

f*lem = Olyy,-

The global domain

We will now show how the local results obtained so far can be extended to all of M.
Thus, for example, if in Deﬁmtlon 24 wetake N = V, = M then Lcmma 4.2 will apply
globally.

In order to derive a proposition analogous to 4. 7 we need to consider an open cover

{U:}ier of M such that for each i e I we have a local section 0;: U; = P( po) where P(p,)-
is, as before, the holonomy subbundle of P at Po-

Note that, if y € U;n Uj, then ay(y) = i(¥)h;i(y), where hy(y)e Hol, o(co). Also for
xeU;ands e S, thereisa j € I such that sx € Uj, and we can therefore write so-i‘(x) =

a5(sx)pdN(s) with ¢¥"(s) € G.

Itis straightforward to show from the above that if x € U, n U; and sx € Ul N U,,,, then'

@D (s) = Byy(sx) 0 (s) ﬁ(X)_l;- o o (4-18)
In addition if x € U,, sx € U; and tsx € U, then in analogy to (4.9) we ge‘t‘ »
P (ts) = ol @) eP D (s). (4.19)

Moreover, by an argument similar to the one used to prove Lemma 4.4 we can show
that the elements ¢ (s) are contained in Ng(Hol, (w)). Therefore since h,,(sx) and
hy(x) e Hol, (), the structure group of P(p,), it follows from (4.18) that (™ () and
@{?(s) belong to the same equivalence class, modulo Hol, (). Consequently there is

- a funct1on P(s):M x S—>N= NG(Holpo(w))/Holpo(w) Wthl'l satisfies the relation

P{tS) = Por(t) B (5). " (4.20)
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Proposition 4.8. Fors € S and x,y € M one has &.(s) = @,(s)- Hence there is a group
morphism @ : S — N defined by §(s) = @,(s) for ally e M.

Proof. Let se S be fixed and let x € U, = M. We will show first that there is a
neighborhood N of x such that if y € N, then §,(s) = @(s).

Indeed since there exists a neighborhood N of x such that N < I; and sN = U, we
can proceed as in the proof of Lemma 4.4: For y e N and g € G, we have o(sy)g €
P(pog). In particular, for x = y this implies that oj(sx)pY" l)(s) € P(po @Y 7(s)). But we
also have that g;(sx)@¥?(s) = so;(x) € P(sp,). Hence P(po ;" 0:9(s)) = P(spo)-

Furthermore, since so;(y) = 01(sy)@Y2(x) € P(spo), it follows from the above that
both so;(y) and g;(sy) ©9)(s) are in P(sp,) and they project onto the same point sy in
M. Thus ¢@"(s) = @{"?(s)h, with h € Hol, (). That is, §.(s) = @,(s).

The remainder of the proof follows from noting that'if L = {y € M|®,(s) = ¢.(5)}
then, by the continuity of ¢,(s) the limit points of L are contained in L, so L is closed.
Itis clear that L is also open, because every point of L belongs to an open neighborhood
contained in L. Finally, since M is connected we must have that L = M, and in
consequence §,(s) = @,(s)forally e M. O

Making use of the above proposition, we can readily translate the remainder of our
local results to their corresponding global versions. In fact all we need is to replace
@x(s) by &(s) in the proofs wherever these morphisms occur and show that such an
action of N is well defined. That this last assertion is indeed correct can be seen directly
from the following argument:

Let ie N with ne NgHol, (). If ae CG(Holpo(co)) then clearly nan™'e
Cs(Hol, (w)). But na = (nan~")n, so n € Ng(Cg(Hol, (w)). Observing finally that @(s)
will appear only as an adjoint action on group elements of Cg(Hol, (w)) it is evident
that such an action is in effect well defined.

We can now proceed to a global restatement of Propositions 4.6, 4.5 and 4.7. Thus
if f € GA(P) and 7 € C(P, G) is its associated function, we will have, in analogy to the
local case, that 7 is completely determined by v:S — G if 7(p) = g~ v(s)‘c(po) g, w1th

=8Po9-
The following is the global version of Proposmon 4.6

Proposition 4.9. Let o be an S-invariant connection 1 -form, then the connection
1-form f*w will also be S-invariant iff f is determlned by amapv:S— CG(Holpo(w))
which obeys the conditions

vist) = BE VSOV, (421
V() = u() tup(lu  with  f(po) = pou-u€G. ~  (422)

In order to give the global version of Proposition 4.5, let ¢, : S — Ng(Hol, ()) be
such that for each s € § the quantity @,(s) is in the coset class of @(s). Since P(s)is a
morphism, it follows that

@o(st) = (s, 1) 9o (s) o (t)- (4.23)
We then have
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Proposition 4.10. Themapv:S — Ce(Hol, () satisfies (4.21) and (4.22) iff Y(s) =
©o(8)v(s) satisfies the equations

Y (st) = hls, Oy (s)y () | for s, tes, 4.24)

and
Y() =uu(ju™, (4.25)

where h(s,t) is the function which appears in (4.23).
Finally the global version of Proposition 4.7 is

Proposition 4.11.  Let o, and w, be two S-invariant connection 1-forms and ALA,
their respective associated linear transformations, then o, and W, are gauge-equivalent
iff there is a u € G such that

D) u(i) up(j)u™t € C(Hol, (w)) forall jeJ,
ii) there exists amap v: S — Cg(Hol, (w)) such that v(st) = go(t) v(s)go(t)v(t)

i) v(j) = p()) up(j)u for allJeJ
v) Ay =u"M (A + v, ] )u

Generic connections

We shall here carry our global results over to the case of generic connections. Recall
that a connection 1-form w is called generic if Ce(Hol, () = Z(G), where Z(G)
denotes the center of G. ,

In the case where P is a connected and compact manifold which admits at least one
generic connection, it is known (cf. [12]) that the space of generic connections forms
an open and dense subset of the space #(P) of all connections.

Consider then two S-invariant generic connections ,, ®,, with Ce(Hol, (w;)) =
Z(G) (the center of G), i =1, 2. Since v(s) € Z(G) in this case, the condltlon 11) of
Proposition 4.11 reduces to v(st) = v(s)v(z). We thus have:

Proposition 4.12. Let w, and w, be two generic S-invariant connections with asso-
ciated linear transformations A and A,, respectively. Then w, and a)z are gauge equiva-
lent iff there exists u € G with

1) p(j) tup(ju™ € Z(G) for all je J.
1) There is a group homomorphism v : S — Z(G) such that, for jed,

-1

v(J) = p(7)  up()u
i) A, = (A, + v, | )u

Note that in this case v, is a Lie algebra homomorphism from L(S) onto an abelian
subalgebra of L(G), so if S or G are simple, then v = ¢ and the necessary and suffi-
cient conditions for gauge equivalence of w, and w, reduce to A, = u A u, with

ue Colu(J))-
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5. SU(2) x SU(2)-Invariant Connections over S> x S° ' -

As an application of our formalism we shall derive explicit expressions for the gauge
potentials corresponding to SU(2) x SU(2)-invariant connections of a principal fiber
bundle with base space §? x §2, and gauge group SU(2). In addition, we shall provide
a classification into non-gauge-related families.

The expressions obtained below correspond to five non-gauge-equivalent families -
* with second Chern number C,(P) = =+ 2rs, where r, s are integers. Furthermore, since
the symmetry group SU(2) x SU(2) is assumed to act transitively on the fibers, we
shall treat the base space as homogeneous with S? x §2 = SU(2) x SU(2)/U(1) x _
uQ). ' B .

Our construction is as follows: Given two integers r, s, let P, ; be a principal fiber

bundle with base space SU(2) x SU(2)/U(1) x U(1) and structure group SU(2). We
choose J = U(1) x U(1) as the isotropy group, and the morphism g: U(1) x U(1) -
SU(2) given by u(p,q) = p'q’, where p'q® denotes the usual product of powers in the
subgroup U(1) = SU(2). Note that if r and s are different from zero, then p does not
extend to a smooth morphism from SU(2) x SU(2) to SU(2), and by Corollary 2.3
above the bundles P, , are non-trivial. Furthermore, since every abelian subgroup of
SU(2) is isomorphic to either U(1) or the trivial group, every morphism from J to
SU(2) is, up to conjugation, as given by u above.

Now, in order to construct S-invariant connections we must first calculate p,. To
this end, let [1;,7;] = &7 be the Lie algebra of the symmetry group SU(2). A basis
for the Lie algebra of SU(2) x SU(2)is then given by X; =7, 0, ; =0® 7;fori =
1,23 -

As Lie algebra of J we choose the subspace generated by X; and Y;. It then follows
that J = {exp(aX, + fY;)lo, B € R}, and p, : L(U1)) ® L(U(1)) > L(SU(2)) is given
by

pe(Xp) =7Xy1, - p(Ty) =sX;. (6.1
We now apply Wang’s theorem (cf. Eq. (2.10)) to solve for the linear transformations
A: L(SU(2) x SU(2)) - L(SU(2)). In particular, noting that ad;(m) = m, where m is

the subspace spanned by {X,, X3, Y,, Y3}, by Theorem 11.7 of Kobayashi and Nomizu
[4] we have ‘

AZ)=p,(2Z) for ZeL(), AZ)=A,2Z) for Zem, (5.2
and

Q. 0(Z1.Z2) = [AnZ:), AnlZ2)]

- Am([ZhZZ]m) - I'l*([Zl')ZZ]j): for. Zla ZZ EmM (53)

where [Z,,Z,],, denotes the m-component of [Z,,Z,] € L(SU(2) x SU(2)).
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-Consider first the canonical construction in P, , ie. the S-invariant connection
defined by A,, = 0. Using the notation A(X;) = AiX and A(Y) = A5 X, it follows
immediately from (5.1) and (5.2) that

Al=r, Ai=s, AJ=A]=A}=A3=0, Ab=A=At=AL=0. (54)

(Note that in this case (2.10B) is satisfied identically.)

To arrive at additional families of solutions we need to consider the general case
A,, # 0, for which we have to solve Eq. (2.10B). A fairly stralghtforward calculation
results in .

Af exp[(x(t)r + ﬁ(t)s)gmj]Xj = eXP(“(t)emk)AzJ;Xj:

E (5.5)
Af s exp[(a(®)r + BB)s)ey;1X; = eXP(ﬁ(t)guk)Aiﬂx}- '

Setting «(t) = adt, p(t) = P dt and expanding to first order in the infinitesimals, gives

(ar + ﬁs)alij;c = agyu AL,

| (5.6)
(r + Bs)eyi;AY s = BeypAss -
These conditions in turn imply
Ai=r, Aj=s, Af=Af=Aﬁ=‘Ai=A1=A1=A§=‘A1v=0
(r + pIA3 = aA3, —(ar + BAT = aA3, —(ur + f)AT = PAZ,
' ' (5.7)

(ar + Bs)AZ = BAZ, (or + B)AS = aA3, (wr + Bs)AZ = —aA3,
(o7 + Bs)AZ = BAZ, (ar + Bs)AZ = —BAZL.

It is easy to verify that the admissible solutions to (6.7) are: 1) a = — B, 7 — s = 1;2)
a=—Bs—r=13)a=pr+s=14a=pr+s=—1.Inall these cases we have
Z(SU(2)) = e. Furthermore, since the Lie algebra of Hol, o is generated by (cf.
Theorem 11.8 of Kobayashi-Nomizu) m, + [A(Z), mo] + [A(Z), [A(Z,), mol] + -,
where m, is the subspace of L(SU(2)) spanned by {IAZ),AZ,)] — A2, Z,1)|Z,
Z,, € L(SU(2) x SU(2))}, it also follows that Ce(Hol, @) = e. Thus, the connections
are generic and, since SU(2) is simple, we have from Proposition 4.12 that any two
gauge-equivalent connections must be related by A’ = u ' Au, withu € Co(u().

More specifically, since u = exp(2y(t)X,) = cos p(t)] + 2siny(t)X,, it can be verified
that gauge-equivalence implies

AF=A}, A2 =(cos2y)A? + (sin2y)AZ,
» . (5.8)
= (cos 2y)A7 — (sin2y)AZ.
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We now c¢onsider in more detail the four cases mentioned above in order to derive
explicit SU(2) x SU(2)-invariant solutions.

1) Casea=—f,r—s=1
In this case (5.7) becomes

Al=r, Al=r—1, A3=Al=p, AJ=-A}=g0,
| ‘ (5.9)
Ai=Al=x, Al=—-Ai=1.

Now making use of (5.8) we can eliminate any one of the four parameters o, p, 7, Or «.

2
For instance, if o # 0 we can set p = 0 by choosing tany = %<_1 Tyt <§> ) o

matrix notation we obtain

[(r 0 0]
0 —o
0 ¢ 0
= 5.
A r—1 0 O (5.10)
0 T K
L 0 kK —T|

Furthermore, it is straightforward to show that the three other solutions, obtained
by gauging any one of the other parameters in (5.9), can be transformed into (5.10) by
an additional gauge transformation. Consequently, case (1) leads to only one family
(up to gauge) of three free parameter solutions for a given principal fiber bundle P(r, s).

2) Caseax = —f,s—r=1

Here (5.7) yields
Al=r, Al=14r, —A3=A}=p, AS=A}=0,
v (5.11)
—Ai=Ad=k, Al=Al=1.
By a procedure entirely analogous to the one followed above, we find
[ r 0 0)
—p 0
0 0 »p
= 5.1
A 1l+r 0 0 612
0 K
Y —K T

This constitutes another family of three free parameter solutions, and all other ones
for this case are gauge-related to (5.12):
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3) Caseax=f,r+s=1
Here (5.7) implies

Al=r, Ai=1—r, A2=Ad=p, Al=—-Al=0,
Ai=—-Al=x, AZ=Al=r.

Using (5.8) once more we get

[ r 0 0 )
‘p—"a
0 o P

A= I—r 0 0 |°
0 = 0
\0 0 T |

which, ﬁp to gauge, is the only admissible solution in this case.
4) Caseax = f,r +s=—1.
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(5.13)

(5.14)

For this situation we have Al =r. ”A4 = —1—rA}= —A3 =p, A2 = AZ =0,A} =
A% =, Az = — A} = 7, and by an analogous procedure to the one followed before we

find again that, up to gauge,

(7 0 O;\
P 0

. 0 o —p
A= —1—7r 0 O
0O .t 0

0 0 -1

(5.15)

To derive the gauge potentials corresponding to each of the cases above we have to
resort to (2.17), for which purpose we require to know the lifting to P(r, s) of the action
of SU(2) x SU(2) on §* x S2. This lifting is determining by the functions ¢Z(s) which

we have already calculated elsewhere [13] and are given by

1 r/2
2(s) = :
eets) l:(a1 + ¥y +diy)? + (by +dyy, — C1.V'2)2:|

‘ 1 5/2
[(az + ¢y +dayy) + (b, + dyys — CzJ’4)Z] ’
‘[lay + c1y1 + d1y2) + 2t3(by +dyyy —c1¥2)1"

‘[az + c2y3 + dyya) + 2t1(by + dyy3 — ¢294)7%

(5.16)
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where s = (a; + byi + ¢, j+d k,a, + byi + ¢, j + d,k) is the unit quaternion corre-
sponding to se€SU(2) x SUQ2), and x = (y,¥,;Vs,Va) are local coordinates for
S% x 82
From (5.16) it follows that
Wi (X1) = (D)t @ 0) =774, WEHX5) = —1y,1e, Wi (X3) =ryy7q,
‘ (5.17)
Wit) =st, Wi(Y) = —sy.ti, Wi (Ys) = sys7y.

Furthermore, using left-invariant vector fields instead of right-invariant ones for the
evaluation of (2.17), it can be shown that (see [14] for details)

ARD, = AX) — WHX), =23

- (5.18)
AT = A¥) - W(R), i=23
with
FL 1 2 ‘2 0 . )

XD=—0+yi +¥)—, &XH.=- (1 +3t+ )’2)

, 2 DA 2} ‘ v,
(=SB e, (.= ——(1 s

2 /x 2 3 4 ay3: 3 Jx 3 T a 4

a local orthonormal basis in R? x R? < §2 x §2.
Consequently, combining the results in (5.4), (5.10), (5.12), and (5.14-18), we obtain,
relative to (5.19),

ry, 0 0
— 00
4= | ) (5.20)
sy, 0 0
—~sy; 0 O
for the canonical connection in P(r, 5), and similarly
(172 0 —0] (192 —p 0]
A= —ry; o 0 ,‘ A= —-ryy 0 p ,
Sya T SYa T K
_—Sys kK —T1] L—Sys —K T
(5.21)
s 3 . r
ry, p —0 ry, p 0
I e L I e i
sy, = O sya t O
L—sys O ] L—sys 0 —1

respectively, for casés 1) to 4) discussed above.
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Calculating the gauge fields which arise from (5.20) and (5.21), it is easy to verify that
our principal fiber bundles are characterized by a second Chern number given by + 2rs,
and that it is only the canonical connection which allows for self-duality and thus for
multi-instanton or multi-anti-instanton solutions when r =s and C,(F,)= +2r%
These SU(2) x SU(2)-invariant multi-instantons form a subset of the space of solutions
predicted by the Soberén-Chavez [14] classification of stable complex bundles of rank
2 over §% x §?, and 'the correspondence between stable complex bundles and self-
duality established by Donaldson [15].
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