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Abstract

The notion of strong Barr dinatural transformation is introduced which, when taken between
Hom functors, gives a notion of natural number specifically adapted to the category under con-
sideration. We call these dinatural numbers and we study their arithmetic which depends in a
nice way on the structure of the category. We also consider families of dinatural numbers, which
leads to a new universal property for natural numbers object as classifying object for dinatural
numbers. When there is a natural numbers object, its arithmetic defined by recursion corresponds
to the arithmetic of dinatural numbers. Examples are given with a particular emphasis on the
category of finite sets. © 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: 18A23, 18D20

1. Introduction

In {1], Bainbridge et al. introduced a semantics for the polymorphic lambda calculus
in terms of functors and generalized natural transformations. This theme is picked up
again in [7]. Types are interpreted as bivariant functors on a suitable cartesian closed
category and terms as dinatural transformations. It was already known to Dubuc and
Street when they introduced them in [6] that dinatural transformations do not compose
in general. This embarrassment is circumvented in [1] by working only with the cat-
egory PER of partial equivalence relations on N. There, the dinatural transformations
do compose, as there are relatively few of them and they have a very special form.

Still, the general idea is attractive enough to make one wonder how far it might go
using such nice categories as the category of sets or the category of finite sets. In partic-
ular, inspired by the notion of Church numeral, one might wonder, as Bainbridge et al.
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did, whether every dinatural transformation on the Hom set is given by iteration a fixed
number of times. The answer is “no” and counterexamples are given in Section 2.2.

We introduce a stronger notion of dinatural transformation suggested by Barr, which
is much better behaved. They are closed under composition, in particular. For the Hom
functor on the category of sets, they correspond exactly to iteration a fixed number
of times. For other categories, such as finite sets, there are more. We view them as
a notion of natural number specifically adapted to the category in question. We call
them dinatural numbers.

There is a certain amount of arithmetic which can be done with dinatural numbers
which depends quite nicely on the structure of our category. If the category is merely
monoidal we can define addition and prove certain nice properties; for cartesian cate-
gories we also have a well-behaved multiplication; and for cartesian closed categories
we can define exponentiation of dinatural numbers.

We also study families of dinatural numbers and their arithmetic. This gives us a
new universal property for natural numbers objects as classifying objects for families
of dinatural numbers. That is to say, taking families of dinatural numbers gives a
contravariant functor into the category of sets and there is a natural numbers object if
and only if this functor is representable.

In the last section we make a detailed study of dinatural numbers for finite sets and
relate this to the counterexamples of Section 2.2. The work of Bénabou and Loiseau
[2] suggests how these results might be extended to an arbitrary elementary topos.

2. Barr dinatural transformations
2.1. Dinatural transformations

Dinatural transformations were introduced by Dubuc and Street in [6]. Given two
functors of mixed variance, F, G : A°? x A — B, a dinatural transformation, t: F — G,
consists of a morphism #(4):F(A4,4)— G(4,4) for every A in A, such that for every
morphism [ :4 — A’, the following hexagon commutes:

F(4, A)— ., G(4, 4)

F(f,4) G4, )
F(4',4) G(4,4")
F(4', ) G(f, 4

F(A', A)———G(A, ')
1A'

Note: We used Mac Lane’s convention of placing two dots over the arrow when
we want to emphasise that what we have is a dinatural transformation. The prefix “di”
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was chosen to reflect the fact that it is defined on the diagonal, i.e. on pairs (4,4) in
A% x A,

Examples. For any category A, the function id,4: 1 — Hom(4,4) which picks out the
identity morphism on A gives a dinatural transformation from the constant functor
A(1): A x A — Set with value 1 to the hom functor Homu(—, —): A" x A — Set.

For finite-dimensional vector spaces, the trace try : Hom(V, V) — K is dinatural. In
any cartesian closed category, the evaluation ev, p:4% x B— A4 is natural in 4 and
dinatural in B. Any natural transformation F — G restricts to a dinatural transformation.

A dinatural transformation ¢ : Homy, —— Hom, assigns to each endomorphism 4 —'LA
another endomorphism #( f'}: 4 — 4, in such a way that for all g:4 —B and h: B — 4,
t(hg)h = ht(gh) (the hexagon condition for g). E.g.

(f)=f"=fofofo---of (ntimes).

The question posed by Bainbridge et al. was whether every dinatural ¢: Homy —
Hom, was of this form for A = Set,.

2.2. The counterexamples

Our counterexample is given by iteration but the number of times depends on the car-
dinality of the set. Thus, for 1 : 4 — A, we define #t( f) = f"") where n!! = 112!3!..n!
and n = #4.

The point is that if m > n, then f"') = (") 5o that as far as the hexagon, which
involves only two sets, is concerned, one can think of ¢ as iteration m!! times where m
is the maximum of the cardinalities of the two sets. Thus the hexagon does commute
and ¢ is dinatural. On the other hand, if f is defined on {1,2,3,...,n} by

. n if i =n,
J= {H— 1 otherwise,
then #( /) is the constant function with value n. So ¢ is not iteration any fixed number
of times.

Peter Johnstone has given a much more conceptual version of this example. For
any finite set 4, Hom(4,4) is a finite monoid so any f € Hom(4,4) has a unique
power which is idempotent. (Indeed, there must exist k& < [/ such that %) = f(!)
from which it follows that f(™ = fn+n=5) for all m > k and n > 0. If we let
m = k(I — k) and n = k, we see that f*U=%) is idempotent. If we had two powers
of f which were idempotent, ) and ¢ say, then f) = ) = f0)) Define
t(f) to be that power of f which is idempotent, /). Then given f and g such that
1(/9)=(fg)"” and t(gf) = (¢/)*), then also 1( fg) = (fg)" and t(gf) = (g /)
so for the same reason as above ¢ is dinatural but not iteration a fixed number of
times.
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Freyd also gave a large class of examples. Let K be any set of cardinal numbers,
and define

[ f if#Fix(f) €Kk,
)= { 1, otherwise.

Then as Fix( fg) and Fix (¢ f) have the same cardinality (f gives a bijection between
the two sets), ¢ is dinatural.

Our example, which 1s the same as Peter Johnstone’s, works for finite sets, whereas
Freyd’s works as well for all sets. Furthermore, Freyd’s are all different so on Set he
has a proper class of them (even more!).

2.3. BDNs
It is well-known that dinatural transformations do not compose. The problem is this:

given t:F -G and u:G— H and f:4— A4', we get two commutative hexagons
but if we try to paste them together, we get

F(A4,4)—"D G4, 4) —“D {4, 4)

h
F(4', 4) G4, 4) G4, 4) H(4, 4"
/ / / !’ !
F(A,A)T}G(A,A,) u(A') H(A,A)

and there is no way in general to conclude that the outside hexagon commutes.

If ¢ is natural (not merely dinatural) then we can fit H(A’,4):F(4’,4)— G(4',4)
into the diagram above, and a simple diagram chase shows that the outside hexagon
does commute now. Thus, if one of ¢ or u is natural then u - ¢ is again dinatural. In a
similar vein, if G has the property that all the squares

G(d',4) — D G4, 4)
GA'.f) G(4.f)

G4, 4" G(4,4")

G(f.A")

are pullbacks (or pushouts), then u - ¢ is again dinatural (because, once again, we get
a fill-in for one of the chevron-shaped regions). This leads us to Barr’s strengthening
of the notion of dinatural transformation (oral communication) which we call Barr
dinaturals.
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Definition. Let F,G: A x A — B be functors where B has pullbacks. A Barr dinatural
transformation (BDN) consists of a family of morphisms #(4): F(4,4) — G(4,A4), one
for each object of A, such that for each morphism f:4— 4’,

F(4,4)—") . G4, 4)
/// \G(A,f)
Fr G(d, A')
G(f,4")
F(A/, A’) —1('4,’)——) G(AI, AI)

commutes, where F is given by the pullback

F(4,4)
F4, f)
Fy F(4,4")
F(f,4")
F(4', 4"

[t is not hard to see that a Barr dinatural is dinatural and that a natural transformation
restricts to a Barr dinatural. Furthermore, Barr dinaturals are closed under composition
because the pullback property gives a fill-in 7

tA)

F(d,4) —2— “A)

G(4, A) —2— H(4, 4)

» Gy jG(A,A') H(4,4"

AN

FAI,AI 1ogt 14
( )TG(A,A)TH(A,A)

from which commutativity of the outside hexagon is easily seen.
If F has the property that all the squares

F(4, A)
A
F(f,4 F(4,)
F(A', 4) F(4, 4)
N
F(', f\ F(f,4")
F(4', 4"

are pullbacks, then Barr dinaturals are the same as dinaturals, obviously. This holds,
for example, if F' is constant in one of the variables. It is also the case that in any
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cartesian closed category, evaluation ey g : 4% x B — 4 is Barr dinatural in B; the reason
is the same as above, i.e. the squares obtained by varying B in 4% x B are pullbacks
{which comes from the more basic fact that a product of two pullback diagrams is a
pullback, a special case of limits commuting with limits).

This argument breaks down in the monoidal closed case and the evaluation is not
in general Barr dinatural (e.g. it is not for finite-dimensional vector spaces — take [
to be the unique & — 0).

Note: The condition that B have pullbacks can be removed by the usual trick of
embedding B in Set® via the Yoneda functor, and then reformulating the conditions
solely in terms of morphisms of B. Thus, ¢ would be Barr dinatural if for every 5,8
making (x) commute in

RF(A,A)—’@LHG(A,A)
VAN AN
B ) FA) (%) GAd)
EN

FA, Ay ——— G4, 4

H4")

the exterior hexagon also commutes. We might take this as a definition of what it
would mean for a diagram such as (#x) to commute. However, as will become clear
below, we will be concerned only with the case B = Set.

2.4. Iteraiors

Our main concern will be with Barr dinatural transformations
t:Homy — Homa,,

where Hom, is the hom functor A°? x A — Set. (We have some fun with notation
and replace Mac Lane’s two dots with a bar when we wish to emphasise that we
are in the presence of a Barr dinatural transformation.}) Such a BDN associates to
each endomorphism of A, f:4 — A, another endomorphism #( f): 4~ A4 such that if

@f =gy then @i(f) = 1(g)e, ie.
A 4
J } = <P
B B

For example, t( f) = f® gives a BDN; if o f = g then ¢ f® = g™,

1) A
—-—-——> et L

L I
s

—-—--——>
1g)



R. Paré, L. Roman/Journal of Pure and Applied Alyebra 128 (1998) 33-92 39

Proposition 1 (Barr). Every BDN t:Homgey — Homse is of the form 1(f) = f
for a unique n € N.

Proof. Let n=1(s)(0) where s: N — N is the successor function. Then for any f:4 — 4
and a€ A, there exists a unique /4 such that

This / is given by h(k) = f*)(a). As t is a BDN we have

1(s) N

«f)

so t(f W a)=ht(s)(0)=h(n)= f"Na), i.e. t(f)=f"). The uniqueness of n is obvi-
ous. [

Remark. As all of Freyd’s examples extend to Set, they cannot be BDNs. However,
our examples based on iteration as they are, are BDNs.

We phrased Barr’s proof in terms of natural numbers objects because this way it is
clear that this is a much more general result.

2.5. NNOs

Let A be a cartesian category, i.e. a category with finite products. Recall that in this
setting Lawvere’s definition of natural numbers object must be strengthened to include
parameters. Thus, a natural numbers object in A is a diagram 1 2, NN such that

for every diagram A4 %, B L B there exists a unique 4 such that

Ax1 220 4N 2% L 4xN

iR
=
>
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It is well-known that when A is cartesian closed, it is sufficient to state the definition
with 4=1, as Lawvere did.

The definition can be reformulated in terms of adjoints. Let £(A) be the category
of endomorphisms in A. Its objects are endomorphisms f:4 — A4 and its morphisms
¢@:(A, f)—(B,g) are morphisms ¢:A4 — B such that

E(A) is the functor category AN where N is the monoid of (ordinary) natural numbers,
If A has a natural numbers object, then the forgetful functor U : E(AY— A, U(4, f)=A4
has a left adjoint F given by F(4)=(A4 x N, 4 x s).

In the other direction, if U has a left adjoint F such that the canonical morphism
F(AxB)—(4,14)x F(B) is an isomorphism for all 4 and B, then A has a natural
numbers object (N,s)=F(1).

Now, assume that A has a natural numbers object. Given n:1— N we shall define

a BDN, { )" :Homs —— Hom,, as follows. For f:4 — 4, there exists a unique A
such that

Ax1] 220 g« N A% L AxN

A—M-T——>A-—f—+A.
4

Let £ be the composite

A Ax 1P ax N2 a,

Proposition 2. The above definition gives a BDN, ()™ : Homy — Homy,.

Proof. Given

A -———-‘L-—-——> A
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let k£ be the unique morphism satisfying

Bx1_5*% ,punN B

BxN

iR

B —

Compare the diagrams

Ax0

Ax1 220 4N A5 L 4xN
o h h
4 — o4 1 . 4
@ @ @
B ——— B —— B
and
Ax1 —2%0 L A4xN A5 AxN
@ x 1 o xN oxN
Bx1 22 . BxN —BX* | BxN
o k k

B
]

to see that @ -4 and k- @ x N both satisfy the same recurrence relations and so are

equal.
Thus, we have

A — = o4x1 Axn

AxN —" 4

7] @ xl @ XN

BA—AS—)BXNT»BXN%B

41
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Le.

_
B e B

commutes, therefore { )’ is a BDN as claimed. O3

As in the proof of Proposition 1, a BDN, 7:Hom, —— Hom,, gives n:1—N as
the composite 1 N 1O, N If we start with an #: 1 — N, we get a BDN, ( )", and

this gives the same # back. Indeed,

Hs)=(N == Nx 1205y« N N
SO
(YO =(1 21 x 1 X5 N x N -5 Ny=n.

But starting with a BDN, 7, and letting n=1¢(s)(0) we do not automatically get
t=( ). A calculation shows that at some point we need (4 x s)=A x #(s). This
leads us to the following concept.

2.6. Strong BDNs

Definition. A BDN, ¢:Hom, — Homy,, is strong if for every 4 and gy:B— B we
have ¢(A x g)=A4 x t(g).

Theorem 1. Suppose A has a natural numbers object, then the relations n=t(s)(0)
and t=( Y establish a one-to-one correspondence between strong BDNs and ele-
ments of N, n:1 =N,

Proof. We have already shown how n:1 — N gives a BDN in Proposition 2. We must
show that it is strong. If we apply 4 x () to the defining diagram for k& (same notation
as in Proposition 2) we get

AXBx0 AXBxs
ey ey,

AxBx1 AxXBxXN AxBxN

o Axk Axk

AxXxB —y AXB s AXB
i AXg

s0

(Axg)(ﬂ):(AxBﬁi»AxBx1MA><B><NA—X">A><B)

=Axg",
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Now starting with a strong BDN, ¢: Hom, — Homy,, we define n=1(s)(0). Then
/™ is the composite

A X Ks)

o Ax0 h

A" Ax]l—AxN AXN — A,
where £ satisfies

Ax1 220 4N A5 4xN

o~ h h

A — A — A
By dinaturality we have

Ax1 —220 g N XS g N

4
=
=

A —m» A —s A4

14 «(f)
and given that t(4 x s) =4 x t(s), we see that ") =¢(f). O
2.7. The strength of strength
Note that the above proof only uses strength in the form 7(4 x s)=4 x ¢(s), so one
might wonder whether strength could not be eliminated altogether. In fact, we can
reduce it to some simple conditions but we cannot quite eliminate it.

For any endomorphisms f and g we have

Lt 4

g t(g)

so t(f xg)y=t(f)xt(g). Thus, ¢ is strong if for every A4, t(14)=14, a reasonable
condition if we expect to characterize iteration.
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Any subobject, S, of 1 only has one endomorphism, 1g, so t(15)=1s. If the sub-
objects of | form a generating set, then for any 4 and any morphism ¢:S5 — A we
have

Is S S ((ls) S

— A A—+« A4
Ly (14}

and since the set of all such ¢ is jointly epic, we must have ¢(1,)=1,4. Thus, in this
case all BDNs, ¢t: Hom — Hom, are strong. This is the case with finite sets, Sety, the
category of sets or any category of sheaves on a topological space, as well as many
other categories.

However, not all BDNs are strong, even on such a nice category as Set™, ie. sets
with an endomorphism. Given f: (X, &) — (X, &), define t(f)=¢:(X, &) — (X, &). Then

X8 —L x¢) (X&) — (X, &)
@ @ = ¢ @
(1,0) ——— (V.6) (Y,0) ——— (Y,0)

so ¢ is a BDN, but #(1(s)=¢ which need not be the identity.

There is something mysterious about strong BDNs. It does not seem possible to
define them between general functors F,G: A°? x A — B, even when B = Set. In order
to get a better understanding, we shall reformulate the definition.

2.8. The category of endomorphisms
A BDN, ¢:Hom, —— Homy, is the same as a functor 7 over A
E(A) —T——E(A)
A
where E(A) is the category of endomorphisms in A, AN, introduced in Section 2.5.

Given a BDN, t:Homsy — Homy, T is defined by 7T'(4,a)=(4,t{x)). For mor-
phisms, T(¢)= ¢. The reader can easily check the claim.
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Now, if A were cartesian closed and had equalizers, then E(A) would be an A-
enriched category. The A-valued hom would be defined to be the equalizer
[(4,2),(B, )] — B :—’—> B
U:E(A)— A is a strong functoﬁrA, its strength being given by
e: [(4,2),(B,B)] — B*.

As e is monic, we see that U is A-faithful.
Proposition 3. ¢ is a strong BDN if and only if T is a strong functor over A.

Proof. For T to be strong over A we must have morphisms sty such that

[(4, ), (B, B)] —— [(4, {x)), (B, t(B))]

T

Since all the ¢’ are monic, the sty are unique if they exist, and automatically satisfy
the coherence conditions for a strength. Such morphisms exist if and only if for every
@:C— B4,

B ¢=p"¢ = B - g=t(p)" 5,

i.e. if and only if for every ¢ :C x4 — B we have

Cxd—S** ,Cx4 Cxd-SX x4
@ @ = ¢ @
B —— - B B ——— B

B 1(8)

If ¢ is a strong BDN then, this clearly holds. Conversely, if it holds, then taking
@=1¢ x4, we see that ¢ is strong. [J

E(A) is a tensored A-category in the sense that for every C in A, there is an object
C2(A4,2)=(C xA4,C xa) with the property that morphisms C ® (4,a) — (B, ) are
in bijection with A morphisms

C—[(4,2).(8, )],

t.e. the functor [(4,a), —]: E(A) — A has a left adjoint {( )& (4,2). (See [8] for more
on tensored categories.)
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As each of the functors in an adjoint pair determines the other, it is possible to
reformulate the notions of enriched category theory in terms of the tensor rather than
as is usually done in terms of the hom. Since £(A) is always tensored regardless of
whether it has equalizers or is cartesian closed, and the tensor has already shown up
in the proof of Proposition 3, we shall express things in these terms.

3. The monoidal setting
3.1. Actions of monoidal categories

It is best, both for conceptual clarity and applicability, to replace our base cate-
gory A with a general monoidal category V. By a (left) V-tensored category we
shall mean a category X with an action of V, &:V x X — X. This action must be
unitary and associative up to coherent isomorphism. We do not assume that X is a
V-category. For example, the tensor on V gives an action of V on itself even if V
is not closed. So V is always a V-tensored category. The category E(V) of endo-
morphisms in V is also a V-tensored category via V@4, 2)=(V @4,V o). If X
and Y are V-tensored categories, a V-functor F:X — Y is a functor which respects
the actions in the following sense: for every X in X and ¥V in V we are given a
morphism

VRFX —F(V2X).

These morphisms must respect the associativity and unity isomorphisms for the ac-
tions. For example, the forgetful functor U:E(V)— YV is a V-functor with identi-
ties

VRUA,a)=V®Ad=UV &(4,2))

as structure morphisms. If F,G:X—Y are V-functors, a V-natural transformation
t:F — (G is a natural transformation such that for every X and V

verx L2 0 peex

l

FV@X) —— GV ©X).
1(VRX)

V-tensored categories, V-functors and V-natural transformations form a 2-category so
we have a notion of V-adjointness. If one works through the definition it can be seen
that V-functors £ and U are V-adjoint if there is a natural bijection

VQFX—Y
VX —UY
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or, what is equivalent, F is left adjoint to U and F preserves the tensor in the sense
that the structural morphism

VeFX - F(V®X)

is an isomorphism.

If X is a V-tensored category and for every X in X the functor ( )®X:V—X
has a right adjoint [X,—]:X —V, then X becomes a V-category with hom given by
[X,X']1€V. Actually, in the non-symmetric case, there are two notions of V-category.
The one we get here, corresponding to a left action, has composition morphisms

XX XX]—[XX").

We can think that composition is performed in the classical order. In any case
V-functors, V-natural transformations and V-adjunctions are all the usual V-category
concepts.

For the basic theory of V-categories, the reader is referred to [3,8]. For more on
the use of the tensor as basic notion, one may consult [5,12,13].

3.2. NNOs in monoidal categories

A (right) natural numbers object in V is a diagram [ %, N —*5 N such that for

every diagram 4 2, B -, B there exists a unique # such that

A1 AR0 AQN A®s AN

1R
=
=~

A —-——s B —— B.
4

This is a straightforward generalization of the usual notion with 1 replaced by the unit
I and x by ®. It appeared in [12] in the form of free actions but as far as we know, it
was only taken seriously as a natural numbers object in [11], where it was shown that
such an N is a commutative comonoid and that all the primitive recursive functions
can be defined on it.

Proposition 4. V has a natural numbers object if and only if the forgetful functor
U:E(V)Y—YV has a left V-adjoint.

Proof. Once we note that a left V-adjoint is an ordinary adjoint 7 with the property
that F(V @ W) = V @ F(W), the proof is easy. If V has an NNO, then F(V)=(V @ N,
V®s) is a left V-adjoint. If F is a left V-adjoint, then F(I) is an NNO. [
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3.3. Strong BDNs revisited

Clearly, the notion of strong BDN makes sense, not only for cartesian A, but
also for monoidal V. We consider again Homy:V° x V — Set (nof into V even
if V is closed). A BDN ¢:Homy — Homy is strong if (V& f)=V @t(f) for all
f:X —X in V. In this generality, the proof of Proposition 3 is much easier.

Proposition 5. z: Homy — Homvy is a strong BDN if and only if the corresponding
T:E(V)—E(V) is a V-functor over V.

Proof. 7 is a V-functor if and only if there are morphisms V' ® T'(4,2) — T(V ® (4, a))
satisfying some compatibilities. T is over V means UT = U as V-functors. This forces
the above morphisms to be identities at the underlying level. Thus, 7 is a V-functor
over Vif and only if V@ T(4,0)=T(V & (4,a)), ie. iff (VRA,VQt(2))=(V R4,
t(V@a)), e iff VRt(t)=t(VQa). O

One might ask whether strong BDNs, ¢: Homy — Homy, correspond to natural num-
bers n:1 — N in the monoidal setting as well. The answer is “yes” and the proof is
exactly the same as for Theorem 1. For f: 4 — A4, let & be the unique morphism such
that

AN —48s 4o N
ARO
ARI h h
P
A — A

and define /" to be

—1
Al a1t 0N 14

Theorem 2. ( )™ is a strong BDN Homy —— Homy and establishes a one-to-one
correspondence between natural numbers n:1 — N and strong BDNs. The inverse is

given by n=1 BRI VAL V)

Whether or not V has a natural numbers object, we can think of a strong BDN,

Hom —— Hom, as iteration by some kind of natural number specially adapted to the
category V, much like Church numerals.

Definition. A strong BDN, ¢:Homy — Homy, will be called a dinatural number
for V.

Some examples will illustrate how things work in the monoidal case.



R. Paré, L. Romdn|Journal of Pure and Applied Algebra 128 (1998) 33-92 49

3.4. Examples

Example 1. The category of endomorphisms on sets, £(Set), is a Grothendieck topos
and as such has a natural numbers object (N, 1) with successor s. A natural number
1 %5 N is just an ordinary natural number, and the corresponding strong BDN takes
[1(X, &)= (X, &) to the nth iterate ™ : (X, &) — (X, ). As we saw in Section 2.7, not
all BDNs are strong in E(Set).

The category, E(Set), also has a tensor by virtue of its being M-sets for the com-
mutative monoid M = (N, +). Thus, (4,2)® (B, )=(C,7) where C=4 x B/~ and ~
is the equivalence relation generated by (a(a),b)~(a, f(b)). The effect of 7 on an
equivalence class a®b is Ya®b)=wu(a)® b. The unit is (N,s). The forgetful func-
tor U : E(E(Set)) — E(Set) has a left adjoint F(4,2)=((4 x N,x x N),4 x s) which
is strong for both cartesian product and ®. Thus, E(Set) has two NNOs, the cartesian
one discussed above F(1,1)=((N,1),s) and the monoidal one F(N,s)=({(N x N,
s xN),N xs).

With respect to @ a natural number is (N,s) — (N x N,s x N) which corresponds
to a pair (m,n) of ordinary natural numbers. Given f: (X, &) - (X, &), we get a unique
h(X,E)® (N xN,s x N)— (X, {) making

(XxN, ExN) — XX (X xN, ¢xN)
X x0 |

(Xs C) h h
Iy

X &) X, &)

commute. A is given by A(x, p)= f{P)(x). Then ™" (x)= f(EM(x)), ie. fImm =
SMEM  Thus, the example in Section 2.7 of a BDN which was not strong is strong
for the ®. It corresponds to the natural number (1,0) in this case.

In fact, all BDNs are strong with respect to this ®. Note first of all that the strength
condition always holds for the unit object t(/ ® f)=1®¢(f). This is because

Next, if the ® has an associated internal hom, so that ( )® B preserves jointly epic
families and if the unit is a generator, then for any A there is an epimorphic family
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e, I — 4 and

198 27 | 1cB IoB %0 1%p
e, QB e, QB = e, ®B e, ®B

Comparing this with

I@B 12 198
e ®B e, @B

AQB A@B

ARt(f}

and using joint epiness of e, ® B, we conclude 1(AQ fI=AR{(f).
In the case of E(Set), the unit for the tensor is (N,s), which is a generator. There
is also an internal hom

(GO, (VOI={f X =Y ]0f = [} o),

where ¢(f)=0/. So all BDNs are strong for .

Example 2. In this example, the opposite occurs. Consider the Grothendieck topos
Set x Set. The subobjects of (1,1) generate, so all BDNs are strong for the carte-
sian product. An element of N is (1,1)—(N,N), ie. a pair of natural numbers
(m,n). The associated BDN takes (f,g) to (f\, g"). Every BDN is of this
form.

But there is a ® in Set x Set other than cartesian product

(4,B)®(C,D)=(Ax C, AxD+BxC)

with unit (1,0). It is an easy exercise to check that this is a monoidal closed structure:
the internal hom is given by [(4,B),(C,D)]=(C" x D?,D*). There is also a natu-
ral numbers object with respect to the ®, namely (N,0) with successor (s,1p). For
this ®, an element of N is (1,0)— (N, (), i.e. a single natural number »n. The strong
BDN which this vields is (f,g)" =(f™,4™). So here not all BDNs are strong
for ®.
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Example 3. R-mod has no natural numbers object for the cartesian product &. Actually,
0-+0-—0 has the universal property that for every f there exists a unique A such
that

but not for parameters. This dramatically illustrates the uselessness of the universal
property without parameters.

There is, however, a natural numbers object for the @. It is R[x] with successor
( ) - x, multiplication by x. A morphism / — N in this case is a linear map R — R[x],
i.e. a polynomial P(x). The corresponding BDN associates to each f: M — M the linear
map P(f): M — M. Again, R is a generator and there is an internal hom so all BDNs
are strong with respect to the ®. Thus, every function ¢ which takes linear operators to
linear operators on the same space with the property that ¢ f =g = @t(f)=1(g)¢
is of the form

t)=ro+rf+nfP+ 4.
Note that we are considering BDNs on
Hompg : (R-mod)* x R-mod — Set .

If we were to consider BDNs on the enriched hom, into R-med, they would all be of
the form (/) =rf, and not related to iteration in any way.

3.5. Strong profunctors

We still have not said how to define strong BDNs for arbitrary functors VO x
V — Set. In order to do this, we must introduce the notion of strong functor V% x
V — Set. This can be done for arbitrary V-tensored categories A, B. A functor F : A% x
B-—Set is strong if it comes equipped with strength morphisms for all
A,B,V.

Sty v F(4,B) — F(V ®A, V& B)

satisfying the following conditions :
(1) sty gy is natural in 4 and B and dinatural in V,
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(2)

F(4,B) —*2 . F(I® 4,1 B)

F(I®A}>\ /(1®A A

F(I ® A4, B)
(3)
F(4,B) 22¥er, PAWQVIQA,(WRV)®B)
sta.8 ¥ ~
F(V®A,V®B) FW V@A), WV QB)).

Sty @ v @B w

For x € F(A,B), we denote sty g y(x) by V ®ux.

Homy : VP x V — Set, as well as all the functors Hom\L, introduced in Section 5.1
below, are strong functors. A functor F: AP x B — Set corresponds, via its category
of elements to a discrete bifibration

EI(F)

A B.

If F is strong, then EI/(F) is a V-tensored category and the functors P and Q preserve
the action. This statement is in fact equivalent to F being strong. So our notation in
V &x is not a bad one.

If F,G:A% x A — Set are two strong functors, a strong BDN, t: F — G is a BDN
such that for every x € F(4,4)

Veotx)y=t(V x).

A profunctor F:B —— A is by definition a functor F : A°® x B— Set. So we have
a definition of strong profunctor between categories with V-action. The identity pro-
functor /:A —+— A is the hom functor, Hom, : A°’ x A — Set, which is strong, the
strength being given by

sty5y A(4,B) — A(V®A,V @B),

AL B—veayves
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Given profunctors F:B —— A and G:C —— B, their composite F @G:C —— A 1s
given by the formula

B
F®G(4,C)= / F(4,B) x G(B,C).

If F and G are strong, so is F ® G. The strength is given by the universal property of
the coend

F®G(4,C) ! — FRG(V ®A.V&C)
[ I

JPF(4,BYx G(B,C) — [P F(V ®4,B)x G(B,V & C)

Jg Jres

F(4,B) x G(B,C)

F(V@A,V®B)x G(V®B, V8 C).

st X st

A functor U :B — A induces two profunctors, U, :B —+— A and U*:A —— B such
that U™ is right adjoint to U, in the bicategory Prof. They are given by U.(4,B)=
A(A,UB) and U*(B,A) = A(UB, A). The usual arguments with the Yoneda lemma show
that a strength for the profunctor U, is the same as a strength for U : B — A as defined
in Section 3.1, i.e. a family of morphisms

syp:VeU®B) — UV @B)

natural in ¥ and B and respecting associativity and unity isomorphisms.
On the other hand, a strength for U* corresponds to a family of morphisms

vg: UV®@B) — VRU(B)
with properties similar to the sy z above. If the adjointness U, < U™ is also strong,
then the sy g and 7y p are inverse to each other, and U preserves the V-action.
4. The arithmetic of dinatural numbers
All our definitions below are motivated by thinking of a dinatural number as iteration

of endomorphisms. Thus, e.g., the law f"™ = fim) o £ inspired the definition of
addition in Section 4.3 below.

4.1. Zero

Define #(4):Hom (4,4) — Hom (4,A4) by the formula t{(4)( f)=14 for all f.

Proposition 6. ¢ is a dinatural number.
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Proof. Obvious. [

We denote this dinatural number by 0. We also omit the 4 when this does not lead
to confusion. Thus 0( f)=1,.

4.2. Successor

Let t:Hom — Hom be a dinatural number. Define o(t}4):Hom(4,4)—
Hom (4,A4) by the formula a()(A)(f)= f o t(A)(f).

Propesition 7. o(t) is a dinatural number.

Proof. If we have

RN

J

-
-
-—

-

‘“l

then

A HAS) | 4 S A

B
H(B)(g) g

also commutes, so a(¢) is a BDN. Strength follows from commutativity of

«ayC@A %‘

c®4 4

conp) — €84 —cor

C®4 CR(ol))

CRA4. O

We call a(2) the successor of t. With successor we can define the standard numerals.
If n is an ordinary natural number, we let n =co(a(a(---(0Q)---))), where o is applied
n times. Thus, a(f)=fo fo---o f, n times. In particular, 1( /)= f for all f.
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4.3. Addition

Given ¢t and u:Hom -~ Hom dinatural numbers, define t + u by (# + u)( /)=

W f)

Proposition 8. ¢+ u is a dinatural number.

Proof. If
A —!:———4 A
B —— B

d
commutes, then so does

u(f') A Hr

N

<
Wy
-
<

B
wy) Hg)

Strength follows from functoriality of ®: (f + u)}(C & F)=6(C ® fHu(C @ f)=
(CRA SMCRu(fN=CRU N N=C((t+u)f). O

Proposition 9. Addition of dinatural numbers satisfies the following identities:
W) +uw)+v=t+u+v),
(i) t+u=u+i
(i) t+0=r=0+1,
(iv) a(t) +u=0o(t +u)=t+ a(u).

Proof. (i) follows from associativity of composition. For (ii), consider the following
commutative square:

41 4

}

3
A—f-——>A.

P
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Dinaturality of ¢ implies that

A “{f) A

Hfy

commutes, and dinaturality of u implies that

A4
u(‘f')i
A

commutes, too. Thus, t(f () =u( /() le. G+uXf)=@w+)[) for all . Thus
t+u=u+t. For (iii), (+ + O} )=t )=t(/H4=1t(f). Finally, (iv) follows
from (o(¢) + u)(f)= o) Iu(f) = f1(u(f)=f@+u)(I=0e(+u)(f). O

i) 4

|

|

«f)

It follows from (iii) and (iv}) that for standard numerals, addition agrees with the
usual; m+n=m+n

4.4. Multiplication
We can also define a multiplication for dinatural numbers although it is not quite

satisfactory in the monoidal case. It is given by composition of BDNs.
Let #,u:Hom —Hom be dinatural numbers. Define the product of ¢t and u by

(- w)(f)=t(u(f)).
Proposition 10. 1 - u is a dinatural number.

Proof. Assume that

r

|

©-
oy — &

!
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commutes. Then so does

u(g)

and, consequently, so does

A H(u(f))

b

h=
A—
PN

®

Hug )

So ¢-u is a BDN. Strength is easy: (/- u}(C ® f)=t(C @ fN=HC @ u(f))=
CRMM[N=Ce&E-u)f). O

Proposition 11. The product of dinatural numbers satisfies the following identities:
@) (u)y-v=t-(u-v),
(i) L-t=t=1¢-1,
(iii) 0-1=0,
(iv) ot -u=1t- u-+u,
V)Y +u)-v=t-v+u-v

Proof. All are immediate consequences of the definitions, but see Section 6.3. ]

Note that in this generality, product is not commutative nor do the other versions of
(iti)-(v) hold.

Example 3 of Section 3.4 discussed the case of R-mod with its usual ® (R, a com-
mutative ring). It was seen that all BDNs were strong and that they were in one-to-one
correspondence with polynomials P(x) € R[x]. An endomorphism f:M — M is sent to
P(f):M — M, the linear transformation obtained by substituting f into the polyno-
mial. Directly from the definitions above we can construct Table 1 of correspondences,
where t corresponds to P(x) and u to Q(x).

Taking P(x)=x+ 1 and Q(x)=x we see immediately that product is not commu-
tative nor do the other halves of (iii)—(v) hold. We also see that it does not follow
from fg=gf that {fg)=1t(f)(g).

In the cartesian case the other half of (iii) does hold. Indeed, ¢ - 0(f/)=10(/)) =
1(14)=14=0(f), by strength of . However, the other properties do not. To see this,
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Table 1

BDNs Polynomials
4] 1{constant}
1 x

a(t) xP(x)

t+u P(x)Q(x)
tu PO

note that if a polynomial P(x) has the property that P(1)=1, then the BDN it defines
is strong for & on R-med, so if we replace P above by P(x)=2x — 1 and keep
the same {, we get counter-examples to the other halves of (iv) and (v) as well as
commutativity of multiplication.

Still, (iii) and (iv) are enough to show that multiplication of standard numerals is
the usual one, m - n=mn.

5. Families of dinatural numbers
5.1. Families of dinatural numbers

Our experience with topos theory has taught us that it is not sufficient to consider
elements as morphisms 1 — X, but that we should also consider generalized elements
L — X and these are, of course, enough to determine X.

Let V be an arbitrary monoidal category with natural numbers object (N, 0,s), and
let L be an arbitrary object of V. A morphism n:L — N can be viewed as a family of
natural numbers indexed by L, n=(n;),c,. Given f:4— A4 there is a unique 4 such
that

AQN—28 ARN

o
A®1 |
\>\\£

We now define

3

£

=L 4N 1 4.

We may think of £ as an L-family of iterates, (f"**)),c ;.
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Let us define a functor Hom% : V° x V — Set by Hom¥%(4,B8)=Homy(4 ® L,B),

the set of L-families of morphisms from 4 to B. A BDN, t:Homv—WHom{,, is said
to be strong if for every 4 and every g:B— B,

(A2B)®L 29 . 42 B

commutes. Such a strong BDN is called an L-family of dinatural numbers.
Theorem 3. For any n:L—N, ()™ is an L-family of dinatural numbers, and ev-
ery L-family of dinatural numbers, t : Hom y——HomY, is of this form for a unique

n:L—N.

Proof. Let

Compare the diagrams

ARs

AN AQN
A®0
A1 PN PN
sl BoN—2%° _  BeN
BgI k k
\
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and
AQN — 48 |, 4oN
Ay
AR h h
\
$®1 Y s A
B®I ¢ ¢
5 , 1
B B

to conclude that the right square in

AL %" 49N — " | 4

|

H&L l¢®N [

B®L — s BN B
B®n

commutes. (The left one obviously commutes by functoriality.) Thus { )® is a BDN.
To see that it is strong, tensor the defining diagram for k¥ by 4

A®BQN —488%5 , 4oBQN
AQRBRO }

ARBRI rgk AQK

ARB ——--7~—»A ®RB
Se

ARBR
AR =(ARBR L 42BN " 42 8)

=AR1t(g).

Now, given a BDN, ¢: Homy——Hom%, define

n=(L 5101l NoL N,
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If t=( )" for m:L— N, then the corresponding n is obtained as follows. First note
that

=z
2

So #s)=(N®LY2E N ®@ N -5 N). Then

51
=Ll oL BENG LI N QN -5 N)

(LI L 2 IgNEE NN 1 N)

PO .
— (LIl 1o N SN

=m.

Now, starting with a strong BDN, ¢:Homy — Hom?¥, we construct n=1(s)-0®
L-~' For any f:4— A we have h such that

AQN —285 4N
AR R h
T |
A 7 A
so we also have
ASNQL—M%2) ., 49N
A®W
ARIQL rRL a
PRL=A®4 ; Al I
® «f)

Thus,

) =h H{A®5) AQOQN -A® i
=h-A®((s) 0N i)
=h-AQn
=" O
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5.2. The functor N

Even if V does not have a natural numbers object we can still consider the set A(L)
of all L-families of dinatural numbers, ¢ : Homy -»Homé.

Remark. Actually, 4°(L) could be a proper class, although this is not really relevant
to our discussion, as we could equally well consider 47: V% — Set the category of
sets in the next universe.

However, let V be the category whose objects are those sequences of sets (d4,)
indexed by the ordinals, for which there exists an ordinal kg such that 4, =1 for all
K> Kg. A morphism {4,)— (B.) is a sequence of functions {(f,:4,—B). V is a
legitimate cartesian category (in fact cartesian closed) generated by its subobjects of 1,
Each ordinal sequence of natural numbers (n;) gives a strong BDN, ¢ : Homy—Homy,
by #({f;))={f7"), and these are all distinct. Thus .#°(1) is certainly not a set here.

Should we wish to impose conditions on V to insure that each A"(L) is a (small)
set, then accessibility (see [10]) would be enough and would cover all the examples we
have in mind. Indeed, if V is accessible, then the category of endomorphisms, £(V},
is also accessible as is the forgetful functor U :E(V)— V. This means that there is
a set of endomorphisms &, such that every endomorphism, f:4 — 4, is a x-filtered
colimit in E(V) of f;:4;— A; in &. Furthermore, the forgetful functor U preserves
this colimit, i.e. m A; = 4. Then, as

2
LS
e
@
(w-.(

we see that 1(f) = h_m) £( f;) so that ¢ is determined by its values on f;, of which there
is but a set. So there can only be a set of BDNs, Homy — Hom%. (Note that ( )® L
preserving k-filtered colimits is part of the definition of accessible monoidal category.)

Proposition 12. A'(L) is the object part of a functor VP — Set, which takes any
colimit in V which is preserved by all the functors V @ ( ) to a limit in Set.

Proof. A morphism /:L' - L gives a strong natural transformation
I*:Hom% — Hom%,l

defined by *(A®L R By=(4®L — 43! AL —— B) A family of dinatural numbers
composed with a strong natural transformation such as this, gives again a family of
dinatural numbers. Thus A (I)(#)=1*o¢t.
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Let j,: L, — L be a colimit cocone. Given a family of dinatural numbers, ¢: Homy —

Homi, we get a compatible family (¢,) of dinatural numbers in the canonical way.
For f:4— A we have

m
i

A®L,

ARQL

AR ja A

For a compatible family (z,) we define #(f) to be the unique morphism making the
above diagram commute, which exists because (4 ® L, — 4 ® L), is a colimit cocone.
That the ¢ is a BDN follows from the fact that the 4 ® j, are jointly epic and the ¢,
are BDNs. Strength of ¢ follows for the same reason. U

Remark. The condition that a colimit is preserved by the functors ¥ ®( ) is a perfectly
natural one in our situation. It simply says that the colimit is strong.

It follows from this proposition that .4#" has every chance of being representable.
Theorem 3 says that if V has a natural numbers object, then A" =V(—,N). The fol-
lowing theorem is the converse.

Theorem 4. If A" is representable, the representing object is a natural numbers ob-
Ject.

Proof. Suppose 4"=V(—,N). Then there exists a universal element s € A4"(N) with
the property that for every strong BDN, ¢:Homy-——Hom%, there exists a unique

n:L— N such that

Hom,,

a

Hom — HomV .

Thus, for every f:4— A,

=S A®N
t(\ /f)
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Define a: A" — A" by

WAREN

s)(NH=UeL 4L 4)

o(t) is a strong BDN, Homy — Hom¥, and o is natural in L. Now &(k):Homy —
Hom?, so there exists a unique s: N — N such that

Homy
/X
Homy — Homg .
So for every f:4— A4, we have
AN —28° , 4oN
h(f) h(S) (H
4 —— A.
Also define :: Homy — Hom{, by
) =(p:ARI—A4).
Again, there exists a unique morphism 0:/ — N such that

AT 23", 4oN

A R

Given B -5 4 AN A we have

Bl —2% ., BgN E® . B®N
981 9N I8N
p A®I—Ai®—o—¢A<§>N—&——+A®N
L h(f) Wf)
B 4 4
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so A(fH(g@N) gives a fill-in for our natural numbers candidate, We must show
uniqueness. Let & be such that

Bl —22% .poN —28  .pgN
I3 k k
B —— 4 -~ A

Apply h to the right square to get

BRIQN 228N BeaNgN_23%)  pon
B N—28Y AQN — "D 4

Let
i 0ORN hs)
X= (N s ]®N--->N®Nw-~—>N),
and compute
x* o h:Homy, — Hom{/
at an arbitrary ¢: C — C.

CRO®N

cCoN 2 coloN CONQN—E8%) _con

PN [B)®N
1 i J
CRN W___*m....w__, C

E{c}

The square commutes because it is / applied to (1) with ¢ replacing /. The triangle
in the middle is an instance of (2) tensored by C, and the triangle on the left is one
of the coherence conditions for monoidal categories. Thus, x* oh=h so x= 1y by the
uniqueness property of 4. It follows from (3) that k=#{ ) (g ® N), using once again
that p@ N=B® A~}. Thus, N is a natural numbers object. (]

This theorem together with its converse, Theorem 3, gives a universal property for
a natural numbers object as a right representor. The {generalized) elements of N are
families of dinatural numbers.
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5.3. Arithmetic on families of dinatural numbers

There is a certain amount of arithmetic that can be done on the elements of A
in this generality. The operations we introduce are the natural extension of those of
Sections 4.1-4.3 to families of BDNGs.

First there is the successor already introduced in the previous proposition. For
te A (L)and f1A— A, let a(t)=fot(f)

w5 g
o(t): (4 Lo 4) s (A0 L—4 Lo 4).

There is also a zero element § which should satisfy 0( /)}=14. In fact we must
define O( f)= (p:AR1—A4). This is a dinatural number so 0 .4/(J).

Successor and 0 allow us to define all numerals n=0c(a(-- - a(0)- - -)), n times. Then
n(f)=fofo---ofop:4®[-+A. Except in degenerate cases these are all distinct.
For example, if ® is cartesian product and our category is not a poset, then they
are distinct. Suppose g¢,%:B — A are distinct morphisms, then if we let f=(p,, p3,...,
PusD1) A" = A", n(f)=14 but k(f)#14 for 0<k<n. To see this consider
(g, hh,....hy:B—A" Then k(f)o (g, h,....-) o pr=h # g={(g,h,...,h) o p;. It is
not clear what happens in the monoidal case.

Addition was defined in Section 4.3 by the formula (¢t +u) /)= u( f), but we
must also define it with parameters. Thus, let 1€ A(L) and u € A (L"). Given 14 — 4,

# WL “n
t+uw)(f)=(Ael' ®L A®L——4).

¢+ u is easily seen to be a family of dinatural numbers, Homy, —>Hom\’;l®L.

It is easily verified that
t+o(u)=0(t) +u=o(t +u).
Now

O+D(f)=A0Lel L8 401 L 4

and
p®L 1 1)
(t+0)()=4RIQL—A R L—4,

which are essentially equal to #( /), if we make the identifications ARL R/ =AR L=
A®I®L. From these laws we conclude that, on standard numerals, + agrees with the
usual one.

In Section 4.3 we gave a proof that addition of dinatural numbers is commutative.
But again, we must show commutativity for families of dinatural numbers, not just
simple ones. With parameters, the argument would go as follows.
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Let t€ A(L) and u€ A"(L"). Then for any f:4 — A, we apply ¢ to the diagram

S/
—_—

-
A

|

to get

AL "1,
4

and then apply u

A
!
— A

tf)

AoLel D8 4ol

u( f®L) u( 1)

If ® is symmetric, with symmetry isomorphisms 7y, then

AL ®L

w@L

A®y ARL

u(f®L)
ARL®L

Indeed,

u(f)®L

AQL

AQL QL

S

4®y LeAxL

VV

\
Leu(f)

L®A4

=u(l® f)
/

ARL

’
ARL®L «(BL)
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By the same token

AQRL RL

WL')

A®7 AL

%@L’

ARLRL
Thus, if we precede (x) by 4®7, we get a similar diagram in which u and ¢ are
interchanged. It is in this sense that addition is commutative.
So we need to assume that & is symmetric and we only get commutativity up to
the symmetry isomorphism. This is not a problem once things are set up properly,
which we now do.

5.4. The convolution tensor on Set®

From [5] we know that Set¥” has a convolution ®. For #,% cSet""

FR4V) = lim F(N)x%4(h)
V-V eh

104

Vi, ¥,
/ FWMyxVV, h@h)x%9h)

= im lim VYV h@h)
—_— —
xXEFN) ye%(h)

This indeed gives a tensor with unit .4 = V(—,7). Set"” is biclosed with this tensor,
i.e. the functors & @ () and ( )® % have right adjoints. The Yoneda embedding
preserves the ®; V(—, )@ V(—, 1K) = V(- i@ K). If the & on V is symmetric,
so is this new extended onme. If the tensor on V is the cartesian product so is the
convolution product. Indeed, in this case,

,Va
FoEV) = / FOR) < VUV, Vi x 13) x 9(5)

14

Vi, Va
/ FOh) x VIV R) x V(1) x 6(13)

Vi Vs
(/ aﬂ(Vl)xV(V,Vl)) x (/ V(V,Vz)xg(Vz))

FVYxGV).

1

i
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5.5. Operations on N

Since ¥ ® 9 is defined as a coend, morphisms # ® ¥4 — # are easily described,;
they are families of functions

vy F)XVI M@K x4(N)—~ A V)

natural in V and dinatural in 7] and J5.
Using the Yoneda lemma we see that they are the same as families

Y FNM)xG(NR)— AN Q)

natural in ¥ and F;. This is precisely the sort of thing our addition was. Thus we
summarize.

Theorem 5. The set A'(L) of L-families of dinatural numbers

Homy —— Hom{,

defines an object N~ of Set"". In Set¥" we have morphisms Q. % — N, . A4 —
and + . N QAN — N,
(1) + satisfies the following conditions with respect to 0 and o:
4

NN —8Y | yeNs
0N
FQN + +
1
N _ N
and
NQN —LE N
.Afy
N QS + -+

N N
ag

(2) A with Q0 and + is a monoid.
3) If & is symmetric, then A is a commutative monoid.
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Proof. Everything stated here is a reformulation of what was proved in Section 5.3,
except for associativity of addition. Given f,u,v

((t+u)+U)(f):A®L//®L/®L (IR ®L) A®LI®L (t+u)( f) A

(IR ®L)
—_

—ARL' 2L L Al oL “L2L 4o 44 4

and

C+w+n)f)=Aol’ oL gL “WODEL yor 1D, 4

o(fI)QL QL
—_— =

w( f H )
— Al ol &L Aol ol “P8L yor—"4.

So(t+u)+v=t+(u+v) O

Remark. One might think that 4" is a natural numbers object in Set¥”, but it is not.
In fact, as Set"" has countable coproducts (indeed, all colimits) preserved by # & ( ),
the countable coproduct 3, # is the NNO, and this is not usually the same as .4
(in particular, if V has a NNO then )", S # V(—,N)).

5.6. Strong profunctors revisited

Because V is embedded in Set¥" via the Yoneda functor, we get an action of V on
Set"”: V9 F =V(-,V)® F. Thus,

VeFNA) = lm  lim VAKESK)
v -V xeF(h)

lim V4,V ®h).
—
x € F(h)

i

In fact, we see that this formula works for Set®” where A is a category equipped
with a V-action. (V@ F)A4)= liﬂlﬂe FuAA4, V4.

Now let B be another category with V action and F: A" x B — Set, a profunctor
B —— A. F corresponds to a functor F: B — Set*”. Then to say that F is a V-functor
means that it is equipped with strength morphisms

syp:VRFB)—F(V ®B)
satisfying the obvious compatibilities. This means that for every 4’ we are given

svat  lim AWMLV ©4)—F(A,V®B),
—
x € F(4,B)

i.e. a compatible family

(o A4,V @A) = F(A',V ®B))x c F(4,8)-
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Each of the o, is natural in 4, so by Yoneda they correspond to elements of
F(V&A,V®B), one for each x € F(4, B). Thus, the strength corresponds to sty gy :
F(A,BY—=F(V ®A4,V®B) and it is easily checked that the compatibilities for the
strength s translate to the ones given in Section 3.5 for a strong profunctor. So what
seemed like an ad hoc notion, invented specifically to make sense of strong BDNs, is
now seen to be perfectly natural.

5.7. The problem with products

We have already seen that commutativity of addition required that the tensor be
symmetric. In order to get a proper theory of multiplication of dinaturals we will have
to further specialize our tensor to be the cartesian product. The problem is this. We
would like multiplication to be a morphism

T AHARQA = AN

This would require, not only multiplication of dinatural transformations but of families
of such. Thus, given t€ A(L) and ue A(L'), we must produce - uc A (L'RL).
Given an endomorphism f:4 — A, we get {(f): AQL — 4 but we do not know
how to apply u to this. Even for standard numerals we do not. If g ; A® L — 4, and
we wish to compose it with itself, the best we can do is

P =4alsl % 4L - ).

Similarly, g*':4®L®LK®L — A, etc. Thus, it would appear that u(g) should be a
morphism 4 @ u(L) — 4, but we have no idea what the u-fold tensor, u(L), of L might
even be.

However, in the cartesian case it does work. There, we can use the diagonal § :
L — L x L to reduce an L x L-family to an L-family and so keep things under control.
Thus, if g : A x L — A, then

gO=AxL 22 AxLxL 25 4x1-L 4.

In terms of subscripts, given a family (g, : 4 — A); ¢, if we wish to compose it
with itself we have two options, either

<g/l Gy 14— A}(/ﬁ,u)ELxL
or
(giogi:Ad—A)cr

The first is more general and is the only choice in the monoidal case, whereas the sec-
ond, which uses the diagonal to duplicate 4, is only available in the cartesian situation
but is better behaved.

Thus, from now on, we shall work solely with the cartesian product.
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6. Back to the cartesian case
6.1. BDNs applied to families

Assume that A is a cartesian category. It will be useful for us to upgrade our result
of Section 2.7 characterizing strong BDNs as those preserving identities to BDNs,
Hom® —— Hom".

Proposition 13. 4 BDN, ¢ : Hom® — Hom’, is strong if and only if for every C, if
p1: CxK — C is the first projection, then t(p))=p; : C x L — C.

Proof. Assume ¢ is strong. For the unique morphism 7:K — 1, ¢#(t)=1:L — 1. Thus,
t(p)=t(Cx1)=Cxt(1)=Cx1=p).

Conversely, assume that ¢ preserves projections. Then for any f:4x K —A4 and C
we have commutative diagrams

CxK L C
P13 Pl
CxAdxK < x4
P23 P2
AxK —f—» A

so, as t is a BDN, we also have

cxLp ' ., ¢

Puz P

CxAxLﬂp—»CxA

2k} P2

AxL —— A4

t(f)
and as t(p;)= p1, it follows that 1(C x f)=C x¢(f), i.e. ¢t is strong. O

Remark. For BDNs of the form ¢ : Hom — Hom?, the preservation of projections takes
the form #(1¢)=p;:C x L —C.
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In the cartesian case, not only can BDNs be applied to endomorphisms but also to
families of endomorphisms f:4 x K — 4.

Proposition 14. Any strong BDN, t:Hom — Hom’ induces, for each K, a strong

BDN, tX :HomX — HomX*L. For each k:J — K, the following square of BDNs com-
mutes:

K
t
HomX — L, HomX*L

IS (kxL)*

Proof. Given f:4 x K — A4, we construct the endomorphism {f, p2): A xK — A XK
to which ¢ can be applied. Then ¢X is defined by

()= x K xL 8P 4o g Py,
To show that X is a BDN, assume
AxK —
$xK ¢

BxK B

commutes. Then so does
AxK P 4wk
dxK oxK

BxK — 3 BxK
(9:p2)

and, because ¢ is a BDN, so does
AxK x L 8D | gk Pl

XK XL dxK Jd’
B

BxK xL BxK
t({g,p2)) 12

b

Thus X is a BDN.
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To show that ¢X is strong, let p;:C x K — C be the projection. Then

1K )=(CxKxL —————»l((p"m) C><K——>pl C
p
=(CxK x [ o) owg 2 C)

=(CxKxL —* ,CcxKk-2 )
=p: CxKxL—-C

Finally, for k:J — K, the BDN, £*: HomX — Hom’ was defined in Section 5.2 by

() =(AxT 2% 4k Lo g,

Now
AxJ LAERL 4 g
Axk Axk
AxK AxK

(f.p2)

commutes and therefore so does

AxJx [ Axkr) gy 1y
AXkxL Axk 14

A.

AXK XL —— 5 AxK
t({f\p2)) pi

The top is t/(k*(f)) and the other composite is (k x L)*tX( f). O

Remark. This result does not hold in the monoidal case, thus reinforcing our argument
of Section 5.7. For example, let Vect be the monoidal category of k-vector spaces. Vect
has a natural numbers object £[x]. So a strong BDN, ¢ : Hom — Hom, is evaluation at a
polynomial P € k[x]. Consider P(x)=x? and ¢ the corresponding BDN, Hom — Hom .
Can ¢ be extended to a BDN, ¢ : Hom’ — Hom! in such a way that

L
t
Hom? — ., Hom*
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commutes for all /? This means that if f:V QL -V, then t*( f): ¥V ® L — V has the
property that t“( (v @)= f(f(v®)®1) for all v€ V, I € L. But the right side of
this equation is not even linear in /:

JUfea)a) = f(fe@ D).

Now that we have established Proposition 14, we can define multiplication of fam-
ilies of dinatural numbers. Given #: hom——hom* and u:Hom —— Hom¥X , we define

t-u:Hom —Hom**! by the formula (¢-u)( /)= tX(u( f)), i.e. t-u is the composite
of BDNs

K
Hom —* Hom/ - HomX*%,

By Proposition 14, ¢-4 is a family of dinatural numbers if # and u are. It is the natural
extension of the definition of Section 4.4 to families. Thus, we get a function

ALY x A(K)— A(K x L).
Proposition 15. The function -: A (L) x ¥ (K)— N K x L) is natural in K and L.

Proof. Lettc V(L) uc A(K)and k:K'—> K, I:1' — L be morphisms of A. We have
the following commutative diagram:

Hom
\
U
K KxL
HomX — "~ ., Hom"%
{KxLYy
£ (K XLy
' K'xlL K' %1
Hom® T 7 Hom ' Hom

The left-hand side is &*u= 4"(k)(u) and the top composite is (k x [}*t-u= A(K x
L)(t-u). We claim that the bottom morphism (K’ x I)*tX" is A(1)(1)X'. Indeed,

A OE UK - )

, A OUS p2))
e ————— e

=AxK' xL AxK L 4

e
ax K xS kP 4

AxK' x1 t({fopa))
SIS TN IV CING I SN T N

=K' x )t f).
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Thus, from the diagram,
Nk X 1Yt - u)=(k x [)'t-u
=K' x )*tX k*u
= A (DO N (k) u)
=MD N w). D

However, the proofs of the properties of multiplication, such as associativity or
distributivity, become cumbersome if we have to take care of different kinds of pa-
rameters J,K,L, etc. As mentioned in Section 5.7, in the cartesian case the dia-
gonal and projection morphisms can be used to reduce doubly indexed families to
singly indexed ones and so get multiplication (and addition) as natural transformations
ALY x A (LYy— A"(L). This simplifies matters considerably.

6.2. Controlling families

Proposition 16. Families of functions ¢(K,L): A (L) x A (K)Y— A (K x L) natural in
K and L are in bijection with families y(L): N (L) X A (L) — A(L) natural in L.

Proof. This follows from the general 2-categorical fact that an adjoint pair U :B -+ A,
F:A—B with F4U, induces an adjoint pair C7" 4CY":CA" - CP". We take
U=x:AxA—A and F=4:A—AxA. Let .# in Set®**” be defined by
MK, LYy=A(L) x #(K). Then we have the bijection

QM — N o x

YiMod— A =

Given ¢ as above, the ¥ which corresponds to it is given by
¢(L.L) A7(9)
W(LY=A(LYyx N (LYy—— A (L XL)y—> A(L).

We have already defined addition (in Section 4.3) and multiplication (in Section 6.1)
as operations on doubly indexed families. We now translate these definitions into singly
indexed operations. This controls the complexity of the calculations. We use the same
notation, + and -, as before. This should not cause confusion.

Given t,u: Hom — Hom?, ¢ 4+ u: Hom ——Hom?* is given by

(t+u)f)=AxL 28 gxLxp DX gyp 1y

and ¢ - u: Hom — Hom?’ by

tHul £ )
(- u)f)= A><L—+A XLxL—— A4

Ax t({u( £ ) p2)
—AxL—-—»AxLxL—»A L2 4.
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Constants 0, 1, n, must similarly be interpreted as natural transformations 1 -— 4"
At L, O(L):1(L)— (L) is the element of A4°(L) given by O(/)=4 xL -2 4,

(f)=AxL o4 4, and in general n(f)=AxL 24 L% 4.

Successor ¢ is already a natural transformation 4" — .4, so now everything is taking
place in the functor category Set?”.

The properties of addition, successor and zero, expressed in Proposition 9 still hold
in the present context by transport of structure.

6.3. Multiplication

We now study the properties of multiplication. Before stating our theorem, it will
be useful to establish the following lemma expressing how strength interacts with
symmetry.

Lemma 1. Let u:Hom ~~Hom? be a strong BDN, f:A4— A an endomorphism and
C an object of A; then the following diagram commutes:

AxCxL

o

Uzsj ARC

%xc

AxLxC
where 623 Is the “twist” morphism.

Proof. Consider the commutative diagram

AxC X L 4xc

12 (g
CxA C x A.
Ox f
As t is a BDN,

AxCxL X0 4xc
013 XL 353

CXxAXL —= CxA4
HOXf)
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also commutes. The diagram

Cxi(f)

CxAxL —21,(CxA4

o123 a12

AXLXC —m 4 x C
H fixC

also commutes and as ¢ is strong, #{C x /)= C x ¢( /'), so we can paste the two squares
above and thus obtain the commutativity asserted in the lemma. O

Theorem 6. Multiplication of families of dinatural numbers satisfies
O ¢-uwy-v=t-(u-v)
(i) 1-1=r=t¢-1,
(iii) 0-t=0=r-0,
(iv) ot -u=t-u+u,
VY (t+u)y-v=t-v+u-v

Proof. Let t,u,v: Hom —— Hom’ be L-families of dinatural numbers and f:4 — 4 an
endomorphism.

(1)
@) p2)) pl

AXS
(- )= AXL S A L x L2 gL 2 g

and a simple calculation shows that

H({u((o( /) p2) 1 p3))
{(t-u)y-v)(f)= AXL—»AXLXLX —*———————-——)AXL L2 4

Consider the diagram
Ax L wdnDm gy
Axd AxS (%)

AXLXL s AL XL,
{4 {e(/ K2 ps3)

When followed by p;, it becomes
AxL (o)) A
AXS P

AXLXL ——r A X L
u((v(S),p2))
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79
which commutes by definition of u - v. When (x) is followed by p> we get
AxL ML L
Ax6 P (*x)
g F ) A—— R
w({e( S hpa))y
Now
Lo LxL v, g
PEA}{ P2 = mxi 192
i
AXL e s A X L AxLxL AxL
(1) p2)

W (v( [ ).p2))

but strength of u says that u(l;)= p2, 50 p2u{{o{ ), p2)}= p3 so (%) commutes.

Finally, when we follow (x) by ps;, we get p, for both composites. Thus (*) com-
mutes.

Now apply ¢ to the top and bottom of (+) to get

AXLxL TR EANY) AxL
Ax3

\
AxExL

AxLxLxL

oy AXLXL

Thus t - {u-v)=( u) v

(ii)
AxLx L ey
Axé// i
/ bz
AxL ey |7
A .
xL ) A

commutes, so 1-r=¢. Also

. AxS H{LC P2} 7
t-1(fy=dXxL ——AXLXL———dx] ~+ 4
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which is equal to the common composite of the commutative diagram

AxLxL&;AxL

AxS

AdxL pixL 2

m

ie. #( f). Therefore ¢t -1 =1¢

(i)
Ot fLp2))
0-1(f)= AxL——->A><LxL-——-—>A><L—+A

AXL
10p)

Axe Piz
=AXL—AxLxL 2% 4x1 -2 4

=4AxL-ES 4=0(1).

SoQ-t=0

Ax$ 100/ )p2))
t-0(f)= AxL————»AxLxL—————;AxL A

Axd t({pr.p))
= AXL——sAXLxL—"54xL 2 4

Hlaxi) ”
"AXL——-»A><L><L-——>A L=

Axd P2 P
=AXL —AXL X[ s Adx] o

= AxL 2 4=0(f).

So¢t-0=0.
(iv) {( + 1)(f) is the common composite in the following commutative diagram:

AxL—2 L gxpxp —2% 41
Lins P P
AxL L
s
(£
A

So o(t)=1t+ 1. Thus, (iv) will follow from (v) and (ii).



R. Paré, L. RomdnlJournal of Pure and Applied Algebra 128 {1998) 33-92

(v) (( +u) - v){ f) is the composite of the top and the right sides of

AXL el AxLxL @ + (), p) AxL
AXLXS
AXS
AxLxLxL (2)
AxLxe,
AxS AxLxLxL (1) | arrphxL
w({e{ hp2yxL}
AxLxl Y PAX L
AXIXL

4) AxS 3) .
sy A,

AxExl ) AXL o~

and (¢-v+u-v)(f) is the composite of the top and right sides of
w({o(f ) m %l AxLxL

AXL-2X g L x LA AxLxLxL
ixixg | HDRNXL)
m prxL
AxLxLxL ]
Ax§ AL
AxdxL
“) ) #p)
AxLxL AxL A4 .
w({v(f). p)) {r-o)(f) 4

So ({t+uy-v)(fy={(t-v+u-v)(f) once we remark that (1) commutes by the lemma,
(2) by definition of 7 + u, (3) by definition of ¢ - v, and (4) by Barr dinaturality of u

applied to the commutative diagram
AxLxL DXL, AxLXL

AXS AxS

)
AxL TS| AxL, ]
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Remark. The proof of part (i) is much longer than one would expect. After all, for
L =1, multiplication of dinatural numbers is just composition, which is clearly asso-
ciative. The complication occurs when families of dinatural numbers are introduced.
A conceptual simplification can be obtained by the introduction of the categories
A[L]. The objects of A[L] are the same as those of A but a morphism f:4— A4’ in
A[L] is an L-family of morphisms from 4 to 4’, i.e. a morphism A x L — A4’ in A.
Identities are given by projections p; : 4 x L — A4 and composition of g with f by

Ax L g x L axr a4

These identities and compositions occur everywhere in the above calculations.

This is a well-known construction. It is nothing but the Kleisly category for the
comonad ( ) x L on A. It is also discussed in [9] where it is viewed as the result of
adjoining an indeterminate of the form x:1 — L to the category A.

It can be shown that strong BDNs, ¢ : Homy —» Hom/, are in bijection with strong
BDNs, u : Hom ar;; — Homyjz) and. that multiplication corresponds to composition,
but the calculations are similar to the above but more complicated. For this reason
we decided to give a direct proof of (i). However, further work in this direction will
surely involve the categories A[L].

6.4. Exponentials

In this section, we further explore the relationship between the categorical structure
on A and the arithmetic of dinatural numbers. We shall show that if A is cartesian
closed and has pullbacks then we can define the exponential of two dinatural numbers
and that this exponential has nice properties. Our discussion below is still preliminary.
An extensive study of exponentiation must await a future work.

Let A be cartesian closed with internal hom [ , ]:A° x A — A. Further assume
that A has pullbacks. We shall show that dinatural numbers can be internalized and,
therefore, that we can apply BDNs to them.

Let :Hom — Hom’ be an L-family of dinatural numbers. Then by proposition
14, t can be extended to strong BDNs, £ : Hom X —— Hom X X/, naturally in X. Thus,
for each 4, we have

tX :Hom (4 x K,4) — Hom (4 x K x L,A)
which gives, by cartesian closedness, morphisms
Hom (K, [4,4]) — Hom (K x L,[4,A])
natural in K. So, by the Yoneda lemma, we get

T4:[A,4] x L —[4,A).
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For f:4 x K — A4 let us denote the corresponding morphism K — [4,4] by /. Now
the basic property of 7 can be expressed by

FAXL

K xL [4,4] x L

oy i

[4, 4].

Proposition 17. 7:[, ] x L—1[, ] is a strong BDN.

Proof. To say that 7 is a BDN means that for any morphism ¢ : 4 — B, the following
hexagon commutes:

[4,4] x L—f (4, 4]
[4,¢]

[4,B] ()

{¢.8]

/N

[B,B] x L————B,B]

where P is the pullback of [4, ¢] x L and [¢,B] x L. But as A is cartesian closed, P
is isomorphic to Q x L where Q is given by the pullback

~14,4]

[4, B]

[¢,B]

7N\
N

(B,B]

To show that (x) commutes, it is sufficient to test it on morphisms of the form
gxL:K xL— Q x L. But a morphism ¢ :K — Q corresponds to a pair '/, g making

[4,4]

hn

(4, B]

A%
=

Ve
RN

[B,B]
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commute, i.e. a diagram

AxK —1 4

¢ xK ¢

BxK B.

g

Dinaturality of X implies that

AXK XL S0 | 4
¢ xKxL ¢

BxKxL B

*ig)

also commutes, which means that (*) commutes when preceded by g x L. Thus ()
commutes.
By 7 strong we mean that for every 4 and C,

[4,A] x L 4 [4,4]

sthj st

[CxA,CxA]xL—f————»[C'xA,CxA]
CxA

commutes, where st is the strength for the functor C x ( ). Let 'f': K — [4,4] corre-
spond to f: 4 x K — A. Preceding (x) by 'f x L, we see that the top composite is
CxtX(f):Cx A xK x L— C x A, whereas the bottom is t*(C x f). Strength of X
says that these are equal. O

Conversely, a strong BDN, wu:[, ] xL — [, ] gives a strong BDN, #:Hom —
Hom? as follows. For f:4 — A4 we get
oL 25F 4 A < L5 (4]

which corresponds to #(f): 4 x L—A. Thus %(f) =us-"f x L. That # is a strong
BDN is straightforward.

Proposition 18. If t : Hom —Hom?’ is a strong BDN, then 7=t

Proof. "#(f) =8 - f xL=1f). O
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However, it is not true that %=y for all u as the following example shows. Consider
the topos Set? of Z-sets. An object may be viewed as a pair (X, £) where X is a set
and £:X — X a bijection. Set” has a natural numbers object, ((N, In),s) so strong
BDNs, ¢: Hom — Hom, correspond to morphisms 1 — (N, 1x), i.e. ordinary natural
numbers. So all dinatural numbers are standard. The internal hom in Set? is given
by [(X, &),(Y,8)] =(W,w) where W is the set of all functions f: X — Y and w(f)=
Bo f o' Define

o) (X, O (X, 8] — [(X,0).(X, D]
X=X — fofof_l,

It is straightforward to show that u is a strong BDN, v : [, ] — [, ]. But u does not
correspond to a standard dinatural number. In fact, # : Hom —— Hom is the identity
(1e l) SO dA = l[A,A] 7’/—‘ Uyg.

Thus, there are possibly more internal BDNs than external ones. We still maintain
that it is the external ones that correspond to natural numbers.

For the remainder of the section, we restrict our attention to single dinatural num-
bers rather than families. Everything should work for families but the calculations are
somewhat involved and have not yet been checked in every detail.

Proposition 19. Let u:[,] — [, ] be a strong BDN and t:Hom — Hom a BDN.
Then t(uy):[A,A] — [A4,A] defines a strong BDN.

Proof. That u is a BDN means that the hexagon

[4,4] —“—— [4,4]

- Q (4, B]

Q

[B,B] ~#~B_—’ [ByB]

i

commutes for every ¢. Q is the pullback of [4, ¢] and [¢, B] so there exists a fill-in
7 as in the diagram. As ¢ is a BDN we get a commutative diagram

H(ug)

(4, 4] ——————; [4,4]

(1) Q

(4, B]

t(ug)

Q

so #(uy) is a BDN.
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An application of ¢ to the diagram

(4,4] = [4,4]

st st

[CXxA,CxXA]l ———— [C xA4,C x A]

UC x 4

shows immediately that #(u,) is strong. [J

Definition. Let ¢,u : Hom — Hom be dinatural numbers. The exponential t* is defined
by = (u{)); Thus, for f : A— A, we have

() =ultg)o'f .

Proposition 20. Exponentiation of dinatural numbers has the following properties:
(i) 2=1,
(ii) tL=¢,

(iii) 7 =+ . ¢,
(iv) t(u+v) =

Proof. Let f:4—A.

() 1°(f) =0(1) o f =10 f ="f" Thus &(f)= f for all f,ie L2=1.

(i) ) =) o [ =ty0 [ ="1(f)" Thus (f)=1(f) for all f.

(iii) Follows from (ii) and (iv) and o(u)=u + 1.

(iv)

1A = (u+ o) i) o f

= u(tg) o v(ig) o' f”
= u(iqg) o (f)
=)
= o))

So (Y= -*)f) for all . O
Properties (i) and (iii) insure that if u is a standard numeral #, then
2=t -t-t--- -t (n times).

In particular, m2 =m".
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Remark. We do not know if the identity (¢#)’ =#"* holds in general.

7. Examples
7.1. When A has a natural numbers object

When A has a natural numbers object (N,s), then Theorem 3 says that L-families
of dinatural numbers, ¢ : Hom — Hom?’, correspond exactly to morphisms L — N.
Thus A = A(—,N). Successor and 0 for .#" correspond under this isomorphism to
A(—,0):A(—,1)— A(—,N) and A(—,s): A(—,N)— A(—,N), respectively. Theorem 5
then shows that addition corresponds to A(—,+) as it satisfies the corresponding re-
currence relation.

Multiplication i1s not defined as a natural transformation into .4 in the monoidal
case, but in the cartesian case, Theorem 6 shows that multiplication does correspond
to the usual one N x N — N. Indeed, the internal definition of multiplication is as the
unique morphism - : N x N — N which fits into the diagram

SXN

NxN NxN
OxXN
1xN . p2) (> p2)
OxXN
NxN ) NxN

If we apply A(L,—) to this diagram, we see that its commutativity is equivalent to
properties (iii) and (iv) of Theorem 6.

In order to see that the exponentiation defined in Section 6.4 coincides with the
one defined internally by recursion, we must extend our definition to include families.
Indeed, the internal exponential is defined to be the unique morphism exp: N x N — N
which fits in the commutative diagram

NxN SXN NxN
OxXN
IxN {exp, p2) {exp, p2)
OxN
NxN NxN

(- p2)

and that is all that we know about exp. So to show that our definition of 6.4 agrees
with this one we should show that a similar diagram commutes for 4" which would
require a definition of exponential for L-families of dinatural numbers. However, we
can get the result by introducing families only in the exponent and this makes the
calculations considerably easier. Let us fix n: 1 — N. Then we can define n{ ):N =N
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recursively by
N < N

r

1 ) At

S

N——

O-n

where ( ) n=(N =N x 1 NXEN XN == N). It is easily seen that n' ) =exp(—,n).

Now we define #* for :Hom — Hom a single BDN and u:Hom — Hom’ an
L-family. £ = (u(7)): Hom — Hom®. Thus we get a function #( ): A"(L)— A"(L) for
each L.

Proposition 21. 1 ): A (L) — A(L) is natural in L, ie. if |:K—L then I*(t*)=
),

Proof. If f:4— A, then 7*(+*)(f) ' is given by the composite

P K 21 o r L5 4, 4] 0 1 M9

whereas 't'"()(f) " is given by
1 K T5K 14, 4] x K WAL 1 [, 4] % 4080 [ 4, 4],
The two composites are obviously equal. O

If t:Hom — Hom and u,v:Hom —— Hom are strong BDNSs, then all of the iden-

tities of Proposition 20 still hold, and the proofs are basically the same once we note
that the effect of # on morphisms is given by 1( f Y=u(7)o f x L, which fact was
used in the preceding proof.

The natural transformation #):.4"— 4" induces a morphism e:N —N and if
n:1— N is the natural number corresponding to ¢, then properties (i) and (iii) of
Proposition 20 show that e satisfies the recursion data for n(). Thus, the exponen-
tial defined in Section 6.4, and improved here, agree with the usual one defined by
recursion.

7.2. Dinaturals for finite sets

We wish to study strong dinatural transformations Hom — Hom on the category

of finite sets. From the discussion of Section 2.7, all dinaturals are strong for finite
sets. Also, because Hom%(4,B)= [[Hom(4,B), an L-family of dinaturals is just L
independent dinaturals. So it will be sufficient to understand BDNs, Hom —— Hom.
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Consider N as a universal algebra with one nullary operation, 0, and one unary
operation s. The finite quotients of N are all of the form

Agr=Njg=q+r,

where ¢, r €N and r#0. By ¢ = ¢ +» we mean the congruence generated by setting
g = g + r. Explicitly,

m=n M= or
- mn > q and #|m—n.

We may picture 4, , as

< Ve

0 2 3 g-1
° ¢— 00— 0

1

As homomorphisms 4, , — A, » must preserve 0 and s, there can be at most one and
there is one if and only if ¢’ <gq and #'|r. Thus, we have a directed diagram of finite
algebras indexed by the poset NxN* of all (g, ) as above. Define N= lié_r‘nq,,Aq,,. Note
that the congruence g = ¢ + r is also a congruence for addition and multiplication so
that each A, , has these operations, given by [a]+[b] = [a+5b] and [a]-[b] = [ab]. When
there is a homomorphism ¢:4,, — 4, it is given by ¢([a])=[a], so it preserves
+ and - . Consequently, N has + and - satisfying the usual properties, i.e. Nis a
commutative rig (i.e. commutative ‘semi-ring with 1).

Theorem 7. There is an isomorphism of rigs between A(1) and N.

Proof. Let r€.47(1), i.e. :Hom — Hom. Apply 7 to the successor s:4,, —4,, to
get H(s):Ag, — Ay . Let t(s)[0)=[n,,). If ¢:4,, — Ay, is a homomorphism, then

8
Agr ————— dgr

¢ ¢

Aq/JJ ———\—-——) Aql',./

commutes, so applying ¢ to top and bottom and eva&zating at [0] we see that ¢([n,,]) =
[y 1. Thus the family {[n,,]) is an element of N.

Conversely, given an element ([n,,]),, of N we can define ¢: Hom — Hom as
follows. If f:4— A with 4 finite, then there exist g, » € N such that f(@ = fla+r),
with r # 0. Define #( )= f"). If ¢ <q’ and r|y then f@) = f4+7) = £¢") = flg'+)
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so ¢t is well defined. Also, by directness of our poset N x N*, given g:B — B we can
find a pair (g, ) for which #( f)= f") and t(g)=g"), so as far as f and g are
concerned, ¢ is iteration by a fixed integer and therefore is a BDN.

Note that for s:4,, —4,, we have 5@ =5 so if we start with ([n,,]),, €N
and construct ¢ as above, then #(s)[0]=s"+")[0] = [ny,]. Thus, we get back the same
element of N.

On the other hand, let us start with 7€ .47(1) and let [n,,,] =1(s)[0], and then con-
struct a new BDN, u, from ([, ,]),.». For f:4 — A there is gr such that f@) = flatn),
For ae A define ¢:4,,— A by ¢([n])= f"(a), which is indeed well defined. Now

A
Agy ————— Ay,

[ &

!
A

—_— A

commuties, so

wr

does also. Thus, #( /)P([0]) =¢( f)a) is equal to ¢t(s)[0]) = (j)([ni,,]):f(”w)(a):
u{ f Wa). Thus u=¢. This shows that we have a bijection A"(1) X N:

0(s)[0]= 14,,[0]=[0], so ([0]) corresponds to 0.
1(s)[0]=s[0]1=[1], so ([1]) corresponds to 1.

In order to see that addition and multiplication are preserved first note that if
fidpg— Ay, commutes with s and if f[0]={[n] then f[m]=[m + n]. Also note
that if / commutes with s then so does #( ) for any BDN, ¢.

Let 1(s)[0}=[m, ] and u(s)[0] = [n,,]. Then

(£ +u)(S)0] = t(s) - u(s)[0] = t(s)[nq,r] = [mc]wr —+ nq,r]-

So addition is preserved.
As u(s): Ay, — A, , commutes with s, it satisfies u(s)'9 =u(s)@*"). Thus

(2 u)(s)[0] = t(u(s))[0]

= u(s)™[0]
=u(s)ou(s)o---ou(s)0]
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=[ng, + Rgp + -+ ny,]

= [mq.r . nq,r]-
So multiplication is also preserved. [

The congruence ¢ = ¢ + r is not in general a congruence for exponentiation. For
example, in 453, 2 = 5 but 22 =4 # 32=2°. But as .#(1) has exponentiation so does
N, by transport of structure. Let us examine how this works.

Let {[e,,]) = ([m,,,1){1") and let ¢ and u correspond to ([m,,]) and {[n,,]), resp-
ectively. Then t,: Hom (4, 4) — Hom (4, 4) is already internal so iy = #4. The exponen-
tial £ is given by externalizing u(#;) which is already external. To find the correspond-
ing element of N we must apply it to s:A4,,—4,, Thus, we consider
t=t,  :Hom(4,,,4,,)— Hom(4,,, A;,) and find g,7 such that T@ 7% Then

q.r

w(7)($)[0] =7 "7 (5)[0]

Thus [e,,,]=[m,% ] where g, 7 are as above.

Thus, exponentiation in N is not componentwise. The class [n;,] has many rep-
resentatives 7 and ng7 is one of them, ie. [nzz]=[ng,] in 4,,. As the congruence
q = g + r does not respect exponentiation, the classes {mgr] are not all the same. But
as the above discussion shows, it is possible to choose the representative correctly.

It may be interesting to note the analogy with presheaf categories where sums and
products are performed componentwise but exponentiation is not.

We can get a better understanding of N by considering By =4 1. There is always
a morphism ¢ : By, — By and this gives an initial subdiagram of (4, ,). Thus N =
len « By

An element of N can thus be considered as a singly indexed family of natural
numbers ([#;]}; which are compatible in the sense that for each %, either ny =n; or
they are both greater than k! and k!|(m;.; — mg). Thus, if we are trying to build an
clement of N recursively and we have the first £ members

<[n0]a [nl]n [nZ]’ see [Flk], >

then, if n; <k! we have only one choice for [n;.1], namely n;,1 = n; and so on for the
remaining members. This corresponds to the standard numeral n,. On the other hand
if k! <n<2-k!, then we have k + 1 choices for [n;41], namely [mg], [nx + &!], [ +
2-k1,...,[m + k- k). Of these, the first is one that becomes constant and the others
admit £ + 2 choices at the next stage. Thus, we can see that apart from the standard
numerals we have an uncountable set of dinatural numbers. In fact, N may be identified
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with NUZ where Z is the set of adic numbers Z = lim,x Z/(n). To ([m]) € Z we

associate the dinatural number ([k! + m;]).

A

For instance, corresponding to 0 in Z, we have the dinatural number w={[£!]).
o+w=0 -w=o0 but o+ 1#w. This @ is the dinatural number used in Peter
Johnstone’s example of Section 2.2. Our example was ([k!!]) where k!!=112!-..k!.
But in By, [k!]=[m - k!] for any m >0, so our example is also w.

There is a result of Peter Hoffman (see [4]) that the congruence g = ¢ + » respects
exponentiation if and only if for every prime p,

plr = k<q,
plr = (p—Dlr.

If g = r =n!, then both of these conditions hold so that exponentiation is defined on our
algebras B,. Furthermore the transition morphisms ¢ : B, — B, obviously preserve it,
thus in N, exponentiation is componentwise on the B,.
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