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A function ψ : [X]2 → X is a called a weak selection if ψ({x, y}) ∈ {x, y} for every x, y ∈ X .
To each weak selection ψ , one associates a topology τψ , generated by the sets (←, x) =
{y �= x: ψ(x, y) = y} and (x,→) = {y �= x: ψ(x, y) = x}. Answering a question of S. García-
Ferreira and A.H. Tomita [S. García-Ferreira, A.H. Tomita, A non-normal topology generated
by a two-point selection, Topology Appl. 155 (10) (2008) 1105–1110], we show that
(X, τψ ) is completely regular for every weak selection ψ . We further investigate to what
extent the existence of a continuous weak selection on a topological space determines
the topology of X . In particular, we answer two questions of V. Gutev and T. Nogura
[V. Gutev, T. Nogura, Selection problems for hyperspaces, in: E. Pearl (Ed.), Open Problems
in Topology 2, Elsevier B.V., 2007, pp. 161–170].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

E. Michael initiated the study of continuous selections in 1951 with his seminal paper [7]. He considered the hyper-
space 2X of all non-empty closed subsets of X , equipped with the Vietoris topology, i.e. the topology on 2X generated by
sets of the form

〈U ; V 0, . . . , Vn〉 = {
F ∈ 2X : F ⊆ U and F ∩ V i �= ∅ for any i � n

}
,

where U , V 0, . . . , Vn are open subsets of X .
A function ψ defined on [X]2, the collection of all subsets of X with exactly two points, such that ψ({x, y}) ∈ {x, y} for

every x, y ∈ X is called a weak selection on X . A weak selection is continuous if it is continuous with respect to the Vietoris
topology on [X]2, treating [X]2 as a subspace of 2X .

The general question studied in Michael’s article, and many subsequent articles, is: When does a space admit a continuous
weak selection? In his paper, E. Michael has proved that every space that admits a weaker topology generated by a linear
order, i.e. that the space is weakly orderable, also admits a continuous weak selection. The natural question whether the
converse is also true, implicit in Michael’s paper, was stated explicitly by van Mill and Wattel in [8]: Is every space that
admits a continuous weak selection weakly orderable?

We have recently answered this question in the negative by constructing a separable, first countable locally compact
space X which admits a continuous weak selection but is not weakly orderable [6].

In this paper we investigate to what extent the existence of a continuous weak selection on a topological space deter-
mines the topology of X . We show that for every weak selection ψ on a set X , the topology τψ induced by ψ is Tychonoff,
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answering a question of S. García-Ferreira and A.H. Tomita [1]. We introduce the notion of a space determined by selections
and its weak and strong form. We study these classes of spaces. In particular, we answer two questions of V. Gutev and
T. Nogura [5]. We conclude with some open problems.

All spaces considered here are at least Hausdorff. The set-theoretic and topological notation used is standard, possibly
with one exception, we denote by f ′′ A the forward image of a set A via a function f .

Given a weak selection on a set X and x, y ∈ X , we write y → x (or equivalently x ← y) if ψ(x, y) = x. Some authors use
the notation x �ψ y to denote x ← y or x = y (see [7], for example). If A ⊆ X and B ⊆ X , we write A ⇒ B whenever a → b
for every a ∈ A and b ∈ B , and we say that A ‖ B if A ⇒ B or B ⇒ A.

It is well known that the relation �ψ is reflexive and antisymmetric but, in general, it is not transitive. However, as in
the case of an order, it induces a topology on X . Indeed, for every x ∈ X , consider the following sets:

(←, x)ψ = {z ∈ X: z ← x},
(x,→)ψ = {z ∈ X: x ← z}.

We denote by τψ the topology generated by sets of the form (←, x)ψ and (x,→)ψ , x ∈ X , and call it the topology generated
by the weak selection ψ .

Analogously, we introduce the following notation:

(←, x]ψ = {x} ∪ (←, x)ψ ,

[x,→)ψ = {x} ∪ (x,→)ψ ,

(x, y)ψ = (x →)ψ ∩ (←, y)ψ , and

[x, y]ψ = [x →)ψ ∩ (←, y]ψ .

2. Topological properties of τψ

Topologies generated by weak selections were studied in [4]. In particular, the following result holds:

Proposition 2.1. ([4]) Let ψ be a weak selection defined on X. Then (X, τψ) is a regular space.

In the same paper, the authors ask if (X, τψ) is always normal. This question was recently answered in the negative:

Example 2.2. ([1]) There is a weak selection ψ defined on P, the set of irrational numbers, such that (P, τψ) is not normal.

This example is not normal but it is Tychonoff. Motivated by this observation, the original question was reformulated
in [1] as follows:

Question 2.3. Are there a set X and a weak selection ψ on X such that the space (X, τψ) is not Tychonoff?

In order to answer this question in the negative, let us first analyze an immediate consequence of the existence of special
triples on X with respect to a given weak selection.

Given x, y, z in X and ψ a weak selection on X , we say that the triple {x, y, z} is a 3-cycle with respect to ψ if
x → y → z → x (or x ← y ← z ← x).

Notice that if a set X does not admit 3-cycles with respect to a weak selection ψ , then the relation �ψ induced by ψ is
transitive and the space (X, τψ) is orderable.

On the other hand, every 3-cycle naturally determines a clopen partition of X , as the following proposition shows. This
observation appears in [6], we present the simple proof here for the sake of completeness.

Proposition 2.4. Let ψ be a weak selection on a set X and let x, y, z ∈ X be such that {x, y, z} is a 3-cycle with respect to ψ . Then
there is a (canonical) partition P of X so that |P | � 5, P is τψ -clopen and |{x, y, z} ∩ P | � 1 for every P ∈ P .

Proof. Assume that x → y → z → x. Consider the following sets:

P0 = (y, z)ψ ,

P1 = (z, x)ψ ,

P2 = (x, y)ψ ,

P3 = (←, x)ψ ∩ (←, y)ψ ∩ (←, z)ψ , and

P4 = (x,→)ψ ∩ (y,→)ψ ∩ (z,→)ψ .
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It is easy to see that P = {Pi: i < 5} is a partition of X and, clearly, Pi is open (hence clopen) for every i < 5. Also,
x ∈ P0, y ∈ P1 and z ∈ P2. �

Given a space X , we denote by Cx the quasicomponent of x on X and by C∗
x the component of x:

Cx =
⋂

{C ⊆ X: C is clopen and x ∈ C},
C∗

x =
⋃

{C ⊆ X: C is connected and x ∈ C}.
The following result is due to Gutev and Nogura.

Lemma 2.5. ([2]) Let ψ be a weak selection on a set X . If x ∈ X and y, z ∈ Cx, where Cx is the τψ -quasicomponent of x, then
[y, z]ψ ⊆ Cx.

Proof. Suppose that y, z ∈ Cx are such that y ← z. If there is a w ∈ [y, z]ψ \ Cx then, since w /∈ Cx , we can find a clopen
subset V ⊆ X with x ∈ V (and so Cx ⊆ V ) and w /∈ V . Then the clopen set W = V ∩ (←, w]ψ = V ∩ (←, w)ψ is such that
y ∈ W and z /∈ W , which is a contradiction. �

In a similar way, it is also proved in [2] that [y, z]ψ must be connected, and so Cx = C∗
x , i.e. Cx is connected.

Lemma 2.6. Let x �= y ∈ X and let ψ be a weak selection on X such that x ← y. Then there are τψ -continuous functions f : X → [0,1]
and g : X → [0,1] such that:

(1) f (x) = 1 and f ′′[y,→)ψ = {0},
(2) g(y) = 1 and g′′(←, x]ψ = {0}.

Proof. We will prove (1), the proof of (2) is completely analogous. There are two possible cases:

Case 1: There is a clopen C ⊆ X such that x ∈ C and y /∈ C .

In this case, let U = C ∩ (←, y)ψ . Notice that also U = C ∩ (←, y]ψ and so U is a clopen subset containing x. Define
f : X → [0,1] by f (z) = 1 if z ∈ U and f (z) = 0 otherwise.

Case 2: For every C ⊆ X clopen, x ∈ C if and only if y ∈ C .

Notice first that, by Lemma 2.5, the point x determines a finite partition P of X , which consists of the closed connected
subset Cx and two open subsets: U0 = {z ∈ X \ Cx: Cx ⇒ {z}} and U1 = {z ∈ X \ Cx: {z} ⇒ Cx}. The idea of the proof will be
to first define the desired continuous function on a particular closed subset of Cx containing x and y and to finally extend
it to the whole space.

Consider the quasicomponent Cx. By Proposition 2.4, �ψ� (Cx × Cx) is a transitive relation since, as otherwise, there
would be a z ∈ Cx and C ⊆ Cx clopen such that x ∈ C and z /∈ C , which is not possible. Therefore Cx , as a subspace of
(X, τψ), is a connected orderable space. In particular, Cx is normal and [x, y]ψ , being a closed subset of Cx , is normal also.

Let h : [x, y]ψ → [0,1] be a continuous function such that h(x) = 1 and h(y) = 0.
Finally, define f : X → [0,1] by

f (u) =
⎧⎨
⎩

1, if u ∈ (←, x]ψ,

h(u), if u ∈ [x, y]ψ,

0, if u ∈ [y,→)ψ .

The function f is well defined because (←, x]ψ ∩[x, y]ψ = {x}, [x, y]ψ ∩[y,→)ψ = {y} and (←, x]ψ ∩[y,→)ψ = ∅. Moreover,
since f is continuous on each of these τψ -closed sets, it is continuous on X . �
Theorem 2.7. Let ψ be a weak selection on a set X . Then (X, τψ) is Tychonoff.

Proof. Let x ∈ X and let U be a basic neighbourhood of x. Then there are z0, . . . , zn ∈ X \ {x}, for some n ∈ ω, such that
U = ⋂{Ui: i � n}, where Ui = (zi,→)ψ if zi ← x and Ui = (←, zi) otherwise. By Lemma 2.6, for every i � n we can
find a continuous function f i : X → [0,1] such that f i(x) = 1 and f ′′

i [X \ Ui] = {0}. Let f : X → [0,1] be defined by f =∏{ f i: i � n}. Clearly, f is continuous and f (x) = 1. If z /∈ U then z /∈ Ui for some i � n and so f i(z) = 0, which implies that
f (z) = 0. Therefore, f ′′(X \ U ) = {0}. We conclude that (X, τψ) is Tychonoff. �
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3. Topologies generated by selections

The first result that establishes a relationship between a (continuous) weak selection defined on a space and the topology
this selection generates is the following:

Proposition 3.1 ([3]). Let ψ be a continuous weak selection on a Hausdorff space (X, τ ). Then τψ ⊆ τ .

As mentioned above, the answer to van Mill and Wattel’s question is negative, i.e. there is a space X which admits
a continuous weak selection but which is not weakly orderable. One might ask, whether this question has a positive answer
assuming that there is a closer relationship between the original topology on X and the topology generated by the weak
selection on X . Motivated by this, we introduce the following definitions.

Definition 3.2. Let (X, τ ) be a topological space. We say that:

(1) X is weakly determined by selections (wDS) if there is a weak selection ψ on X so that τ = τψ .
(2) X is determined by selections (DS) if there is a continuous weak selection ψ on X so that τ = τψ .
(3) X is strongly determined by selections (sDS) if X is DS and τ = τψ for every continuous weak selection ψ on X .

Given a weak selection ψ on a space (X, τ ), it is not always true that ψ is τψ -continuous, even when ψ is τ -continu-
ous [3]. On the other hand, the next result states that if there is a coarser topology on a given set so that a weak selection
defined on it is continuous, this topology must be precisely the topology determined by the weak selection itself. This
answers Question 7 of Gutev and Nogura [5] in the negative.

Proposition 3.3. Let ψ be a weak selection on a set X . Then τψ is the intersection of all Hausdorff topologies τ on X such that ψ is
τ -continuous.

In particular, there exists the coarsest topology τ ∗ on X such that ψ is τ ∗-continuous if and only if ψ is τψ -continuous,
and then τ ∗ = τψ .

Proof. Since τψ is contained in any Hausdorff topology on X for which the weak selection ψ is continuous, if we consider
the topology:

τ ∗ =
⋂

{τ : τ is a Hausdorff topology on X and ψ is τ -continuous},
we have that τψ ⊆ τ ∗ . We only need to prove that τ ∗ ⊆ τψ .

For x ∈ X , define the set:

Nx = {U ⊆ X: x ∈ U and U is τψ -open}.
For every x ∈ X , let τx be the topology on X generated by Nx ∪ {{y}: y ∈ X \ {x}}. Let y ∈ X \ {x} and, without loss

of generality, suppose that x ← y. Then Ux = (←, y)ψ and U y = {y} are disjoint τx-open neighbourhoods of x and y
respectively, and so τx is Hausdorff. Moreover, since {y} ⇒ Ux , the weak selection ψ is τx-continuous.

Therefore, τ ∗ ⊆ ⋂{τx: x ∈ X}. However, this implies that τ ∗ ⊆ τψ . �
Now we turn our attention to DS spaces. Any orderable space is a DS space: The selection min determines the order

topology. The next example shows that orderability is not a necessary condition.
Denote by Rl the Sorgenfrey line, i.e. the real numbers R equipped with the topology τl given by the basis

B = {[a,b): a,b ∈ R, a < b
}
,

and by R
∗
l the topological space on the real line having as basis the collection:

B∗ = {
(a,b]: a,b ∈ R, a < b

}
,

which is, of course, homeomorphic to Rl .
It is well known that Rl is a suborderable space which is not orderable.
The next result states that the topology on the Sorgenfrey line can be determined by a continuous weak selection defined

on it.

Example 3.4. Rl is a suborderable DS space which is not orderable.

Proof. Let X = ⋃ {Xn × {n}: n ∈ ω}, where Xn = Rl if n is odd and Xn = R
∗
l if n is even. Notice that (Rl, τl) ∼= (X, τ ), where

τ is the topology of disjoint sum. Define ψ : [X]2 → X as follows:
ψ({(x,n), (y,m)}) = (x,n) if and only if one of the following occurs:
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(1) x < y and |n − m| � 1,
(2) x = y, n = 2k + 1 for some k ∈ ω and |n − m| = 1,
(3) m − n > 2, or
(4) n − m = 2.

Let us first prove that τ ⊆ τψ .
Fix n ∈ ω and let x, y ∈ R be such that x < y. Let

U = (
(x,n + 1),→)

ψ
∩ (←, (y,n + 1)

)
ψ

∩ (←, (x,n + 3)
)
ψ
.

Then U = (x, y] × {n} if n is odd and U = [x, y) × {n} if n is even. This proves that τ ⊆ τψ and, in particular, Xn × {n} is
τψ -clopen for every n ∈ ω.

To prove that τψ ⊆ τ , it is enough to verify that ψ is τ -continuous. For this, let (x,n), (y,m) ∈ X be such that (x,n) �=
(y,m) and ψ((x,n), (y,m)) = (x,n). There are three possible cases:

Case 1: n = m.

Let z ∈ R be such that x < z < y. Then U = (x − 1, z) × {n} and V = (z, y + 1) × {n} are disjoint τ -open neighbourhoods
of (x,n) and (y,n) respectively such that V ⇒ U . Therefore, ψ is continuous at {(x,n), (y,n)}.

Case 2: |n − m| = 1.

If x < y then continuity is verified as in Case 1. If x = y then n is odd and m is even. In this case, U = (x − 1, x] × {n}
and V = [x, x + 1)×{m} are τ -neighbourhoods of (x,n) and (y,m) respectively, with V ⇒ U , which implies continuity of ψ

on {(x,n), (y,n)}.

Case 3: |n − m| > 1.

U = Xn × {n} and V = Xm × {m} are neighbourhoods of (x,n) and (y,m) with V ⇒ U . �
It is also easy to see that suborderable spaces do not have to be DS.

Example 3.5. X = (0,1) ∪ {2}, as subspace of R, is suborderable but not a DS space.

Proof. If ψ is a continuous weak selection on X then note that ψ � [(0,1)]2 must be either the weak selection min or the
weak selection max. Without loss of generality, let us suppose that τ � [(0,1)]2 = min. If there is a point z ∈ (0,1) so that
ψ(z,2) = z then ψ(z,2) = z for all x ∈ (0,1) and so (X, τψ) ∼= (0,1].

On the other hand, if (z,2) = 2 for some z ∈ (0,1) then {2} ⇒ (0,1), which implies that (X, τψ) ∼= [0,1). In any case,
(X, τψ) �= (X, τ ). �

In an earlier version of this article, we asked if every wDS space must be weakly orderable and if every normal wDS
space is DS. As pointed out by the referee, the following example answers both questions in the negative.

Example 3.6. Let X = {(x,0) ∈ R
2: x ∈ [−1,1]} ∪ {(0, 1

n ) ∈ R
2: n ∈ ω \ {0}} with the subspace topology. Define ψ : [X]2 → X

by

(1) ψ({(x,0), (y,0)}) = (min(x, y),0),
(2) ψ({(0, 1

n ), (0, 1
m )}) = (0,max{n,m}), and

(3) ψ({(x,0), (0, 1
n )}) = (x,0) if and only if x � 0.

Then τψ is the usual topology on X , as a subspace of R
2, but X does not admit a continuous weak selection.

As far as sDS spaces are concerned, every weakly orderable sDS space is, in fact, orderable. On the other hand, every
compact DS space is sDS. It is also true that every connected locally connected DS space is sDS (see [9]). The following
question was asked in [5].

Question 3.7. Is there a non-compact sDS that is neither connected nor locally connected?

The following example answers this question in the affirmative.

Example 3.8. There is a sDS space which is neither compact nor locally compact nor connected nor locally connected.
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Proof. Let X = ⋃{Un: n ∈ ω}, where U0 = (−1,0] and Un = ( 1
n+1 , 1

n ) for every n > 0, with the subspace topology.
The space X is obviously not compact or connected and it is neither locally compact or locally connected at the point 0.
Clearly X is a DS space (the weak selection min induces the topology on X ). To prove that X is sDS, let ψ be a continuous

weak selection on X .
For any n,m ∈ ω, Un ‖ Um and either ψ � [Un]2 = min or ψ � [Un]2 = max. Notice that if x ∈ X \ {0} and U is an open

neighbourhood of x, then there are a,b ∈ X such that x ∈ (←,b)ψ ∩ (a,→)ψ ⊆ U . Therefore, we only need to prove that any
basic open neighbourhood of 0 in X contains an open τψ -neighbourhood of it.

Let U = (a,b)∩ X be an open neighbourhood of 0 and suppose that ψ(a,0) = a (the case when ψ(a,0) = 0 is completely
analogous). We can also suppose that b = 1

n for some n ∈ ω and, by continuity of ψ , that (U \ U0) ⇒ U0. Let F = {0 < k < n:
Uk ⇒ U0}. If F is empty then, for every k < n, {a} ⇒ Uk , which guarantees that (a,→)ψ ∩ (←,b)ψ ⊆ (a,b) and, in this case,
W = (a,→)ψ ∩ (←,b)ψ is as desired. We can suppose then that F is non-empty.

Notice that Uk ⇒ {0} for every k ∈ F and so, by continuity of ψ , we can find an m > n such that
⋃{Uk: k ∈ F } ⇒⋃{Us: s > m}. Let z ∈ Um+1 and consider the neighbourhood W = (a,→)ψ ∩ (←, z)ψ .

As z ∈ U \ U0, W is an open τψ -neighbourhood of 0. If x ∈ X \ U then either x ∈ (0,a] or x ∈ Uk for some k < n. In
the first case, ψ(x,a) = x and then x /∈ W . Otherwise, if x ∈ Uk for some k /∈ F then, since U0 ⇒ Uk , ψ(x,a) = x and again
x /∈ W . Finally, if x ∈ Uk for some k ∈ F then ψ(x, z) = z and then x /∈ W . We conclude that W ⊆ U and so τψ = τ . �

We conclude with some open problems.

Question 3.9. Is every DS space weakly orderable?

Question 3.10. Is every DS space normal?

Question 3.11. Is there a characterization of DS spaces in terms of an orderability property?

Question 3.12. Is every sDS space orderable?

Question 3.13. Let X be a non-compact sDS space. Is then the set {x: X is locally connected at x} dense in X?
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