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PARAMETRIZED ♦ PRINCIPLES

JUSTIN TATCH MOORE, MICHAEL HRUŠÁK, AND MIRNA DŽAMONJA

Abstract. We will present a collection of guessing principles which have a
similar relationship to ♦ as cardinal invariants of the continuum have to CH.
The purpose is to provide a means for systematically analyzing ♦ and its
consequences. It also provides for a unified approach for understanding the
status of a number of consequences of CH and ♦ in models such as those of
Laver, Miller, and Sacks.

1. Introduction

Very early on in the course of modern set theory, Jensen isolated the following
combinatorial principle known as ♦:

♦ There is a sequence Aα (α < ω1) such that for all α < ω1, Aα ⊆ α and if
X is a subset of ω1, then the set

{α < ω1 : X ∩ α = Aα}

is stationary.

Jensen used this principle to construct a Suslin tree [17] and later many other
constructions were carried out using ♦ as an assumption; see [9].

The purpose of this paper is to provide a broad framework for analyzing the con-
sequences of Jensen’s ♦ principle. Our intent is to present an array of ♦-principles
which have the same relation to ♦ as the cardinal invariants of the continuum (see,
e.g., [2] or [8]) have to the Continuum Hypothesis. We will approach an analysis of
♦ in much the same way as Blass approaches cardinal invariant inequalities in [4].

Our immediate motivation in this consideration stems from the isolation of the
principle ♦d in [15] (see also [16]).

♦d There is a sequence gα : α → ω indexed by ω1 such that for every
f : ω1 → ω there is an α ≥ ω with f � α <∗ gα.

This principle implies d = ω1 (for much the same reason as ♦ implies c = ω1),
follows from d = ω1 + ♣, and holds in most of the standard generic extensions in
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which d = ω1 holds [16].1 The main interest in it comes from the following fact
relating to the question of whether d = ω1 implies a = ω1.

Theorem 1.1 ([16]). ♦d implies a = ω1.

It was initially unclear whether other cardinal invariants of the continuum, such
as b and s, have similar ♦-like principles corresponding to them. The cardinal s

was of particular interest in this context, since it seemed that the construction of
the Ostaszewski space from ω1 random reals in [23] should be a consequence of a
principle similar to ♦s (whatever that might be).

It turned out that the correct language to use for formulating ♦-principles like
those mentioned above was developed by Devlin and Shelah in [7]. They considered
the following statement:

Φ For every F : 2<ω1 → 2 there is a g : ω1 → 2 such that for every f : ω1 → 2
the set {α ∈ ω1 : F (f � α) = g(α)} is stationary.

They showed this to be equivalent to 2ℵ0 < 2ℵ1 . The framework of the weak di-
amond principle Φ of [7] allows for the definition of two classes of ♦-principles,
Φ(A,B,E) and ♦(A,B,E), each taking a cardinal invariant (A,B,E) as a param-
eter.

Like♦d, these principles all imply that the corresponding cardinal invariant is ω1.
They all follow from ♦, with ♦(c) and Φ(c) both being equivalent to ♦. They also
each have a “guessing” component which allows them to carry out constructions for
which one has historically used ♦. Moreover, many of the classical ♦ constructions
seem to fit very naturally into this scheme. For instance the standard construction
of a Suslin tree from ♦ really requires only ♦(non(M)). Also like ♦d, the principles
♦(A,B,E) hold in many of the natural models in which their corresponding cardinal
invariant 〈A,B,E〉 is ω1. For instance ♦(b) holds in Miller’s model and ♦(cof(N ))
holds in both the iterated and the “side-by-side” Sacks models.

The paper is organized as follows. Section 2 introduces an abstract form of
a cardinal invariant of the continuum and formulates the principles Φ(A,B,E)
which serve as a first approximation to ♦(A,B,E). Section 3 presents the Suslin
tree construction from ♦ in the language of Φ(non(M)). Section 4 introduces
a refinement of Φ(A,B,E) called ♦(A,B,E) and gives some explanation for our
choice of it over Φ(A,B,E). Section 5 presents some more constructions which
use ♦(A,B,E). Section 6 shows that ♦(A,B,E) holds in many of the models
of 〈A,B,E〉 = ω1. Section 7 studies the role of ♦(A,B,E) in analyzing cardinal
invariants other than those fitting into our framework. Section 8 presents a proof
that ♦(A,B,E) is not a consequence of CH for any of the classical invariants
(A,B,E).

Our notation is, for the most part, standard (see [19]). We will use AB to denote
the collection of all functions from B to A. 2<ω1 will be used to denote the tree of
all functions from a countable ordinal into 2 ordered by extension. If t is a function
defined on an ordinal, then we will use |t| to denote the domain of t. Otherwise
|A| will be used to denote the cardinality of a set A. The meaning of | · | should
always be clear from the context. If B is a Borel subset of a Polish space, we will

1 Another ♦-like principle in this spirit is the statement ♦(ω<ω1 ) presented in Section 6.2 of
[36] (Definition 6.37). To draw an analogy, this principle might also be called ♦non(M) in the

language of [16] (see Theorem 6.49 of [36]). Also, Shelah has considered some specific cases of
Φ(A,B,E) defined below in the appendix of [27].
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often identify it with its code and use this code to define B in forcing extensions.
We will use B̌ to represent the name for this set in the forcing extension.

Many of the constructions in this paper will require choosing a sequence eδ :
ω ↔ δ of bijections for each δ ∈ ω1 or an increasing sequence δn (n ∈ ω) which is
cofinal in δ for limit δ. To avoid repetition, we will fix a sequence of bijections eδ
(δ ∈ ω1) and cofinal sequences δn (n ∈ ω) for limit δ once and for all. If there is a
need to refer to, e.g., a special cofinal sequence in δ we will use δ̄n (n ∈ ω) for the
sequence instead.

2. Abstract cardinal invariants and Φ

The following structure allows for a compact definition of many common cardinal
invariants of the continuum.

Definition 2.1 ([34]). An invariant is a triple (A,B,E) such that
(1) A and B are sets of cardinality at most |R|,
(2) E ⊆ A×B,
(3) for every a ∈ A there is a b ∈ B such that (a, b) ∈ E,
(4) for every b ∈ B there is an a ∈ A such that (a, b) 6∈ E.

Usually we will write aEb instead of (a, b) ∈ E.

Definition 2.2. If (A,B,E) is an invariant, then its evaluation 〈A,B,E〉 is given
by

〈A,B,E〉 = min{|X | : X ⊆ B and (∀a ∈ A)(∃b ∈ X)(aEb)}.

If A = B, then we will write (A,E) and 〈A,E〉 instead of (A,B,E) and 〈A,B,E〉,
respectively. Two typical examples of invariants are (N ,⊆) and (M,R, 63). The
evaluations 〈N ,⊆〉 and 〈M,R, 63〉 are clearly just cof(N ) and non(M). Even
though, strictly speaking, M and N are ideals of cardinality 2c, they both have
a basis consisting of Borel sets, hence of cardinality c. If an invariant (A,B,E)
already has a common representation, we will use such a representation instead
of (A,B,E). Moreover, we will abuse notation and use these representations to
abbreviate both the invariant and its evaluation. What we mean should always be
clear from the context.

Definition 2.3. Let (A,B,E) be an invariant. Φ(A,B,E) is the following state-
ment:
Φ(A,B,E) For every F : 2<ω1 → A there is a g : ω1 → B such that for every

f : ω1 → 2 the set {α ∈ ω1 : F (f � α)E g(α)} is stationary.
The witness g for a given F in this statement will be called a ♦(A,B,E)-sequence

for F . If F (f � δ)Eg(δ), then we will say that g guesses f (via F ) at δ.

Proposition 2.4. ♦ implies Φ(A,B,E) for any invariant (A,B,E).

Proof. Let Aα (α ∈ ω1) be a diamond sequence which guesses elements of 2ω1 (Aα
is in 2α). Set g(α) to be any b ∈ B such that F (Aα)Eb. Then g is a ♦(A,B,E)-
sequence for F since for all f : ω1 → 2,

{δ ∈ ω1 : f � δ = Aδ} ⊆ {δ ∈ ω1 : F (f � δ)Eg(δ)}.
�

Proposition 2.5. Φ(A,B,E) implies 〈A,B,E〉 is at most ω1.
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Proof. Let F : 2ω → A be a surjection and extend F to 2<ω1 by setting F (t) =
F (t � ω) if t has an infinite domain and defining F (t) arbitrarily otherwise. Let
g be a ♦(A,B,E)-sequence for F . It is easy to see that the range of g witnesses
〈A,B,E〉 ≤ ω1. �

Notice the resemblance of this proof to the standard proof that ♦ implies CH.
In fact, if we view c as the invariant (R,=), then we have the following fact.

Proposition 2.6. Φ(c) is equivalent to ♦.

Proof. By Proposition 2.4 we need only to show that Φ(c) implies ♦. For each
infinite α ∈ ω1, fix a bijection Hα : 2α → R. Set F (t) = Hα(t) where α = |t|. Let
g be the ♦(c)-sequence for this F . Set Aα = H−1

α (g(α)). It is easy to see that Aα
(α ∈ ω1) is a ♦-sequence. �

Proposition 2.7. Φ(Rω ,v) is equivalent to ♦. Here f v g iff the range of f is
contained in the range of g.

Proof. Combine the previous proof with the Kunen’s result stating that ♦ is equiv-
alent to ♦− (see [19]). �

A natural question which arises is: “When do relations between invariants trans-
late into implications between the corresponding ♦-principles?” This is largely
answered by the next proposition.

Notation (Tukey ordering [34]). If (A1, B1, E1) and (A2, B2, E2) are invariants,
then

(A1, B1, E1) ≤T (A2, B2, E2)
when there are maps φ : A1 → A2 and ψ : B2 → B1 such that (φ(a), b) ∈ E2

implies (a, ψ(b)) ∈ E1.

As one would expect, the Tukey ordering on invariants gives the corresponding
implications for Φ principles.

Proposition 2.8. If (A1, B1, E1) ≤T (A2, B2, E2), then Φ(A1, B1, E1) is a conse-
quence of Φ(A2, B2, E2).

One should exercise caution, however, when trying to turn inequalities between
evaluations of cardinal invariants into implications between ♦-principles. For in-
stance, (ωω, <∗) are (ωω,≤) have the same evaluation but seem to give rise to
different ♦-principles. We will use d to denote (ωω, <∗).

The smallest invariant in the Tukey order is (R, 6=). It is known that Φ(2, 6=) is
equivalent to Φ(R, 6=). This was noted by Abraham and can be extracted from [7].
The proof is given for completeness.

Theorem 2.9. Φ(2, 6=) is equivalent to Φ(R, 6=).

Proof. Since (R, 6=) is below (2, 6=) in the Tukey order, it suffices to show that
Φ(R, 6=) implies Φ(2, 6=). To this end, suppose that F : 2<ω1 → 2 witnesses that
Φ(2, 6=) fails. Define a function F ∗ whose range is contained in 2ω and whose
domain consists of functions of the form t : δ × ω → 2 so that F ∗(t)(i) = F (t(·, i)).
Now let g : ω1 → 2ω be given. To see that g is not a ♦(R, 6=)-sequence for F ∗, pick
closed unbounded sets Cn ⊆ ω1 and functions fn : ω1 → 2 such that

F (fn � δ) = g(δ)(n)
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for every n and δ in Cn. Now define f : ω1 × ω → 2ω by putting f(δ, n) = fn(δ).
Then F ∗(f � δ × ω) = g(δ) whenever δ is in

⋂
n∈ω Cn. �

3. The Suslin tree construction

In order to get a feel for how the statements Φ(A,B,E) are used, we will begin
by revisiting an old construction and translating it into the language which we have
developed.

Theorem 3.1. Φ(non(M)) implies that there is a Suslin tree.

Proof. By some suitable coding, F will take triples (α,≺, A) as its argument where
α ∈ ω1, ≺⊆ α2, and A ⊆ α. F will be defined to be the empty set unless

(1) α is a limit of limit ordinals,
(2) ≺ is a tree order on α ∈ ω1 of limit height,
(3) if γ < α, then for every δ less than the height of (α,≺) there is a γ̄ < α

with γ ≺ γ̄ and the height of γ̄ greater than δ,
(4) every element of α has exactly ω immediate successors in ≺,
(5) if ξ < α, then [ξ ·ω, ξ · ω+ω) is exactly the collection of elements of (α,≺)

of height ξ, and
(6) A is a maximal antichain in (α,≺).

For such a triple (α,≺, A) let αn (n ∈ ω) be an increasing sequence cofinal in α and
such that each αn is a limit ordinal. Let [α,≺] denote the collection of all cofinal
branches through (α,≺). Define

φ≺ : [α,≺]→ ωω

by setting φ≺(b)(n) to be the unique k such that αn + k is in b. Notice that if
A ⊆ α is a maximal antichain, then

N(α,≺, A) = {φ≺(b) : b ∈ [α,≺] and A ∩ b = ∅}
is closed and nowhere dense in ωω. Also, observe that φ≺ is a surjection. Let
F (α,≺, A) be the collection of all finite changes of elements of N(α,≺, A).

Now suppose that g : ω1 → ωω is a ♦(non(M))-sequence for F . Construct a
tree order ≺ on ω1 by recursion. Define (ω2,≺) so that it is isomorphic to ω<ω

ordered by end extension. Now suppose that (α,≺) is defined and has limit height.
Extend the order to (α+ ω,≺) in such a way that a cofinal branch b in [α,≺] has
an upper bound in (α+ ω,≺) iff φ≺(b) is eventually equal to g(α). Now extend ≺
to α+ ω2 in such a way that conditions (1)–(5) above are satisfied.

To see that (ω1,≺) is a Suslin tree, suppose that A ⊆ ω1 is a maximal antichain
in (ω1,≺). By the same crucial lemma as in the standard ♦ construction (see
Lemma 7.6 in Chapter II of [19]) the set of α < ω1 such that A ∩ α is a maximal
antichain in (α,≺) contains a closed unbounded set C. If g guesses (ω1,≺, A) at
α ∈ C and F (α,≺� α,A ∩ α) is nonempty, then A ∩ α is a maximal antichain in
(α+ω,≺). It is now easily verified using properties (1)–(4) above that, since A ⊆ α
is a maximal antichain in (α+ ω,≺), it is maximal in (ω1,≺) as well. �

A reader familiar with the classical construction of a Suslin tree from ♦ (see,
e.g., Section II.7 of [19]) should have no trouble in seeing that this is indeed the
same construction with the assumption reduced to the minimum required to carry
out the argument. In Section 4 we shall comment that the principle ♦(non(M))



2286 JUSTIN TATCH MOORE, MICHAEL HRUŠÁK, AND MIRNA DŽAMONJA

implied by Φ(non(M)) suffices for this construction, and in Section 6 we will see
that ♦(non(M)) is in fact much weaker than ♦.

4. ♦(A,B,E) — a definable form of Φ(A,B,E)

The purpose of this section is to demonstrate that Φ(A,B,E) is, in general,
too strong to hold in typical generic extensions in which 〈A,B,E〉 = ω1. We will,
however, recover from it a principle ♦(A,B,E) which is still strong enough for most
of the combinatorial applications of Φ(A,B,E) and which is of a more appropriate
strength.

Proposition 4.1. Φ(A,B,E) implies 2ω < 2ω1 .

Proof. Suppose that 2ω = 2ω1 . Let H : 2ω → Bω1 be a surjection. Define F (t) to
be any a in A such that (a,H(t � ω)(|t|)) is not in E. Now if g : ω1 → B is given,
pick an f : ω1 → 2 such that H(f � ω) = g. It is easily checked that g does not
guess f at any δ ≥ ω. �

A closer look at the uses of Φ(A,B,E) presented in Sections 2 and 3 reveals
that in all cases the maps F which were used in the proofs could be chosen to be
nicely definable. This, generally speaking, is atypical of the map F in the proof of
Proposition 4.1. Before we discuss the principles ♦(A,B,E), we first need to define
the notion of a Borel invariant.

Definition 4.2 ([4]). An invariant (A,B,E) is Borel if A, B and E are Borel
subsets of some Polish space.

With slight technical changes, all of the “standard” invariants (A,B,E) can be
represented as Borel invariants. The invariants for which this is nontrivial are those
in Cichoń’s diagram. First note that the Gδ null and Fσ meager sets generate N
and M, respectively. Furthermore, ⊆ is a Borel relation on a cofinal subset of the
Gδ null and Fσ meager sets. The details for the category invariants are handled in
Section 3 of [4]. For null sets, one can use the fact that any null set is contained
in the union of two small sets and that the containment relation on such unions is
Borel (see Section 2.5 of [2] for a discussion of small sets and their relation to null
sets).

Definition 4.3. Suppose that A is a Borel subset of some Polish space. A map
F : 2<ω1 → A is Borel if for every δ the restriction of F to 2δ is a Borel map.

As we will see throughout this paper, the maps F which we are actually inter-
ested in considering in the context of Φ(A,B,E) all can be made to satisfy this
requirement. This motivates the following definition.

Definition 4.4. Let (A,B,E) be a Borel invariant. ♦(A,B,E) is the following
statement:
♦(A,B,E) For every Borel map F : 2<ω1 → A there is a g : ω1 → B such that for

every f : ω1 → 2 the set {α ∈ ω1 : F (f � α)Eg(α)} is stationary.

Aside from the fact that ♦(A,B,E) often suffices for applications of Φ(A,B,E),
it is also the case that, unlike Φ(A,B,E), ♦(A,B,E) is often forced in the standard
models where 〈A,B,E〉 = ω1 is forced. This is the content of Section 6. The key
property of Borel maps which we will need in Section 6 is that if M is a model of
ZFC (usually an intermediate forcing extension) which contains the codes for A and
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F � 2δ and t ∈ 2δ, then F (t) can be computed in M . Often it will be convenient
to define a map F only on a Borel subset of 2δ for each δ. In such a case F will
assume a fixed constant value elsewhere.

The reader is now encouraged to re-read Section 2 and convince themselves that
♦(A,B,E) suffices in each case in which Φ(A,B,E) was used as an assumption for
a particular Borel invariant (A,B,E). For instance we have the following theorems.

Proposition 4.5. ♦(c) is equivalent to ♦.

Proposition 4.6. ♦(R, 6=) is equivalent to ♦(2, 6=).

Theorem 4.7. ♦(non(M)) implies the existence of a Suslin tree.

Another problematic aspect of the statements Φ(A,B,E) is that under CH, the
Tukey types of many of the standard invariants are reduced to (ω1, <). For instance,
under d = ω1 the Tukey type of (ωω, <∗) reduces to (ω1, <) and hence Φ(d) is
equivalent to Φ(ω1, <) (see [37]). The Tukey maps in such situations, however, are
generally far from being definable. The analog of Proposition 2.8 for ♦(A,B,E)
avoids this.

Definition 4.8 (Borel Tukey ordering [4]). Given a pair of Borel invariants
(A1, B1, E1) and (A2, B2, E2), we will say that (A1, B1, E1) ≤BT (A2, B2, E2) if
(A1, B1, E1) ≤T (A2, B2, E2) and the connecting maps are both Borel.

Proposition 4.9. If (A1, B1, E1) ≤BT (A2, B2, E2), then ♦(A2, B2, E2) implies
♦(A1, B1, E1).

It turns out that the Tukey connections between all the invariants we will
consider satisfy the above requirement (see [4]) and hence implications such as
♦(add(M)) implies that ♦(add(N )) hold.

5. Some more constructions

The purpose of this section is to present some more topological and combinato-
rial constructions. The first construction is that of the Ostaszewski space of [24].
Recall that an Ostaszewski space is a countably compact noncompact perfectly
normal space. Usually this space is considered to have the additional property
that its closed sets are either countable or co-countable. Originally this space was
constructed using ♣+ CH, an equivalent of ♦ [24].

Unlike the example of the Suslin tree, which does not seem to yield any new
models in which there are Suslin trees, the hypothesis we use in the construction
makes it rather transparent that there are Ostaszewski spaces after adding ω1 ran-
dom reals. The construction of an Ostaszewski space from a sequence of random
reals (see [23] or [22]) and a careful analysis of the combinatorics involved was one of
the main motivations and inspirations for the formulation of ♦(s) and consequently
♦(A,B,E) for arbitrary invariants (A,B,E).

Notation. Let (ω)ωω denote the collection of all partitions of ω into infinitely many
infinite pieces.

Recall that if A,B ⊆ ω, then A is split by B if both A∩B and A\B are infinite.
The invariant which seems to be at the heart of Ostaszewski’s construction is

s
ω = ([ω]ω, (ω)ωω, is split by all pieces of),
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a close relative of
s = ([ω]ω, is split by).

The invariant sω is connected to non(M) and non(N ) by the following proposition.

Proposition 5.1. sω is below both non(M) and non(N ) in the Borel Tukey order.

Proof. Let µ be the product measure on ωω obtained by setting µ({n}) = 2−n−1.
Let S be the collection of all f in ωω which take the value n infinitely often for
each n. It is easily verified that S is both comeager and measure 1 and hence we
can view non(M) = (M, S, 63) and non(N ) = (N , S, 63). Define φ : [ω]ω →M∩N
by letting φ(A) be the collection of all f in S which take all values infinitely often
on A. Define ψ : S → (ω)ωω by ψ(f) = {f−1(n) : n ∈ ω}. It is easily verified that
this pair of maps gives the desired Borel Tukey connections. �
Theorem 5.2. ♦(sω) implies the existence of a perfectly normal countably compact
noncompact space (i.e. an Ostaszewski space).

Proof. Again by suitable coding, we will take the domain of F to be the set of all
triples (α,B, D) such that α ∈ ω1, B = 〈Uγ : γ < α〉, where Uγ ⊆ γ + 1, γ ∈ Uγ ,
and D ⊆ α. Given a pair (α,B) as above, let τB be the topology on α generated
by taking B as a clopen subbase. F (α,B, D) is defined to be ω unless

(1) α is a limit ordinal,
(2) Uγ is compact in τB for all γ < α,
(3) for every γ < α, the closure of [γ, γ + ω) in (α, τB) is [γ, α), and
(4) D does not have compact closure in (α, τB).

Define Vα,n for n in ω by setting Vα,0 = Ueα(0) and

Vα,n = Ueα(k) \
⋃
i<n

Vα,i,

where k is minimal such that this set is nonempty and such that eα(n) is covered by
Vα,i for some i ≤ n. Thus {Vα,n : n ∈ ω} is a partition of (α, τB) into compact open
sets. Set F (α,B, D) to be the collection of all n such that D ∩ Vα,n is nonempty.
Notice that since Vα,n is compact for all n and D does not have compact closure,
F (α,B, D) is infinite.

Now let g : ω1 → (ω)ωω be a ♦(sω)-sequence for F . Define a locally compact
topology (ω1, τB) by recursion. Suppose that B � α have been defined so far,
satisfying (1)–(3). Notice that if A ⊆ ω and σ, σ′ ∈ (ω)ωω are such that A is split by
all pieces of σ and every element of σ′ contains some element of σ, then A is split
by every element of σ′. Thus by altering g(α), if necessary, we may assume that for
each k, the collection {Vα,n : n ∈ g(α)(k)} has a union which is cofinal in α. Let

Uα+k =
⋃

n∈g(α)(k)

Vα,n.

Since Uα+k is cofinal in α for all k, the closure of a co-bounded subset of α is
co-bounded in α+ ω.

Clearly (ω1, τω1) is not compact since all initial segments are open in τω1 . To fin-
ish the proof, it suffices to show that closed sets are either compact or co-countable.
Now suppose that D ⊆ ω1 does not have compact closure. Let δ ∈ ω1 be such that
F (δ,B � δ,D ∩ δ) is defined and is split by every element of g(δ). Then D ∩ δ must
accumulate at δ + n for all n. It follows from item (3) that the closure of D in ω1

is co-bounded. �
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As mentioned above, the construction can be carried out using ♦(non(N )) which
holds after adding ω1 random reals. Eisworth and Roitman have shown that the
construction of an Ostaszewski space cannot be carried out under CH alone and
hence some form of a guessing principle is required [11]. While the space above is
hereditarily separable, the following question is open:

Question 5.3. Does ♦(non(N )) imply the existence of a nonmetric compact space
X such that X2 is hereditarily separable?

We will now pass to a purely combinatorial construction. Recall that a sequence
Aα : α → 2 indexed by ω1 is coherent if for every α < β, Aα =∗ Aβ � α. Such
a sequence is trivial if there is a B : ω1 → 2 such that Aα =∗ B � α for all α.
Nontrivial coherent sequences can be constructed without additional set theoretic
assumptions [35]. The conclusion of the following theorem is deduced from ♦ in [9],
though unlike Theorems 3.1 and 5.2, the argument presented here does not mirror
an existing argument.

Theorem 5.4. ♦(b) implies that there is a coherent sequence Aα (α ∈ ω1) of
binary maps such that for every uncountable set X, there is an α ∈ ω1 with Aα
taking both its values infinitely often on X ∩ α.

First we will need the following fact which seems to be of independent interest.
Recall that a ladder system is a sequence 〈Cδ : δ ∈ lim(ω1)〉 such that Cδ is a cofinal
subset of δ of order type ω for each limit ordinal δ ∈ ω1.

Theorem 5.5. ♦(b) implies that there is a ladder system Cδ such that for every
sequence of uncountable sets Xγ ⊆ ω1 (γ ∈ ω1) there are stationarily many δ such
that Xγ ∩ Cδ is infinite for all γ < δ.

Proof of Theorem 5.5. Let ~X = 〈Xγ : γ < δ〉 be a given sequence of subsets of
δ and set F ( ~X) to be the identity function unless δ is a limit ordinal and Xγ is
unbounded in δ for all γ < δ. Set

F ( ~X)(n) = max
i≤n

{
min{e−1

δ (γ) : γ ∈ Xeδ(i) \ δn}
}
.

Now suppose that g : ω1 → ωω is a ♦(b)-sequence for F . By making g(δ) larger
if necessary, we may assume that

g(δ)(n) > e−1
δ (δn).

Set

Cδ =
∞⋃
n=0

{γ < δ : (e−1
δ (γ) ≤ g(δ)(n)) and (γ ≥ δn)}.

Clearly Cδ is an ω-sequence which is cofinal in δ and it is routine to check that it
satisfies the conclusion of the theorem. �

Definition 5.6. A binary coherent sequence ~A almost contains a ladder system ~C
if Aα is eventually 1 on Cδ whenever δ < α.

Notice that if ~C satisfies the conclusion of Theorem 5.5, then for any binary
sequence Aα which almost contains ~C and any uncountable set X , there is an α
such that Aα takes the value 1 infinitely often on X ∩ α. Since coherence implies
that this occurs for all β ≥ α as well, it suffices to prove the following lemma.
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Lemma 5.7. ♦(b) implies that for every ladder system ~C there is a coherent se-
quence ~A which almost contains ~C such that for every uncountable set X ⊆ ω1 there
is an α such that Aα takes the value 0 infinitely often on X ∩ α.

Proof. First recall the following notion of a minimal walk (see [30] or [31]). If α < β,
then β(α) = min(Cβ \ α). Here Cα+1 = {α}. Define βi(α) recursively by setting
β0(α) = β and βi+1(α) = βi(α)(α). Let

aβ(α) = |Cβk−1(α) ∩ α|,

where k is the minimal such that βk(α) = α. That is, aβ(α) is the weight of the
last step in the walk from β to α.

Now let X ⊆ δ be given. Define F (X, δ) to be the identity function unless X is
cofinal in δ in which case set

F (X, δ)(n) = min{aδ(γ) : γ ∈ δ ∩X \ δ̄n},
where δ̄n (n ∈ ω) is an increasing enumeration of Cδ.

Let g : ω1 → ωω be a ♦(b)-sequence for F . By making functions in g larger if
necessary we may assume that g(α) is monotonic for all α. Set

bβ(α) = max
i<k−1

g(βi(α))(|Cβi(α) ∩ α|)

if the maximum is over a nonempty set and 0 otherwise (where, again, k is minimal
such that βk(α) = α). Define Aβ(α) to be 0 if aβ(α) < bβ(α) and 1 otherwise.

It is routine to show that ~a and ~b are both coherent and hence that ~A is coherent
(see section 1 of [30] or [31]). It is equally routine to show that bβ is eventually
constant on any ladder while aβ is eventually 1-1 on each ladder and hence ~A

almost contains ~C. To see that ~A satisfies the conclusion of the theorem, let X be
an uncountable set. Fix a δ such that X∩δ is cofinal in δ and g(δ) is not dominated
by F (X ∩ δ, δ). Let γ < δ be arbitrary. It suffices to find an α in X ∩ δ \ γ such
that Aδ(α) = 0. Let n be such that δ̄n > γ and F (X ∩ δ, δ)(n) < g(δ)(n). Let
α ∈ X ∩ δ \ δ̄n be such that aδ(α) = F (X ∩ δ, δ)(n). Now

bδ(α) ≥ g(δ)(|Cδ ∩ α|) ≥ g(δ)(n) > aδ(α)

which finishes the proof. �

Question 5.8. For which Borel invariants (A,B,E) does ♦(A,B,E) imply the
existence of a c.c.c. destructible (ω1, ω

∗
1)-gap in [ω]ω?

6. Canonical models for ♦(A,B,E)

The purpose of this section is to show that, for the classical invariants (A,B,E),
♦(A,B,E) holds in many of the standard models for 〈A,B,E〉 = ω1.

Theorem 6.1. Let Cω1 and Rω1 be the Cohen and measure algebras corresponding
to the product space 2ω1 with its usual topological and measure theoretic structures.
The orders Cω1 and Rω1 force ♦(non(M)) and ♦(non(N )), respectively.

Proof. The arguments for each are almost identical, so we will only present the
case of Rω1 . Let Ġ be an Rω1 -name for the element of 2ω1 corresponding to the
generic filter. Fix an Rω1 -name Ḟ for a Borel map from 2<ω1 to N and let ṙδ be an
Rω1-name for a real such that Ḟ � 2δ is definable from ṙδ. Pick a strictly increasing



PARAMETRIZED ♦ PRINCIPLES 2291

function f : ω1 → ω1 such that ṙδ is forced to be in V[Ġ � f(δ)]. Let ġ(δ) be defined
to be Ġ � [f(δ), f(δ) + ω) (interpreted canonically as a real).

To see that ġ works, let ḟ : ω1 → 2 be an Rω1 -name. Let C be the collection of
all δ for which it is forced that ḟ � δ ∈ V[Ġ � δ]. Because Rω1 is c.c.c., C is closed
and unbounded. Since Ġ is generic, ġ(δ) avoids every null set coded in V[Ġ � f(δ)],
including Ḟ (ḟ � δ). �

The above proof actually shows that ♦∗(non(M)) and ♦∗(non(N )) hold in the
corresponding models where ♦∗(A,B,E) is obtained from ♦(A,B,E) by replacing
“stationary” by “club.” One could, of course, produce a myriad of results of a
similar flavor: e.g. ♦∗(cof(M)) holds after adding ω1 Hechler reals or ♦∗(s) holds
after generically adding a sequence of ω1 independent reals.

It should be noted that the results of [13], [22], and [33] place considerable
limitations on the strength of ♦∗(non(N )) — and hence ♦(non(N )) — as they
show that there are a number of consequences of MAℵ1 which are consistent with
♦∗(non(N )). For instance Theorem 6.1 gives the following corollary which contrasts
the remarks preceding Definition 4.8.

Theorem 6.2. It is relatively consistent with CH that ♦(non(N )) holds, but
♦(non(M)) fails.

Proof. By a result of Hirschorn [13], it is consistent with CH that after forcing with
any measure algebra there are no Suslin trees. After forcing with Rω1 over this
model we obtain a model in which ♦(non(M)) fails but ♦(non(N )) holds. �

So in particular, ♦(non(N )) is not sufficient to carry out the construction of a
Suslin tree.

Question 6.3. Does ♦(b) imply the existence of a Suslin tree?

This also suggests the following meta-question:

Question 6.4. If (A1, B1, E1) and (A2, B2, E2) are two Borel invariants such
that the inequality 〈A1, B1, E1〉 < 〈A2, B2, E2〉 is consistent, is it consistent that
♦(A1, B1, E1) holds and ♦(A2, B2, E2) fails in the presence of CH?

We will now move on to study countable support iterations.

Definition 6.5. A Borel forcing notion is a partial order (X,≤) with a maximal
element2 such that X and ≤ are Borel sets.

Given a Borel forcing notion, we will always interpret it in forcing extensions
using its code rather than taking the ground model forcing notion. Observe that
many Borel forcing notions Q designed for adding a single real (e.g., those for
adding Laver, Miller, Sacks, etc. reals) are equivalent to the forcing P(2)+ × Q,
where P(2) is considered as the Boolean algebra with two atoms. The atom of P(2)
which the generic selects can be thought of as the first coordinate of the generic
real which is added.

The following theorem will now become our focus:

Theorem 6.6. Suppose that 〈Qα : α < ω2〉 is a sequence of Borel partial orders
such that for each α < ω2, Qα is equivalent to P(2)+ × Qα as a forcing notion

2In this paper we adopt the convention that if p is stronger than q, then we write p ≤ q.
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and let Pω2 be the countable support iteration of this sequence. If Pω2 is proper
and (A,B,E) is a Borel invariant, then Pω2 forces 〈A,B,E〉 ≤ ω1 iff Pω2 forces
♦(A,B,E).

Remark 6.7. This is actually a rather weak formulation of what can be proved. All
of “Borel” that is used is that the forcing notions remain forcing notions in generic
extensions and they can be computed from a real. Also, it is not entirely necessary
that the forcing notions be in V ; we will need only that the choice of the sequence
of forcing notions does not depend on the “first coordinates” of the first ω1 generic
reals added by the iteration. We chose the phrasing that we did both because of its
simplicity and the fact that it covers most countable support iterations of definable
forcings.

We will prove this theorem as a series of lemmas.

Lemma 6.8. Suppose that 〈Pα, (P(2)+ × Q̇α) : α < ω1〉 is a countable support
iteration such that for all α < ω1, Pα forces Q̇α is a proper partial order. For all
α ≤ ω1, the suborder P0

α ⊆ Pα of all conditions whose first coordinate is trivial is
completely embedded in Pα.

Proof. By induction on α we prove that the identity map ια : P0
α → Pα is a

complete embedding. Note that for γ < α, P0
γ = {p � γ : p ∈ P0

α}. Also observe
that P0

α is the direct limit of P0
γ (γ < α) under the usual system of embeddings.

If α = 0 this is trivial. By the above observation, for a limit ordinal α > 0 we
have (checking conditions (1) – (3) of Definition 7.1 of Ch. VII in [19]):

(1) Since ια is the inclusion map, it automatically preserves order.
(2) If p, p′ are incompatible in P0

α, there must be a γ < α such that p � γ is
incompatible with p � γ′ in P0

γ (this is a standard fact about direct limits
— see 5.11 of Ch. VIII in [19]). By the induction hypothesis, p � γ and
p′ � γ are incompatible in Pγ and hence p and p′ are incompatible in Pα.

(3) Given q in Pα let (ε̇γ , q̇γ) denote q(γ). It is easy to check by induction on
γ < α that there is a unique condition q̄ in P0

α such that q̄(γ) = (1, q̇γ) for
all γ < α. We now claim that if r ∈ P0

α extends q̄, then r is compatible with
q. Indeed, the γth coordinate of the common extension is (εγ , ṙγ), where
r(γ) = (1, ṙγ).

This finishes the limit case of the inductive proof; the successor case is similar. �

Lemma 6.9. Suppose T is a forcing notion which does not add any countable
sequences of ordinals and that P = 〈Pα, Q̇α : α < δ〉 is a proper countable support
iteration of Borel forcing notions. The forcings T ∗ Ṗ and P × T are equivalent
provided that they do not collapse ω1.

Proof. The T -name Ṗ will be used to refer to the iteration computed after forcing
with T . It now suffices to show that Ṗ is equal to P̌ . This will be proved by
induction on δ.

If δ is a limit of uncountable cofinality, then, by the inductive hypothesis, P̌ and
Ṗ are both inverse limits of equal orders (computed before and after forcing with
T , respectively). Since T adds no new countable sequences of ordinals, it forces
that cf(δ) > ω. Therefore the inverse limit construction is absolute and we have
that Ṗ equals P̌.
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If δ is a limit of countable cofinality, the same argument applies with the obser-
vation that direct limits of systems with countable cofinality are absolute between
models with the same countable sequences of ordinals.

Finally, if δ = α+ 1, then P = Pα ∗ Q̇α. First we will prove that T does not add
any new Pα-names for reals. To this end, suppose that t is in T , ṙ is forced by t to
be a T -name for a Pα-name for an element of 2ω. Let Ȧn (n < ω) be a countable
sequence such that t forces that Ȧn is a maximal antichain in Pα whose elements
decide the value of ṙ(n). Since T ∗ Pα does not collapse ω1, there is a t̄ extending
t, a p in Pα and T -names Ċn such that t̄ forces that Ċn is a countable subset of
Ȧn and is maximal below p. Since T does not add countable sequences, there is an
extension of t̄ which decides Ċn for all n. Hence T does not add any Pα-names for
reals and therefore Qα is the same computed after forcing with T ∗Pα as it is after
forcing with Pα. Combining this with the inductive hypothesis we have

P̌ = P̌α ∗ Q̌α = Ṗα ∗ Q̇α = Ṗ ,
thus finishing the proof. �

Definition 6.10. A forcing notion (P ,≤) is nowhere c.c.c. if for every p in P there
is an uncountable antichain of elements which extend p.

Lemma 6.11. If Pω2 is as in the statement of Theorem 6.6 and Pω1 is the c.s.
iteration of 〈Pα,Qα : α < ω1〉, then there is a Pω1-name Ṫ for a tree of height
ω1 which is nowhere c.c.c. and does not add reals such that Pω2 is equivalent to
Pω2 ∗ Ṫ .

Proof. By passing to an equivalent iteration, we replace Pω1 by the c.s. iteration
of the orders P(2)+ ×Qα. Let Ṫ be the P0

ω1
-name for the quotient of Pω1 by the

P0
ω1

-generic filter. Observe that if G ⊆ P0
ω1

is generic, T is the collection of all
t : α → 2 in V [G] such that for every γ ≤ α, t � γ is in V [G ∩ P0

γ ]. From this it
is clear that T is nowhere c.c.c. Since Ṫ is P0

ω1
-name for a tree of size ω1 which

is everywhere of uncountable height and which embeds into a proper partial order,
P0
ω1

forces that Ṫ does not add any new countable sequences of ordinals.
Let Ṗ ′ be the Pω1-name for the remaining part of the iteration Pω2 . Now Pω2

is equivalent to (P0
ω1
∗ Ṫ ) ∗ Ṗ ′ which is in turn equivalent to Pω1 ∗ (Ṫ ∗ P ′) which

is equivalent to (Pω1 ∗ Ṗ ′) ∗ Ṫ = Pω2 ∗ Ṫ . �

The following lemma now completes the proof of Theorem 6.6.

Lemma 6.12. Let (A,B,E) be a Borel invariant such that 〈A,B,E〉 ≤ ω1. If T
is a tree of height ω1 which is nowhere c.c.c. and does not add reals, then T forces
♦(A,B,E).

Proof. Let bξ (ξ < ω1) be a sequence of elements of B which witnesses 〈A,B,E〉 ≤
ω1 and let Ḟ : 2<ω1 → A be a T -name for a Borel function. For each δ < ω1 pick a
T -name ṙδ for a real which codes Ḟ � δ. For each t in T of height δ pick a real st
and a map ht : ω1 → T such that

(1) the collection {ht(ξ) : ξ < ω1} is an antichain and
(2) ht(ξ) extends t and forces ṙδ to be st.

Define a T -name ġ for a function from ω1 into B by making ht(ξ) force that ġ(δ) =
bξ, where δ is the height of t (if ġ is undefined somewhere define it arbitrarily).
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Now let ḟ be a T -name for a function from ω1 to 2 and Ċ be a T -name for a
closed unbounded subset of ω1. Let An be a sequence of maximal antichains in T
such that if u is in An and has height δ and ū is in An+1 and extends u, then ū

decides ḟ � δ and forces that there is an element of Ċ between δ and the height
of ū. Since T does not add reals, there is a minimal t such that for every n there
is a un in An which is below t. Hence if δ is the height of t, t decides ḟ � δ and
forces δ to be in Ċ. Now there is an a in A such that t forces that if Ḟ (ḟ � δ) is
computed using the code st, then its value is a. Find a ξ such that (a, bξ) is in E.
The condition ht(ξ) forces that δ is in Ċ and that (Ḟ (ḟ � δ), ġ(δ)) is in E, finishing
the proof. �

The following is a typical corollary of the previous two theorems. We will see in
Section 7 that this in turn implies that a = u = ω1 in the iterated Sacks model.

Corollary 6.13. Both ♦(r) and ♦(d) hold in the iterated Sacks model.

The following result gives another way of seeing the relative consistency of ♣+
¬CH.3 Unlike the standard proofs (see Chapter I Section 7 of [27]) where one
deliberately arranges that ♣ holds in the forcing extension, the Sacks model was
considered for entirely different reasons.

Corollary 6.14. ♣ holds in the iterated Sacks model.

Proof. Without loss of generality we may assume that our ground model satisfies
CH. It suffices to show that Sω2 ∗ Ṫ forces ♣, where T is the forcing notion from
Lemma 6.11. In [14] it has been (essentially) shown that for every Sω2 -name Ẋ
for an uncountable subset of ω1 there is a Sω2 -name Ċ for a closed and unbounded
subset of ω1 such that if p forces that δ is in Ċ, then there is a q extending p and a
ground model A ⊆ δ which is cofinal such that q forces that A is contained in Ẋ.

We will now work in the forcing extension given by Sω2 . For each t in T , let
ht : ω1 → Ṫ be a 1-1 function such that the range of ht is an antichain above t.
For limit δ define a T -name Ċδ by letting ht(ξ) force Ċδ = Aξ where {Aξ : ξ < ω1}
enumerates the cofinal subsets of δ before forcing with Sω2 . The method of proof
of Lemma 6.12 now shows that Ċδ (δ ∈ lim(ω1)) is forced to be a ♣-sequence. �

One “rule of thumb” which one learns when working with the classical invariants
of the form (A,B,E) is that, if 〈A,B,E〉 < 〈C,D, F 〉 is consistent, then this can
typically be accomplished by a countable support iteration of length ω2 of proper
Borel forcing notions in V (typically the sequence Qα (α < ω2) is a constant
sequence).4 In such a case, Theorem 6.6 tells us that ♦(A,B,E) does not imply
〈C,D, F 〉 is ω1. The reader is referred to [2] for an introduction to some of the
common Borel forcing notions and [25] for some of the more advanced techniques
for building Borel forcing notions.

3 Baumgartner has demonstrated in an unpublished note that ♣ holds in the Sacks model.
This result was obtained shortly after Shelah’s proof of the consistency of ♣+ ¬CH [3].

4In general this is a phenomenon which is not well understood and is currently being analyzed

by a number of people. There are Borel invariants such as cov(N ) and (Rω ,N ,v) which can
only be separated if the continuum is larger than ℵω (f v E if the range of f is contained in
E). This is because cov(N ) can have countable cofinality [26] while (Rω ,N ,v) cannot and yet
cov(N ) ≤ 〈Rω ,N ,v〉 ≤ cf([cov(N )]ω ,⊆).
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The above results imply that ♦(R, 6=) holds in many of the models obtained by
adding a specific type of real. The following theorem, however, gives a much more
natural setting for studying ♦(R, 6=) and its consequences.

Theorem 6.15. After forcing with a Suslin tree ♦(R, 6=) holds.

Proof. Similar to the proof of Theorem 6.6 (in fact it is most natural to show that
♦(ω,=) holds after forcing with a Suslin tree). �

Many of the combinatorial consequences of 2ω < 2ω1 are in fact consequences
of ♦(R, 6=). It should be noted that Farah, Larson, Todorčević and others have
noticed that these consequences hold after forcing with a Suslin tree.

Theorem 6.16. ♦(R, 6=) implies:
(1) t = ω1.
(2) There are no Q-sets.
(3) Every ladder system has a non-uniformizable coloring.
(4) There is an uncountable subset of a c.c.c. partial order with no uncountable

3-linked subcollection.

Proof. Item (1) is deferred to Theorem 7.1 of the next section. The proof that
♦(R, 6=) implies items (2) and (3) is the same as the proof that Φ(2, 6=) implies
these statements (see [7]). Item (4) can be extracted from the proof of Theorem
7.7 of [32] and Theorem 7.1 below. �

On the other hand, Larson and Todorčević have had a great deal of success in
proving that certain consequences of MAℵ1 and other forcing axioms can hold after
forcing with a Suslin tree (see [20], [21]). A variant on a major open question in
this line of research is:

Question 6.17. Is ♦(R, 6=) consistent with the assertion that every c.c.c. forcing
notion has Property K?

7. ♦-principles and cardinal invariants

There are a number of well-studied cardinal invariants of the continuum which
do not satisfy our definition of “invariant.” Generally this is because the invariants
in question make reference to some additional structure. For instance, u can be
considered to be the smallest size of a reaping family which is also a filter base. A
natural question to ask is how these cardinals are influenced by the ♦-principles
we have considered thus far. It turns out that these ♦-principles do have a strong
impact on cardinals such as t, a, u, and i and moreover provide a uniform approach
for computing the values of these invariants in many standard models.

The first instance of this influence was Hrušák’s proof that ♦d implies a =
ω1. In addition to allowing for easier computations, the results below explain
why the proofs of statements such as CON(b < a) and CON(r < u) require more
sophisticated arguments than, e.g., CON(b < d). It also suggests that there are no
natural formulations of statements such as ♦(t) and ♦(a).

The first theorem is essentially a recasting of the well-known fact that 2ω < 2ω1

implies t = ω1.

Theorem 7.1. ♦(R, 6=) implies t = ω1.
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Proof. ♦(R, 6=) is equivalent to ♦(2, 6=) so we will use this assumption instead. Let
X be the subset of ([ω]ω)ω consisting of all strictly ⊆∗ decreasing sequences of sets.
Let D : X → [ω]ω be defined by setting the nth element of D( ~A) to be the least
element of

⋂
i≤n Ai which is greater than n. Notice that D( ~A) is almost contained

in An for all n < ω and D is continuous.
Our map F will be defined on pairs ~A,C, where ~A = 〈Aξ : ξ < δ〉 is a strictly

⊆∗-decreasing sequence, δ is a limit and C is an infinite subset of ω which is almost
contained in Aξ for all ξ < δ. Let B( ~A) be the collection of all even indexed
elements of D(〈Aδn : n ∈ ω〉) in its increasing enumeration. Set F ( ~A,C) to be 0 if
C is almost contained in B( ~A) and 1 otherwise.

Let g : ω1 → 2 be a ♦(R, 6=)-sequence for F . Construct 〈Aξ : ξ ∈ ω1〉 by
recursion. Let An (n ∈ ω) be any strictly decreasing ω-sequence in [ω]ω. Now
suppose that 〈Aξ : ξ < δ〉 is given. Define Aδ to be B( ~A) if g(δ) = 0 and

D(〈Aδn : n ∈ ω〉) \B( ~A)

otherwise. It is easily checked that if F (〈Aξ : ξ < δ〉, C) is defined and not equal to
g(δ), then Aδ does not almost contain C. �

The next result can be considered as an optimization of Theorem 1.1. It is an
old result of Solomon that b ≤ a is provable in ZFC [8].

Theorem 7.2. ♦(b) implies a = ω1.

Remark 7.3. Shelah has shown that b < a is consistent [28] (see also [6]).

Proof. We will first define a Borel function F into the set ωω as follows. The domain
of F is the set of all pairs (〈Aξ : ξ < δ〉, B) such that:

(1) δ is an infinite countable ordinal.
(2) {Aξ : ξ < δ} ∪ {B} is an almost disjoint family of infinite subsets of ω.
(3) For infinitely many n the set B ∩Aeδ(n) \

⋃
i<n Aeδ(i) is nonempty.

We will denote the set of n from condition (3) by I( ~A,B). Define

F (〈Aξ : ξ < δ〉, B)(k) = min

(
B ∩Aeδ(n) \

⋃
i<n

Aeδ(i)

)
,

where n is the kth least element of I( ~A,B).
Now suppose that g : ω1 → ωω is a ♦(b)-sequence for F . By making the entries

in g larger if necessary, we may assume that they form a <∗-strictly increasing
sequence of increasing functions.

We will now construct a maximal almost disjoint family by recursion. Let 〈An :
n < ω〉 be any almost disjoint family of infinite subsets of ω. If 〈Aξ : ξ < δ〉 has
been defined, set

Aδ = ω \
⋃
n<ω

[
Aeδ(n) \

(
g(δ)(n) ∪

⋃
i<n

Aeδ(i)

)]
.

Since for each n the set g(δ)(n)∪
⋃
i<n Aeδ(i) has finite intersection with Aeδ(n), Aξ

has finite intersection with Aδ for each ξ < δ.
To see that {Aξ : ξ < ω1} is maximal, suppose that B is an infinite subset of ω.

First notice that if δ is at least ω and (〈Aξ : ξ < δ〉, B) satisfies condition (2) but
not condition (3), then B has infinite intersection with (in fact is almost contained
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in) Aδ. Therefore we will be finished if we can show that if (〈Aξ : ξ < δ〉, B) satisfies
conditions (1)–(3) and g guesses (〈Aξ : ξ < ω1〉, B) at δ, then B ∩Aδ is infinite.

To this end, suppose
F (〈Aξ : ξ < δ〉, B) 6>∗ g(δ)

and let N be a given natural number. For ease of reading we will let ~A abbreviate
〈Aξ : ξ < δ〉. Find a number k such that the kth least element n of I( ~A,B) has the
following properties:

(1) g(δ)(k) is greater than F ( ~A,B)(k),
(2) the minimum l of B ∩Aeδ(n) \

⋃
i<nAeδ(i) is greater than N .

The last choice is possible since

{Aeδ(j) \
⋃
i<j

Aeδ(i) : j < ω}

forms a disjoint family of sets. It is now sufficient to show that l is in Aδ. Observe
that the only possibility for removing l from Aδ is with the index n since l is in
every set of the form

⋃
i<mAeδ(i) for m > n and not in any Aeδ(i) for i < n. Since

k ≤ n and g(δ) is monotonic, l = F ( ~A,B)(k) < g(δ)(k) ≤ g(δ)(n). Thus l is not in

Aeδ(n) \
(
g(δ)(n) ∪

⋃
i<n

Aeδ(i)

)
and therefore is in Aδ as desired. �
Notation. If two functions f, g in ωω are equal infinitely often, then we will write
f =∞ g.

It is known that the cardinal non(M) is equal to 〈ωω,=∞〉 [2].

Definition 7.4 ([38]). The cardinal ae is the smallest size of a maximal collection
A ⊆ ωω of eventually different functions.

It follows from the above remark that ae ≥ non(M) and it has been shown by
Brendle that strict inequality is consistent [5].

Theorem 7.5. ♦(ωω,=∞) implies ae = ω1.

Proof. Let An (n ∈ ω) be a fixed partition of ω into infinite pieces. The domain of
F will be all countable sequences 〈fξ : ξ < δ〉 of eventually different functions and
an h ∈ ωω which is eventually different from every fξ (ξ < δ). For convenience our
F will take values in (ω2)ω. Set F (〈fξ : ξ < δ〉, h)(n) to be (k, h(k)), where k is the
least integer in An such that h(l) 6= feδ(i)(l) for all i ≤ n and l ≥ k.

Let g : ω1 → (ω2)ω be a ♦(ωω,=∞)-sequence for F . Construct a sequence of
eventually different functions fξ (ξ ∈ ω1) by recursion. Let fξ for ξ < δ be a given
sequence of eventually different functions. Let Γ be the collection of all (k, v) such
that k is in An, g(δ)(n) = (k, v), and if ξ < δ with e−1

δ (ξ) ≤ n, then fξ(k) 6= v.
Notice that for a given k there is at most one v such that (k, v) is in Γ, and that Γ
is almost disjoint from fξ for all ξ < δ. Define fδ(k) to be v if (k, v) is in Γ for some
v and fδ(k) to be the least integer greater than fξ(k) for all ξ with e−1

δ (ξ) ≤ k.
Notice that fδ is eventually different from fξ for all ξ < δ. To see that {fξ : ξ ∈ ω1}
is maximal, let h ∈ ωω and notice that if F (〈fξ : ξ < δ〉, h) is defined and infinitely
often equal to g(δ), then fδ agrees with h on an infinite set — namely those k’s for
which Γ was used in the definition of fδ(k). �
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Recall that ♦d is the following statement from [16]:
♦d There is a sequence gδ : δ → ω indexed by ω1 such that if f : ω1 → ω, then

there is a δ ≥ ω such that f � δ <∗ gδ.
It is straightforward to check that ♦d is a consequence of ♦(d). The following
theorem answers a question asked in [16].

Theorem 7.6. ♦d implies that ωω can be partitioned into ω1 compact sets.

Remark 7.7. Spinas has shown that it is consistent that d = ω1 and yet ωω cannot
be partitioned into ω1 disjoint compact sets [29].

Proof. Notice first that any σ-compact subset of ωω can be partitioned into count-
ably many compact sets. This follows from the fact that ωω is 0-dimensional. If
f ∈ ωω, let Kf be the collection of all g in ωω such that g ≤ f . If C ⊆ ωω is
compact and f ∈ ωω \ C, let ∆(f, C) be the maximum of ∆(f, y) where y ranges
over C (if C is empty, then let ∆(f, C) = 0). Since C is compact and f is not in
C, this is always a finite number.

Let gδ (δ ∈ ω1) be a ♦d-sequence. Given Cξ (ξ < δ), a disjoint sequence of
compact sets for limit δ, define

Fδ =
⋃

g=∗gδ

[Kg�ω \
⋃
ξ<δ

{x ∈ ωω : ∆(x,Cξ) > g(ξ)}].

Notice that
⋃
ξ<δ{x ∈ ωω : ∆(x,Cξ) > g(ξ)} is open and hence Fδ is σ-compact.

Let {Cδ+n : n ∈ ω} be a partition of Fδ into disjoint compact sets. Clearly the
sequence Cξ (ξ ∈ ω1) is pairwise disjoint. Let x be in ωω and suppose that x is
not contained in Cξ for any ξ ∈ ω1. Define f : ω1 → ω by setting f � ω = x and
f(ξ) = ∆(x,Cξ) if ξ ≥ ω. Now pick an δ > ω such that f � δ <∗ gδ. It follows that
x is in Fδ and therefore in Cδ+n for some n, a contradiction. �

Recall that a free ultrafilter U on ω is a P-point if whenever Fn (n ∈ ω) is a
sequence of elements of U , there is a U in U such that U \ Un is finite for each
n ∈ ω.

Theorem 7.8. ♦(r) implies that there is a P-point of character ω1. In particular
♦(r) implies u = ω1.

Remark 7.9. Shelah and Goldstern have shown that ω1 = r < u is consistent [12].

Proof. The domain of the function F that we will consider will consist of pairs
(~U,C) such that ~U = 〈Uξ : ξ < δ〉 is a countable ⊆∗-decreasing sequence of infinite
subsets of ω and C is a subset of ω.

Given ~U as above, let B(~U) be the set {ki : i ∈ ω} where

ki = min(
⋂
j≤i

Ue−1
δ (j) \ (ki−1 + 1)).

Note that B(~U) is infinite and almost contained in Uξ for every ξ < δ. Let

F (~U,C) = {i : ki ∈ C ∩B(~U)}

if {i : ki ∈ C ∩B(~U)} is infinite and let

F (~U,C) = {i : ki 6∈ C ∩B(~U)}
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otherwise. Now suppose that g : ω1 → [ω]ω is a ♦(r)-sequence for F . Construct a
⊆∗-decreasing sequence 〈Uξ : ξ ∈ ω1〉 of infinite sets by recursion. Let Un = ω \ n.
Having defined ~U = 〈Uξ : ξ < δ〉 let Uδ = {ki : i ∈ g(δ)} where B(~U ) = {ki : i ∈ ω}.

The family 〈Uξ : ξ ∈ ω1〉 obviously generates a P-filter. To see that it is an
ultrafilter, note that if a C ⊆ ω is given and g guesses ~U,C at δ, then Uδ is either
almost contained in or almost disjoint from C. �

By combining the above proof with the argument that shows that d = ω1 implies
the existence of a Q-point, one can without much difficulty prove the following.

Corollary 7.10. ♦(r) + d = ω1 implies that there is a selective ultrafilter of char-
acter ω1.

Recall that i is the smallest cardinality of a maximal independent family. In [1]
the rational reaping number

rQ = (P(Q) \NWD, “does not reap”)

is considered and it is proved that r, d ≤ rQ ≤ i. As with the earlier theorems we
show that the last inequality is, in a sense, sharp.

Theorem 7.11. ♦(rQ) implies i = ω1.

Proof. For this proof we will view Q ⊆ 2ω as the collection of all binary sequences
with finite support. We will now define a Borel function F on pairs (〈Iξ : ξ < δ〉, A),
where δ is an ordinal less than ω1 and A and Iξ are subsets of ω for all ξ < δ. The
range of F will be contained in P(Q).

If δ is finite or ~I = 〈Iξ : ξ < δ〉 is not independent, then return Q as the value of
F (~I,A). Otherwise, let xn(~I) be the element of 2ω defined by xn(~I)(k) = 1 iff n is
in Ieδ(k). Observe that X(~I) = {xn(~I)}∞n=0 is dense in 2ω since ~I is independent.
Fix a recursive homeomorphism h from X(~I) to Q. Now put F (~I,A) to be the
image of {xn(~I) : n ∈ A} under the map h.

Now suppose that g is a ♦(rQ)-sequence for F . We will now build an independent
family {Iξ : ξ < ω1} by recursion. Let {In : n < ω} be any countable independent
family. Now given ~I = 〈Iξ : ξ < δ〉, let t in 2<ω be such that g(δ) is dense
in [t] = {x ∈ 2ω : t ⊆ x}. By altering g(δ) if necessary, we may assume that
h−1(g(δ)) is contained in [t] and that [t] \ h−1(g(δ)) is also dense in [t]. Let C =
{n ∈ ω : h(xn) ∈ g(δ)}. First we will see that C has a nonempty intersection
with

⋂
i<|u| I

u(i)
eδ(i) iff u extends t where I1 = I and I0 = ω \ I. If n is in such an

intersection, then xn(~I) must be in [u] by definition. Now, if u extends t, pick an n
such that xn is in h−1(g(δ))∩ [u]. Then n is in C and in

⋂
i<|u| I

u(i)
eδ(i). Similarly one

shows that ω \ C intersects every set of the form
⋂
i<|u| I

u(i)
eδ(i) for every u in 2<ω.

Form Iδ so that 〈Iξ : ξ ≤ δ〉 is independent and Iδ ∩
⋂
i<|t| I

t(i)
eδ(i) = C.

We are now finished once we show that {Iξ : ξ < ω1} is a maximal independent
family. It is now sufficient to show that if g guesses (〈Iξ : ξ < ω1〉, A) at δ, then
{Iξ : ξ ≤ δ} ∪ {A} is not independent. In fact, if t is the element of 2<ω used in
the definition of C, then

Iδ ∩
⋂
i<|t|

I
t(i)
eδ(i)

is either contained in or disjoint from A. �
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A natural question to ask is whether ♦(non(M)) implies the existence of a Luzin
set. The answer is negative as the following theorem shows.

Theorem 7.12. It is consistent that both ♦(non(M)) and ♦(non(N )) hold and
there are no Luzin or Sierpiński sets.

Proof. In the Miller model the cardinals non(M) and non(N ) are both ω1 and
hence by Theorem 6.6 the corresponding ♦-principles hold. On the other hand,
Judah and Shelah [18] have shown there are no Luzin or Sierpiński sets in this
model. �

One should note that results of this section combined with those of the previous
section provide a unified approach to determining values of cardinal invariants with
structure in many models in which this was traditionally done by arguments specific
to the forcing construction at hand (see, e.g., [9]).

8. ♦(A,B,E) and the Continuum Hypothesis

One of the most remarkable facts about the principle Φ of Devlin and Shelah is
that, while it resembles a guessing principle in its statement, it is in fact equivalent
to the inequality 2ω < 2ω1 [7]. The purpose of this section is to show that this
phenomenon is rather unique to the invariants between (R, 6=) and (2, 6=) which
characterize Φ. In particular we will show that ♦(Rω, 6w) is not a consequence of
CH. To emphasize the relevance of this to the invariants considered in literature,
we introduce the following definition.

Definition 8.1. A Borel invariant (A,B,E) is a σ-invariant if it satisfies the
following strengthenings:

(3+) There is a Borel map ∆ : Aω → B such that for all {an} in Aω the relation
anE∆({an}) holds for all n.

(4+) There is a Borel map ∆∗ : Bω → A such that for all {bn} in Bω the relation
∆∗({bn})Ebn does not hold for any n.

Notice that if (A,B,E) is a Borel σ-invariant, then 〈A,B,E〉 ≥ ω1. Moreover
the cardinal invariants (A,B,E) which appear in the literature typically satisfy
these conditions. The connection to (Rω, 6w) is the following.

Proposition 8.2. If (A,B,E) is a Borel σ-invariant, then (A,B,E) is above
(Rω, 6w) and below (Rω ,v) in the Borel Tukey order.

Proof. We will only present the proof for (Rω , 6w) as the proof dualizes to the other
case. Since B must be an uncountable Borel set for (A,B,E) to be a σ-invariant,
we can find a Borel isomorphism between B and R. Thus it suffices to show that
(Bω, 6w) is below (A,B,E) in the Borel Tukey order. The map f : Bω → A is the
map ∆∗ and the map g : B → Bω sends b to the constant sequence b̄. If ~b is in Bω

and b is in B with ∆∗(~b)Eb, then b could not be in the range of ~b. Hence ~b 6w b̄. �

Theorem 8.3. CH does not imply ♦(Rω, 6w).

In order to prove this theorem, we will prove a more technical result which may
be of independent interest.
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Theorem 8.4. It is relatively consistent with CH that whenever ~C is a ladder
system and ~r is a sequence of distinct elements of 2ω indexed by lim(ω1), there is a
countable decomposition lim(ω1) =

⋃∞
n=0Xn such that if γ < δ are in Xn, then

|Cγ ∩ Cδ| ≤ ∆(rγ , rδ),

where ∆(rγ , rδ) is the size of the largest common initial segment of rγ and rδ.

We shall now prove several lemmas that will at the end allow us to prove Theorem
8.4. For the purposes of this proof let θ be a large enough regular cardinal.

Given a pair ~C,~r as in the theorem we will denote by Q~C,~r the partial order
consisting of functions q : lim(δ + 1)→ 2<ω for δ < ω1 and such that

(1) q(β) is an initial segment of rβ for every β ∈ dom(q),
(2) if β and γ are distinct and q(β) = q(γ), then |Cγ ∩Cβ | ≤ ∆(rγ , rβ),

ordered by extension (reverse inclusion).
If q is in Q ~C,~r, C ⊆ ω1 has order type ω, r is in 2ω, and σ is in 2<ω, then we

will say that q is consistent with (C, r) 7→ σ if σ is an initial segment of r and
|C ∩ Cδ| ≤ ∆(r, rδ) for every δ ∈ dom(q) with q(δ) = σ.

Lemma 8.5. Let q ∈ Q~C,~r.

(1) If C ⊆ ω1 has order type ω, |C∩dom(q)| is finite, and r is in 2ω, then there
is an n ∈ ω such that for all m ≥ n, q is consistent with (C, r) 7→ r � m.

(2) If q is consistent with (Cα, rα) 7→ σ, then there is a q̄ ≤ q such that α is in
the domain of q̄ and q̄(α) = σ.

(3) Let M be a countable elementary submodel of H(θ) such that ~r ∈ M . If
δ = M ∩ ω1, then for every β ∈ M ∩ ω1 and n ∈ ω there is a γ > β in M
such that rγ � n = rδ � n.

Proof. For (1) n = |C ∩ dom(q)| obviously works. For (2) enumerate lim(α + 1) \
dom(q) as {αi : i ∈ I}, where I is either an integer or ω, so that α = α0. Recursively
pick a sequence σn (n ∈ I) so that σ0 = σ, q is consistent with (Cαn , rαn) 7→ σn,
and |σn| < |σn+1|. Then set

q̄(β) =

{
q(β) if β ∈ dom(q),
σn if β = αn for some n ∈ I.

To prove (3), let σ = rδ � n. As it is finite, σ ∈M , and δ witnesses that

H(θ) |= (∃γ > β)rγ � n = σ.

Hence M satisfies the same by elementarity. �
Notice first that if G is a Q~C,~r-generic filter, then {Xσ : σ ∈ 2<ω} is the required

decomposition, where Xσ = {α : ∃q ∈ G(q(α) = σ)}.
Next we will show that the forcing Q~C,~r is proper and does not add new reals,

and that moreover these forcings can be iterated with countable support without
adding reals. Recall that a forcing notion Q is totally proper if for every countable
elementary submodel M of H(θ) such that Q ∈M and for every q ∈M ∩ Q there
is a q̄ ≤ q which is a lower bound for a filter containing q which is Q-generic over
M . Every such q̄ is called totally (M,P)-generic. Q is α-proper (α < ω1) if for
every q in Q and every increasing ∈-chain {Mβ : β ≤ α} of elementary submodels
of H(θ) such that q,Q ∈ M0, there is a q̄ ≤ q which is (Mγ ,Q)-generic for every
γ ≤ α. If Q is α-proper for every α < ω1 we will say that Q is < ω1-proper.
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It is not difficult to see that a forcing notion Q is totally proper if and only if it
is proper and does not add reals (see [11]).

Lemma 8.6. The forcing notion Q~C,~r is totally proper.

Proof. Let M be an elementary submodel of H(θ) such that ~C,~r ∈ M . Fix a
q ∈ Q~C,~r ∩M and select an enumeration {Dn : n ∈ ω} of all dense open subsets
of Q ~C,~r which are elements of M . Without loss of generality M is an increasing
union of an ∈-chain of elementary submodels Mn (n ∈ ω) such that q and Q~C,~r are
in M0 and Dn is in Mn. Set δ = M ∩ ω1 and σ = rδ � |Cδ ∩ dom(q)|. Construct a
sequence qn (n ∈ ω) of conditions together with a sequence βn (n ∈ ω) of ordinals
so that

(1) q ≥ q0 ≥ q1 ≥ · · · ≥ qn ≥ qn+1 ≥ . . . ,
(2) Cδ ∩Mn ⊆ βn ∈Mn,
(3) ∆(rβn , rδ) ≥ |Cδ ∩Mn|,
(4) qn ∈Mn ∩Dn, dom(qn) = βn + 1, and qn(βn) = σ.

Constructing these sequences is straightforward using Lemma 8.5. Having done
this let

q̄ =
⋃
n∈ω

qn ∪ {(δ, σ)}.

Notice that as qn is consistent with (Cδ, rδ) 7→ σ for every n ∈ ω, q̄ is a condition
in Q ~C,~r. q̄ is obviously totally (M,Q~C,~r)-generic since for every n, and q̄ is below
qn which is in Dn. �
Lemma 8.7. Q~C,~r is α-proper for every α < ω1.

Proof. We will prove the lemma by induction on α. Assume that the lemma holds
for every β < α. Let {Mβ : β ≤ α} and q ∈ Q~C,~r ∩M0 be given. Set δβ = Mβ ∩ ω1

for each β ≥ α and let σ = rδα � |Cδα ∩ dom(q)|.
If α = β + 1 for some β let q′ ∈ Mα, q′ ≤ q, be generic over all Mγ with γ ≤ β.

As in Lemma 8.6 extend q′ to q̄ which is (totally) generic over Mα.
If α is a limit ordinal, we will mimic the proof of Lemma 8.6. Fix a sequence of

ordinals αn (n ∈ ω) increasing to α. Let {Dn : n ∈ ω} be an enumeration of all
dense open subsets of Q~C,~r in Mα such that Dn ∈ Mαn . Construct a sequence qn
(n ∈ ω) of conditions together with a sequence βn (n ∈ ω) of ordinals so that

(1) q ≥ q0 ≥ q1 ≥ · · · ≥ qn ≥ qn+1 ≥ . . . ,
(2) Cδα ∩Mαn ⊆ βn ∈Mαn ,
(3) ∆(rαn , rδα) ≥ |Cδα ∩Mαn |,
(4) qn ∈Mn ∩Dn, dom(qn) = βn + 1, and qn(βn) = σ, and
(5) qn+1 is Mγ-generic for every γ ≤ αn.

Let q̄ =
⋃
n∈ω qn ∪ {(δα, σ)}. The verification that this works is as in Lemma 8.6.

�
Recall the following definition and theorem from [11].

Definition 8.8 ([11]). Let P be totally proper and Q̇ a P-name for a forcing notion
and let θ be a large enough regular cardinal. We shall say that Q̇ is 2-complete for
P if WHENEVER

(1) N0 ∈ N1 ∈ N2 are countable elementary submodels of H(θ),
(2) P , Q̇ ∈ N0,
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(3) G ∈ N1 is P-generic over N0 and has a lower bound, and
(4) q̇ ∈ N0 is a P-name for a condition in Q̇,

IT FOLLOWS THAT there is a G′ ∈ V which is Q̇-generic over N0[G] such that
q̇[G] ∈ G′ and if t ∈ P is a lower bound for G and t is P-generic for N1 and N2,
then t forces that G′ has a lower bound in Q̇.

Theorem 8.9 ([11]). Let Pκ = 〈Pα, Q̇α : α < κ〉 be a countable support iteration
such that 
α “Q̇α is < ω1-proper and Q̇α is 2-complete for Pα”. Then Pκ is totally
proper.

Lemma 8.10. Let P be a totally proper < ω1-proper poset and let Q̇ be a P-name
for Q ~C,~r for some pair ~C,~r. Then Q̇ is 2-complete for P.

Proof. Let N0 ∈ N1 ∈ N2 be countable elementary submodels of H(θ) and let
P , Q̇ ∈ N0. Assume that G ∈ N1 is an (N0,P)-generic filter having a lower bound
and let q̇ ∈ N0 be a P-name for a condition in Q̇. We have to find a G′ which is
a Q̇[G]-generic filter over N0[G] such that whenever t ∈ P is a lower bound for G
which is also P-generic over N1 and N2, then there is a P-name ṡ such that t 
 “ṡ
is a lower bound for G′”.

Let δ = ω1 ∩N0 and set

D = {D ∈ N0[G] : N0[G] |= “D is dense open in Q̇[G]”}.
Since N0, Q̇,D and G are all elements of N1 and N1 |= “D is countable”, we can
find an enumeration D = {Dn : n ∈ ω} which is in N1.

Let E be the collection of all (C, r) such that C is a cofinal subset of δ of order
type ω and r is in 2ω. Clearly E is in N1. Find an enumeration

{(Cn, rn) : n ∈ ω}
= {(C, r) ∈ E ∩N1 : (∀β < δ)(∀n ∈ ω)(∃γ ∈ [β, δ))(rγ � n = r � n)}

which is in N2. If we knew what Ċδ and ṙδ evaluated to, we could proceed as in
the proof of Lemma 8.6 to produce G′. This is typically not the case. What we do
know, however, is that any t which is a lower bound for G and is P-generic over N1

and N2 forces that (Ċδ, ṙδ) appears in the enumeration {(Cn, rn) : n ∈ ω}, since P
does not add any new reals. This allows us to simulate the proof of Lemma 8.6 by
diagonalizing over all possible choices of (Ċδ, ṙδ).

Again we may and will assume that N0 is the union of an ∈-chain of elementary
submodels Mn (n ∈ ω) such that {Mn : n ∈ ω} is in N1, q̇[G] is in M0 and Dn is
in Mn[G]. Construct a sequence qn (n ∈ ω) of conditions together with a sequence
Fn (n ∈ ω) of finite sets of ordinals and σn (n ∈ ω) of elements of 2<ω by recursion
on n so that for every i ≤ n

(1) q̇[G] ≥ qi ≥ qn,
(2) Ci ∩Mn[G] ⊆ minFn ∈Mn[G],
(3) qn is consistent with (Ci, ri) 7→ σi
(4) there is a γ in Fn such that ∆(rγ , ri) ≥ |Ci ∩Mn|, γ is in the domain of

qn, and qn(γ) = σi,
(5) qn ∈Mn[G] ∩Dn.

It is not difficult to construct these sequences. It follows directly from clause (5)
that if we set

G′ = {s ∈ N0[G] : (∃n ∈ ω)qn ≤ s},
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then q̇[G] ∈ G′ and G′ is Q̇-generic over N0[G]. Notice that, for every i, n ∈ ω, qn
is consistent with (Ci, ri) 7→ σi. Define a name s̄ by

t 
 “s̄(β) =

{
qn(β) if β ∈ dom(qn),
σi if β = δ and t 
 “Ċδ = Ci and ṙδ = ri”.

It is easy to see that if t is a lower bound for G and is P-generic over N1 and N2,
then t 
 “ṡ ∈ Q̇” and obviously ṡ will be lower bound for G′. �

Proof of Theorem 8.4. Let V be a model of GCH. Construct a countable support
iteration Pω2 = 〈Pα, Q̇α : α < ω2〉 such that for every α < ω2 we have 
α “Q̇α =
Q ~C,~r for some pair ~C,~r ”. Since CH holds in V and 
α “|Qα| = ℵ1”, it follows that
Pω2 satisfies the ω2-c.c. A standard bookkeeping argument ensures that in VPω2

every pair ~C,~r admits a decomposition of ω1 =
⋃
n∈ωXn such that

|Cγ ∩ Cδ| ≤ ∆(rγ , rδ)

whenever γ < δ are in the same Xn. By Theorem 8.9 and Lemmas 8.7 and 8.10,
CH also holds in VPω2 so the proof of Theorem 8.4 is complete. �

We will now finish the proof of Theorem 8.3. Start with the model of Theorem
8.4. First we will need the following lemma.

Lemma 8.11. There is a ladder system Cδ indexed by the positive countable limit
ordinals such that Cγ ∩Cδ is an initial segment of both Cδ and Cγ whenever γ < δ
are limits.

Proof. Let h : ω<ω ↔ ω be a bijection which satisfies h(s) < h(t) whenever s is an
initial part of t. For a fixed limit δ > 0, we shall build an increasing ω-sequence δ̄n
(n ∈ ω) cofinal in δ such that for every n the ordinal δ̄n has the form

δ̄n = ξ + h(〈e−1
ξ+ω(δ̄i) : i < n〉)

for some limit ordinal ξ (note that ξ depends on n, is possibly equal to 0, and that
this decomposition of δn is unique for any given n).

To see that this can be done, first note that if δ = ξ + ω for some limit ordinal
ξ, then

δ̄n = ξ + h(〈e−1
ξ+ω(δ̄i) : i < n〉)

recursively defines the sequence of δ̄n’s. If δ is a limit of limits, then first choose an
increasing sequence of limits ξn (n < ω) which is cofinal in δ. Again

δ̄n = ξn + h(〈e−1
ξn+ω(δ̄i) : i < n〉)

recursively defines the sequence of δ̄n’s.
Now suppose that for some positive limit ordinals δ, ε < ω1 and some m,n < ω

δ̄m = ε̄n. We need to show that m = n and that if i < m, then δ̄i = ε̄i. Find a
unique limit ordinal ξ and a unique element t in ω<ω such that

δ̄m = ξ + h(t) = ε̄n.

Now notice that m = |t| = n and

δ̄i = eξ+ω(t(i)) = eξ+ω(t(i)) = ε̄i

for any i < n. �
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Fix Cδ = {δ̄n : n ∈ ω} as in Lemma 8.11. For simplicity, identify R with 2ω.
The domain of F will consist of a countable sequence ~t = 〈tn : n ∈ ω〉 of functions
from δ to 2 for some δ ∈ ω1. Let the nth element of the sequence F (~t) be given by

k 7→ tn(δ̄k)

where δ = |tn|. Now suppose that g : ω1 → Rω is given. For each i, let lim(ω1) =⋃∞
j=0 Xi,j such that for all γ < δ in Xi,j

|Cγ ∩ Cδ| ≤ ∆(g(γ)(i), g(δ)(i)).

Now it is possible to choose fn : ω1 → 2 in such a way that if δ is in Xi,j, then
g(δ)(i) is the mapping

k 7→ f2i3j (δ̄k).

Thus for all limit δ the range of g(δ) is contained in the range of F (~f � δ).
Remark 8.12. Shelah has shown that ♦(3,=) is not a consequence of CH (Section
VIII.4 of [27]) and Eisworth has shown that ♦([ω]2, ω, 63) is not a consequence of
CH [10].
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