
LIFE IN THE SACKS MODEL

Michael Hrušák

Abstract. This note contains results which everybody knows are true but the proofs
of which are not to be found in the literature. In particular, we prove that certain
cardinal invariants of the continuum are small in the Sacks model and provide a proof
of a theorem of J. Baumgartner stating that ♣ holds in the side-by-side Sacks model.

I. Introduction.

In many ways the models obtained by adding many Sacks reals to a model of CH
are viewed as “the opposite” of Martin’s Axiom. J. Baumgartner in [Ba] showed
that, indeed, if one adds many Sacks reals to a model of CH Martin’s Axiom fails
totally. In particular, many cardinal invariants of the continuum are small in both
the side-by-side and iterated Sacks models. It usually follows either from the fact
that the Sacks forcing has the Sacks property or from the fact that it preserves
P-ultrafilters (see [BaL] or [BJ]).

In this note we develop what we believe to be comprehensible approach to count-
able support iteration of Sacks forcing (Section II.) and then use it (Section III.) to
show that some other cardinal invariants are small in the iterated Sacks model. In
Section IV. we introduce the notion of (κ, λ)-semidistributivity of forcing notions
and use it to prove an unpublished result of J. Baumgartner that ♣ holds in the
side-by-side Sacks model.

The set theoretic notation is mostly standard and follows [Ku]. Recall the defi-
nitions of the following ♦-like principles:

The ♣ principle asserts that

∃{Aα : α ∈ Lim(ω1)} such that ∀α ∈ Lim(ω1) Aα ⊆ α, sup(Aα) = α

and ∀X ∈ [ω1]ω1 ∃α ∈ Lim(ω1) such that Aα ⊆ X.

A weakening of both ♣ and CH, denoted by •|, states that

∃X ⊆ [ω1]ω |X| = ℵ1 such that ∀y ∈ [ω1]ω1 ∃x ∈ X : x ⊆ y.

The ♣ principle has been used by Ostaszewski (see [Os]) to construct the famous
Ostaszewski space - a countably compact non-compact S-space with closed sets
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either countable or co-countable. In the presence of CH, ♣ is equivalent to ♦. The
principle •| was first considered in [BGKT].

The forcing notions mentioned throughout the text are standard as are the car-
dinal invariants of the continuum with possibly the following exceptions:

ae = min{|A| : A ⊆ ωω is a maximal family of eventually different functions}
ap = min{|A| : A is a maximal almost disjoint family of graphs of permutations
on ω}
aT = min{|A| : A is an uncountable maximal almost disjoint family of subtrees
2<ω}
The cardinal invariant ae was studied by A. Miller in [Mi2]; ap was considered

by S. Thomas, P. Cameron, Y. Zhang and others. The cardinal invariants ae and
ap are larger or equal than non(M) (see [BrSZ]). aT was studied (without being
given a name) in [Mi1] and [Ne]. It is easily seen that aT is equal to the minimal
size of a partition of the Baire space ωω into compact sets, hence is greater or equal
to d. The author believes that Con(d < aT ) is an open problem (despite a cryptic
note in [Ne]).

II. Countable support iteration of Sacks reals.

This section uses a classical treatment of iterated Sacks forcing (see [BaL]) and
ideas from [SS]. Recall that the Sacks forcing S is the set of all perfect subtrees of
2<ω ordered by inclusion. A p ⊆ 2<ω is a perfect tree provided that ∀s ∈ p ∀n ∈ ω
s ¹ n ∈ p and ∀s ∈ p ∃n ∈ ω ∃t 6= t′ ∈ 2n ∩ p such that s ⊆ t, t′. For p ∈ S and
s ∈ 2<ω we let ps = {t ∈ p : t ⊆ s or s ⊆ t}. Notice that ps ∈ S iff s ∈ p. For a
perfect tree p let [p] = {f ∈ 2ω : ∀n ∈ ω f ¹ n ∈ p}.
S is an ωω-bounding proper forcing. In fact S satisfies Axiom A. As in [BaL]

we shall use the following notation: If p, q ∈ S and m,n ∈ ω then we say that
(p,m) < (q, n) provided that p ≤ q, m > n and ∀s ∈ q ∩ 2n ∃t 6= t′ ∈ p ∩ 2m such
that s ⊆ t, t′. The following is the standard Fusion Lemma.

Lemma II.1. ([BaL]) If {(pi, ni) : i ∈ ω} is such that (pi+1, ni+1) < (pi, ni) for
every i, then pω =

⋂{pi : i ∈ ω} ∈ S.

Let Sα denote a countable support iteration of S of length α. We shall need a
version of the Fusion Lemma also for Sα. If p, q ∈ Sα, m,n ∈ ω and F ∈ [supp(q)]<ω

we will write (p,m) <F (q, n), when p ≤ q and ∀β ∈ F p ¹ β ° “(p(β),m) <
(q(β), n)”. Abusing the notation slightly, we can state the Fusion Lemma as follows.

Lemma II.2. ([BaL]) Let {(pi, ni, Fi) : i ∈ ω} be such that pi ∈ Sα, ni ∈ ω,
Fi ⊆ Fi+1,

⋃
Fi =

⋃
supp(pi) and (pi+1, ni+1) <Fi (pi, ni) for every i. Define p

so that supp(p) =
⋃

supp(pi) and ∀β ∈ supp(p) p(β) =
⋂{pi(β) : β ∈ supp(pi)}.

Then p ∈ Sα.

Let p ∈ Sα, F ∈ [supp(p)]<ω and σ : F −→ 2n. Denote by p ¹ σ the function
with the same domain as p such that

(p ¹ σ)(β) =
{

p(β) if β 6∈ F

p(β)σ(β) if β ∈ F.
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The function p ¹ σ does not necessarily have to be a condition. We will say that σ
is consistent with p if p ¹ σ ∈ Sα (i.e. if ∀β ∈ F (p ¹ σ) ¹ β ° “σ(β) ∈ p(β)”). A
condition p is said to be (F, n)-determined provided that ∀σ : F −→ 2n either σ is
consistent with p or ∃β ∈ F s.t. σ ¹ (F ∩ β) is consistent with p and (p ¹ σ) ¹ β °
“σ(β) 6∈ p(β)”.

Lemma II.3. ([BaL]) Let p ∈ Sα, F ∈ [supp(p)]<ω, n ∈ ω and σ : F −→ 2n.
Then:

(1) If maxF < β < α then (p ¹ σ) ¹ β = (p ¹ β) ¹ σ.
(2) p is ({0}, n)-determined for every n ∈ ω.
(3) If k ≥ n, F ⊆ G, (q, m) <G (p, k) and p is (F, n)-determined then so is q.
(4) If maxF < β < α then p is (F, n)-determined iff p ¹ β is (F, n)-determined.
(5) There is q ∈ Sα, q ≤ p such that for some σ : F −→ 2n q = q ¹ σ.
(6) If p is (F, n)-determined and q ≤ p then there is σ : F −→ 2n such that σ

is consistent with p and, q and p ¹ σ are compatible.

Proof. See [BaL]. ¤

A condition p ∈ Sα is continuous iff ∀F ∈ [supp(p)]<ω ∀n ∈ ω ∃m ≥ n ∃G ∈
[supp(p)]<ω, F ⊆ G so that p is (G,m)-determined.

Lemma II.4. ([BaL]) Let p ∈ Sα, n ∈ ω and F ∈ [supp(p)]<ω. There is (q,m) <F

(p, n) such that q is (F, n)-determined.

Proof. The lemma will be proved by induction on α.
α = 1: This is true since every p ∈ S1 is ({0}, n)-determined for every n.
α = β + 1: Only the case when β ∈ F has to be considered. There are Sβ-names
q̇ and ṁ such that p ¹ β ° “(q̇, ṁ) < (p(β), n)”. By the inductive hypothesis there
is a q′ which is (F \ {β}, n)-determined, (q′,m′) <F\{β} (p ¹ β, n) and q′ decides
q̇ ∩ 2n. For every σ consistent with q′ let mσ be such that q′ ¹ σ ° “ṁ = mσ”. Put
q = q′_q̇ and m = max{{m′} ∪ {mσ : σ is consistent with q′}}+ 1.
α-limit: Choose β such that maxF < β < α. Let q′ ∈ Sβ be such that (q′,m) <F

(p ¹ β, n) and q′ is (F, n)-determined. Then put

q(γ) =
{

q′(γ) if γ < β

p(γ) if γ ≥ β

It is easy to see that this works. ¤

Lemma II.5. For every p ∈ Sα there is a continuous q ≤ p.

Proof. Use the previous lemma to construct recursively pi ∈ Sα, ni ∈ ω and Fi a
finite subset of α satisfying the following:

(1) p0 = p, n0 = 1, F0 = {min(supp(p))},
(2) pi+1 is (Fi, ni)-determined,
(3) (pi+1, ni+1) <Fi (pi, ni),
(4)

⋃{Fi : i ∈ ω} =
⋃{supp(pi) : i ∈ ω},

(5) Fi ⊆ Fi+1.



4 MICHAEL HRUŠÁK

Let q be the fusion of this sequence. Then q is obviously a continuous extension of
p ¤

We shall make use of the fact that every continuous condition q is fully de-
scribed by the sequence {(Fi, ni, Σi) : i ∈ ω} where Fi, ni are as above, and
Σi = {σ : Fi −→ 2ni such that σ is consistent with q}. The important property of
this representation is that (informally) each condition is forced to branch between
levels ni and ni+1. Notice that if {(Fi, ni, Σi) : i ∈ ω} is a representation of a contin-
uous q and f ∈ ωω is a strictly increasing function, then {(Ff(i), nf(i),Σf(i)) : i ∈ ω}
also represents the same q.

Lemma II.6. Let q ≤ p ∈ Sα be continuous conditions. There are {(F q
i , nq

i , Σ
q
i ) :

i ∈ ω} a representation of q and {(F p
i , np

i , Σ
p
i ) : i ∈ ω} a representation of p such

that
∀i ∈ ω F q

i ∩ supp(p) ⊆ F p
i and nq

i < np
i < nq

i+1.

Proof. By induction using previous remark. ¤

Let a∗ be a countable set of ordinals. Define Sa∗ as a countable support iteration
of Sacks forcing with domain a∗, i.e. Sa∗ is isomorphic to Sδ where δ is the order
type of a∗. Even though, in general, it is not obvious that every condition in Sa∗

can be viewed as a condition in Sω2 it is obviously so for continuous ones. Since the
set of continuous conditions is dense in Sω2 and closed under fusion we can (and
will) from now on assume that all conditions mentioned are continuous.

Lemma II.7. Let a∗ be a countable subset of α < ω2. Let p∗ ∈ Sa∗ , q ∈ Sα

such that q ≤ p∗. Then there is a q∗ ∈ Sa∗ , q∗ ≤ p∗ such that, every r∗ ∈ Sa∗

incompatible with q is incompatible with q∗.

Proof. Let q ≤ p∗ be given together with their representations {(F q
i , nq

i , Σ
q
i ) : i ∈ ω}

and {(F p∗
i , np∗

i ,Σp∗
i ) : i ∈ ω}. Without loss of generality we can assume that⋃{F p∗

i : i ∈ ω} = a∗ and the representations are as in Lemma II.6. Define q∗ via a
representation by putting for every i ∈ ω:

F q∗
i = F p∗

i ,
nq∗

i = np∗
i and

Σq∗
i = {σ ∈ Σp∗

i : ∃τ ∈ Σq
i+1 ∀β ∈ F q∗

i σ(β) ⊆ τ(β)}.
It is easy to see that this, indeed, defines a representation of a condition. Another
way of describing the same procedure is as a fusion of pi =

⋃{p ¹ τ : τ ∈ Σq
i+1}.

So q∗ ∈ Sa∗ and obviously q∗ ≤ p∗.
Let r∗ ∈ Sa∗ be compatible with q∗. Let s∗ ∈ Sa∗ be their common extension.

Let {(F q
i , nq

i , Σ
q
i ) : i ∈ ω} and {(F s∗

i , ns∗
i , Σs∗

i ) : i ∈ ω} be representations of q and
s∗ such that for every i ∈ ω F s∗

i ⊆ F q
i and ns∗

i < nq
i < ns∗

i+1. As in Lemma II.6.
this is very easy to provide. Define a common extension t of s∗ and q by putting

F t
i = F q

i ,
nt

i = nq
i and

Σt
i = {σ ∈ Σq

i : ∃τ ∈ Σs∗
i+1 ∀β ∈ F s∗

i σ(β) ⊆ τ(β)}.
The condition t also has an alternative description using fusion. It should be obvious
that t ≤ q, s∗. This finishes the proof. ¤



LIFE IN THE SACKS MODEL 5

Note that the lemma says that Sa∗ is “nearly” regularly embedded into Sω2 . A
virtually identical analysis (for a forcing notion different that the Sacks forcing) is
contained in [HSZ].

III. Cardinal invariants in the Sacks model.

It is well known (see c.f. [BJ]) that iteration of any forcing having the Sacks
property (i.p. the Sacks forcing itself) preserves that the ground model meager
sets are cofinal. Hence cof(M) = ω1 in the Sacks model. It is also known that
S preserves P-points, hence u = ω1 in the Sacks model. As a consequence, most
cardinal invariants are small in the Sacks model. There are, however, cardinal
invariants the smallness of which (in the Sacks model) does not follow from the
above. The aim of this section is to show that some of these cardinal invariants are
also small in the Sacks model. The main tool used here is the Lemma II.7.

It is tempting to say that the following lemma is probably folklore but the same
could be said for any of the results contained in this note.

Lemma III.1. (CH) For every proper ωω-bounding forcing P of size ω1 there is a
P-indestructible MAD family.

Proof. Using properness of P (and CH) it is possible to construct a sequence
{(pα, τα) : α < ω1}, where pα ∈ P, τα is a P-name, so that if τ is a P-name
and p ° “τ ∈ [ω]ω” then there is an α ∈ ω1 such that pα ≤ p and pα ° “τ = τα”.
Having fixed such a sequence an almost disjoint family A = {Aα : α < ω1} will be
constructed by induction.

Let {Ai : i ∈ ω} be a partition of ω into infinite sets. At stage α consider the
pair (pα, τα). If pα 6° “∀β < α |τα∩Aβ | < ω” then let Aα be any infinite set almost
disjoint from all the Aβ , β < α. If pα ° “∀β < α |τα ∩Aβ | < ω” let {Bm : m ∈ ω}
be an enumeration of pairwise disjoint finite modifications of {Aβ : β < α}. Let
ρ be a name such that pα ° “ρ ∈ ωω and ∀m ∈ ω Bm ∩ τα ⊆ ρ(m)”. As P is
ωω-bounding, there is an f ∈ ωω and a q ≤ pα such that q ° “ρ ≤ f”. Put

Aα =
⋃

m∈ω

Bm ∩ f(m).

To finish the proof it is sufficient to show that °P “A is MAD”. To that end assume
the contrary. That is, there is a P-name for a real τ and a condition p ∈ P such that
p ° “∀α < ω1 : |τ ∩ Aα| < ℵ0”. There is a β such that pβ ≤ p and pβ ° “τ = τβ”.
Then, however, pβ ° “τ ⊆ Aβ” which is a contradiction. ¤

Theorem III.2. a = ω1 in the Sacks Model.

Proof. Let A be an Sω1 -indestructible MAD family. CH holds in the ground model
and even though Sω1 itself does not have cardinality ℵ1 it has a dense subset of
cardinality ℵ1. Take for instance the set of all continuous conditions. So the Lemma
III.1. applies. The plan is to show that A is in fact Sω2-indestructible.

To that end assume that there is a Sα-name τ for a real and a p∗ ∈ Sα such that
p∗ °Sα “∀A ∈ A |τ ∩ A| < ℵ0”. Let N be a countable elementary submodel of
H(ω2) such that p∗, Sα, τ,A ∈ N . Let Dn = {p ∈ Sα : p decides whether n ∈ τ}.
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Recall that all conditions involved are assumed to be continuous, hence absolute.
Let a∗ = α ∩N and let q∗ ≤ p∗ be (N, Sα)-generic such that q∗ ∈ Sa∗ . Then

(1) ∀n ∈ ω Dn ∩N is predense below q∗ and Dn ∩N ⊆ Sa∗ and
(2) there is an Sa∗-name τ ′ such that q∗ °Sα “τ = τ ′”.

Since A is Sω1-indestructible it is also Sa∗-indestructible. Using that and the exis-
tential completeness of forcing,

∃r∗ ∈ Sa∗ r∗ ≤ q∗ ∃A ∈ A r∗ °Sa∗ “|A ∩ τ ′| = ℵ0”.

However, since r∗ ≤ p∗ and p∗ °Sα
“∀A ∈ A |τ ∩A| < ℵ0”,

∃q ∈ Sα q ≤ r∗ ∃M ∈ ω q °Sα
“τ ∩A ⊆ M”,

which means that q is not compatible with those elements of Dn for n > M , n ∈ A
which force n ∈ τ . By Lemma II.7. there is s∗ ∈ Sa∗ , s∗ ≤ r∗ such that every
t∗ ∈ Sa∗ incompatible with q is also incompatible with s∗. Therefore s∗ °Sa∗
“τ ∩A ⊆ M” which is contradictory to the fact that r∗ °Sa∗ “|A ∩ τ | = ℵ0”. ¤

Next it is shown that aT = ω1 in the Sacks model.

Lemma III.3. (CH) There is a Sω1 -indestructible partition of ωω into compact
sets .

Proof. Fix a sequence {(pα, τα) : α < ω1}, where pα ∈ Sω1 , τα is a Sω1 -name, such
that if τ is a Sω1 -name and p ° “τ ∈ ωω” then there is an α ∈ ω1 such that pα ≤ p
and pα ° “τ = τα”.

Construct a sequence 〈Tα : α < ω1〉 of finitely branching subtrees of ω<ω by
induction on α so that:

(1) [Tα] ∩⋃
β<α[Tβ ] = ∅ and

(2) ∃q ≤ pα ∃β ≤ α : q ° “τα ∈ [Tβ ]”.
First find a q ≤ p0 and g ∈ ωω such that q ° “τ0 ≤ g” and let T0 =

⋃
n∈ω{σ ∈ 2n :

σ ≤ g ¹ n}. At stage α consider the pair (pα, τα).
If there is a p′ ≤ pα such that p′ ° “τα ∈

⋃
β<α[Tβ ]” let Tα be arbitrary satisfying

(1). Then, of course, there is a q ≤ p′ and a β < α such that q ° “τα ∈ [Tβ ]”.
If not, find a p′ ≤ pα and a g ∈ ωω such that p′ ° “τα 6∈

⋃
β<α[Tβ ] and τα ≤ g”.

Enumerate α = {αn : n ∈ ω} and construct a fusion sequence (qi+1,mi+1) <Fi

(qi,mi) such that q0 ≤ p′ and for every σ : Fi −→ 2mi consistent with pi there is
an sσ ∈ ω<ω such that qi ¹ σ ° “sσ ⊆ τα and sσ 6∈ Tαi”. Let q be the fusion of
the sequence and let Tα = {t ∈ ω<ω : ∃i ∈ ω ∃σ : Fi −→ 2mi consistent with q
such that q ¹ σ ° “t ⊆ sσ”}. Note that Tα is a compact tree as every f ∈ [Tα] is
dominated by g. Obviously q ° “τα ∈ [Tα]”. ¤

Theorem III.4. aT = ω1 in the Sacks model.

Proof. Fix a partition T = {Tα : α < ω1} as in the previous lemma (CH holds in
the ground model). It will be shown that T is not only Sω1 -indestructible but also
Sω2 -indestructible.

Assume that it is not the case. Then there is an α < ω1, a p ∈ Sα, and an
Sα-name ḟ for a real such that p °Sα “ḟ 6∈ ⋃{[Tα] : α < ω1}”. Again, we can
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assume that p and all conditions mentioned later are continuous. Fix a countable
elementary submodel N containing Sα, p, ḟ , T and let a∗ = N ∩ α. Then p ∈ Sa∗

and T is Sa∗-indestructible. Let r∗ ≤ p be (N, Sα)-generic such that r∗ ∈ Sa∗ .
There is a β < ω1 and p∗ ∈ Sa∗ such that p∗ ≤ r∗ and p∗ °Sa∗ “ḟ ∈ [Tβ ]”. On the
other hand, there is a q ≤ p∗ and a σ ∈ ω<ω \ [Tβ ] such that q °Sα “σ ⊆ ḟ”. By
Lemma II.7. there is a q∗ ∈ Sa∗ , q∗ ≤ p∗, incompatible with all the elements of Sa∗

which are incompatible with q.
As r∗ is (N, Sα)-generic we can treat ḟ also as a Sa∗-name. Let D be the set of

those p ∈ Sα which decide ḟ ¹ |σ|. Then D ∈ N , D∩N ⊆ Sa∗ and D∩N is predense
below r∗. As q is incompatible with all s∗ ∈ Sa∗ which force that ḟ ¹ |σ| 6= σ, so
is q∗. That, however, means that q∗ °Sa∗ “σ ⊆ ḟ” which contradicts the fact that
p∗ °Sa∗ “ḟ ∈ [Tβ ]”. ¤

Next it will be shown that ae = ap = ω1 in the Sacks model. First it will
be proved that, assuming CH, there are maximal families corresponding to the
cardinal invariants indestructible by Sω1 and then the Lemma II.7. will be used to
show that they are, in fact, Sω2 -indestructible.

Lemma III.5. (CH) There is an Sω1-indestructible maximal family of eventually
different functions.

Proof. Fix a sequence {(pα, τα) : α < ω1}, where pα ∈ Sω1 , τα is a Sω1 -name, such
that if τ is a Sω1 -name and p ° “τ ∈ ωω” then there is an α ∈ ω1 such that pα ≤ p
and pα ° “τ = τα”.

We will construct a sequence 〈fα : α < ω1〉 , each fα ∈ ωω by induction on α so
that:

(1) fα is eventually different from fβ for every β < α and
(2) ∃q ≤ pα ∃β ≤ α : q ° “|τα ∩ fβ | = ℵ0”.

At stage α consider the pair (pα, τα).
If there is a q ≤ pα and a β < α such that q ° “|τα ∩ fβ | = ℵ0”, let fα be

arbitrary satisfying (1).
If it is not the case, enumerate α = {αi : i ∈ ω} and construct a fusion sequence

(qi+1,mi+1) <Fi (qi,mi), a tree T ⊆ ω<ω and an increasing sequence of integers
〈ni : i ∈ ω〉 so that
a) q0 decides τα ¹ n0,
b) qi ° “τα ∩ fαi ⊆ ni × ω”,
c) for every σ : Fi −→ 2mi consistent with qi there is an sσ ∈ T ∩ ωni such that

qi ¹ σ ° “sσ ⊆ τα”,
d) for every s ∈ T ∩ ωni there is a σ consistent with pi such that s = sσ and
e) |T ∩ ωni+1 | ≤ ni+1 − ni.
Let q be the fusion of the sequence. Obviously, q ° “τα ∈ [T ]” and also ∀s ∈ T
∀m ∈ dom(s) m > ni ⇒ s(m) 6= fαi(m). Enumerate T ∩ ωni = {si

j : j ≤ Ji} for
every i ∈ ω. It follows from the construction that Ji+1 ≤ ni+1 − ni. Now let

fα(k) =
{

si
j(k) if k = ni + j and j < Ji

min{s(k) : s ∈ T ∩ ωk+1} otherwise.

It is immediate that q ° “|τα ∩ fα| = ℵ0” and that fα is eventually different from
all fβ , β < α. ¤
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Theorem III.6. ae = ω1 in the Sacks model.

Proof. Fix a family F = {fα : α < ω1} as in the previous lemma (CH holds in the
ground model). It will be shown that F is Sω2-indestructible.

Assume that it is not the case. Then there is an α < ω1, a p ∈ Sα, and an Sα-
name ḟ for a real such that p forces that ḟ is eventually different from fα for every
α < ω1. Assume that p and all conditions mentioned later are continuous. Fix a
countable elementary submodel N containing Sα, p, ḟ ,F and let a∗ = N ∩α. Then
p ∈ Sa∗ and F is Sa∗-indestructible. Let r∗ ≤ p be (N, Sα)-generic such that r∗ ∈
Sa∗ . There is a β < ω1 and p∗ ∈ Sa∗ such that p∗ ≤ r∗ and p∗ °Sa∗ “|ḟ ∩fβ | = ℵ0”.
On the other hand, there is a q ≤ p∗ and an n ∈ ω such that q °Sα

“ḟ ∩ fβ ⊆ n”.
By Lemma II.7. there is a q∗ ∈ Sa∗ , q∗ ≤ p∗, incompatible with all the elements of
Sa∗ which are incompatible with q.

As r∗ is (N, Sα)-generic we can treat ḟ also as a Sa∗-name. Let Dm be the set
of those p ∈ Sα which decide ḟ(m) for m ≥ n. Then Dm ∈ N , Dm ∩N ⊆ Sa∗ and
Dm ∩ N is predense below r∗. As q is incompatible with all s∗ ∈ Sa∗ which force
that ḟ(m) = fβ(m), so is q∗. That, however, means that q∗ °Sa∗ “ḟ ∩ fβ ⊆ n”
which contradicts the fact that p∗ °Sa∗ “|ḟ ∩ fβ | = ℵ0”. ¤

Lemma III.7. (CH) There is an Sω1-indestructible maximal almost disjoint family
of graphs of permutations.

Proof. Fix a sequence {(pα, τα) : α < ω1}, where pα ∈ Sω1 , τα is a Sω1 -name, such
that if τ is a Sω1-name and p ° “τ ∈ Sym(ω)” then there is an α ∈ ω1 such that
pα ≤ p and pα ° “τ = τα”.

We will construct a sequence 〈πα : α < ω1〉 of permutations on ω by induction
on α so that:

(1) πα is almost disjoint from πβ for every β < α and
(2) ∃q ≤ pα ∃β ≤ α : q ° “|τα ∩ πβ | = ℵ0”.

At stage α consider the pair (pα, τα).
If there is a q ≤ pα and a β < α such that q ° “|τα ∩ πβ | = ℵ0” let πα be an

arbitrary permutation satisfying (1).
If it is not the case, enumerate α = {αi : i ∈ ω} and construct a fusion sequence

(qi+1,mi+1) <Fi (qi,mi), a tree T ⊆ ω<ω and an increasing sequence of integers
〈ni : i ∈ ω〉 so that
a) q0 ° “τα ¹ n0 = s0” for some one-to-one s0 ∈ ωn0 ,
b) qi ° “τα ∩ παi ⊆ ni × ω” and qi+1 ° “rng(τα ¹ ni+1) ⊇ ni”,
c) for every σ : Fi −→ 2mi consistent with qi there is an sσ ∈ T ∩ ωni such that

qi ¹ σ ° “sσ ⊆ τα”,
d) for every s ∈ T ∩ ωni there is a σ consistent with qi such that s = sσ and
e) |T ∩ ωni+1 | ≤ ni+1 − 2ni.
Let q be the fusion of the sequence. Obviously, q ° “τα ∈ [T ]” and also ∀s ∈ T
∀m ∈ dom(s) m > ni ⇒ s(m) 6= παi(m). Enumerate T ∩ ωni = {si

j : j ≤ Ji} for
every i ∈ ω. It follows from the construction that Ji+1 ≤ ni+1−2ni. Now construct
πα by induction. Let πα ¹ n0 = s0. Having defined πα ¹ ni let A = ni \rng(πα ¹ ni)
and define π−1

α ¹ A so that π−1
α (k) 6= π−1

αi′
(k), i′ ≤ i, for every k ∈ A. For every

j < Ji+1 inductively find an l < ni+1 such that l is not in the domain of the part of
πα constructed so far and also such that si+1

j (l) is not in the range of the part of πα
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constructed so far. As ni+1 ≥ 2ni + Ji+1 there is no problem in doing so. Finally
define πα on the rest of ni+1 so that it is one-to-one, and so that πα(k) 6= παi′ (k)
for every k ∈ ni+1 \ ni and for every i′ ≤ i.

Then, indeed, πα is a permutation as πα ¹ ni is one-to-one and ni ⊆ rng(πα ¹
ni+1) for every i ∈ ω. It is also true that πα is almost disjoint from all πβ , β < α
and finally q ° “|τα ∩ πα| = ℵ0”. ¤

Theorem III.8. ap = ω1 in the Sacks model.

Proof. Fix a family P = {πα : α < ω1} as in the previous lemma (CH holds in the
ground model). It will be shown that P is Sω2 -indestructible.

Assume that it is not the case. Then there is an α < ω1, a p ∈ Sα, and
an Sα-name π̇ for a permutation such that p forces that π̇ is eventually different
from πα for every α < ω1. Assume that p and all conditions mentioned later are
continuous. Fix a countable elementary submodel N containing Sα, p, π̇,P and let
a∗ = N ∩ α. Then p ∈ Sa∗ and P is Sa∗-indestructible. Let r∗ ≤ p be (N, Sα)-
generic such that r∗ ∈ Sa∗ . There is a β < ω1 and p∗ ∈ Sa∗ such that p∗ ≤ r∗ and
p∗ °Sa∗ “|π̇ ∩ πβ | = ℵ0”. On the other hand, there is a q ≤ p∗ and an n ∈ ω such
that q °Sα “π̇∩πβ ⊆ n”. By Lemma II.7. there is a q∗ ∈ Sa∗ , q∗ ≤ p∗, incompatible
with all the elements of Sa∗ which are incompatible with q.

As r∗ is (N, Sα)-generic we can treat π̇ also as a Sa∗-name. Let Dm be the set
of those p ∈ Sα which decide π̇(m) for m ≥ n. Then Dm ∈ N , Dm ∩N ⊆ Sa∗ and
Dm ∩ N is predense below r∗. As q is incompatible with all s∗ ∈ Sa∗ which force
that π̇(m) = πβ(m), so is q∗. That, however, means that q∗ °Sa∗ “π̇ ∩ πβ ⊆ n”
which contradicts the fact that p∗ °Sa∗ “|π̇ ∩ πβ | = ℵ0”. ¤

IV. ♣ holds in the side-by-side Sacks model

A forcing notion (complete Boolean algebra or partial order) B is said to be
(λ, κ)-semidistributive if every subset of κ of size κ in a forcing extension contains
a ground model subset of size λ when forcing with B.

In what follows it will be shown that ♣ holds in the side-by-side Sacks model. We
develop a slightly more general framework in hope that it has more applications.

Let P be an Axiom A forcing and let 〈≤n: n ∈ ω〉 be a sequence of orderings on
P witnessing it. Define a partial order A(P) = P × ω ordered by (p, n) ≤ (q,m) if
n > m and p ≤n q. Properties of A(P) depend, of course, not only on P but also
on the choice of the orderings ≤n.

Given a P-name ẋ for an uncountable subset of ω1, a condition p ∈ P and an
n ∈ ω let

An(p, ẋ) = {α ∈ ω1 : ∃q ∈ P q ≤n p and q ° “α ∈ ẋ”}.

A condition p ∈ P is said to be (ẋ, n)-good if ∀q ≤n p |An(q, ẋ)| = ℵ1. A forcing
notion P (together with an Axiom A structure) is said to be ω1-good provided that
for every P-name ẋ for an uncountable subset of ω1 and for every n ∈ ω the set
{p ∈ P : p is (ẋ, n)-good} is dense in P.

We will say that an Axiom A partial order P has unique fusion if whenever
〈pi : i ∈ ω〉 is a fusion sequence and p, q ∈ P are such that ∀i ∈ ω p ≤i pi and
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q ≤i pi then p = q. Recall also that if P is a forcing notion then m(P) denotes the
least number of dense subsets of P with no filter meeting them all.

Proposition IV.1. Let P be ω1-good. Then:

(1) P is (ω, ω1)-semidistributive.
(2) If P has unique fusion and m(A(P)) > ω1 (in fact, if MAℵ1 holds for A(P)

below every condition) then P is (ω1, ω1)-semidistributive.

Proof. Let ẋ be a P-name for an uncountable subset of ω1 and let p ∈ P. Construct
sequences 〈pi : i ∈ ω〉, 〈αi : i ∈ ω〉 such that:
a) αi = αj ⇒ i = j,
b) p0 ≤ p and pi+1 ≤i pi,
c) pi is (ẋ, i)-good and
d) pi ° “αi ∈ ẋ”.
It is easy to fulfill the task given the fact that P is ω1-good. Let pω be the fusion
of the sequence 〈pi : i ∈ ω〉. Then pω ≤ p and pω ° “{αi : i ∈ ω} ⊆ ẋ” witnessing
the (ω, ω1)-semidistributivity of P.

In order to prove (2) Let p ∈ P be given and let

Dα = {(q, n) ∈ A(P) : q is (ẋ, n)-good and q ° “β ∈ ẋ” for some β ≥ α}

and let
En = {(q, m) ∈ A(P) : q ∈ P and m ≥ n}.

As P is ω1-good the set Dα is dense in A(P) for every α. The sets En are obviously
dense. Let G be an ultrafilter on A(P) containing (p, 0) which meets all of the
Dα and En. For each i ∈ ω choose pi ∈ P and mi ≥ i such that (pi,mi) ∈ G,
p0 ≤ p and (pi+1,mi+1) < (pi, mi). Then the sequence 〈pi : i ∈ ω〉 is a fusion
sequence in P. Let pω be the fusion of the sequence. Obviously pω ∈ P. Let
Y = {α ∈ ω1 : pω °P “α ∈ ẋ”}. All that is left to show is that Y is uncountable. If
not then there is an α < ω1 such that Y ⊆ α. Let (q, k) ∈ Dα ∩G. The following
Claim clearly produces a contradiction, hence finishes the proof.
Claim. pω ≤ q.

In order to prove the Claim construct a sequence 〈(qi, ki) ∈ A(P) : i ∈ ω〉 such
that
a) (q0, k0) = (q, k),
b) (qi+1, ki+1) ≤ (qi, ki),
c) (qi+1, ki+1) ≤ (pi,mi).
To accomplish the goal simply pick (qi+1, ki+1) ∈ G extending both (qi, ki) and
(pi,mi). The sequence 〈qi : i ∈ ω〉 is a fusion sequence. Let qω be the fusion of the
sequence. Note that qω ≤i pi for every i ∈ ω. As P has unique fusion qω = pω and
hence pω ≤ q. ¤

Examples. Cohen forcing Fn(ω, 2) is trivially (ω1, ω1)-semidistributive. Other
forcing notions such as random forcing, Hechler forcing, Mathias forcing, Laver
forcing and Sacks forcing are (ω, ω1)-semidistributive and, in some models, these
forcings are even (ω1, ω1)-semidistributive.

Here we concentrate on Sacks forcing. Recall that if p ∈ S then t ∈ p is a
branching node of p if ta0, ta1 ∈ p. The standard Axiom A orderings for the
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Sacks forcing (p ≤n q if p ≤ q and the first n-many branching levels of q are
contained in p) obviously have unique fusion property. For p ∈ S and k ∈ ω let
p ¹ k = {t ¹ k : t ∈ p} and if a ⊆ p let p〈a〉 = {t ∈ p : ∃s ∈ a s ⊆ t or t ⊆ s}.

To show that S is ω1-good it is enough to show that whenever ẋ is a name for
an uncountable subset of ω1, p ∈ S and m ∈ ω then the following holds:

Claim IV.2. If p ∈ S is (ẋ,m)-good then there is a q ≤m p such that q is
(ẋ,m + 1)-good.

Suppose the Claim fails. Construct a sequence 〈pn : n ∈ ω〉 ⊆ S and for every
pn an integer kn so that
a) p0 ≤m p, |p0 ∩ 2k0 | = 2m and every t ∈ 2k0 contains m-many branching nodes,
b) (pn+1, kn+1) < (pn, kn) and
c) if a ∈ [pn ∩ 2kn ]2

m+1
and (∀t ∈ p0 ¹ k0 ∃t0 6= t1 ∈ a s.t. t ⊆ t0 ∩ t1) then

|Am+1(pn+1〈a〉, ẋ)| < ℵ1.
To do this suppose that pn, kn have been already constructed. Enumerate all
a ⊆ pn ∩ 2kn relevant for c) as {ai : i < I}. Construct {pi

n : i < I + 1} so that
d) p0

n = pn,
e) pi+1

n ≤ pi
n

f) pn ¹ kn ⊆ pi
n and

g) |Am+1(pi+1
n 〈ai〉, ẋ)| < ℵ1.

At step i find p̄i
n ≤ pi

n〈ai〉 such that ai ⊆ p̄i
n and |Am+1(p̄i

n, ẋ)| < ℵ1 (Note that if
this is not possible then the Claim holds as then pi

n〈ai〉 ≤m+1 p and is (ẋ,m + 1)-
good). Let

pi+1
n =

⋃
{p̄i

n〈t〉 : t ∈ ai} ∪
⋃
{pi

n〈t〉 : t ∈ pn ∩ 2kn \ ai}

and finally let pn+1 = pI
n and let kn+1 be such that (pn+1, kn+1) < (pn, kn).

Now let pω be the fusion of the sequence and let

A =
⋃
{Am+1(pω〈a〉, ẋ) : a ∈ [pn ∩ 2kn ]2

m+1
for some n ∈ ω as in c)}

and note that A is countable. Choose γ ∈ Am(pω, ẋ) \A. Then there is a p′ ≤m pω

such that p′ ° “γ ∈ ẋ”. Choose n such that the m + 1-branching subtree of p′ is
contained in p′ ¹ kn, i.e. there is an a ∈ [pω ∩2kn ]2

m+1
satisfying the condition in c)

such that p′〈a〉 ≤m pω. Then, however, γ ∈ Am+1(pω〈a〉, ẋ) which is impossible. ¤

So we have shown that S is (ω, ω1)-semidistributive. As A(S) is proper (see e.g.
[CL]) by Proposition IV.1. PFA implies that S is (ω1, ω1)-semidistributive.

J. Baumgartner (in an unpublished note) showed that ♣ holds in a model ob-
tained from a model of V = L by adding many Sacks reals side-by-side. A
proof of this fact is presented here. The side-by-side Sacks forcing for adding κ
many Sacks reals is denoted by Sκ. Let F be a finite subset of κ, let ẋ be a
Sκ name for an uncountable subset of ω1 and let m,n be integers. A condition
p ∈ Sκ is said to be (ẋ, F, n)-good if ∀(q, m) ≤F (p, n) |A(F,n)(q, ẋ)| = ℵ1, where
A(F,n)(p, ẋ) = {α < ω1 : ∃(q, m) <F (p, n) such that q ° “α ∈ ẋ”}.

Lemma IV.3. Let p ∈ Sκ, let F ⊆ G be finite subsets of κ, let ẋ be a Sκ-name
for an uncountable subset of ω1 and let n be an integer. If p is (ẋ, F, n)-good then
there are q ∈ Sκ and m > n such that (q, m) <F (p, n) and q is (ẋ, G, m)-good.



12 MICHAEL HRUŠÁK

Proof. The proof is an easy, though technical, extension of an analogous result for
S in IV.2. ¤

Lemma IV.4. (♦) There is a ♣-sequence 〈Xα : α ∈ Lim(ω1)〉 such that for every
p ∈ Sω1 and every Sω1 -name ẋ for an uncountable subset of ω1 there are q ≤ p and
α ∈ Lim(ω1) such that q ° “Xα ⊆ ẋ”.

Proof. First identify every Sω1-name ẏ for a subset of ω1 with a set Y ⊆ Sω1 × ω1

by putting a pair (p, α) into Y if and only if p ° “α ∈ ẏ”.

Claim. (♦) There is a sequence 〈(pα, Aα, Mα) : α ∈ Lim(ω1)〉 such that if p ∈ Sω1 ,
A ⊆ Sω1 × ω1 and C ⊆ [H(ω2)]ℵ0 is a closed and unbounded set of elementary
submodels then there is an M ∈ C and an α < ω1 such that M ∩ H(ω1) = Mα,
Mα ∩ ω1 = α, p = pα ∈ Mα and A ∩Mα = Aα.

To see this fix a ♦-sequence {Dα : α < ω1} (i.e. a sequence such that Dα ⊆ α
for every α < ω1 and such that for every D ⊆ ω1 there are stationarily many α
such that D ∩ α = Dα).

First (using CH, a consequence of ♦) construct a sequence 〈Mα : α ∈ C ′〉 (for
some closed unbounded set C ′ ⊆ ω1) such that
a) Mα is an elementary submodel of H(ω1),
b) Mα ⊆ Mβ for α < β, Mβ =

⋃{Mα : α < β} for β limit in C ′,
c) {Mα : α ∈ C ′} is a closed unbounded subset of [H(ω1)]ℵ0 and
d) Mα ∩ ω1 = α for every α ∈ C ′.

Doing this is straightforward. For α 6∈ C ′ let Mα be arbitrary. Note that⋃{Mα : α ∈ C ′} = H(ω1) and that for every C ⊆ [H(ω2)]ℵ0 closed and unbounded
set of elementary submodels {α < ω1 : ∃M ∈ C such that M ∩H(ω1) = Mα} is a
closed unbounded subset of C ′.

Fix also a bijection Φ : ω1 −→ H(ω1) such that Φ[α] = Mα for every α ∈ C ′.
Now we are ready to define pα, Aα. If Φ[Dα] = {p} × A ∈ P(Sω1) × P(Sω1 × ω1)
and α ∈ C ′, let pα = p and let Aα = A. Otherwise let pα and Aα be arbitrary.

To see that the construction works let p,A, C be as required (WLOG p,A ∈ M
for every M ∈ C) and let D = Φ−1[{p} × A]. Let C ′′ = {α ∈ C ′ : ∃M ∈ C such
that Mα = M ∩H(ω1)}. Note that C ′′ is a closed unbounded subset of ω1. There
is an α ∈ C ′′ such that Dα = D ∩ α, as {Dα : α < ω1} is a ♦-sequence. This,
of course, implies that p = pα and A ∩Mα = Aα. As α ∈ C ′′ also Mα ∩ ω1 = α
and there is an M ∈ C such that M ∩H(ω1) = Mα. This finishes the proof of the
claim.

Having fixed a sequence like this, construct Xα as follows:
If there is a p ∈ Sω1 , A ⊆ Sω1 × ω1 a name for an uncountable subset of ω1 and

an elementary submodel M containing p and A such that pα = p, Mα = M ∩H(ω1)
and Aα = A∩M (= A∩Mα) then fix a sequence 〈αi : i ∈ ω〉 ↗ α and construct a
sequence 〈(qi, ni, Fi, βi) : i ∈ ω〉 such that

(1) Fi ⊆ Fi+1 and
⋃

i∈ω Fi = α
(2) αi ≤ βi < α,
(3) q0 ≤ pα,
(4) qi ∈ Sω1 ∩M ,
(5) (qi+1, ni+1) <Fi (qi, ni),
(6) qi is (A,Fi, ni)-good and
(7) qi ° “βi ∈ A”.



LIFE IN THE SACKS MODEL 13

Finally put Xα = {βi : i ∈ ω}. It is easy to go through the construction using
previous lemma (and the fact that M is an elementary submodel).

If the triple (pα, Aα,Mα) does not satisfy the above requirements let Xα be an
arbitrary sequence increasing to α.

In order to verify that the construction works let p ∈ Sω1 and ẋ be as required.
Let X ⊆ Sω1 × ω1 be the “nice” name corresponding to ẋ. Let C be a closed
unbounded set of elementary submodels of H(ω2) containing p and X. Then there
is an α ∈ Lim(ω1) and an M ∈ C such that p = pα, X ∩ Mα = Aα and M ∩
H(ω1) = Mα. Let q be the fusion of the sequence constructed at stage α. Note
that even though the model in which q was constructed was probably different from
M and the name for an uncountable subset of ω1 was most likely not X, in the
construction we never had to go outside H(ω1) on which the two models agree. So
q ° “Xα ⊆ ẋ”. ¤

Theorem IV.5 (J. Baumgartner). If ♦ holds in the ground model then ♣ holds
in the side-by-side Sacks extension.

Proof. Let 〈Xα : α ∈ Lim(ω1)〉 be the ♣-sequence constructed in the previous
lemma. What remains to be proved is that it is still a ♣-sequence after forcing
with Sκ. To that end let ẋ be a name for an uncountable subset of ω1 and let p be
a condition. As all antichains in Sκ are of size at most ℵ1 there is a set X ⊆ κ of
cardinality ℵ1 and a SX -name ẏ such that p ∈ SX and °Sκ “ẋ = ẏ. Recall also that
Sκ ' SX × Sκ\X . Now, as SX ' Sω1 , by previous lemma there is an α ∈ Lim(ω1)
and a q ∈ SX such that q ≤ p and q °SX “Xα ⊆ ẏ”. In fact q °Sκ “Xα ⊆ ẋ”. ¤

Corollary IV.6. If ♦ holds in the ground model then ♦d
1 holds in the side-by-side

Sacks extension.

Proof. As ♣ and d = ω1 both hold in the side-by-side Sacks model, so does ♦d by
Proposition I.3. of [Hr]. ¤

Acknowledgement. The author would like to thank to Professor Juris Steprāns
for his guidence and help and especially for providing the proof of Claim IV.2.
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