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CARDINAL INVARIANTS

OF MONOTONE AND POROUS SETS

MICHAEL HRUŠÁK AND ONDŘEJ ZINDULKA

Abstract. A metric space (X, d) is monotone if there is a linear order < on X and a constant c such

that d(x, y) 6 c d(x, z) for all x < y < z in X . We investigate cardinal invariants of the ó-ideal Mon

generated by monotone subsets of the plane. Since there is a strong connection between monotone sets

in the plane and porous subsets of the line, plane and the Cantor set, cardinal invariants of these ideals

are also investigated. In particular, we show that non(Mon) > mó-linked, but non(Mon) < mó-centered is

consistent. Also cov(Mon) < c and cof(N ) < cov(Mon) are consistent.

§1. Introduction.

Definition 1.1. Let (X, d ) be a metric space.

• (X, d ) is called monotone if there is c > 0 and a linear order < on X such that
d (x, y) 6 c d (x, z) for all x < y < z in X .

• (X, d ) is called ó-monotone if it is a countable union of monotone subspaces
(with possibly different witnessing constants).

The notions of monotone and ó-monotone space first occurred in [23], where
they were used to prove existence of universal measure zero sets of large Hausdorff
dimension. Their systematic investigation began in papers [10, 9]. In [24] the
notions were used to prove that if a Borel set in Rn has Hausdorff dimension greater
than m, then it maps onto them-dimensional ball by a Lipschitz map.
The very basic fact established in [10] says that if X is a monotone metric space
and < is the witnessing order, then the metric topology is suborderable by <. In
particular, the metric topology is finer than the order topology, i.e., every open
interval (x, y) = {z ∈ X : x < z < y} is open in the metric topology.
Of course, any subset of the line is monotone. So the ideal of ó-monotone subsets
of the line is not interesting at all. On the other hand, the plane itself is clearly not
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ó-monotone. Thus the ó-ideal of ó-monotone subsets of the plane is nontrivial.
The aim of this paper is to investigate this ideal and mainly its cardinal invariants.
Here is a brief account of what is known of monotone and ó-monotone sets in
the plane. Any monotone set in the plane is homeomorphic to a subset of the line
and any monotone connected set in the plane is homeomorphic to an interval, in
particular, it is a curve [10], but there are homeomorphic copies of [0, 1] in the
plane that are not ó-monotone. Every ó-monotone set in the plane has topological
dimension 0 or 1 [10]. There is a zero dimensional compact set in the plane that
is not ó-monotone [9]. Every ó-monotone subset of the plane is contained in a
countable union of compact monotone sets. This follows from the fact that every
metric space with a dense monotone subset is monotone [10].

Definition 1.2. The ideal of all ó-monotone sets in a metric space X is denoted
Mon(X ). The idealMon(R2) of all ó-monotone sets in the plane is denotedMon.

Proposition 1.3. [10] A closure of a monotone set in the plane is monotone. Hence
Mon is generated by Fó-sets.

Cardinal invariants. Given an ideal I on a set X , the following are the usual
cardinal invariants ofI :

add(I ) = min{|A | : A ⊆ I ∧
⋃

A /∈ I },

cov(I ) = min{|A | : A ⊆ I ∧
⋃

A = X},

cof(I ) = min{|A | : A ⊆ I ∧ (∀I ∈ I )(∃A ∈ A )(I ⊆ A)},

non(I ) = min{|Y | : Y ⊆ X ∧ Y /∈ I }.

Denote byM ,N , respectively, the ideals of meager and Lebesgue null subsets of 2ù.
Forf, g ∈ ùù, the order by eventual dominance is defined byf 6∗ g iff(n) 6 g(n)
for all but finitely many n ∈ ù. A family F ⊆ ùù is bounded if there is h ∈ 2ù such
that f 6∗ h for all f ∈ F ; and F is dominating if for any g ∈ ùù there is f ∈ F
such that g 6∗ f. The cardinal invariants associated with the eventual dominance
are b, the minimal cardinality of an unbounded set, and d, the minimal cardinality
of a dominating set.
We shall consider twoMartin numbers, mó-centered and mó-linked. Let P be a poset.
A set A ⊆ P is centered (linked, respectively) if for any p, q ∈ A there is r ∈ A
(r ∈ P) such that r 6 p and r 6 q. A poset P is called ó-centered or ó-linked,
respectively, if there exists a cover {Pi : i ∈ ù} of P such that each Pi is centered or
linked.
Given a cardinal κ, MAó-centered(κ) is the statement: For any ó-centered poset P
and any family D of dense subsets of P, with |D | 6 κ, there is a filter that meets
every member of D , and MAó-linked(κ) is defined likewise. The corresponding
Martin numbers are defined by

mó-centered = min{κ : MAó-centered(κ) fails},

mó-linked = min{κ : MAó-linked(κ) fails}.
1

1By Bell’s theorem,mó-centered is equal to the pseudointersection number p.
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The provable inequalities between the listed cardinals are summarized in the fol-
lowing diagram.2

cov(N ) // non(M ) // cof(M ) // cof(N )

b

OO

// d

OO

add(N )

OO

// add(M ) //

OO

cov(M ) //

OO

non(N )

OO

mó-linked

OO

// mó-centered

OO

2nmeans a set of {0, 1} sequences of length n if itmakes sense; otherwise it denotes
a number. 2<ù =

⋃

n∈ù 2
n ordered by end extension. Given p ∈ 2<ù , the basic

open set {x ∈ 2ù : p ⊆ x} is denoted by 〈p〉. A set T ⊆ 2<ù is a tree if it is closed
under initial segments. Given a tree T the set [T ] = {f ∈ 2ù : ∀n ∈ ùf ↾ n ∈ T}
is the set of all branches of T . Given s, t ∈ 2<ù the term sat denotes concatenation
of s followed by t.
A closed ball in a metric space, centered at x and of radius r, is denoted by
B(x, r).

§2. Additivity, cofinality and cellularity ofMon. The values of additivity, cofinal-
ity and cellularity ofMon are easily derived from the following lemma.

Lemma 2.1. Let L be a family of lines in R2. Then
⋃

L is ó-monotone if and only
if L is countable.

Proof. Suppose that L = {Lα : α < ù1} is an uncountable family of lines and
aiming at contradiction suppose that

⋃

α<ù1
Lα is ó-monotone. Then there is a

countable family {Cn : n ∈ ù} of compact monotone sets such that Lα ⊆
⋃

n∈ù Cn
for all α < ù1. By the Baire category argument, for each α < ù1 there is n ∈ ù such
thatLα∩Cn contains an open straight segment. By the pigeonhole principle there is
n ∈ ù, an uncountable set I ⊆ ù1 and a family of open segments S = {Sα : α ∈ I }
such thatSα ⊆ Lα ∩Cn for each α ∈ I . The unionX =

⋃

S is a subset ofCn, hence
it is a monotone set. Any distinct S, S′ ∈ S that meet have exactly one common
interior point. Hence the union S ∪ S′ is not homeomorphic to an interval. It
follows that the family S is pairwise disjoint. The segments Sα are open intervals in
the linear order witnessing monotonicity of Cn and thus open sets in X . Since X
is homeomorphic to a subset of the line, we arrived at a contradiction, as X is not
ccc. ⊣

Theorem 2.2. (i) add(Mon) = ù1,
(ii) cof(Mon) = c,

(iii) the cellularity ofMon is c.

Proof. (i) Since every line is monotone, any uncountable family of lines wit-
nesses by the above lemma add(Mon) 6 ù1.

2As usual, the arrows in the diagram point from the smaller to the larger cardinal.
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(ii) Now let L = {{x} × R : x ∈ R}. Suppose cof(Mon) < c. Then there is
a family B ⊆ Mon such that |B| < c and every element of L is covered by some
B ∈ B. By the pigeonhole principle there is B ∈ B that covers uncountably many
elements of L, which is impossible by the above lemma. Thus cof(Mon) = c.
(iii) Split the line into c many uncountable sets {Aα : α < c}. For each α the set
Aα ×R is not ó-monotone by the above lemma. Hence {Aα ×R : α < c} witnesses
that cellularity ofMon is c. ⊣

§3. Porous sets. The other two cardinal invariants, non(Mon) and cov(Mon), are
not so easy to evaluate. However there is a profound connection betweenmonotone
sets and porous sets, a notion from geometric measure theory, that can be used to
approach them.
In this section we establish some relevant properties of ó-porous sets.

Definition 3.1 (see, e.g., [5]). Let (X, d ) be a metric space. A set A ⊆ X is
termed

• porous at a point x ∈ X if there is p > 0 and r0 > 0 such that for any r 6 r0
there is y ∈ X such that B(y, pr) ⊆ B(x, r) \ A,

• porous if it is porous at each point x ∈ A,3

• ó-porous if A is a countable union of porous sets.

Definition 3.2. Let X be a metric space. The ideal of all ó-porous sets in X is
denoted SP(X ).

We shall make use of a stronger form of porosity:

Definition 3.3. Let (X, d ) be a metric space. A set A ⊆ X is termed strongly
porous if there is p > 0 such that for any x ∈ X and any r ∈ (0,diamX ), there is
y ∈ X such that B(y, pr) ⊆ B(x, r) \ A. The constant p will be called the porosity
constant of A.

Lemma 3.4. If A is strongly porous, then so is A.

Proof. Suppose A ⊆ X is strongly porous and let p be its porosity constant.
Denote byB◦(x, r) the open ball with radius r centered at x. Clearly for each x and
r there is y such that B◦(y, pr) ⊆ B(x, r) \A and since B◦(y, pr) is open, it misses
A. Hence A is strongly porous with porosity constant any real number below p. ⊣

Lemma 3.5. Let X be a separable metric space. A set A ⊆ X is ó-porous if and
only if it is a countable union of strongly porous sets.

Proof. It is obviously enough to prove that every porous set is a countable union
of strongly porous sets. Splitting A into countably many pieces we may assume that

∃r0 > 0 ∃p > 0 ∀x ∈ A∀r 6 r0 ∃y ∈ X B(y, pr) ⊆ B(x, r) \ A. (1)

We now show that “∀x ∈ A” can be replaced with “∀x ∈ X” in (1). Let x ∈ X and
r 6 r0. If dist(x,A) <

r
2 , then there is x

′ ∈ A such that d (x, x′) < r
2 . By (1) there is

y such that B(y, p r2 ) ⊆ B(x
′, r2 ) \ A ⊆ B(x, r) \A. If dist(x,A) > r

2 , then trivially

3There are many other notions of porosity, perhapsmore than available names. This one is also called
lower porous, strongly porous and very porous. We adhere to the simplest name in use for the scope of
this paper.
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B(x, r3 ) ⊆ B(x, r) \ A. In either case, there is y such that B(y, qr) ⊆ B(x, r) \ A,

where q = min
(

1
3 ,
p
2

)

. Overall

∃r0 > 0 ∃q > 0 ∀x ∈ X ∀r 6 r0 ∃y ∈ X B(y, qr) ⊆ B(x, r) \ A.

The last step is to replace r0 with diamX . If diamX <∞, replace q with q r0
diamX . If

diamX =∞, split A into countably many sets of diameter at most r0. It is routine
to show that each of these pieces is strongly porous. ⊣

Proposition 3.6. If X is separable, then SP(X ) is generated by Fó-sets.

We now take a closer look at SP(2ù), the ó-porous sets on the Cantor set. The
Cantor set 2ù is equipped with a variant of the least difference metric defined by
d (x, y) = 2−n, where n = min{i : x(i) 6= y(i)} is the length of the maximal
common initial segment.

Lemma 3.7. A set A ⊆ 2ù is strongly porous if and only if

∃n ∀p ∈ 2<ù ∃q ⊇ p |q| = |p|+ n ∧A ∩ 〈q〉 = ∅. (2)

Proof. Note that B(f, 2−n) = 〈f ↾ n〉 for all x ∈ 2ù and n ∈ ù. Thus if A is
strongly porous and c is its porosity constant, then (2) obviously holds with any
n > log2 c. On the other hand, if (2) holds, then A is strongly porous with porosity
constant c = 2−n. ⊣

There are canonical strongly porous sets. For n ∈ ù and ϕ : 2<ù → 2n set

Xϕ = {x ∈ 2ù : ∀k x /∈ 〈x ↾ kaϕ(x ↾ k)〉}.

Proposition 3.8. (i) Xϕ is strongly porous for all n ∈ ù and each ϕ : 2<ù → 2n.
(ii) For every strongly porous set A ⊆ 2ù there is n ∈ ù and ϕ : 2<ù → 2n such that
A ⊆ Xϕ .

Proof. Condition (2) can be obviously rephrased as follows:

∃n ∃ϕ : 2<ù → 2n ∀p ∈ 2<ù A ∩ 〈paϕ(p)〉 = ∅. (3)

(i) Let n ∈ ù and ϕ : 2<ù → 2n. Let p ∈ 2<ù and x ∈ Xϕ . If p ⊆ x, then
for k = |p| the definition of Xϕ yields x /∈ 〈paϕ(p)〉. If p * x, then x /∈ 〈p〉 and
a fortiori x /∈ 〈paϕ(p)〉. Hence (3) holds for Xϕ .
(ii) Let A be strongly porous and n, ϕ be such that (3) holds. Let x ∈ A and
k ∈ ù. Set p = x ↾ k and use condition (3) to conclude thatA∩〈paϕ(p)〉 = ∅ and
in particular x /∈ 〈x ↾ kaϕ(x ↾ k)〉. ⊣

LetT : 2ù → [0, 1]be the canonicalmappingdefinedbyT (x) =
∑

n∈ù 2
−n−1x(n).

Let ø : 2ù → 2ù×2ù be the mapping that assigns to each x ∈ 2ù the pair
x1 : n 7→ x(2n), x2 : n 7→ x(2n + 1).

Lemma 3.9. (i) A ⊆ 2ù is strongly porous if and only if T [A] ⊆ [0, 1] is strongly
porous.

(ii) A ⊆ 2ù×2ù is strongly porous if and only if (T×T )[A] ⊆ [0, 1]2 is strongly
porous.

(iii) A ⊆ 2ù is strongly porous if and only if ø[A] ⊆ 2ù×2ù is strongly porous.

Proof. (i) For each k ∈ ù let Dk be the family of binary closed intervals of
length 2−k , i.e.,D0 = {[0, 1]},D1 = {[0, 12 ], [

1
2 , 1]} etc., andD

◦
k the family of binary
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open intervals of length 2−k . It is easy to check that a set A ⊆ [0, 1] is strongly
porous if and only if

∃n ∀k ∀D ∈ D
◦
k ∃D

′ ∈ Dk+n D
′ ⊆ D \ A.

Observe that if p ∈ 2<ù then T [〈p〉] ∈ D|p| and that ifD ∈ D◦
k then T

−1(D) ⊆ 〈p〉

for some p ∈ 2k . Using (2) the proof is straightforward.
(ii) is proved in the same way, only the binary intervals are to be replaced by
binary squares.
(iii) We show that if A ⊆ 2ù is strongly porous, then so is ø[A], the proof of the
other implication is similar. Assume that A ⊆ 2ù is strongly porous and let n ∈ ù
be as in (2). We may suppose n be even.
Let B be a closed ball in 2ù×2ù of radius r. There is k such that 2−k 6 r < 2−k+1

and p, q ∈ 2k such that B = 〈p〉×〈q〉. The preimage of B is 〈s〉 for some s ∈ 22k .
By (2) there is t ⊇ s , |t| = |s | + n = 2k + n such that A ∩ 〈t〉 = ∅. Hence
ø[A] ∩ ø[〈t〉] = ∅. It is straightforward that ø[〈t〉] is a closed ball of radius 2−j ,
where j = 1

2 (2k + n) = k +
n
2 , and that ø[〈t〉] ⊆ B \ ø[A]. ⊣

Theorem 3.10. cov(SP(R)) = cov(SP(R2)) = cov(SP(2ù)) and likewise for non,
add and cof.

Proof. add, cov and cof are obviously preserved back and forth by any mapping
that preserves strongly porous sets both ways; for non the mapping is moreover
required to be countable-to-one. By the above lemma these conditions are met by
all of the mappings T , T×T and ø. Therefore

add(SP([0, 1])) = add(SP(2ù)) = add(SP(2ù×2ù)) = add(SP([0, 1]2))

and it is clear that

add(SP([0, 1])) = add(SP(R))

and

add(SP([0, 1]2)) = add(SP(R2)).

The same argument works for the other three invariants. ⊣

So as to the cardinal invariants, it makes no difference which of the three SP
ideals we investigate. Because of its simple combinatorial description we vote for
SP(2ù) and from now on we abbreviate SP(2ù) by SP.

§4. Monotonevs. porous sets. Wenow show thatmonotone sets inR2 are strongly
porous and that rectangles of porous sets are monotone.
The following combinatorial lemma is a simplified version of [9, Lemma 5.2]. We
consider cyclic groups Zm . The corresponding subtraction modulom is denoted⊖.

Lemma 4.1. Let Zm be the cyclic group of an even order m. For any linear order ≺
on Zm there are x ≺ y ≺ z in Zm such that z ⊖ x = 1 and z ⊖ y = m

2 .

Thinking of Zm as a regular polygon, the lemma says that for any linear order
there are x ≺ y ≺ z such that x and z are neighboring vertices and y is opposite
to x.

Theorem 4.2. Every monotone set X ⊆ R2 is strongly porous. Consequently
Mon ⊆ SP(R2).
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Proof. Suppose X is monotone. Let ≺ be a linear order on X and c > 0 such
that

x ≺ y ≺ z =⇒|y − x| 6 c|z − x|. (4)

We show that p = 1
2c+3 is a porosity constant of X .

Aiming towards contradiction assume that there is x ∈ R2 and r > 0 such that

B(z, rp) ∩ X 6= ∅ for all z ∈ B(x, r(1 − p)).

Choose an even m ∈ N subject to

2ðc 6 m < ð(2c + 1). (5)

Let {x1, . . . , xm} be the set of vertices of a regular m-polygon centered at x, with
outer radius r(1− p). We assume that the vertex xi+1 is next to xi for each i < m.
By assumption, each of the balls B(xi , rp) intersects X . For each i 6 m choose
a point zi ∈ B(xi , rp) ∩ X . The set Z = {z1, . . . , zm} is thus a subset of X . We
claim that Z is not c-monotone.
We first prove that i 6= j implies zi 6= zj . Clearly d (xi , xj) > 2r(1−p) sin

ð
m and

since sinα > α
1+α holds for all α ∈ (0, ð/2), (5) and the definition of p yield

d (xi , xj) > 2r(1− p)
ð/m

1 + ð/m
= 2r

2c + 2

2c + 3

1

1 +m/ð
>
2rp(2c + 2)

1 + 2c + 1
= 2rp.

Therefore the ballsB(xi , rp) andB(xj , rp) are disjoint, and zi 6= zj follows. Hence
Z identifies with Zm.
Since Z ⊆ X , (4) holds for all x, y, z ∈ Z. By Lemma 4.1 there are zi ≺ zj ≺ zk
such that k ⊖ i = 1 and j ⊖ i = m

2 . Therefore

d (zi , zk) 6 d (xi , xk) + 2rp = 2r(1− p) sin
ð
m + 2rp,

d (zi , zj) > d (xi , xj)− 2rp = 2r(1− 2p).

Using (5), the trivial estimate sinα < α and the definition of p yields

d (zi , zk) < 2r
1− p

2c
+ 2rp = 2rp

2c + 1

c
,

d (zi , zj) > 2rp(2c + 1).

Therefore cd (zi , zk) < d (zi , zj), and since zi ≺ zj ≺ zk , we arrived at a contradic-
tion. ⊣

Corollary 4.3. Every SP set and, in particular, every ó-monotone set in R2 is
contained in an Fó-set of Lebesgue measure zero.

Proof. P. Mattila [7] and A. Salli [15] (or see [8]) proved that every strongly
porous set in the plane has Hausdorff dimension strictly below 2. In particular,
every strongly porous set is Lebesgue null. Apply 3.6 and the previous theorem. ⊣

Recall that E , the intersection ideal, is the ó-ideal in 2ù generated by closed sets of
measure zero. It is obvious that non(E ) 6 min

(

non(M ), non(N )
)

. and it is consis-

tent thatnon(E ) < min
(

non(M ), non(N )
)

. Also cov(E ) > max
(

cov(M ), cov(N )
)

,
see [1].

Corollary 4.4. non(Mon) 6 non(SP) 6 non(E ) and cov(Mon) > cov(SP) >
cov(E ).
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Lemma 4.5. If A ⊆ [0, 1] is strongly porous, then it is Lipschitz equivalent to an
ultrametric space.

Proof. Let p be a porosity constant ofA. Build a family {Is : s ∈ 2<ù} of closed
intervals as follows: I∅ = [0, 1]. When Is is constructed, remove from Is an open
interval of length p diam Is disjoint with A. This is possible by porosity of A. Let
Isa0 and Isa1 be, respectively, the left and right remaining closed intervals.
Let C =

⋂

n∈ù

⋃

s∈2n Is . Clearly A ⊆ C .
If s ∈ 2n, then obviously diam Is 6 (1 − p)n . Hence the set

⋂

n∈ù If↾n consists
of exactly one point for each f ∈ 2ù . Therefore if x, y ∈ C , x 6= y, then there is
a unique s ∈ 2<ù such that x ∈ Isa0 and y ∈ Isa1 (or the other way). It follows
that p diam Is 6 d (x, y) 6 diam Is . Thus letting ñ(x, y) = diam Is defines an
ultrametric that is Lipschitz equivalent to the Euclidean metric. ⊣

Proposition 4.6. If A,B ⊆ R are ó-porous, then A× B ⊆ R2 is ó-monotone.

Proof. It is enough to show that ifA,B ⊆ R are strongly porous, thenA×B ⊆ R2

is monotone. By the above lemma bothA,B are Lipschitz equivalent to ultrametric
spaces. Since the product (equipped with the maximum metric) of ultrametric
spaces is ultrametric, A × B is Lipschitz equivalent to an ultrametric space. Since
every ultrametric space is monotone [10, 2.3] and Lipschitz equivalence preserves
monotonicity [10, 2.2], we are done. ⊣

Corollary 4.7. cov(Mon) = cov(SP) and non(Mon) = non(SP).

Proof. Consider the ó-ideal in the plane generated by the family of rectangles
J = {A× B : A,B ∈ SP(R)}. It is easy to check that non(J ) = non(SP(R)) and
cov(J ) = cov(SP(R)). Therefore theorem 3.10 yields cov(J ) = cov(SP(R2)) =
cov(SP) and non(J ) = non(SP(R2)) = non(SP). Since J ⊆ Mon ⊆ SP(R2) by
theorem 4.2 and proposition 4.6, we are done. ⊣

§5. Consistency results. In this section we present two forcing notions closely
related to the ideal SP (and hence to the Mon ideal, too) and use them to prove
some consistency results involving the cardinal invariants non(SP) = non(Mon)
and cov(SP) = cov(Mon).
Recall that every strongly porous set in 2ù is contained in a set of the form
Xϕ = {x ∈ 2ù : ∀k x /∈ 〈x ↾ kaϕ(x ↾ k〉}, where ϕ : 2<ù → 2n for some fixed
n ∈ ù. There is a natural forcing making the ground-model reals ó-porous.
Given n > 2 define Pn as follows: (s, F ) ∈ Pn if and only if

(i) s is a partial function from 2<ù to 2n,
(ii) F is a finite subset of 2ù,
(iii) ∀ó ∈ dom(s)F ∩ 〈óas(ó)〉 = ∅,
(iv) ∀ó ∈ 2<ù∃ñ ∈ 2n F ∩ 〈óañ〉 = ∅,

and order Pn by (s, F ) 6 (s ′, F ′) if s ⊇ s ′ and F ⊇ F ′.
Let P =

∏

n>2 P
n be the finite support product of the forcing notions Pn, ordered

coordinatewise.

Lemma 5.1. The partial order P is ó-linked.

Proof. It suffices to show that each Pn is ó-linked, since a finite support product
of a countable family of ó-linked partial orders is ó-linked.
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Fix n > 2. For k ∈ ù, E ⊆ 2<k and for a finite partial function s from 2<ù to 2n

such that dom(s) ⊆ 2k−n let ∆F = min{i : ∀x, y ∈ F (x 6= y ⇒ x ↾ i 6= y ↾ i} and

Fk,E,s =
{

(s, F ) ∈ Pn : k > ∆F , {x ↾ k : x ∈ F } = E
}

.

It is immediate that Fk,E,s is linked, as for any (s, F ), (s, F
′) ∈ Fk,E,s the pair

(s, F ∪ F ′) ∈ Pn. Since every element of Pn belongs to some Fk,E,s , we are done:
for the family of parameters k,E, s is countable. ⊣

Theorem 5.2. mó-linked 6 non(SP).

Proof. Fix a set X ⊆ 2ù od size < mó-linked. Consider the sets

Hx = {p ∈ P : ∃n ∈ ù ∃(s, F )x ∈ F ∧ p(n) = (s, F )}, x ∈ X,

Dó,n = {p ∈ P : ∃(s, F )p(n) = (s, F ) ∧ ó ∈ dom(s)}, n ∈ ù, ó ∈ 2<ù .

Obviously, these sets are dense in P. Let G be a filter intersecting all Hx and Dó,n.
Such a filter exists, for |X | < mó-linked. Define

ϕn(ó) = ñ ⇐⇒ ∃p ∈ P p(n) = (s, F ) ∧ ó ∈ dom(s) ∧ s(ó) = ñ.

Then

(a) ϕn : 2<ù → 2n for each n > 2,
(b) X ⊆

⋃

n>2Xϕn .

To see (b), let x ∈ X . There is p ∈ G and n > 2 such that p(n) = (s, F ) and
x ∈ F . We claim that x ∈ Xϕn . If not, then there is q ∈ G with q(n) = (sq , Fq)
and k ∈ ù such that x ↾ k ∈ dom(sq) and x ∈ 〈x ↾ kasq(x ↾ k)〉. Since G
is a filter, there is a condition r ∈ P such that r 6 p and r 6 q. In particular,
r(n) = (sr , Fr) > (s, F ) and r(n) = (sr , Fr) > (sq , Fq). However, x ∈ F ⊆ Fr and
x ↾ k ∈ dom(sq) ⊆ dom(sr), while x ∈ 〈x ↾ kasr(x ↾ k)〉, which contradicts that r
is a condition. (b) is proved.
It is clear that (a) and (b) show that X is ó-porous, as required. ⊣

The same forcing notion lets us prove that cov(SP) need not be equal to c:

Theorem 5.3. It is relatively consistent with ZFC that cov(SP) < c.

Proof. Let V � ¬CH and let Pù1 be a finite support iteration of the forcing P.
Let G be Pù1-generic over V . Then V [G ] � ¬CH, since Pù1 is ccc, and V [G ] �
cov(SP) = ù1, since P makes the set of ground-model reals ó-porous. ⊣

Next we show that in theorem 5.2, the cardinal mó-linked cannot be replaced with
mó-centered . In other words, non(SP) < mó-centered is consistent.

Theorem 5.4. It is relatively consistent with ZFC that mó-centered = c > ù1 and
non(SP) = ù1.

Proof. Say that a partial order P strongly preserves non(SP) if for every P-name
Ẋ for a strongly porous set there is a ó-strongly porous set Y such that

∀x ∈ 2ù(x /∈ Y ⇒ 1 
 “x /∈ Ẋ”).

In other words, the set Y covers the ground-model part of Ẋ . Equivalently, P
strongly preserves non(SP) if for every P-name ϕ such that1 
 “ϕ̇ : 2<ù → 2n” for some fixed n > 2
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there are functions {ϕi : i ∈ ù}, ϕi : 2<ù → 2n such that for any x ∈ 2ù,

if ∀i ∃k x ∈ 〈x ↾ kaϕi(x ↾ k)〉, then 1 
 “∃k x ∈ 〈x ↾ kaϕ̇(x ↾ k)〉”.

It should be obvious that if a forcing P strongly preserves non(SP), then for any
G ⊆ P that is P-generic over a model V , V [G ] � 2ù ∩V /∈ SP.

Claim. Every ó-centered forcing strongly preserves non(SP).

Proof of the claim. Let B be a ó-centered complete Boolean algebra and let
{Fi : i ∈ ù} be a family of ultrafilters on B such that B+ =

⋃

i Fi . Let ϕ̇ be a
B-name such that for some n > 2, 1 
 “ϕ : 2<ù → 2n”. For i ∈ ù let

ϕi (ó) = ñ ⇐⇒ [[ϕ̇(ó) = ñ]] ∈ Fi .

The functions ϕi : 2<ù → 2n are then well-defined. To finish the proof assume that
x ∈ 2ù is such that

∀i ∈ ù ∃k ∈ ù x ∈ 〈x ↾ kaϕi (x ↾ k)〉. (6)

We need to show that for every p ∈ B+ there are q 6 p and k ∈ ù such that
q 
 “x ∈ 〈x ↾ kaϕ̇(x ↾ k)〉”.
Fix p and let i ∈ ù be such that p ∈ Fi . By (6) there is k ∈ ù such that

• x ∈ 〈x ↾ kaϕi (x ↾ k)〉,
• [[ϕ̇(x ↾ k) = ϕi (x ↾ k)]] ∈ Fi .

Since Fi is centered, there is q ∈ Fi such that q 6 p and q 6 [[ϕ̇(x ↾ k) =
ϕi (x ↾ k)]], i.e., q 
 “x ∈ 〈x ↾ kaϕ̇(x ↾ k)〉”. ⊣

Claim. Finite support iteration of ccc partial orders that strongly preserve non(SP)
strongly preserves non(SP) as well.

Proof of the claim. The claim clearly holds for iterations of finite and uncount-
able lengths. It thus suffices to show that if P = 〈〈Pn,Qn〉 : n ∈ ù〉 is a finite support
iteration such that P0 = {1} and Pn 
 “Q̇n strongly preserves non(SP)”, then P
strongly preserves non(SP). In order to do this let ϕ̇ be a P-name such that for some
n > 2 1 
 “ϕ̇ : 2<ù → 2n”.
In each intermediate extension V [Gj ] find a function ϕj : 2<ù → 2n and a de-
creasing sequence of conditions pj,i ∈ P[j,ù) so that

pj,i 
P[j,ù)
“ϕj ↾ 2

6i = ϕ̇ ↾ 26i”.

Since Pj strongly preserves non(SP), there are (in V ) functions {ϕj,i : i ∈ ù} such
that for any x ∈ 2ù

if ∀i ∃k x ∈ 〈x ↾ kaϕi,j(x ↾ k)〉, then 1Pj 
 “∃k x ∈ 〈x ↾ kaϕ̇j(x ↾ k)〉”.

In order to prove that P strongly preserves non(SP) is suffices to show that for any
x ∈ 2ù

if ∀i, j ∃k x ∈ 〈x ↾ kaϕi,j(x ↾ k)〉, then 1P 
 “∃k x ∈ 〈x ↾ kaϕ̇(x ↾ k)〉”.

Aiming for a contradiction assume that there is p ∈ P such that p 
 “∀k x /∈ 〈x ↾

kaϕ̇(x ↾ k)〉”. Then there is j ∈ ù such that p ∈ Pj . Let Gj be Pj-generic over V
such that p ∈ Gj . Then (in V [Gj ]) there is k ∈ ù such that

V [Gj ] � x ∈ 〈x ↾ kaϕj(x ↾ k)〉.

However, then papj,k 
 “x ∈ 〈x ↾ kaϕ(x ↾ k)〉”, which is a contradiction. ⊣
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We are now ready to prove the theorem. Start with a model V of GCH and let
κ > ù be a regular cardinal. Using a standard bookkeeping argument construct
a finite support iteration P of length κ of ó-centered partial orders of size less
that κ, so that any such partial order which appears in an intermediate model is
listed cofinally along the iteration. In this way (see, e.g., [6] for the details of such
bookkeeping) one constructs a model V [G ], where mó-centered = c = κ. On the
other hand, the two claims entail that the set of ground-model elements of 2ù is not
in SP, hence non(SP) = ù1. ⊣

Remark 5.5. In fact, the cardinal characteristics non(SP) and mó-centered are mu-
tually incomparable. A model, where mó-centered < non(SP) can be described as
follows: Start with a model V ofMAó-linked+¬CH in which there is a Suslin tree T.
Force with the tree T (with reverse order). Let G be T-generic over V . Then, in
V [G ], mó-centered = ù1 (see, e.g., [4]) and non(SP) > ù1, as T does not add reals
and preserves cardinals.

We have described a natural forcing which increases non(SP). A natural forcing
for increasing cov(SP) falls into the scope of the J. Zapletal’s book [19]. The forcing
PSP = Borel(2ù)/SP is proper, ùù-bounding and category preserving by a general
theorem of Zapletal [19, 4.1.8], since the ó-ideal SP is ó-generated by a ó-compact
collection of compact sets (a simple extension of our 3.6). We will show that the
forcing, in fact, even has the Sacks property and preserves P-points. In order to do
this we present an equivalent, combinatorial, version of the forcing.

Definition 5.6. A tree T ⊆ 2<ù is hyper-perfect if

∀s ∈ T ∀n ∃t ⊇ s ∀r ∈ 2n tar ∈ T. (7)

A set P ⊆ 2ù is hyper-perfect if there is a hyper-perfect tree T such that P = [T ].

Zaj́ıček and Zelený [22, 18] and Rojas-Rebolledo [14] proved that every SP-
positive Borel set contains a perfect SP-positive subset. We will need a slight
extension of their result.

Theorem 5.7. Every Borel SP-positive subset of 2ù contains a hyper-perfect set.

Proof. Let A ⊆ 2ù be Borel, A /∈ SP. According to the mentioned theorem
of Zaj́ıček and Zelený [18, 3.4] we may assume that A is closed. Mutatis mutandis
we may further assume that no nonempty relatively open subset of A is ó-porous.
Writing T = {s ∈ 2<ù : ∃x ∈ As ⊆ x} and using condition (2) of Lemma 3.7 the
latter reads

∀s ∈ T ∀n ∃t ⊇ s ∀r ⊇ t (|r| = |t|+ n=⇒A ∩ 〈r〉 6= ∅),

which is nothing but condition (7). Hence the tree T is hyper-perfect. Since A is
closed, [T ] ⊆ A, as required. ⊣

Corollary 5.8. The forcing notionsPSP andHP = {T ⊆ 2<ù : T is hyper-perfect}
are forcing equivalent.

Proof. By the above theorem 5.7 the function ϕ : HP → PSP defined by ϕ(T ) =
[T ] is a dense embedding. ⊣

Theorem 5.9. It is relatively consistent with ZFC that cof(N ) = ù1 and
cov(SP) = ù2.
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Proof. Start with a model of CH and iterate the forcing HP with countable sup-
port ù2 times. It is immediate from the definition that HP adds a new real which
is not contained in any element of SP coded in the ground-model. Hence HPù2
forces cov(SP) = ù2. On the other hand, a standard fusion argument shows
that the forcing HP has the Sacks property, which in turn is preserved under
countable support iteration of proper partial orders (see [1, 6.3.F]) and hence
V HPù2 � cof(N ) = ù1. ⊣

By [19, Theorem 4.1.8] of J. Zapletal the forcing PSP (and hence HP) does not
add independent (splitting) reals. By another theorem of J. Zapletal [20] a definable
forcing which does not add an independent real and has the Sacks property (in fact,
a lot less is needed) preserves P-points, which is preserved by a countable support
iteration by a theorem of Shelah [2] (or see [1, 6.2.6]). So in our model there is an
ultrafilter (P-point) of character ù1.

§6. Concluding remarks. Cardinal invariants of SP(X ) obviously depend on the
metric space X . To illustrate it, we calculate non(SP(ùù)) and cov(SP(ùù)). The
metric we consider is d (f, g) = 2−n, where n = min{i : f(i) 6= g(i)}.

Theorem 6.1. non(SP(ùù)) = non(M ) and cov(SP(ùù)) = cov(M ).

Proof. For each g ∈ ùù let Xg = {f ∈ ùù : ∀∞n g(n) 6= f(n)} and let J be
the ideal on ùù generated by {Xg : g ∈ ùù}.

Claim. J ⊆ SP(ùù) ⊆M .

Proof of the claim. The inclusion SP(ùù) ⊆M is obvious. Fix g and for every
k ∈ ù consider the set X kg = {f ∈ ùù : ∀n > k g(n) 6= f(n)}. It is clear that

Xg =
⋃

k∈ù X
k
g . Therefore it is enough to show that X

k
g is porous for each k. So

suppose that B(h, r) is a ball with 2−n+1 > r > 2−n > 2−k . Then there is p ∈ ù<ù

such that 〈p〉 ⊆ B(h, 2−n) and |p| = n > k. Let q = pag(n) and consider 〈q〉,
which is a ball of radius at least quarter r. If f ∈ X kg , then f(n) 6= g(n). Therefore

f does not extend q, i.e., f /∈ 〈q〉. We showed that X kg ∩ 〈q〉 = ∅. Conclude that

X kg is porous, with r0 = 2
−k and porosity constant 14 . Thus J ⊆ SP(ùù). The

claim is proved.
By [1, 2.4.1,2.4.7], non(J ) = non(M ) and cov(J ) = cov(M ). So the theorem
follows at once from the claim. ⊣

Note that since every bounded set in ùù is obviously ó-porous, theorem 5.7 fails
for ùù . Also corollary 4.4 and theorem 5.9 fail for ùù .
A set in a metric space A is termed upper porous at a point x if there is a constant
p > 0 and a sequence rn → 0 such that for every n there is yn such thatB(yn , prn) ⊆
B(x, rn)\A. A set is upper porous if it is upper porous at each of its points. General
references: [16, 17].
J. Brendle and M. Repický investigated cardinal characteristics of the ideal UP
of ó-upper porous sets on the line. J. Brendle [3] proved that (a) add(UP) = ù1
and (b) cof(UP) = c. M. Repický [11, 12, 13] showed that (c) cov(UP) 6 cof(N ),
(d) non(UP) > mó-centered and (e) non(UP) > add(N ). As to (c) and (d), our
theorems show that analogous inequalities cov(SP) 6 cof(N ) and non(SP) >

mó-centered consistently fail. However, we do not know if the analogies of (a), (b)
and (e) for SP hold.
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Question 6.2. Is it true that

(i) add(SP) = ù1?
(ii) cof(SP) = c?
(iii) non(SP) > add(N )?

Cardinal invariants of the ideal Mon(X ) of ó-monotone subsets of a metric
space X probably also depend on the metric space X . Zelený [21] constructed an
absolutely continuous function f: [0, 1] → R, which graph X is not ó-porous and
thus not ó-monotone. Since f is absolutely continuous, X is a rectifiable curve
of finite length. Thus the 1-dimensional Hausdorff measure is a natural measure
on X . It can be shown thatX = A∪B withA ó-monotone and B of measure zero.
This can be rephrased as follows.

Proposition 6.3. There is a compatible metric ñ on [0, 1] such that

(i) Z = ([0, 1], ñ) is not ó-monotone,
(ii) there is a Lebesgue null set A ⊆ Z such that Z \A is ó-monotone.

In particular, in contrast with the situation in the plane, not every ó-monotone
subset of Z is null. We wonder:

Question 6.4. What can one say about add(Mon(X )), non(Mon(X )),
cov(Mon(X )) and cof(Mon(X )) when X is

(i) the space Z above,
(ii) the Hilbert cube,
(iii) the Urysohn universal space?

As to the minimal size of a metric space that is not ó-monotone, we know the
following.

Theorem 6.5. Every separable metric space of size < mó-linked is ó-monotone.

Proof. Fix a separable metric space X such that |X | < mó-linked and a countable
baseB . Given n > 0 define Pn as follows: (U , F,<) ∈ Pn if and only if

(i) U ∈ [B ]<ù ,
(ii) maxU∈U diamU < minV 6=W∈U dist(V,W ),
(iii) < is a linear order on U ,
(iv) if U < V < W and x ∈ U, y ∈ V, z ∈W , then d (x, y) 6 nd (x, z),
(v) F ⊆

⋃

U ,
(vi) ∀U ∈ U |F ∩U | = 1

and order Pn by (U , F,<) 6 (U ′, F ′, <′) if

(vii) F ⊇ F ′,
(viii) ∀U ∈ U ∃!U ′ ∈ U ′ (U ⊆ U ′),
(ix) ∀U,V ∈ U U < V ⇒ (U ′ = V ′ ∨U ′ <′ V ′).

Claim. Pn is ó-linked.

Proof of the claim. Fix U = {Ui : i < k} and a linear order < on U satisfy-
ing (i)–(iv). Let F = {xi : i < k} and G = {yi : i < k} be such that xi , yi ∈ Ui
for all i < k and (U , F,<), (U , G,<) ∈ Pn. For each i < k choose from B neigh-
borhoods Vi ,Wi ⊆ Ui of xi , yi , respectively, such that max(diamVi ,diamWi) <
dist(Vi ,Wi ). Consider the open family V = {Vi : i < k} ∪ {Wi : i < k} and order
it as follows: Vi ≺ Wi for all i , Vi ≺ Vj iff Ui < Uj andWi ≺ Wj iff Ui < Uj .
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It is straightforward that (V , F ∪ G,≺) ∈ Pn and that (V , F ∪ G,≺) 6 (U , F,<)
and (V , F ∪ G,≺) 6 (U , G,<). Thus the family (U , F,<) ∈ Pn : F ∈ [X ]< ù}
is linked for all U , < and since there are only countably many such pairs, we are
done. ⊣

Let P =
∏

n>0 P
n be the finite support product of the forcing notions Pn, ordered

coordinatewise. Since Pn are by the claim ó-linked, so is P. For p ∈ P and
n ∈ ù let Up(n), Fp(n) and <p(n) denote the coordinates of p(n), i.e., p(n) =
(

Up(n), Fp(n), <p(n)
)

. Define the following sets:

Hk,n =
{

p ∈ P : max{diamU : U ∈ Up(n)} <
1
k

}

, n, k ∈ ù,

Dx = {p ∈ P : ∃n (x ∈ Fp(n))}, x ∈ X.

It is easy to check that all of these sets are dense in P. Since |X | < mó-linked,
there is a filter G ⊆ P that meets all of them. Fix n ∈ ù for the moment and set
Xn =

⋂

p∈G

⋃

Up(n). Order Xn as follows:

x ≺n y if ∃p ∈ G ∃U,V ∈ Up(n) x ∈ U ∧ y ∈ V ∧U <p(n) V.

Since G meets Hk,n for all k, conditions (ii) and (iv) ensure that ≺n witnesses Xn
to be monotone, the a monotonicity constant c = n. Since G meets all Dx , for any
x ∈ X there is n such that x ∈ Xn. Hence X =

⋃

n Xn, i.e., X is ó-monotone. ⊣

The above forcing P yields also a generalization of Theorem 5.3:

Theorem 6.6. It is relatively consistent with ZFC that cov(Mon(X )) < c for any

Polish metric space X .

Proof. Let V � ¬CH and let Pù1 be a finite support iteration of the forcing P.
Let G be Pù1-generic over V . Then V [G ] � ¬CH, since Pù1 is ccc, and V [G ] �
cov(Mon(X )) = ù1, since Pmakes the set of ground-model reals ó-monotone. ⊣

However, we do not know if Theorem 6.5 remains true for nonseparable spaces:

Question 6.7. Is there a metric space of cardinality ù1 that is not ó-monotone?
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