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Abstract. We answer a question of van Mill and Wattel by showing that there is
a separable locally compact space which admits a continuous weak selection but is not
weakly orderable. Furthermore, we show that a separable space which admits a continuous
weak selection can be covered by two weakly orderable spaces. Finally, we give a partial
answer to a question of Gutev and Nogura by showing that a separable space which admits
a continuous weak selection admits a continuous selection for all finite sets.

1. Introduction. The study of continuous selections was initiated by
E. Michael in his seminal 1951 paper [14]. He considered the hyperspace 2X

of all non-empty closed subsets of a topological space X equipped with the
Vietoris topology, i.e. the topology on 2X generated by sets of the form

〈U ;V0, . . . , Vn〉 = {F ∈ 2X : F ⊆ U and F ∩ Vi 6= ∅ for any i ≤ n},

where U, V0, . . . , Vn are open subsets of X. A function ϕ defined on 2X

(or some subspace of 2X) is a selection if ϕ(F ) ∈ F for every member
of its domain. A selection is continuous if it is continuous with respect to
the Vietoris topology. In particular, a weak selection is a selection defined
on [X]2, the set of all two-element subsets of X.

The general question studied in Michael’s and subsequent articles is:
When does a space admit a continuous (weak) selection? In his paper,
Michael has shown that a sufficient condition for a space X to admit a
continuous weak selection is that it admits a weaker topology generated by
a linear order, i.e. that the space is weakly orderable. The natural question,
whether this characterizes spaces which admit continuous weak selections,
implicit in Michael’s paper, was stated explicitly in a paper by J. van Mill
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and E. Wattel [15]. Michael himself showed that the answer is positive for
connected spaces and that for compact connected spaces the existence of a
continuous weak selection on X is equivalent to orderability of X. J. van
Mill and E. Wattel showed the same for all compact spaces (not necessarily
connected). Building on work of G. Artico, U. Marconi, J. Pelant, L. Rotter
and M. Tkachenko [1], S. Garćıa Ferreira and M. Sanchis [7] showed that a
pseudocompact space X admits a continuous weak selection if and only if
the Čech–Stone compactification βX is orderable, and consequently, if and
only if X is suborderable (or a GO-space). Improving on Michael’s result
stated above, T. Nogura and G. Shakhmatov proved in [16] that a locally
connected space X admits a continuous weak selection if and only if it is
orderable. Recently, V. Gutev and T. Nogura [11], in a very nice survey arti-
cle on the selection problem, restated van Mill–Wattel’s question and asked,
in particular, whether a locally compact space admitting a continuous weak
selection is weakly orderable.

Here we will answer both questions in the negative by constructing a
separable locally compact Tikhonov space which admits a continuous weak
selection but is not weakly orderable. In fact, our space is a Ψ -space, a
natural space associated to a carefully constructed almost disjoint family on
a countable set.

We further study the existence of continuous weak selections on separable
spaces. We show that, although the answer to van Mill–Wattel’s question
is negative even for separable spaces, every separable space admitting a
continuous weak selection can be covered by two weakly orderable subspaces.
As a corollary, we provide a partial answer to another question of Gutev and
Nogura [10] by showing that a separable space admitting a continuous weak
selection admits in fact a continuous selection for all finite sets.

All spaces considered here are at least Hausdorff. In general, all our
spaces X are Tikhonov, though the hyperspaces 2X typically are not. Given
a spaceX, we will work with the following special subsets of 2X , where n ≥ 1:

Fn(X) = {F ∈ 2X : |F | ≤ n}, [X]n = {F ∈ 2X : |F | = n},
Fin(X) =

⋃
{Fn(X) : n ∈ ω}, K(X) = {F ∈ 2X : F is compact}.

We will denote by Sel(A) the collection of continuous selections for A.
In particular, Sel(F2(X)) consists of all continuous weak selections on the
space X. It is easy to see that X admits a continuous weak selection if and
only if there is a continuous function ϕ : X2 → X such that ϕ(x, y) =
ϕ(y, x) ∈ {x, y} for every x, y ∈ X. We will refer to such a ϕ also as a weak
selection.

Given an ordered set (X,≤) and x ∈ X, we denote by (←, x)≤ the initial
segment and by (x,→)≤ the final segment determined by x, respectively;
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i.e. (←, x)≤ = {y ∈ X : y < x} and (x,→)≤ = {y ∈ X : x < y}. Similarly,
(←, x]≤ = X \ (x,→)≤ and [x,→)≤ = X \ (←, x)≤.

Our set-theoretic notation is mostly standard and follows [13]. In partic-
ular, ω stands for the set of all natural numbers (finite ordinals) and [ω]ω the
set of all infinite subsets of ω. A ⊆∗ B denotes that A is almost contained
in B, i.e. A \ B is finite; A =∗ B means that A ⊆∗ B and B ⊆∗ A. Recall
also that if C ⊆ [ω]ω, then A ∈ [ω]ω is a pseudointersection of C if A ⊆∗ C
for every C ∈ C.

Concerning weak selections we introduce the following notation. Let X
and Y be sets and ψ : [X]2 → X and ϕ : [Y ]2 → Y weak selections. We will
say that ψ and ϕ are isomorphic, ψ ≈ ϕ, if there is a bijection % : X → Y
such that ψ({a, b}) = ϕ({%(a), %(b)}) for every a, b ∈ X. We will also say
that ψ is embedded in ϕ if ψ ≈ ϕ�[A]2 for some A ⊆ X. Let ϕ be a weak
selection on a setX and let x, y ∈ X. We will denote by x→ϕ y the condition
ϕ(x, y) = y. If A,B ⊆ X, we will say that B dominates A with respect to ϕ,
denoted by A ⇒ϕ B, if a →ϕ b for all a ∈ A and b ∈ B. We will also say
that A and B are aligned with respect to ϕ, and write A ‖ϕ B, if A⇒ϕ B or
B ⇒ϕ A. Given A,B ∈ [ω]ω and ψ a weak selection on ω, we will say that B
almost dominates A with respect to ψ (or simply that B almost dominates A
if ψ is clear from context), and write A⇒∗ψ B, if there is a k ∈ ω such that
A \ k ⇒ψ B \ k. We will also say that A and B are almost aligned with
respect to ψ, denoted by A ‖∗ψ B, if A⇒∗ψ B or B ⇒∗ψ A. If n ∈ ω then we
will say that A is almost dominated by {n}, written A ⇒∗ψ {n}, whenever
A \ k ⇒ψ {n} for some k ∈ ω. In a similar way, we define {n} ⇒∗ψ A and
{n} ‖∗ψ A. When the selection is clear from context, we suppress the use of
the subscript. Given a weak selection ϕ, a triple {a, b, c} is called a 3-cycle
if either a→ b→ c→ a or c→ b→ a→ c.

2. A solution to van Mill and Wattel’s question. In this section
we will answer van Mill and Wattel’s question by constructing a separable
locally compact Tikhonov space which admits a continuous weak selection,
yet is not weakly orderable. In fact, our space is going to be a Mrówka–Isbell
space associated to a certain almost disjoint family on a countable set.

2.1. Extensions of selections to Mrówka–Isbell spaces. Recall that a fam-
ily A ⊆ [ω]ω is almost disjoint (AD) if any two distinct elements of A have
finite intersection. A family A is MAD if it is AD and maximal with respect
to this property.

The Mrówka–Isbell space Ψ(A) associated to an AD family A is defined
as follows: The underlying set is ω ∪ A, all the elements of ω are isolated
and the basic neighborhoods of A ∈ A are of the form {A} ∪ (A \ F ) for
some finite set F ⊆ ω.



4 M. Hrušák and I. Mart́ınez-Ruiz

It follows immediately from the definition that Ψ(A) is a first countable
and locally compact space. It is well known and easy to see that Ψ(A) is
pseudocompact if and only if the family A is MAD [4]. Continuous selections
on Mrówka–Isbell spaces were considered in [12], where it was shown that
Ψ(A) does not admit a continuous weak selection if A is MAD, and that
Ψ(A) does not admit a selection for 2Ψ(A) for any uncountable A.

The next easy lemma characterizes when a weak selection on ω extends
to a continuous weak selection on Ψ(A).

Lemma 2.1. Let ϕ be a weak selection on ω and let A be an almost
disjoint family. Then ϕ extends (uniquely) to a continuous weak selection
on Ψ(A) if and only if

(1) A ‖∗ϕ B for all A 6= B ∈ A,
(2) {n} ‖∗ϕ A for all n ∈ ω and A ∈ A.

Our plan for constructing the space is to first find a suitable weak se-
lection on ω and then to carefully construct an AD family to which the
selection extends. It should be noted here that such a selection has to be
rather complicated. Consider, for instance, a weak selection on ω defined
by ϕ({m,n}) = min{m,n}. Then ϕ cannot be extended to any AD family
which has more than one element, as no two infinite subsets of ω are almost
aligned with respect to ϕ.

2.2. Universal weak selection. We will describe a sufficiently complex
weak selection on ω here. It is, in fact, the most complicated selection on ω
and is an “oriented” version of Rado’s random graph (see [2], [5] and [17]).
It can be easily defined as a Fräıse limit; here we define it directly from a
countable independent family. Recall that a family I ⊆ [ω]ω is independent
if
⋂
F \

⋃
F ′ is infinite for any finite disjoint subsets F ,F ′ of I.

Proposition 2.2. There is a weak selection ϕ : [ω]2 → ω with the
following extension property :

(D) For any disjoint F,G ∈ [ω]<ω, there is an n ∈ ω \ (F ∪G) such that
F ⇒ϕ {n}⇒ϕ G.

Proof. Let J = {Jn : n ∈ ω} ⊆ [ω]ω be an independent family. Recur-
sively define a family I = {In : n ∈ ω} in the following way:

• I0 = J0;
• In+1 = (Jn+1 \ {k ≤ n : n+ 1 ∈ Ik}) ∪ {k ≤ n : n+ 1 /∈ Ik}.

For every n ∈ ω, the set In ∈ I is obtained by finite changes of Jn, guaran-
teeing that I is also an independent family such that n ∈ Im if and only if
m 6∈ In, for all n,m ∈ ω. Let ϕ : [ω]2 → ω be defined by ϕ({n,m}) = n if
and only if n ∈ Im.
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To conclude the proof, it is enough to verify that ϕ satisfies (D); but
this follows from the fact that I is independent: if F,G ∈ [ω]<ω are disjoint
then F ⇒ϕ {k}⇒ϕ G for any k ∈ (

⋂
n∈F In) ∩ (

⋂
m∈G(ω \ Im)).

In what follows, ϕ will denote the weak selection described in the pre-
vious proposition and will be called the universal weak selection. The next
proposition gathers basic facts about the universal weak selection and is a
direct translation of basic properties of the random graph [2]. We include
the proof for the sake of completeness. Let R = {A ⊆ ω : ϕ�[A]2 ≈ ϕ}.

Proposition 2.3. Let ϕ be the universal weak selection. Then:

(a) ϕ is, up to isomorphism, the unique weak selection with property D.
(b) Every weak selection ψ on ω can be embedded in ϕ.
(c) Given any partition {P0, P1} of ω, there is an i ∈ 2 such that Pi ∈ R.
(d) If F,G ∈ [ω]<ω are disjoint , then

{k ∈ ω \ (F ∪G) : F ⇒ϕ {k}⇒ϕ G} ∈ R.
Proof. (a) and (b) follow by an application of the back-and-forth argu-

ment. To verify (c), suppose the contrary and let {P0, P1} be a partition of ω
such that neither P0 nor P1 is in R. As ϕ�[Pi]2 does not satisfy (D), we can
find disjoint Fi, Gi ∈ [Pi]<ω such that for each n ∈ Pi either n does not dom-
inate Fi or n is not dominated by Gi. Since (D) is satisfied by ϕ, there is an
m ∈ ω so that F0∪F1 ⇒ {m}⇒ G0∪G1. However, m ∈ P0 or m ∈ P1, a con-
tradiction in either case. Finally, to verify (d), suppose that for a couple F,G
of finite disjoint subsets of ω, the set A = {k ∈ ω \ (F ∪G) : F ⇒ {k}⇒ G}
is not in R. It follows by (c) that ω \ A ∈ R and so one can find n ∈ ω \ A
that dominates F and is dominated by G; but this n must also be in A,
which is a contradiction.

We are now interested in studying the universal weak selection in relation
to linear orders on ω. Let ≤ be a linear order on a set X and let Y ⊆ X be
infinite. We will say that the set Y is monotone if either there is a downward
closed set S ⊆ X such that Y ⊆ S and Y ∩ (←, s)≤ is finite for every s ∈ S,
or there is an upward closed set T ⊆ X such that Y ⊆ T and Y ∩ (t,→)≤ is
finite for every t ∈ T .

Proposition 2.4. Let ϕ be the universal selection and let 4 be a linear
order on ω. If X ⊆ ω belongs to R, then there are X0, X1 ∈ [X]ω such that

(1) X0 ∩X1 = ∅,
(2) X0 ⇒ X1,
(3) X0 ∪X1 is monotone.

Proof. If X ∩ (←, 0)4 ∈ R, then define M0 = X ∩ (←, 0)4; otherwise
let M0 = X ∩ [0,→)4. As X ∈ R, in either case M0 ∈ R by 2.3(e). Choose
distinct a0, b0, c0 ∈ M0 so that {a0, b0, c0} is a 3-cycle in M0. Choose now



6 M. Hrušák and I. Mart́ınez-Ruiz

x0, y0 ∈ {a0, b0, c0} such that x0 ≺ y0 and x0 → y0 and define the set
D1 = {n ∈ M0 : x0 → n → y0} \ {x0, y0}, which, by Proposition 2.3(d), is
in R. As before, let M1 = D1 ∩ (←, 1)4 if D1 ∩ (←, 1)4 ∈ R, and M1 =
D1∩[1,→)4 otherwise. Choose a1, b1, c1 ∈M1 so that {a1, b1, c1} is a 3-cycle
in M1 and pick x1, y1 ∈ {a1, b1, c1} such that x1 → y1 and y1 ≺ x1. Notice
that {x0, x1}⇒ {y0, y1}.

Following this procedure, we can form recursively {Mn : n ∈ ω} ⊆ R
and disjoint subsets W0 = {xn : n ∈ ω},W1 = {yn : n ∈ ω} ∈ [X]ω

such that for every n ∈ ω, Mn+1 ⊆Mn, {x0, x1, . . . , xn}⇒ {y0, y1, . . . , yn},
xn ≺ yn whenever n is even, and yn ≺ xn if n is odd. Moreover, the set
S = {n ∈ ω : Mn ⊆ (n,→)4}, if infinite, is 4-downward closed, while T =
{n ∈ ω : Mn ⊆ (←, n)4} is 4-upward closed, if it is infinite. Notice also that
(W0∪W1)∩ (←, k)4 is finite for every k ∈ S, as also is (W0∪W1)∩ (k,→)4

for every k ∈ T .
To conclude the proof, notice that either W0 ∩ S and W1 ∩ S are both

infinite, or both W0 ∩ T and W1 ∩ T are. To see this, suppose, e.g., that
W0 ∩ S is finite. As S ∪ T = ω, there is some k ∈ ω such that for all n ≥ k,
xn ∈ T . Whenever m ≥ k is even, then xm ≺ ym and as T is 4-upward
closed, also ym ∈ T . If both W0 ∩S,W1 ∩S are infinite, define X0 = W0 ∩S
and X1 = W1 ∩S, if not, let X0 = W0 ∩ T and X1 = W1 ∩ T . The recursion
guarantees that whenever k ≥ n, then xk, yk ∈ Mn, and consequently the
set X0 ∪X1 is monotone.

2.3. The construction. Here we will show how to construct an almost
disjoint family B such that the universal selection extends to Ψ(B), yet Ψ(B)
is not weakly orderable. The next lemma shows that the universal selection
can be extended to a large almost disjoint family.

Lemma 2.5. There is an AD family A ⊆ [ω]ω such that :

(1) |A| = c,
(2) A ⊆ R,
(3) A ‖∗ B for every A 6= B ∈ A.

Proof. Consider the complete binary tree 2<ω and for every f ∈ 2ω,
consider the branch determined by f , Af = {f�n : n ∈ ω}. For f, g ∈ 2<ω,
we write f ⊥ g if there is an n ∈ ω so that f(n) 6= g(n), and f 6⊥ g whenever
either f ⊆ g or g ⊆ f . Define the weak selection ψ on 2<ω by ψ({f, g}) = g
if and only if either f 6⊥ g and ϕ({|f |, |g|}) = |g|, or f ⊥ g and f(f M g) = 0,
where f M g = min{k ∈ ω : f(k) 6= g(k)}.

By the universality of ϕ, we can suppose that ψ is embedded in ϕ. It is
easy to see that Af ∈ R for every f ∈ 2ω. Moreover, (Af \fMg)⇒ (Ag\fMg)
if f(f M g) = 0, and (Ag \ f M g) ⇒ (Af \ f M g) otherwise, which implies
that Af ‖∗ Ag. Therefore A = {Af : f ∈ 2ω} is the required family.
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Let A = {Aα : α < c} be the almost disjoint family constructed in
the lemma. Next we will show how to refine A to “kill” all potential linear
orders on ω. To that end, enumerate the collection of all linear orders on ω
as {≤α : α < c}.

Lemma 2.6. For every α < c, there are Xα
0 , X

α
1 ∈ [Aα]ω such that

(1) Xα
0 ∩Xα

1 =∗ ∅,
(2) Xα

0 ‖∗ Xα
1 ,

(3) for every n ∈ ω and i ∈ 2, Xα
i ‖∗ {n},

(4) Xα
0 ∪Xα

1 is ≤α-monotone.

Proof. Fix α < c. By Lemma 2.5, Aα ∈ R and by Proposition 2.4 we can
find X0, X1 ∈ [Aα]ω such that X0 ⇒ X1 and X0∪X1 is ≤α-monotone. Since
for every x ∈ X0, either x → 0 or 0 → x, there is an infinite C0 ⊆ X0 such
that C0 ‖ {0}. Proceeding recursively, construct a family C = {Cn : n ∈ ω}
of infinite subsets of X0 such that for every n ∈ ω, Cn+1 ⊆ Cn and Cn ‖ {n}.
Let Xα

0 be a pseudointersection of C, i.e. Xα
0 ∈ [X0]ω is such that Cn \Xα

0 is
finite for every n ∈ ω. Analogously, construct a family E = {En : n ∈ ω} of
infinite subsets of X1 such that En+1 ⊆ En and En ‖ {n} for every n ∈ ω.
Therefore, if Xα

1 is a pseudointersection of E , then Xα
0 , Xα

1 satisfy (1)–(3)
by construction, and (4) follows from the fact that both sets are infinite
subsets of X0 and X1, which satisfy 2.4(3).

We are now ready to prove the main result of the paper.

Theorem 2.7. There is a separable, first countable, locally compact
space which admits a continuous weak selection but is not weakly orderable.

Proof. Let B = {Xα
0 , X

α
1 : α < c}, where Xα

i is as in Lemma 2.6 for
i ∈ 2, and consider X = Ψ(B), the Mrówka–Isbell space associated to B.

By Lemmas 2.5 and 2.6, ϕ satisfies the conditions of Lemma 2.1, hence
there is a (unique) continuous weak selection ϕ on Ψ(B) extending the uni-
versal weak selection ϕ.

To conclude the proof, it is enough to verify that X is not weakly order-
able. Aiming at a contradiction, suppose that there exists a linear order v
on X whose induced topology is coarser than the topology on X. Let α < c
be such that v�[ω]2 = ≤α and suppose, without loss of generality, that for
the points Xα

0 , X
α
1 ∈ Ψ(B) the inequality Xα

0 v Xα
1 holds. By Lemma 2.6,

the infinite set Xα
0 ∪Xα

1 is ≤α-monotone. Assume that S ⊆ ω is downward
closed, contains Xα

0 ∪ Xα
1 and for every s ∈ S, (←, s)≤α ∩ (Xα

0 ∪ Xα
1 ) is

finite. If there is an s ∈ S with Xα
0 v s, then (←, s)v is an v-open interval

containing the point Xα
0 , which meets the set Xα

0 in finitely many points.
However, this contradicts the assumption that the @-order topology on X is
coarser that the original one. On the other hand, if S ⊆ (←, Xα

0 )v, then the
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interval (Xα
0 ,→)v contains the point Xα

1 and is disjoint from the set Xα
1 ,

which leads to the same contradiction.
The case when Xα

0 ∪ Xα
1 is contained in an upward directed set T is

treated analogously.
We have proved that the topology determined by the order v cannot be

coarser than that of X, and therefore X is not weakly orderable.

Remark 2.8. There is a space X ⊆ βω which admits a continuous weak
selection but is not weakly orderable.

Fix A as in Theorem 2.7 and pick pA ∈ A∗ for every A ∈ A. The space
X = ω ∪ {pA : A ∈ A} is as required.

3. Weak selections on separable spaces. If X is a weakly orderable
space, then it not only admits a weak selection, but also a selection for
K(X): the function min�K(X) is a selection for K(X). Motivated by this,
Gutev and Nogura asked in [10] the following question:

Does there exist a space X that admits a continuous weak selection, but
Sel(Fn(X)) = ∅ for some n > 2?

This question is still open, even for n = 3. In this section we will prove
that for certain spaces, including separable spaces, the existence of a con-
tinuous weak selection implies that Sel(Fin(X)) 6= ∅, providing a partial
negative answer to the question. In particular, the example presented in
Theorem 2.7 admits even a continuous selection for all compact sets. We
can conclude that there are spaces that are not weakly orderable even when
Sel(K(X)) 6= ∅.

3.1. 2-to-1 maps onto ordered spaces. Next we show that for separable
spaces the existence of weak selections implies the existence of a 2-to-1
continuous map onto an ordered space. In particular, even though there are
separable spaces which admit a weak selection and are not weakly orderable,
they can always be covered by two weakly orderable subspaces.

Costantini [3] considered a similar analysis of weak selections on separa-
ble spaces having a dense set of isolated points. Gutev [9] proved that every
second countable space which admits a continuous weak selection is weakly
orderable.

Proposition 3.1. Let ψ be a continuous weak selection defined on X
and let x, y, z ∈ X be such that {x, y, z} is a 3-cycle with respect to ψ. Then
there is a (canonical) partition P of X so that |P| = 5 and each P ∈ P is
clopen and satisfies |{x, y, z} ∩ P | ≤ 1.
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Proof. Suppose that x→ y → z → x and consider the following sets:

P0 = {w ∈ X \ {y, z} : z → w → y},
P1 = {w ∈ X \ {x, z} : x→ w → z},
P2 = {w ∈ X \ {x, y} : y → w → x},
P3 = {w ∈ X : {x, y, z}⇒ {w},
P4 = {w ∈ X : {w}⇒ {x, y, z}}.

It is not difficult to prove that P = {Pi : i < 5} is a partition of X and, by
continuity of ψ, Pi is open (and so clopen) for every i < 5. Also, x ∈ P0,
y ∈ P1 and z ∈ P2.

An immediate consequence of the previous proposition is that if X is a
connected space admitting a continuous weak selection ψ, then it does not
admit 3-cycles with respect to ψ and so X is weakly orderable.

Recall that a relation R ⊆ X×X is total if for every a, b ∈ X, (a, b) ∈ R
or (b, a) ∈ R.

Proposition 3.2. Let X be a separable space that admits a continu-
ous weak selection ψ. Then there is a closed , reflexive, total and transitive
relation R ⊆ X ×X such that |{z ∈ X : (x, z) ∈ R and (z, x) ∈ R}| ≤ 2.

Proof. Let D = {dn : n ∈ ω} be a countable dense subset of X and
let T = {Tn : n ∈ ω} be an enumeration of all triples T ∈ [D]3 that are
3-cycles with respect to ψ. For every n ∈ ω, let En be the canonical partition
determined by the 3-cycle Tn, defined in the proof of Proposition 3.1.

Define recursively closed relations Rn ⊆ X×X for every n ∈ ω as follows:
Let R0 = X × X and suppose that Rn is a closed, reflexive and total

relation with the following property:
There is a unique finite family Cn = {C0, . . . , Ckn} of closed subsets of X

such that for x, y ∈ X and i < j ≤ kn:

(1) X =
⋃
{Cl : l ≤ kn},

(2) Cn is a refinement of the partition En−1, where E−1 = {X},
(3) if x, y ∈ Ci then (x, y) ∈ Rn ∩R−1

n ,
(4) if x ∈ Ci and y ∈ Cj \ Ci, then (y, x) /∈ Rn,
(5) if Ci ∩ Cj 6= ∅ then Ci ∩ Cj = {dl} for some l < n, and Ci ∩ Cj 6= ∅

only if j − i = 1,
(6) if d ∈ Cj ∩ {dl : l < n} and z → d for some z ∈ Cj \ {d}, then

Cj ⇒ {d},
(7) if d ∈ Cj ∩ {dl : l < n} and d → z for some z ∈ Cj \ {d}, then
{d}⇒ Cj .

The conditions (3) and (4) guarantee uniqueness of the family Cn. Also, the
family Cn determines the relation Rn in a natural way: (x, y) /∈ Rn if and
only if there are i < j ≤ kn such that y ∈ Ci and x ∈ Cj \ Ci.
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Let i ≤ kn be such that dn ∈ Ci. If {dn} is an isolated point, define
Ci,0 = Ci ∩ {x ∈ X \ {dn} : dn → x}, Ci,1 = {dn} and Ci,2 = Ci ∩ {x ∈
X \ {dn} : x→ dn}. In this case, let

Sn = Rn \ {(x, y) : x ∈ Ci,l, y ∈ Ci,s and 0 ≤ s < l ≤ 2}.

If dn is not isolated, let Ci,0 = Ci ∩ {x ∈ X : dn → x} and Ci,1 =
Ci ∩ {x ∈ X : x→ dn}. Define then

Sn = Rn \ {(x, y) : x ∈ Ci,1 \ {dn}, y ∈ Ci,0 \ {dn}}.

The relation Sn is reflexive and total. Moreover, Sn is also closed. To
prove this, let (x, y) /∈ Sn. Since Rn is closed and Sn ⊆ Rn, we can suppose
that (x, y) ∈ Rn. Therefore, x, y ∈ Ci, x → dn and dn → y. Let Ux and
Uy be disjoint neighborhoods of x and y respectively such that Ux ⊆ (Ci ∪
Ci+1)\(Ci−1∪Ci+2) and Uy ⊆ (Ci−1∪Ci)\(Ci−2∪Ci+1) (take Ux = {dn} if
x = dn and dn is isolated, and analogously for Uy). This is possible because
of condition (5). Finally, let U ′x = Ux ∩ {z ∈ X \ {dn} : z → dn} and
U ′y = Uy ∩ {z ∈ X \ {dn} : dn → z} (again, let U ′x = {dn} if dn is isolated).
Then (U ′x × U ′y) ∩ Sn = ∅ and so the relation Sn is closed.

Let C′n = {C ′0, . . . , C ′kn+2}, where C ′j = Cj if 0 ≤ j < i, C ′i = Ci,0,
C ′i+1 = Ci,1, Ci+2 = C ′i,2, and C ′j = Cj−2 for i + 2 < j ≤ kn + 2, where
C ′i+2 = ∅ if dn is not isolated.

By construction, Sn together with the collection C′n has properties
(1)–(7), except possibly (2). We only need to refine this relation so as to
obtain a refinement of En.

Fix j ≤ k′n, where k′n = kn+2 if dn is isolated and k′n = kn+1 otherwise.
We will find a partition Dj of C ′j which refines En and consists of closed sets.
For this, we consider all possible cases:

Case 1: There is an E ∈ En such that C ′j ⊆ E. In this case, let Dj =
{Dj,0}, where Dj,0 = C ′j .

Case 2: {E ∈ En : E ∩ C ′j 6= ∅} = {E0, . . . , Et} with 0 < t ≤ 5,
C ′j ∩ {dl : l ≤ n} = {d}, {d}⇒ C ′j and d ∈ Et. Let Dj = {Dj,l : 0 ≤ l ≤ t},
where Dj,l = El ∩ C ′j for every l.

Case 3: {E ∈ En : E ∩ C ′j 6= ∅} = {E0, . . . , Et} with 0 < t ≤ 5,
C ′j ∩ {dl : l ≤ n} = {d}, C ′j ⇒ {d} and d ∈ E0. Let Dj = {Dj,l : 0 ≤ l ≤ t},
where Dj,l = El ∩ C ′j for every l.

Case 4: {E ∈ En : E ∩ C ′j 6= ∅} = {E0, . . . , Et} with 0 < t ≤ 5,
C ′j ∩ {dl : l ≤ n} = {d, d′}, d′ → d and d, d′ ∈ E0. Let x ∈ C ′j \ E0. By (6)
and (7), d′ → x and x→ d. In this case, let Dj = {Dj,0, . . . , Dj,t+1}, where
Dj,0 = C ′j ∩ E0 ∩ {y ∈ X : x → y}, Dj,l = C ′j ∩ El for every 1 ≤ l ≤ t and
Dj,t+1 = C ′j ∩ E0 ∩ {y ∈ X : y → x}.
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Case 5: {E ∈ En : E ∩ C ′j 6= ∅} = {E0, . . . , Et} with 0 < t ≤ 5,
C ′j ∩ {dl : l ≤ n} = {d, d′}, d′ → d, d ∈ E0 and d′ ∈ Et. In this case, let
Dj = {Dj,0, . . . , Dj,t}, where Dj,l = C ′j ∩ El for every l.

Let Cn+1 =
⋃
{Dj : j ≤ k′n}. Notice that we can enumerate D as {Dj :

j ≤ kn+1} so that for every i ≤ j ≤ kn+1, if x ∈ Di and y ∈ Dj then
(x, y) ∈ Sn. Finally, define the relation

Rn+1 = Sn \ {(x, y) : y ∈ Di, x ∈ Dj and i < j}.
Then Rn+1 ⊆ Sn and Cn+1 refines En. Further, Rn+1 is reflexive, total, and
it can be proved, in an analogous way to the case of Sn, that Rn+1 is closed.
Moreover, Rn+1 together with the collection Cn+1 satisfies (1)–(7).

Let R =
⋂
{Rn : n ∈ ω}. Then R is closed, total and reflexive, since each

Rn is.
Before showing that R is transitive, let us record two properties of R.

Fact 1. If x, y ∈ R and there is a d ∈ D so that x → d → y and d
belongs to a 3-cycle with respect to ψ, then (x, y) /∈ R ∩R−1.

Let n ∈ ω be such that d ∈ Tn. Since {x, y} ∦ {d}, the points x and y
do not belong to the same element of the partition En and so either (x, y) /∈
Rn+1 or (y, x) /∈ Rn+1.

As a consequence, if x, y ∈ X and there is a z ∈ X so that {x, y, z} forms
a 3-cycle, then (x, y) /∈ R ∩R−1.

Fact 2. For any x ∈ X, the set Px = {z ∈ X : (x, z) ∈ R ∩ R−1}
contains at most two points.

Suppose that x, y, z ∈ Px and x → y → z (the other cases are treated
in the same way). By density of D, there is a d ∈ D so that x → d → z.
Let k = min{l ∈ ω : {x, z} ∦ {dl}} and let Ck be the collection determined
by the relation Rk and satisfying (1)–(7). Since y ∈ Px, there is a C ∈ Ck
such that x, y ∈ C. Then dk /∈ C, because otherwise (x, y) /∈ Rk+1 and so
(x, y) /∈ R. Hence, because of the way Rk is constructed, there is an l < k
such that either {x, y, dk} ∦ {dl}; or x, y and dk do not belong to the same
element of the partition El determined by the 3-cycle Tl; or there are E ∈ El
and w ∈ X \ E with x, y, dk ∈ E, {x, y} ‖ {w} and {x, y, dk} ∦ {w}. In any
case, we can find a 3-cycle T ∈ [D]3 with dk ∈ T . Thus by Fact 1, either
(x, y) /∈ R or (y, x) /∈ R, which is a contradiction. This proves Fact 2.

Finally, to prove that R is transitive, let x, y, z ∈ X be such that (x, y) ∈
R and (y, z) ∈ R. Aiming at a contradiction, suppose that (z, x) /∈ R. Let
n ∈ ω be such that (z, x) /∈ Rn, and let Cn = {Ci : i ≤ kn} be the family
determined by Rn. Three cases are possible:

Case 1: (x, y) ∈ R ∩ R−1. Since (z, x) /∈ Rn, there are i < j ≤ kn such
that z ∈ Ci and x ∈ Cj\Ci. But (x, y), (y, x) and (x, z) are in Rn, so j = i+1
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and y ∈ Ci ∩Ci+1. Notice that although z and y are indistinguishable until
step n (i.e. (y, z) ∈ Rn ∩ R−1

n ), they must eventually be separated. Since
y = dl for some l < n, we have y → z and, by construction, (z, y) ∈ R,
which is false.

Case 2: (y, z) ∈ R ∩R−1. Analogous to Case 1.

Case 3: (y, x) /∈ R and (z, y) /∈ R. As before, we can find an n ∈ ω such
that if Cn is the collection of closed subsets determined by Rn, then there
are i < j < k with z ∈ Ci, y ∈ Cj \ Ci and x ∈ Ck \ Cj . Since k > i+ 1, we
have Ci ∩ Ck = ∅ and so x ∈ Ck \ Ci. This implies that (x, z) /∈ Rn, which
is again impossible.

The following result states that if a separable space X admits a contin-
uous weak selection, then it is almost weakly orderable, in the sense that it
can be covered by two weakly orderable sets.

Corollary 3.3. Let X be a separable space that admits a continuous
weak selection ψ. Then there are an orderable space L and a continuous
function f : X → L satisfying :

(i) |f−1[{y}]| ≤ 2 for every y ∈ Y (i.e., f is ≤2-to-1),
(ii) if {x0, x1, x2} is a 3-cycle with respect to ψ, then f�{x0, x1, x2} is

injective.

Proof. Let R be the closed relation constructed in Proposition 3.2, let
D be the countable dense set used in this construction, and let T = {T ∈
[D]3 : T is a 3-cycle}.

Define a relation ∼R on X as follows:

x ∼R y if and only if Px = Py,

where Pz = {w ∈ X : (w, z) ∈ R ∩R−1} for z ∈ X.
By Proposition 3.2, if x ∈ X then Px contains at most two points, and

|Px| = 1 when x is in D and is isolated. Therefore, ∼R is an equivalence
relation on X and each equivalence class [x]∼R contains at most two points.

Define an order < on the set L = X/∼R in the natural way:

[x]∼R < [y]∼R if and only if (x, y) ∈ R and (y, x) /∈ R.

Then (L,<) is a linear order.
Define the function f : X → L by f(x) = [x]∼R . It is clear that f is a

≤2-to-1 function. Moreover, if {x, y, z} is a 3-cycle with respect to the weak
selection ψ, then by continuity of ψ and density of D, we can find T ∈ T
such that, if E is the partition determined by T , then none of the points
x, y and z belongs to the same element E ∈ E . Hence f�{x, y, z} is injective.
Finally, continuity of f follows because R is closed in X ×X.
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3.2. Selections for finite sets. Here we prove that a separable space
which admits a continuous weak selection admits, in fact, a continuous
selection for all finite sets. The first result in this direction belongs to
J. Steprāns [18], who showed that a separable space X with a dense set
of isolated points which admits a continuous weak selection also admits a
continuous selection on F3(X).

We will use the following result, obtained by Gutev in [8].

Proposition 3.4 (Gutev). Let X be a space such that Sel(Fn(X)) 6= ∅
and there exists a continuous selection % : [X]n+1 → X for some n ∈ ω.
Then Sel(Fn+1(X)) 6= ∅.

To prove Proposition 3.4, Gutev used the notion of decisive partitions of
finite sets with respect to a weak selection ψ, where a partition P of a finite
set F is decisive if A ‖ψ B for every A,B ∈ P. Whenever |F | ≥ 2, di(F,ψ) is
defined as the minimal cardinality of a decisive partition P of F with at least
two elements, and di(F,ψ) = 1 if |F | = 1. He proved that if |di(F,ψ)| ≥ 3,
then F has a unique decisive partition M with |M| = di(F,ψ). Moreover,
any other decisive partition of F refinesM. He also showed that the function
diψ : Fin(X) \ F1(X)→ ω, defined by diψ(F ) = di(F,ψ), is continuous.

Proposition 3.5. Let X be a space that admits a continuous weak
selection ψ. If there are an orderable space Y and a continuous function
f : X → Y such that :

(i) |f−1[{y}]| ≤ 2 for every y ∈ Y (i.e., f is ≤2-to-1),
(ii) if {x0, x1, x2} is a 3-cycle with respect to ψ, then f�{x0, x1, x2} is

injective,

then there is a sequence {ψn : n ≥ 2} of compatible continuous selections
such that ψn ∈ Sel(Fn(X)) for every n ∈ ω.

Proof. We define ψ2 = ψ and argue by induction on n > 2. For n = 3,
we define a function ψ3 : F3(X)→ X by cases. Let F ⊆ X.

Case 1: If |F | ≤ 2, then define ψ3(F ) = ψ(F ).

Case 2: If |F | = 3 and there is an x ∈ F such that ψ({x, y}) = x for
every y ∈ F , then define ψ3(F ) = x.

Case 3: If F = {x0, x1, x2} is a 3-cycle with respect to ψ, then let
ψ3(F ) = x, where f(x) = min{f(x0), f(x1), f(x2)}.

By (ii), ψ3 is well defined. Clearly ψ3 is continuous at {x} for every
x ∈ X, so we only have to verify continuity at F ⊆ X if |F | ≥ 2.

Suppose that Case 1 occurs and that F = {x0, x1} ⊆ X is such that
ψ3({x0, x1}) = ψ({x0, x1}) = x0. By continuity of ψ, there are disjoint
neighborhoods U and V of x0 and x1 respectively such that ψ({u, v}) ⊆ U
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for all u ∈ U and v ∈ V . Then ψ3[〈U, V 〉] ⊆ U , which guarantees continuity
of ψ3 at F .

If F = {x0, x1, x2} and ψ({x0, xj}) = x0 for j ∈ 3 then, again by con-
tinuity of ψ, we can find disjoint neighborhoods U0, U1 and U2 of x0, x1

and x2 respectively such that ψ[〈U0, Uj〉] ⊆ U0 for j < 3. If F ′ ∈ U =
F3(X)∩ 〈U0, U1, U2〉 then clearly F ′ is as in case (ii) and ψ3[U ] ⊆ U0, which
guarantees continuity at F .

Finally, let F = {x0, x1, x2} ⊆ X be a 3-cycle with respect to ψ. Let U0,
U1 and U2 be pairwise disjoint neighborhoods of x0, x1 and x2 respectively.

By (ii), f(xi) 6= f(xj) whenever i 6= j, and we may suppose that f(x0) <
f(x1) < f(x2). Consider disjoint intervals I0, I1 and I2 in the orderable
space Y such that f(xi) ∈ Ii for i < 3. Then U = 〈f−1[I0]∩U0, f

−1[I1]∩U1,
f−1[I2]∩U2〉 is a neighborhood of F , every F ′ ∈ U ∩F3(X) is a 3-cycle and
ψ3[U ] ⊆ f−1[I0], which implies that ψ3 is continuous at F .

Suppose now that we have defined continuous selections ψk : Fk(X)→ X
for k ≤ n such that ψs+1�Fs(X) = ψs for every s < n. Again, we will define
a selection ψn+1 : Fn(X)→ X by cases:

Case 1: Suppose that F ∈ Fn+1(X) and di(F,ψ) = 2. According to [6],
there is a unique decisive partition P = {P0, P1} such that P0 ⇒ P1 and P
is minimal in the sense that if M = {M0,M1} is another decisive partition
with M0 ⇒M1 then P1 ⊆M1. Define then ψn+1(F ) = ψn(P1).

Case 2: Suppose that F ∈ Fn+1(X) and 2 < di(F,ψ) ≤ n. Let

P = {P0, . . . , Pk−1}
be the only decisive partition of F of cardinality k, where k = di(F,ψ).
Define then ψn+1(F ) = ψn({ψn(Pi) : i < k}).

Case 3: Suppose that F ∈ [X]n+1 and di(F,ψ) = n+ 1. If x, y ∈ F then
there must be a z ∈ F such that {x, y, z} is a 3-cycle with respect to ψ,
because otherwise the partition P = {{x, y}} ∪ {{z} : z ∈ F \ {x, y}} would
be a decisive partition of F with cardinality n, which is not possible. This
implies that the function f restricted to the set F is injective. In this case
we define ψn+1(F ) = x, where f(x) = min{f(y) : y ∈ F}.

Cases 1 and 2 are defined exactly in the same way as in the proof of
Proposition 3.4 and the proof of continuity of ψn+1 in any of these cases
is given in [8]. Therefore, to conclude the proof of continuity of ψn+1, it
is enough to consider Case 3. The proof of continuity in this case is very
similar to that of Case 3 for ψ3. Thus, ψn+1 is a continuous selection for
Fn+1(X).

To conclude the inductive step, we must show that ψn+1 is an extension
of ψn. Let F ⊆ X be such that |F | ≤ n. If di(F,ψ) = n then ψn+1(F ) =
ψn({ψn({x}) : x ∈ F}) = ψn(F ). Otherwise, if di(F,ψ) < n, let P be the
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decisive partition with |P| = di(F,ψ). Since |P| < n and |P | < n for every
P ∈ P, the inductive hypothesis yields

ψn+1(F ) = ψn({ψn(P ) : P ∈ P}) = ψn−1({ψn−1(P ) : P ∈ P}) = ψn(F ).

Theorem 3.6. Let X be a space that admits a continuous weak selec-
tion ψ, Y an orderable space and f : X → Y a continuous function as in
Proposition 3.5. Then Sel(Fin(X)) 6= ∅.

Proof. Let {ψn : n ≥ 2} be a sequence of compatible continuous selec-
tions as in Proposition 3.5 and define Φ =

⋃
n≥2 ψn. Clearly Φ is a selection.

Let us prove that it is continuous.

Claim. Let F ∈ Fin(X) and let M be a decisive partition of F . Then
Φ(F ) = Φ({Φ(M) : M ∈M}).

We argue by induction on |F |. Clearly the result is true if |F | = 2.
Assume that it holds for every E ⊆ X with |E| ≤ n and let F ∈ [X]n+1.
Let M be a decisive partition of F and let G = {Φ(M) : M ∈ M}. The
result is evidently true if di(F,ψ) = n + 1 (i.e. M = {{x} : x ∈ F}), so we
can suppose that di(F,ψ) ≤ n and |M| ≤ n. We will consider separately the
cases when di(F,ψ) = 2 and when di(F,ψ) > 2.

Suppose first that di(F,ψ) = 2 and let P = {P0, P1} be the decisive
partition of F , with P0 ⇒ P1 and minimal as in the proof of Proposition 3.5.
Then Φ(F ) = Φ(P1).

If M = {M0,M1} and M0 ⇒ M1 then Φ(G) = Φ(M1). By minimality
of P, we have P1 ⊆M1. Notice that {P1,M1 \ P1} is a decisive partition of
M1 such that M1\P1 ⇒ P1 and |M1| ≤ n. Then, by the inductive hypothesis,
Φ(M1) = Φ({Φ(P1), Φ(M1 \ P1)}) = ψ({Φ(P1), Φ(M1 \ P1)}) = Φ(P1) and
then the result also holds.

Suppose now that M = {M0, . . . ,Mk−1} and 2 < k < n. Define M0 =
{M ∈ M : M ∩ P0 6= ∅} and M1 = {M ∈ M : M ∩ P1 6= ∅}. Notice that
|M0 ∩M1| ≤ 1, because otherwise M would not be a decisive partition. If
M0 and M1 are disjoint then Mi is a decisive partition of Pi for i ∈ 2. If
Ni = {Φ(M) : M ∈ Mi} for i ∈ 2, then also N = {N0, N1} is a decisive
partition of G such that N0 ⇒ N1. Therefore, by inductive hypothesis,
Φ(G) = Φ(N1). But, since M1 is a decisive partition of P1 and |M1| ≤ n,
we have Φ(N1) = Φ(P1). On the other hand, if |M0 ∩M1| = 1, let M∗ ∈
M0∩M1. In this case, {M∗∩P1}∪(M0∪M1)\{M∗} is a decisive partition
of F ′ = F \(M∗∩P0). Again, by inductive hypothesis, Φ(M∗) = Φ(M∗∩P1),
which implies that Φ(G) = Φ(F ′). But {P1, F

′\P1} is also a decisive partition
of F ′ with F ′ \ P1 ⇒ P1, which implies that Φ(F ′) = Φ(P1).

Finally, suppose that 2 < di(F,ψ) ≤ n and let P be the decisive par-
tition of F of cardinality di(F,ψ). For every P ∈ P, we have |P | ≤ n
and MP = {M ∈ M : M ⊆ P} is a decisive partition of P . Therefore,
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Φ(P ) = Φ({Φ(M) : M ∈ MP }). Note also that P ′ = {G ∩ P : P ∈ P} is a
decisive partition of G. By the inductive hypothesis, Φ(G) = Φ({Φ(G∩ P ) :
P ∈ P}). Now, for every P ∈ P, we have Φ(G ∩ P ) = Φ({Φ(M) : M ⊆ P})
= Φ({Φ(M) : M ∈MP }) = Φ(P ). We conclude that Φ(F ) = Φ(G).

To prove continuity of Φ, let F = {xi : i < n} ⊆ X and let U be
a neighborhood of Φ(F ). By continuity of ψn, there is a pairwise disjoint
decisive family {Ui : i < n} of open subsets of X such that xi ∈ Ui for every
i < n and ψn(G) ⊆ U for every G ∈ U ∩ Fn(X), where U = 〈U0, . . . , Un−1〉.
Moreover, if G ∈ Fin(X) ∩ U then {Ui ∩ Gi : i < n} is a decisive partition
of G, which implies, by the previous fact, that

Φ(G) = Φ({Φ(Ui ∩Gi) : i < n}) = ψn({Φ(Ui ∩Gi) : i < n}) ⊆ U.

The following result is an immediate consequence of Corollary 3.3 and
Theorem 3.6, and provides a partial answer to Gutev and Nogura’s question.

Corollary 3.7. Let X be a separable space that admits a continuous
weak selection. Then Sel(Fin(X)) 6= ∅.

After proving that every continuous weak selection on a separable space
can be extended to a selection for all finite sets, it is natural to ask if there
is also a continuous selection for all compact sets. Notice that an example
that would answer this question in the negative cannot be weakly orderable.
The following result proves that, in particular, the space in Theorem 2.7 is
not such an example.

Proposition 3.8. There is a separable space X which admits a contin-
uous selection on K(X) but is not weakly orderable.

Proof. Let B be the almost disjoint family introduced in Theorem 2.7
and let X = Ψ(B). Consider also the weak selection ϕ on X defined there and
let Φ be the continuous selection on Fin(X) determined by Corollary 3.7. We
can suppose, by Ramsey’s Theorem, that for every B ∈ B either ϕ�[B]2 =
min or ϕ�[B]2 = max.

We define a selection % on K(X) pointwise. Let K ∈ K(X). Then
there are integers q ≤ s, a finite set {B0, . . . , Bs} ⊆ B, a family {Ai ∈
[Bi]≤ω : i ≤ q} and a finite subset F ⊆ ω \

⋃
{Bi : i ≤ s} such that

K = F ∪
⋃
{Ai : i ≤ q} ∪ {B0, . . . , Bs}. Let

k = min{n ∈ ω : {Bi \ n : i ≤ s} ∪ {{x} : x ∈ F ∪Gn} is decisive},
where Gn =

⋃
{Aj ∩ n : j ≤ q} for every n ∈ ω.

Enumerate the set F ∪Gk as {m0, . . . ,mt} and, for every i ≤ s, choose
xi ∈ K so that xi = min(Ai \ k) if (Ai \ k) ∩K 6= ∅ and ϕ�[Bi]2 = min, and
xi = Bi otherwise. Define

%(K) = Φ({xi : i ≤ s} ∪ {mj : j ≤ t}).
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To prove continuity of %, let U be a neighborhood of %(K). By continuity
of Φ, we can find an r ∈ ω such that r ≥ k and if for every i ≤ s, Ui = {xi}
when xi ∈ ω and Ui = {Bi}∪Bi\r whenever xi = Bi, then the neighborhood
U = 〈U1, . . . , Us, {m0}, . . . , {mt}〉 ∩ Fin(X) satisfies Φ[U ] ⊆ U .

Enumerate
⋃
{(Aj ∩ r) \ k : j ≤ q} as {mt+1,mt+2, . . . ,mv} and let

V = 〈{B0} ∪B0 \ r, . . . , {Bs} ∪Bs \ r, U0, . . . , Us, {m0}, . . . , {mv}〉.
Notice that V is a neighborhood of K. To conclude the proof, let us

prove that %[V] ⊆ U . Let K ′ be a compact subset of X contained in V. Then
there are integers u,w ∈ j + 1 with u ≤ w, z0, z1, . . . , zw ∈ j + 1, a family
{A′zj ⊆ Bzj : j ≤ u} and a finite subset F ′ ⊆ ω \

⋃
{Bzj : j ≤ w} such that

K ′ = F ′ ∪
⋃
{A′zj : j ≤ u} ∪ {Bzj : j ≤ w}. As before, let

l = min{n ∈ ω : {Bzj \ n : j ≤ w} ∪ {{x} : x ∈ F ′ ∪G′n} is decisive},
where G′n :

⋃
{Aj ∩ n : j ≤ u} for every n ∈ ω.

It is clear that l ≤ k. For every j ≤ w, let yj = min(Azj ∩ l) if ϕ�[Bzj ]
2 =

min and (Bzj \ l)∩K ′ 6= ∅, and let yj = Bzj in any other case. Notice that if
%(K) = Bzj for some j ≤ w and %�[Bzj ] = min, then (K ′∩k)∩ (Azj \ l) = ∅,
because otherwise if Mj = (K ′ ∩ k) ∩ (Bnj \ l) is nonempty then {Mj ∪
{%(K)}} ∪ ({{xi} : i ≤ s} \ %(K)) ∪ {{m} : m ∈ {m0, . . . ,mv} \Mj} would
be a decisive partition of {xi : i ≤ s} ∪ {mi : i ≤ v} and Φ(Mj ∪ {%(K)}) =
minMj , which is not possible. Therefore, in this case yj = %(K).

Then Φ({yj : j ≤ w}∪(F ′∪G′l)) = Φ({yj : j ≤ w}∪(F ′∪G′l)∪{xi : i ≤ s}
∪{mj : j ≤ v}). But {yj : j ≤ w}∪(F ′∪G′l)∪{xi : i ≤ s}∪{mj : j ≤ v} ⊆ U ,
which implies that %(K ′) ⊆ U . We conclude that % is continuous and so
Sel(K(X)) 6= ∅.

Remark 3.9. The space X described in Remark 2.8 also has this prop-
erty, as K(X) = Fin(X).

3.3. Another example. Here we prove that the existence of a continu-
ous selection for triples does not guarantee, even for separable spaces, the
existence of a continuous weak selection.

Proposition 3.10. There is a separable space that admits a continuous
selection for [X]3 but Sel(F2(X)) = ∅.

Proof. Identify ω with 2<ω. For every f ∈ 2ω let Af = {f�n : n ∈ ω} be
the branch determined by f and let A = {Af : f ∈ 2ω}. Enumerate the AD
family A as {Aα : α < c}. Enumerate also the set of all weak selections on
2<ω as {fα : α < c}.

For every α < c define gα : [Aα]2 → 2 as follows:

gα({f�m, f�n}) =
{

0 if fα(f�m, f�n) = f�min{m,n},
1 if fα(f�m, f�n) = f�max{m,n},

where f ∈ 2ω and Aα = Af .
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By Ramsey’s Theorem, there is a gα-homogeneous set Bα ∈ [Aα]ω so
that g′′α[Bα]2 = {i} for some i ∈ 2. Let {B0

α, B
1
α} be a partition of Bα such

that |Bi
α| = ω for i ∈ 2 and consider the AD family B = {B0

α, B
1
α : α < c}.

Let X = Ψ(B), the Mrówka–Isbell space associated to B.
We define a relation ≤ on X in the following way:

x ≤ y if and only if


x = y, or
x, y ∈ 2<ω and x ⊆ y, or
x = f�n ∈ 2<ω and y = Bi

f for some i ∈ 2.

It is clear that ≤ is reflexive, antisymmetric and transitive.
If x � y and y � x, we will write x ⊥ y. Now, to any x, y ∈ X with

x ⊥ y we can associate an element ∆x,y of ω ∪ {ω} as follows:

∆x,y =


min{n : x(n) 6= y(n)} if x, y ∈ 2<ω,
min{n : x(n) 6= f(n)} if x ∈ 2<ω and y = Bi

f for some i ∈ 2,
min{n : f(n) 6= g(n)} if x = Bi

f , y = Bj
g with i, j ∈ 2 and f 6= g,

ω if {x, y} = {B0
f , B

1
f} for some f ∈ S.

Notice that if x ⊥ y and y ≤ z then x ⊥ z and ∆x,y = ∆x,z.

We define % : [X]3 → X by %({x, y, z}) = x if either x ≤ y and x ≤ z, or
x ⊥ y, x ⊥ z and ∆x,y = ∆x,z.

Let us first prove that % is well defined. Let F = {x, y, z} ∈ [X]3. Notice
that F has at most one element comparable with all its elements. In this
case, the function is well defined by construction. So we can suppose that
x ⊥ y and x ⊥ z. If y ≤ z then ∆x,y = ∆x,z, and since y and z are
comparable, we have %({x, y, z}) = x. In the same way, if x ⊥ z and z ≤ y
then %({x, y, z}) = x. Therefore, we can suppose that x ⊥ y, x ⊥ z and
y ⊥ z. If ∆x,y = ∆x,z then ∆y,z > ∆x,y and so %({x, y, z}) = x. Otherwise, if
∆x,y < ∆x,z then ∆y,z = ∆x,y and so %({x, y, z}) = y. Finally, if ∆x,y > ∆x,z

then ∆y,z = ∆x,z and %({x, y, z}) = z.
To prove that % is continuous, let {x, y, z} ∈ [X]3 and suppose that

%({x, y, z}) = x.

Case 1: x ≤ y and x ≤ z. Since x ∈ 2<ω, there are f ∈ S and n ∈ ω
such that x = f�n. If y = f�m for some m > n, then let Uy = {f�m}.
Otherwise, if y = Bi

f for some i ∈ 2, let Uy = {y} ∪ (Bi
f \ {f�k : k ≤ n}). In

a similar way, we can consider a neighborhood Uz for z. It is not difficult to
verify that U = 〈{x}, Uy, Uz〉 is a neighborhood of {x, y, z} with %[U ] = {x}.

Case 2: x ⊥ y, x ⊥ z and ∆x,y = ∆x,z. Suppose first that x ∈ 2<ω and
let Ux = {x}. Let Uy = {y} if y ∈ 2<ω, and Uy = {y}∪(Bj

g\{g�k : k ≤ ∆x,y})
if y = Bj

g for g ∈ S and j ∈ 2. Define Uz in the same form. Finally, consider
the neighborhood U = 〈Ux, Uy, Uz〉 of {x, y, z}. Notice that for every y0 ∈ Uy
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and z0 ∈ Uz, we have x ⊥ y0, x ⊥ z0 and ∆x,y0 = ∆x,z0 = ∆x,y. Therefore,
%[U ] = {x}.

On the other hand, suppose that x = Bi
f for some f ∈ S and i ∈ 2, and

let U be a neighborhood of x. We can find n ∈ ω such that {x}∪(Bi
f \{f�k :

k ≤ n}) ⊆ U . Let m = max{n,∆x,y} and Ux = {x} ∪ (Bi
f \ {f�k : k ≤ m}).

If y ∈ 2<ω, consider the neighborhood Uy = {y}. If otherwise y = Bj
g for

some g ∈ S and j ∈ 2, let Uy = {y}∪ (Bj
g \ {g�k : k ≤ m}). In a similar way,

we can find a neighborhood Uz for z. As before, if U = 〈Ux, Uy, Uz〉, it is not
hard to verify that %[U ] ⊆ Ux ⊆ U and we conclude that % is continuous at
{x, y, z}.

Finally, to prove that X does not admit a continuous weak selection,
let h be any weak selection on X. Then h�2<ω = fα for some α < c.
Let f ∈ 2ω with Aα = Af and assume, without loss of generality, that
h({B0

α, B
1
α}) = B0

α. Let U be a basic neighborhood of (B0
α, B

1
α). We can

find a k ∈ ω such that (B0
α \ {f�l : l < k}) ∩ (B1

α \ {f�l : l < k}) = ∅
and 〈{B0

α} ∪ (B0
α \ {f�l : l < k}), {B1

α} ∪ (B1
α \ {f�l : l < k})〉 ⊆ U . If

fα({f�m, f�n}) = f�min{m,n} for any f�n, f�m ∈ Bα, choose n,m ∈ ω
with n > m, f�n ∈ B0

α \ {f�l : l < k} and f�m ∈ B1
α \ {f�l : l < k}.

Then (f�n, f�m) ∈ U and h({f�n, f�m}) = f�m /∈ B0
α. In the other case, if

g′′α[Bα]2 = {1}, choose n,m ∈ ω with n < m, f�n ∈ B0
α \ {f�l : l < k} and

f�m ∈ B1
α \ {f�l : l < k}. Then (f�n, f�m) ∈ U and h({f�n, f�m}) = m

/∈ B1
α. We conclude that h is not continuous at (B0

α, B
1
α).

4. Questions. We conclude with some open questions.

Question 4.1 (Gutev–Nogura). Is there a space X which admits a con-
tinuous weak selection but not a selection for [X]≤n for some n > 2?

Corollary 3.7 shows that if there is such a space, it cannot be separable.

Question 4.2. Is every space which admits a continuous weak selection
a continuous ≤2-to-1-preimage of an ordered space?

Question 4.3. Does every (separable) space which admits a continuous
weak selection admit a continuous selection for all compact sets?

Question 4.4. Does there exist a second countable space X that admits
a continuous weak selection for [X]n for some n ∈ ω, but does not admit a
continuous weak selection?
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