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Abstract. Cardinal invariants related to sequential separability of generalized Can-
tor cubes 2κ, introduced by M. Matveev, are studied here. In particular, it is shown
that the following assertions are relatively consistent with ZFC:

(1) 2ω1 is sequentially separable, yet there is a countable dense subset of 2ω1

containing no non-trivial convergent subsequence,
(2) 2ω1 is not sequentially separable, yet it is sequentially compact.

The work contained in this paper is devoted to studying combinatorial properties
of independent families and their relationship with sequential separability of gener-
alized Cantor cubes. Connections with Q-sets and hence the existence of separable
non-metrizable Moore spaces is also mentioned.

A topological space X is sequentially separable if there is a countable D ⊆ X
such that for every x ∈ X there is a sequence {xn : n ∈ ω} ⊆ D converging to
x; such a D ⊆ X will be called sequentially dense in X. A space X is strongly
sequentially separable if it is separable and every countable dense subset of X is
sequentially dense. Here we consider sequential separability of 2κ equipped with
the product topology.

Recall that a set A is a pseudo-intersection of a family F ⊆ [ω]ω if A ⊆∗ F
for every F ∈ F and, F is centered if every non-empty finite subfamily of F has
an infinite intersection. A family S ⊆ [ω]ω is splitting if ∀A ∈ [ω]ω ∃S ∈ S
|A ∩ S| = |A \ S| = ω. A family I ⊆ [ω]ω is independent provided that for every
nonempty disjoint F1,F2 ∈ [I]<ω

⋂F1 \
⋃F2 6= ∅. I ⊆ [ω]ω is independent

splitting if it is both independent and splitting. The following cardinal invariants
are standard.

p = min{|F| : F ⊆ [ω]ω a centered system which has no infinite pseudo-
intersection}
s = min{|S| : S is a splitting family}

F. Tall in [Ta] showed that 2κ is strongly sequentially separable for every κ < p.
M. V. Matveev in [Ma] defined the following cardinal invariants (using different
notation)

p1 = min{κ : 2κ is not strongly sequentially separable},
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ss = min{κ : 2κ is not sequentially separable} and

is = min{κ : ∃D ⊆ 2κ with no non-trivial convergent sequences}
and observed that

p1 = min{|I| : I is an independent family without a pseudo-intersection} and

is = min{|I| : I is an independent splitting family}.
He also noted that p ≤ p1 ≤ ss ≤ c and p1 ≤ is ≤ c. He asked which of the
inequalities are consistently strict and what is the relationship between ss and is.
The main aim of this note is to provide answers to these questions.

We assume familiarity with the method of forcing and basic theory of cardinal
invariants of the continuum. For reference consult e.g. [BJ], [Bl], [vD] or [Va]. Set
theoretic notation is standard and follows [Ku].

I. ZFC results

The proof of the following proposition can be extracted from a construction
contained in [DN].

Proposition I.1 (Dow-Nyikos). p1 = p.

Proof. Using Matveev’s observation it is sufficient to find an independent family
of size p without a pseudo-intersection. To do this fix an independent family I =
{Iα : α < p} of size p and a centered system F = {Fα : α < p} without a pseudo-
intersection. Let ∆ = {(n,m) ∈ ω × ω : m ≤ n} and let

Jα = (Fα × Iα) ∩∆.

It is easy to see that that {Jα : α < p} is an independent family of subsets of
∆ without infinite pseudo-intersection as if Y ⊆ ∆ were a pseudo-intersection for
{Jα : α < p} then X = proj(Y ) = {n : ∃m (n,m) ∈ Y } would be a pseudo-
intersection of {Fα : α < p} which is absurd. ¤

We will use the following characterization of ss. We attribute it to folklore as
we do not know how to credit it appropriately. It definitely owes to work of Tall,
Przymuszynski, Fleissner and others. For A ⊆ ω let A0 = A and A1 = ω \A.

Proposition I.2 (Folklore). The following are equivalent:
(1) κ < ss

(2) There is an independent family I of size κ such that {If(I) : I ∈ I} has an
infinite pseudo-intersection for every f ∈ 2I ,

(3) There is a Q-set of size κ,
(4) There is a separable normal Moore space with closed discrete subset of size

κ,
(5) There is a normal Ψ-space of size κ.

For proof of the non-trivial implications see e.g. [GKL]. We will need the follow-
ing easy fact in the next section.
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Proposition I.3. If κ < ss then 2κ = 2ω.

Proof. As κ < ss there is countable D sequentially dense subset of 2κ. Now, for
every f ∈ 2κ fix a subset Df of D which converges to f . This obviously defines a
one-to-one map from 2κ into P(D). ¤

Corollary I.4. 2ω < 2ω1 implies ss = ω1.

It is not quite obvious that the cardinal invariant is is well defined. In fact, the
question of existence of an independent splitting family appeared on A. Miller’s
problem list, where he attributes it to K. Kunen. As it turns out the question was
answered a long time ago by P. Simon. We include a simple construction of an
independent splitting family here.

Proposition I.5. (P. Simon). There is an independent splitting family in ZFC.

Proof. Let {Un : n ∈ ω} be an enumeration of a basis for the topology of the
rationals Q. Let {Dn : n ∈ ω} be a disjoint refinement of the family {Un : n ∈ ω}
and let, for each n ∈ ω, {In

α : α < c} be an independent family of subsets of Dn.
Let for α < c

J ′α =
⋃
n∈ω

In
α .

It is easy to see that the family {J ′α : α < c} is independent family of subsets of Q
and, moreover, all combinations of its elements are dense subsets of Q.

Enumerate all infinite nowhere dense subsets of Q as {Kα : α < c} and split
each Kα into two infinite subsets Mα and Nα. Finally let

Jα = (J ′α \Mα) ∪Nα

It is obvious that {Jα : α < c} is still independent as we have made only nowhere
dense changes to dense sets and it is splitting as every infinite subset of Q contains
Kα for some α < c. ¤

While s is a natural lower bound on the minimal size of an independent split-
ting family, as of now, there seems to be a definite lack of upper bounds. In an
unpublished note [Ny], P. Nyikos proved that assuming the existence of a scale
(b = d), the dominating number d is an upper bound. A natural question arises
as to whether the assumption b = d is necessary. However, we do not even know,
whether s < is is relatively consistent with ZFC.

Next we will point out some of the obstacles one would face trying to prove the
above consistency result. According to [KW] call a family S ⊆ [ω]ω ℵ0-splitting if
for every sequence {Ai : i ∈ ω} of infinite subsets of ω there is a S ∈ S such that
|S∩Ai| = |Ai\S| = ℵ0 for every i ∈ ω, and denote by ℵ0−s the minimal cardinality
of an ℵ0-splitting family1. Note that ℵ0 − s is the uniformity (non(J )) for the σ-
ideal J on P(ω) generated by the sets IA = {B ⊆ ω : B ⊂ A or B ∩A = ∅}, where
A is an infinite co-infinite subset of ω. Recall that a set X ⊆ P(ω) is a generalized
J -Luzin set if X is uncountable and for every A ∈ J |X ∩A| < |X|.

1The consistency of s < ℵ0 − s is another open problem (see [KW] and [Br2])
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Proposition I.5. If there is a generalized J -Luzin set of size p then is = s.

Proof. We will show that given a J -Luzin set X of size p one can find Y ⊆ X of
the same cardinality which forms an independent family. It should be obvious then
that Y is indeed an independent splitting family (a subset of a generalized J -Luzin
set of the same cardinality is itself a generalized J -Luzin set). Fix a generalized
J -Luzin set X of size p and construct a family {Iα : α < p} by induction as follows:
Let I0 be any infinite co-infinite element of X. At stage α < p let {fi : i ∈ ω} be
a (sequentially) dense subset of 2α and let Ai be an infinite pseudo-intersection of
the family {Ifi(β)

β : β < α} for every i ∈ ω. Such an Ai exists, as α < p = p1. Now,
pick Iα ∈ X such that |Iα ∩Ai| = |Ai \ Iα| = ℵ0 for every i ∈ ω.

It is easy to verify that the family thus constructed is indeed independent. ¤

Corollary I.6. If there is a Luzin or Sierpiński set then is = ω1.

Proof. It suffices to note that the ideal J defined above is σ-generated closed sets
of Haar measure zero. ¤

II. Consistency results

Here we will include the main results of this paper. Let us first start with some
easy observations.

Theorem II.1. Con(ss = is = ω1 < c).

Proof. Let V |= CH and let G be Cω2-generic over V , where Cω2 denotes the
standard c.c.c. poset for adding ℵ2-many Cohen reals. Let I = 〈Cα : α < ω1〉
be the generic sequence of Cohen reals added by G ∩ Cω1 . The fact that I is an
independent splitting family follows easily from the fact that a Cohen real splits
every infinite subset from the ground model and the fact that the Cohen reals added
are mutually generic. So is = ω1.

To see that ss = ω1 let İ be a name for an independent family {Iα : α < ω1}.
Then there is an α < ω2 such that I ∈ V [G ∩ Cα]. Let g : ω1 −→ 2 be the generic
function added by the next ℵ1-many Cohen reals. Assume towards contradiction
that there is an A ∈ V [G] which is an infinite pseudo-intersection of {Ig(α)

α : α <
ω1}. There is ξ ∈ ω2 such that

A ∈ V [G ∩ (Cα+ξ × Cω2\(α+ω1))]

and hence genericity implies that there is some integer k such that A 6⊆∗ I
g(α+ξ+k)
α+ξ+k .

¤

It is clear that random reals would do just as well, so a similar proof gives a
consistency of is < b (just start with a model of MA&2ℵ0 > ℵ1 and add ℵ2-many
random reals).
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Theorem II.2. Con(ss < is).

Proof. Let V |=“s = ω2 and 2ω1 > ω2 = c”. Then is = ω2 and by Corollary I.3
ss = ω1. Such models were constructed a long time ago (see e.g. [vD], Theorem
5.4). ¤

Consistency of p1 < ss follows directly from results in [D] as pointed out by J.
Brendle in [Br]. We will produce another model for this inequality where moreover
is < ss and a model where ss < add(N ) = s = is.

Before doing so, recall the definition of a standard forcing for adding a pseudo-
intersection to a given filter base F . The forcing, denoted byM(F) consists of pairs
(s, F ), where s is a finite subset of ω and F ∈ [F ]<ω, ordered by (s, F ) ≤ (t, G)
if t is an initial segment of s (s \ t ∩ max(t) + 1 = ∅) and s \ t ⊆ ⋂

G. It is easy
to see that M(F) is c.c.c. (in fact σ-centered) and that forcing with M(F) indeed
produces a pseudo-intersection to the filter base F .

As shown in Proposition II.1 the standard forcing for adding ℵ1-many Cohen
reals adds an independent splitting family. Our strategy for proving Con(is < ss)
is to first add two such families and then diagonalize all “paths” through one of
them producing a witness to ss > ω1 and then show that the other one remains
splitting in the extension, witnessing is = ω1.

Theorem II.3. Con(is < ss).

Proof. Let V |= GCH. Let P = Cω1 ∗ Pω2 , where (working in V[H], where H is
Cω1 -generic over V )

Pω2 = 〈Pα, Q̇ : α < ω2〉
is a finite support iteration such that P0 = Cω1 and °Pα“Q̇ : α = M({Ȧḟ(β)

β : β <

ω1})”. Here Ȧβ denotes the βth Cohen real added by P0 and ḟ is a Pα-name for a
function from ω1 to 2. By a standard bookkeeping argument one can ensure that
(somewhat loosely speaking) for every Pω2-name ḟ for a function from ω1 to 2 there

is an α < ω2 such that °Pα“Q̇α =M({Ȧḟ(β)
β : β < ω1})”.

The forcing P satisfies the countable chain condition and has (a dense set of) size
ω2 so, in the extension c = 2ω1 = ω2. Let G be Pω2-generic over V [H]. It follows
immediately from the construction, that the family {Aβ : β < ω1} is independent
and that the family {Af(β)

β : β < ω1} has an infinite pseudo-intersection for every
f : ω1 −→ 2, hence by Proposition I.2:

Claim II.3.1. ss = ω2 in V [H][G].

The rest of the proof is devoted to showing that the independent splitting family
added by H remains splitting in the extension. This will be done by showing that,
in V [H], the Boolean algebra generated by Pω2 is semi-Cohen i.e. has a closed
unbounded set of regularly embedded countable subalgebras. Note that this implies
that every real added by G is Cohen over V [H] and hence, indeed, preserves that
the independent family added by H remains splitting. Note that this is actually
quite subtle, as if we denote by K the filter G ∩ P0 (Cω1 -generic over V [H]) then
there are many reals in V [H][G] which are NOT Cohen over V [H][K].

So in order to finish the proof it is sufficient to prove (working in V [H]) the
following
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Claim II.3.2. Let M ≺ H(ω3) be (in V [H]) an elementary submodel containing
Pω2 and let β < ω2. If V [H][K ∩ (P0 ∩M)] |= “D ⊆ M ∩ (Pβ/P0) is a maximal
antichain in M ∩(Pβ/P0)”, then V [H][K] |= “D is a maximal antichain in Pβ/P0”.

First note that the above Claim actually makes sense as P0 ∩ M is regularly
embedded in P0. Having fixed an elementary submodel M as above will prove the
claim by induction on β. Let δ = ω1 ∩M .

The Case β = 0 is vacuous.
Isolated step (β + 1). Assume that the Lemma holds for β < ω2. Working in

V [H][K ∩ Cδ] = V [H][K ∩ (P0 ∩M)] let D ⊆ M ∩ Pβ/P0 be a maximal antichain
and let p ∈ P0/Cδ be such that

p ° “〈q, (s, {Ȧḟβ(ξ)
ξ : ξ ∈ Λ0 ∪ Λ1})〉 ∈ Pβ+1” and p ° “ḟβ ¹ Λ0 ∪ Λ1 = F”

where Λ0 ⊆ δ and Λ1 ∩ δ = ∅ (Λ1 ∩M = ∅) and F : Λ0 ∪ Λ1 −→ 2.
Without loss of generality we can assume that max(s) = max(dom(p(γ))) for

every γ ∈ Λ1. (If necessary, find n > dom(p(γ)) for γ ∈ Λ1 and extend p to a p̄ so
that, for m ≤ n and γ ∈ Λ1

p̄(γ)(m) =





p(γ)(m) if m ∈ dom(p(γ)),
1 if m = n and F (γ) = 0,

0 otherwise,

and let s̄ = s ∪ {n}.)
Denote by D̄ the downward closure of D and let

D∗ = {q ∈ (Pβ/P0) ∩M : {q̇′ ∈ Q̇β : 〈q, q̇′〉 ∈ D̄} is dense}.

The set D∗ is a dense subset of (Pβ/P0) ∩ M so, by the inductive hypothesis,
D∗ is pre-dense in Pβ/P0. Choose q̄ ≤ q such that q̄ ≤ r for some r ∈ D∗ and
(b,Γ) ∈ Q̇β such that p ° “〈q̄, (b,Γ)〉 ≤ 〈q, (s,Λ0)〉”. Now, using that max(s) =
max(dom(p(γ))) for every γ ∈ Λ1, extend p to a p̄ so that

p̄ ° “b \ s ⊆
⋂

γ∈Λ1

ȦF (γ)
γ ”

by letting

p̄(γ)(m) =





p(γ)(m) if m ∈ dom(p(γ)),
1 if m ∈ b \ s and F (γ) = 0,

0 otherwise,

for γ ∈ Λ0 ∪ Λ1 and m ≤ max(b). Then

p̄ ° “〈q̄, (b,Γ)〉 ≤ 〈q, (s, Λ0 ∪ Λ1)〉”

which is what we needed to prove.
β limit. Fix D and let p ° “q̇ ∈ Pβ/P0”. Then there is a p′ and γ < β such

that p′ ° “q̇ ∈ Pγ
′′. The conclusion then follows easily as the set D∗ = {q ∈
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(Pγ/P0) ∩M : {q̇′ ∈ M ∩ (Pβ/Pγ) : 〈q, q̇′〉 ∈ D̄} is dense} is dense in M ∩ (Pγ/P0),
hence by the induction hypothesis pre-dense in Pγ/P0. ¤

The same conclusion probably also holds in a model constructed in [FM]. Note
that the model constructed in Theorem II.3 shares many of the properties of the
Cohen model (model used in Theorem II.1). For instance, cov(M) = c, and
non(M) = ω1 in fact there is a Luzin set, in both models.

Next we will show, that not only ss < is is consistent (as shown by Theorem II.2)
but it is possible to lower ss while leaving “most” cardinal invariants large. Recall
that an ω1-tree T is a Suslin tree if it has no uncountable chains or antichains.
When used as a forcing notion T (turned up-side-down) is a c.c.c partial order
which is does not add any new reals. We will show that if V |=“MAσ−centered +
There is a Suslin tree T” and if G is T -generic over V then V [G] |= ss = ω1. Note
that such a model can be obtained e.g. by adding a single Cohen real to a model of
MA (see [BJ]). In this model, however, add(N ) = cov(N ) = ω1 (see [BJ]). There
is a way, however, to construct a model of MAσ−centered + There is a Suslin tree
where, moreover, add(N ) = c.

Theorem II.4. Con(ss < add(N ) = s = c).

Proof. Let V |= MAσ−centered, add(N ) = c + There is a Suslin tree T . Let G be
T -generic over V .

First note that as T is c.c.c. all cardinalities and cofinalities of ordinals are
preserved. Moreover, as |T | = ω1, V [G] |= c = cV . To see that s = c note that,
since T adds no reals, if Ṡ were a name for a splitting family of size less than c then
the family

{S ∈ [ω]ω : ∃t ∈ T t ° “S ∈ Ṡ”}
would be a splitting family of size less than c in V , which contradicts MAσ−centered.
A similar proof gives V [G] |= add(N ) = c.

So the only thing left to prove is that ss = ω1, in other words, no countable
dense subset of 2ω1 is sequentially dense. Without loss of generality we can assume
that T ⊆ 2<ω1 and that it is well-pruned and everywhere branching (i.e. ∀t ∈ T
ta0, ta1 ∈ T ). While T adds no new reals it does add new elements of 2ω1 . Aiming
towards a contradiction let Φ̇ be a T -name for a function from ω to 2ω1 and assume
that °T “rng(Φ̇) is sequentially dense”. Let θ be a regular cardinal such that
T ∈ H(θ). Put

C = {M ∩ ω1 : M ≺ H(θ)&Φ̇, T ∈ M}
and increasingly enumerate C as {δα : α < ω1}. Now let ḟ be a T -name for an
element of 2ω1 defined by p °“ḟ(α) = i” if and only if δα ∈ dom(p) and p(δα) = i.
To finish the proof it is sufficient to show that:

Claim. °T “There is no sequence in rng(Φ̇) converging to ḟ”.

Assume the contrary, i.e. there is a p ∈ T and an h ∈ ωω such that p °“Φ̇ ◦ h →
ḟ”. Note that this is without loss of generality as T does not add any new reals.
Now, however, pick M ≺ H(θ) such that p, T, Φ̇ ∈ M and let ρ = M ∩ ω1. Then
ρ = δα for some α ≤ ρ and without loss of generality α < ρ. Let q ∈ Tρ, q ⊃ p.
Then q decides the value of Φ̇(n)(α) for every n ∈ ω, yet it does not decide the
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value of ḟ(α) as qai °“ḟ(α) = i”. Now, it is easy to reach a contradiction; If there
are infinitely many n’s such that q ° “Φ̇(h(n))(α) = 0” let q′ = qa1 otherwise let
q′ = qa0. In either case q′ °“Φ̇ ◦ h 6→ ḟ” which is absurd. ¤

Let us point out the curious nature of the cardinal invariant ss. It is proved
(though not stated) in [JS] that it is consistent that ss = ω2 yet all invariants
from the Cichoń diagram are small. On the other hand, Theorem II.4 shows that
consistently ss < add(N ), so there is no relation between ss and most “standard”
cardinal invariants of the continuum.
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