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1 Supported by GǍCR 201/03/0933 and PAPIIT grant IN108802-2, Mexico.
2 Supported by the NSERC of Canada.
3 Supported by the NSERC of Canada.
0166-8641/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2005.01.030



542 M. Hrušák et al. / Topology and its Applications 153 (2005) 541–556

ns
the

a
,

of

e, and

ey
is
gree,

ional
xam-
a
eed not

f
d

e

mpact

ation
1. Introduction

LetX be a Tychonoff space and letC(X) be the ring of continuous real-valued functio
on X. As shown in [13, Section 5] and [6, Section 1] the study of epimorphisms in
category of commutative rings yields an algebra of real-valued functions onX, denoted
G(X), with some properties of interest. The ringG(X) is Von Neumann regular, it is
subring ofC(Xδ), and it is an epimorphic extension ofC(X) in the category of rings [13
2.7]. (As usual,Xδ denotes the underlying set ofX with the topology generated by theGδ-
sets of the spaceX). The functions inG(X) are finite linear combinations of products
functions inC(X) and their quasi-inverses, taken in the regular ringC(Xδ). This explicit
representation provides a useful notion of “degree”. The definition of the quasi-invers
the presentation of a functionf in G(X) as well as its regularity degree (denotedrg(f ))
are found in [6, pp. 1, 2] as is the regularity degree of a spaceX denotedrg(X). We will
abuse notation and also speak of ‘rank’ interchangeably with ‘regularity degree’.

The class ofRG-spaces was defined and studied in [6]. A spaceX is RG (for regularly
good) if G(X) = C(Xδ). It is equivalent to demand that the embeddingC(X) → C(Xδ)

be an epimorphism of rings. (One direction is clear since the embedding intoG(X) is an
epimorphism. The converse follows from the algebraic fact that regular rings likeG(X)

are “dominant” cf. [16]). AlthoughRG-spaces are generally difficult to determine, th
are characterized nicely in the compact case as follows [6, 3.4]: a compact spaceRG

iff it is scattered and of finite dispersal degree, i.e., of finite Cantor–Bendixon de
cf. [6].

In this note we are interested in studying pseudocompact spaces that areRG. Being
scattered of finiteCB index is not sufficient because Isbell’s spaceΨ of [4, 5I] is neverRG

even though there are versions ofΨ that are almost compact).
We show that pseudocompactRG-spaces must be scattered strongly zero-dimens

of finite CB index and of finite regularity degree (Proposition 1). Section 2 presents e
ples which show that there is quite a variety of pseudocompactRG-spaces (obtained vi
the Generating Machine). These spaces need not be almost compact, in fact they n
even be locally compact.

PseudocompactRG-spaces of cardinalityω1 and countably compactRG-spaces of any
cardinality, must be compact (Proposition 2, Theorem 3).

We also show (Theorem 4) that a locally compact pseudocompactRG-space of
cardinality< p must be compact (p is defined in [17]).

Later in Theorem 6 we show that if a cardinalκ admits a certain kind of family o
maximal almost disjoint subsets, then anRG-space ofCB index 2 can be constructe
that is pseudocompact, locally compact, almost compact, almost-P , but not compact. Th
construction mimics that of Isbell’s spaceΨ . It can always be done for regular cardinalsκ

satisfyingκ = κω = κω1, in particular for spaces of cardinality(2ω1)+. It turns out that it
is non-decidable in ZFC whether there is a locally compact non-compact pseudoco
RG-space of cardinalityω2 (Corollary 1).

All spaces discussed will be Tychonoff. WhenX is locally compact andx ∈ X, then
x ∈ O ⊂ K will mean thatO is an open neighbourhood ofx and thatK is compact.
A spaceX is called almost compact [4, 6J] if|βX − X| � 1. It is called almost-P [9]
if every non-empty zero-set has non-empty interior cf. [9]. Our terminology and not
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will be that of Gillman and Jerison [4] and Porter and Woods [11]. The paper [12] g
an algebraic context for the study ofG(X) and ofRG-spaces and [14] has other results
the topic.

2. Elementary results and some examples

Recall that a subspaceY of X is calledG-embedded [6, 2.1] if the natural restrictio
homomorphismG(X) → G(Y) is onto.

The following replies to [6, 4.5] and is based on an observation by M. Sanchis.

Lemma 1. Let Y be aGδ-dense,G-embedded subspace ofX. ThenX is RG if Y is RG.
In particular, if Y is RG andY ⊂ X ⊂ υY thenX is RG.

Proof. Takef ∈ C((X)δ). Restricting toYδ givesf |Y = ∑
aib

∗
i for ai, bi ∈ C(Y ) be-

causeY is RG. By theG-embedding ofY in X, this lifts to
∑

CjD
∗
j for someCj ,Dj ∈

C(X), and now the functionsf and
∑

CjD
∗
j agree on the dense (in the delta topolo

subsetY and therefore are equal. Thusf ∈ G(X).
For the second claim note thatX is C-embedded (and henceG-embedded) inυY and

it is Gδ-dense inυY by [4, 8.8(b)] or [11, 5.11(f)].
In fact it is easy to see thatυ(Yδ) = (υY )δ as follows. SinceY is anRG-space,C(Yδ) =

G(Y), so theG-embedding ofY in υY implies thatYδ is C-embedded in(υY )δ , which is
realcompact becauseυY is. AlsoYδ is dense in(υY )δ (asY is Gδ-dense inυY ), it follows
that(υY )δ = υ(Yδ). �
Remark 1. We should point our here that the claim in [11, 5F(7)]—i.e., thatυ(Yδ) = (υY )δ
in general—is false. Isbell’s spaceΨ provides a counterexample.

Recall that the relationship betweenCB index and regularity degree inRG-spaces is
quite fluid. ClearlyP -spaces are alwaysRG; they need not have any isolated points,
which case the notion ofCB index is irrelevant), and if scattered, they can have finiteCB
index, or have infiniteCB index. In the compact case the connection is very tight.
precisely when the space is scattered and of finite index that the space isRG. No such link
holds for almost compact spaces. But the following result underscores the proximity
pseudocompact case to the compact case.

Proposition 1. Suppose thatX is a pseudocompactRG-space. ThenX is scattered, it
is of finite CB index, functionally countable, and strongly zero-dimensional. Further
rg(X), the regularity degree of the ringC(X), is finite.

Proof. SinceX is pseudocompactβX = υX so by Lemma 1,βX is RG. Thus it is scat-
tered and of finiteCB index [6, 3.4]. ThereforeX is scattered of finiteCB index. The space
X is functionally countable because it isC-embedded inβX and each function onβX has
countable range.
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Since compact scattered spaces are zero-dimensional [6, 3.3],βX is zero-dimensiona
and thereforeX is strongly zero-dimensional by [3, 6.2.12].

It remains to show that the regularity degree is finite. Letf ∈ C(Xδ). As in the proof of
Lemma 1,f lifts to a functionF ∈ C[υ(Xδ)] = C[(υX)δ]. But by Lemma 1,υX = βX

is anRG-space of finite regularity degree sayn. ThereforeF ∈ G(υX) andrg(F ) � n. It
follows (by restriction) thatrg(f ) � n. �
Lemma 2. A spaceY is RG if it contains a cozero setU such thatU is RG andY − U is
RG andG-embedded. The spaceY is of finite rank ifU andY − U are of finite rank.

Proof. Since cozero sets induce epimorphisms in the category of commutative ring
2.1(ii)] they are automaticallyG-embedded. Now the result is straightforward. Supp
thatU = coz(m). Takef ∈ C(Yδ). Thenf |U ∈ G(U) andf |Y − U ∈ G(Y − U). As U

andY − U areG-embedded inY there are functionsAi,Bi,Cj ,Dj ∈ C(Y ) so thatf and∑
AiB

∗
i agree onU andf and

∑
CjD

∗
j agree onY − U . Thusf = (mm∗)(

∑
AiB

∗
i ) +

(1− mm∗)(
∑

CjD
∗
j ) ∈ G(Y). �

For the next theorem we will need to cite the following result:

Theorem 1 (Starbird [15]). If K is a compact subspace ofW , thenX ×K is C∗-embedded
in X × W .

Theorem 2. LetαN be a compactification ofN that isRG. LetX be anRG-space of finite
rank. ThenY = X × αN is RG of finite rank. If CB(X) = n, then CB(X × N∗) = n + 1.

Proof. The spaceαN is of finite CB index because it isRG.
We will induct onCB(αN). Let U be the union of the clopen setsX × {n}. The cozero

setU is RG because eachX × {n} is of the same (finite) regularity degree namely tha
X [6, 2.8].

When αN has index 2 (the least possible),αN − N is finite andY − U is the free
union of a finite number of copies ofX and thusRG. It is G-embedded because it isC∗-
embedded by Starbird’s theorem. By Lemma 2,X×αN is anRG-space of finite regularity
degree.

Now assume the result forCB index n and consider the case whenCB(X) = n + 1.
The spaceαN − N is compact ofCB indexn soY − U = (αN − N) × X is RG and of
finite regularity degree by inductive assumption. AlsoY − U is G-embedded because it
C∗-embedded again by Starbird’s theorem which is applicable sinceαN − N is compact.
The spaceY is RG and of finite rank by Lemma 2.

The last claim concerns the raising of theCB index under taking the product withN∗
and it is the result of a straightforward consideration of the isolated points in the
uct. �
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2.1. Generating machine

We now present a method for obtaining new examples from existing ones. Thr
out M will denote a pseudocompact non-compactRG-space. An example that is almo
compact and almost-P is constructed in Theorem 6 below.

By Theorem 2,Y = M ×N∗ is anRG-space. It is pseudocompact because it is the p
uct of a pseudocompact space with a compact space. Hence by Glicksberg’s Theor
β(M × N∗) = βM × βN∗ = βM × N∗. ThereforeυY = βM × N∗.

Now suppose thatT is any space that lies betweenY andβY . By Lemma 1,T is RG

and it is pseudocompact since it containsY as a dense subspace. There are many wa
choosingT . SinceN∗ is not almost-P , neither isY so it follows by a theorem of Levy [9
2.2] thatβY is not almost-P and hence by the same theorem that none of the spaceT we
generate will be almost-P .

2.2. Examples

1. A pseudocompactRG-space that is not locally compact.
Let p ∈ βM − M , and letT = Y ∪ {(p,ω)} whereω is the point at infinity ofN∗.
Then the point(p,ω) has no compact neighbourhood inT .

2. A pseudocompact locally compactRG-space that is not almost compact.
Take an instance ofM which is almost compact and consequently locally comp
Let T = Y . ThenβT − T = (βM − M) × N∗ which is infinite. This means thatT is
certainly not a finite free union of almost compact spaces.

3. Other possibilities.
It is clear that for any spaceT which the procedure produces, we can repeat
procedure beginning withT in the place ofM . In particular we can manufactur
pseudocompactRG-spaces whose outgrowths are scattered of any finiteCB index.
Thus the structure of the outgrowths of pseudocompactRG-spaces can be compl
cated.

3. Compactness when the space is of cardinality ω1 or is countably compact

The following result is obvious for spaces of cardinalityω, since countable pseudocom
pact spaces are compact.

Proposition 2. If X is pseudocompactRG of cardinalityω1, thenX is compact.

Proof. Let X be pseudocompact of cardinalityω1. By Proposition 1,X is functionally
countable. SinceX is RG, and given the nature of the functions inG(X), Xδ is also
functionally countable. ThusXδ cannot be written as the free union of an uncounta
collection of disjoint clopen subsets.

SupposeX is not compact. As it is pseudocompact, it follows that it is not Lindelöf
5.9, 8.2]. LetC be an open cover ofX with no countable subcover. LetX = {xα: α < ω1}.
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Let δ < ω1 and inductively assume that for eachα < δ we have chosen a cozero-setVα of
X such that:

(i) xα ∈ Vα ,
(ii) if α1 < α2 < δ thenVα1 is a proper subset ofVα2,
(iii) Vα ⊂ Cα for someCα ∈ C.

By (iii) and our choice ofC,X − ⋃
α<δ Vα �= ∅.

Let λ(δ) = min{γ < ω1: xγ /∈ ⋃
α<δ Vα}. By (i) λ(δ) � δ. Thenxλ(δ) ∈ Cδ for some

Cδ ∈ C. There is a cozero-setWδ of X such thatxλ(δ) ∈ Wδ ⊂ Cα . Let Vδ = (
⋃

α<δ Vα) ∪
Wδ . Then (i)–(iii) hold forα � δ.

Thus(Vα)α<ω1 is strictly increasingω1-sequence of cozero sets ofX. Clearly{
Vδ −

⋃
α<δ

Vα: δ < ω1

}

is an uncountable disjoint covering ofX by non-empty clopen sets ofXδ , contradicting
what we asserted earlier. The proposition follows.�

We will now prove that a countably compactRG-space must be compact. First w
introduce some notation and state a simple structural lemma.

Let Y be a scattered space withCB(Y ) = n. Let L1(Y ) = I (Y ) denote the set of iso
lated points ofY . If 1 < k � n, defineLk(Y ) to beI (Y − ⋃k−1

i=1 Li(Y )). The following is
immediate [6, 3.2].

Lemma 3. LetX be a scattered space with CB(X) = n. Then:

(i) {Li(X): 1� i � n} partitionsX.
(ii) If k ∈ {1, . . . , n} thenLk(X) is a closed discrete subspace of

⋃k
i=1 Li(X) and a dense

open subspace of
⋃n

i=k Li(X).
(iii) If 1< k � n andp ∈ Lk(X) thenp has anX-neighbourhoodV such that

V − {p} ⊂
k−1⋃
i=1

Li(X).

The subsetLk(X) is sometimes called the “k-th level” of X.

Theorem 3. A countably compactRG-space is compact.

Proof. Let X be a countably compactRG-space. SinceX is pseudocompact, by Propos
tion 1,βX is scattered and of finiteCB index sayn. ThusβX = ⋃n

i=1 Li(βX).
We will prove thatLi(βX) ⊂ X for eachi ∈ {1, . . . , n}. This will show thatβX = X so

X is compact. ClearlyL1(βX) ⊂ X sinceL1(βX) = I (βX) andX is dense inβX.
Suppose if possible thatLi(βX) − X �= ∅ for somei and letk be the smallest suchi.

Clearlyk � 2. Let p ∈ Lk(βX) − X. By (iii) in the preceding lemma, there is a comp

βX-neighbourhoodA of p such thatA − {p} ⊂ ⋃k−1
Li(βX). AsLk−1(βX) is dense and
i=1
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i=k−1 Li(βX) (see (ii) above), it is evident thatp ∈ clβX(A ∩ Lk−1(βX)). Thus
A ∩ Lk−1(βX) is an infinite discrete space by (ii) above. But asLk−1(βX) is closed in⋃k−1

i=1 Li(βX) and also discrete, it is clear that the onlyβX-limit point of A ∩ Lk−1(βX)

is p. Sincep /∈ X, the setA ∩ Lk−1(βX) is an infinite closed discrete subspace ofX

contradicting the hypothesis thatX is countably compact. The theorem follows.�

4. The case of locally compact spaces of cardinality less than p

As noted earlier pseudocompactRG-spaces need not be locally compact (althoug
is easy to check that separable ones ofCB index� 3 are). The results in this section w
assume local compactness.

We recall [17, p. 115] that the setA is a pseudo-intersection of a familyF if for each
F ∈F the setA−F is finite. The familyF has the sfip (strong finite intersection proper
if every nonempty finite subfamily has an infinite intersection. The cardinalp is min|F |
asF ranges over countably infinite subfamilies ofω with the sfip and with no infinite
pseudo-intersection.

The purpose of this section is to establish the following result.

Theorem 4. If κ < p, X has cardinalityκ , and X is locally compact pseudocompact R
thenX is compact.

The theorem does not imply Proposition 2 because there are models of set the
whichp = ω1—cf. [17, 3.1(a)].

In order to prove the theorem we require a series of lemmas.

Lemma 4. Let X be a locally compact space that contains a countably infinite setA of
isolated points with the property that every compact subsetK of X has finite intersection
with A. ThenX is not pseudocompact.

Proof. It suffices to show thatA is closed inX. If so, it is an infinite discrete clopen subs
of X, and it admits an unbounded function that has a continuous extension to allX.
If possible, letq be in the closure ofA but not inA. By local compactnessq ∈ O ⊂ K

compact. By assumptionK ∩ A is a finite set of isolated points soO \ (K ∩ A) is an open
neighbourhood ofq disjoint fromA, a contradiction. �

As usual,w(X) will denote the weight of the spaceX (see [11]).

Lemma 5. LetX be locally compact, non-compact, of finite CB index and of cardinalitκ .
Thenw(X) � κ .

Proof. We induct onCB(X). If CB(X) = 1 thenX is discrete and{{x}: x ∈ X} is an open
base of cardinalityκ sow(X) � κ .

Now suppose the result holds for all locally compact spaces ofCB-index� n. Assume
that CB(X) = n + 1 and that|X| � κ . Let T = Ln(X) (see the beginning of Section 3
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ThenT is a closed discrete subspace ofX, CB(X − T ) = n andX − T is locally compact
with |X − T | � κ . Thenw(X − T ) � κ . Let C be an open base forX − T of cardinality
� κ . The members ofC are open inX sinceX − T is open inX.

Let p ∈ T . As X is locally compact andT is closed discrete, there exists a comp
subsetA of X such thatp ∈ intX A ⊂ A andA ∩ T = {p}. ThereforeCB(A − p) � n and
A − p is locally compact and of cardinality� κ sow(A − p) � κ .

It is routine to show that ifY is locally compact and non-compact thenw(Y ∗) = w(Y).
Thereforew(A) � κ . But p ∈ intX A so for allp ∈ T , there exists an open neighbourho
baseBp atp in X such that|Bp| � κ .

But |T | � κ . Let A = C ∪ {Bp: p ∈ T }. ThenA is an open base forX of cardinality
� κ since it is the union of at mostκ families of at mostκ members. This completes th
induction step. �
Lemma 6. Let X be locally compact, non-compact, scattered, and of finite CB index.
there is a countable set of isolated points in X whose closure is not compact.

Proof. We induct onCB(X). The result is clear whenCB(X) = 1. If X is as hypothesized
thenCB(X − I (X)) < CB(X) so by assumption there is a countable subsetS of L2(X)

for which clX S is not compact. Ifs ∈ L2(X) thens has a compact neighbourhoodK(s)

such thatK(s) − {s} ⊂ I (X). Let A(s) be a countably infinite subset ofK(s) − {s}, and
put A = ⋃{A(s): s ∈ S}. ClearlyA is a countable subset ofI (X) that is dense inA ∪ S;
thus clX S ⊂ clX A so as clX S is not compact, neither is clX A. �
Lemma 7. Suppose thatκ < p. LetX be locally compact, non-compact, scattered, of fin
CB index, and suppose that|X| � κ . ThenX is not pseudocompact.

Proof. By Lemma 6,X has a countable set of isolated pointsD whose closure is no
compact. The conclusion will hold if we show thatD contains an infinite subsetA that
satisfies the conditions of Lemma 4. The existence ofA will follow from the fact that
κ < p. By the definition ofp, [17, p. 115], a familyF of countably infinite sets will hav
an infinite pseudo-intersection if the family has the strongly finite intersection prop
and if its cardinality is less thanp. We choose as members ofF those countably infinite
subsetsF of D with the property thatD \ F = D ∩ C for some compact open subs
C of X. The family is non-empty sinceD ∈ F . We check that it has the strong fini
intersection property. LetF1, . . . ,Fn ∈ F with associated compact open setsC1, . . . ,Cn.
Suppose

⋂
Fi is finite say{d1, . . . , dk} ⊂ D. ThenD lies in the compact set

⋃
Ci ∪{di}, so

the closure ofD is compact, which is false. Now we want to show thatF has size at mostκ .
By Lemma 5,X has an open base of cardinality� κ . Let C be the collection of compac
open subsets ofX. Then|F | � |C|, and as each member ofC is a union of finitely many
elements ofB, |C| � κ . Thus|F | � κ < p. Now let A be the infinite pseudo-intersectio
of the familyF . �

Lastly we have:
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Proof of Theorem 4. The spaceX is scattered, and of finiteCB index by Corollary 1. It
has weight at mostκ by Lemma 5. If it is not compact, then it is not pseudocompac
Lemma 7. �

5. Non-compact examples via Ψ -like spaces

In this section we will construct spaces that areRG, almost compact, locally compac
almost-P , non compact, and of finiteCB index.

The notion of a maximal almost disjoint family is found in [17, p. 115].

Definition 1 (RG-MAD: RG-maximal almost disjoint family onκ). Let κ be a cardinal,
κ � ω2. An RG-MAD family, A, is a collection of subsets ofκ of cardinality at leastω2
obeying:

(i) if A,B ∈A,A �= B, then|A ∩ B| is finite,
(ii) for all X ∈ [κ]ω0, there is anA ∈A such thatA ∩ X has cardinalityω0,

(iii) for every subsetB of A of cardinalityω1, and for all setsD in [κ]ω1, there is anA ∈ A
such that for allB ∈ B, (B \ D) ∩ (A) �= ∅.

Note that (i) and (ii) imply that the familyA is maximal: if there were a subsetS of
cardinality at leastω2 that could be added while retaining the almost disjoint property
a countable subset ofS could also be added, and it could play the role ofX in (ii).

Theorem 5. Let κ = κω0 = κω1 be a regular cardinal. Then there is an RG-MAD fam
Aα of cardinalityκ on the setκ .

Proof. Enumerate[κ]ω0 as{Xα: α < κ} and[κ]ω1 as{Dα: α < κ} making sure that eac
Dα occurs withκ repetitions.

We will recursively construct a family that satisfies the conditions of Definition 1
fact, something stronger than the third condition will hold.)

The setsAα will be of cardinalityκ and will be non-stationary, i.e., their individu
complements will contain a closed unbounded subset ofκ cf. [7, p. 78], [8, p. 57].

As well, the familyAα will satisfy the following three conditions:

(1) if β < α,Aα ∩ Aβ will be finite,
(2) if |Xα ∩ Aβ | < ω for all β < α, thenXα ⊂ Aα (eitherXα has an infinite intersectio

with a precedingAβ , or else its intersection withAα is infinite),
(3) ∀β < α,Aα ∩ (Aβ \ Dα) �= ∅.

First we note that once this is done, the three conditions of Definition 1 will be sat
by {Aα: α < κ}. Condition (i) is identitical and condition (ii) is immediate, so it suffic
to check condition (iii). LetB be a family ofω1 sets fromA, and letD be a subset ofκ
of cardinalityω1. Recall that the setD occurs at leastκ times in the set{Dα}. Since the
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cofinality of κ is greater thanω1, there is aγ greater than eachα occurring as a subscrip
in B. The correspondingAγ is the setA that one wants for condition (iii).

To begin the construction, choose a setA0 from [κ]κ that is non-stationary and contai
X0. This is possible as follows:X0 has cardinalityω0 so it is non-stationary. Its com
plement contains a closed unbounded setS, which is of cardinalityκ by [7, 6.12]. Now
chooseC a non-stationary subset ofS of cardinalityκ (say its set of non-limit points) an
let A0 = X0 ∪ C. ThusA0 is non-stationary and of the right cardinality.

Conditions (1) and (3) are automatic and condition (2) holds by the choice ofA0.
Now assume that allAβ,β < α have been defined. Sinceκ is a regular cardinal⋃{Aβ : β < α} is non-stationary [7, p. 78]. We now do a construction that “disjointifi

theAβ by ignoring small intersections. EachDα is of cardinalityω1 so it is non-stationary
For eachβ, letBβ = Aβ \ (

⋃
Aγ : γ < α, γ �= β)∪Dα . NowBβ is not empty becauseAβ

has cardinalityκ and one is deleting fewer thanκ finite sets from it. TheBβ are disjoint by
construction. The set

⋃
Bβ ⊂ ⋃

Aβ so it is non-stationary.
ChooseCα , non-stationary from[κ]κ , so thatCα is disjoint from

⋃
Aβ, β < α. (We

needCα to make sure that theAα that we construct is of sizeκ .) Again, this is possible be
cause the complement of the non-stationary set

⋃
Aβ, β < α, contains a closed unbound

set which, in turn, contains, a non-stationary set of cardinalityκ.

Now for eachβ < α choosebβ ∈ Bβ and defineAα as follows:
Case1. If there is aβ < α for whichXα ∩ Aβ is infinite, letAα = Cα ∪ {bβ : β < α}.
Case2. If for all β < α, Xα ∩ Aβ is finite, letAα = Cα ∪ {bβ : β < α} ∪ Xα .
We need to check that the three conditions hold:

(1) In case 1,Aα ∩ Aβ = {bβ}. In case 2,Aα ∩ Aβ = {bβ} ∪ (Xα ∩ Aβ) which is finite in
this case.

(2) This holds by the construction ofAα , because we are in case 2.
(3) By construction,bβ ∈ Aα ∩ (Aβ \ Dα), so the intersection is not empty.�

Recall from Proposition 1 that a pseudocompactRG-space must be of finiteCB-index.

Theorem 6. Let A be an RG-MAD family onκ � ω2. Then there is a pseudocompa
locally compact, almost compact, almost-P , noncompactRG-space of CB index2 of size
|A| + κ .

Furthermore there is a pseudocompact, locally compact, almost compact,RG-space of
each finite CB-index.

Proof. Let L be a set of cardinality|A|, and letA → p(A) be a bijection fromA ontoL.
Let X = κ ∪ {p(A): A ∈A} = κ ∪ L. Define a topologyτ onX as follows:

τ = {
V ⊂ X: p(A) ∈ V ⇒ A − V < ω

}
.

It is straightforward to verify that(X, τ) is a locally compact Hausdorff (hence Tychono
space. It is reminiscent of “Ψ -like” spaces used frequently as examples; see [4, 5I] f
discussion ofΨ . Observe that{p(A)} ∪A = K(A) is the one point compactification of th
discrete open subspaceA of X, and is a compact openX-neighbourhood ofp(A). Also
note thatI (X) = κ .
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We will prove thatX is an almost compactRG-space. It is clear thatL is an infinite
closed discrete subspace ofX so X is not countably compact, whileX is scattered and
CB(X) = 2.

Claim 1. X is pseudocompact.

For if f ∈ C(X)−C∗(X) assume without loss of generality thatf � 0. For eachn ∈ N

inductively choosexn ∈ X such thatf (xn+1) > f (xn) + 1. As κ is dense inX, for each
n ∈ ω choosean ∈ f −1[(f (xn) − 1/4, f (xn) + 1/4)] ∩ κ and letS = {an: n ∈ ω}. By
property (ii) of Definition 1 there exists anA ∈ A such that|A ∩ S| = ω. Thenf |K(A) is
continuous and unbounded, whileK(A) is compact, a contradiction. Hence no suchf can
exist andX is pseudocompact.

Claim 2. If f ∈ C(Xδ) and A ∈ A, there is a countable subsetC of A for which f is
constant onK(A) − C.

To see this, suppose thatf (p(A)) = r . Then asf −1(r) is open inXδ and theGδ-sets
of X form an open base forXδ , there is a countable family{Wn: n ∈ N} of open sets ofX
for whichp(A) ∈ K(A) ∩ (

⋂
n∈N Wn) ⊂ K(A) ∩ f −1(r).

As X-open sets ofK(A) that containp(A) are co-finite,
⋂

n∈ω Wn is co-countable, so
{x ∈ K(A): f (x) = r} is co-countable. The claim follows.

Claim 3. Letf ∈ C(Xδ). Then|f [L]| � ω.

To see this, suppose there is a subset{ri} of f [L] of cardinalityω1. For eachi < ω1,
there existsAi ∈ A for which f (p(Ai)) = ri . Let Di = K(Ai) − f −1(ri). By Claim 2,
Di is countable. LetD = ⋃

i<ω1
Di ; then |D| = ω1. By (iii) of Definition 1 there exists

A ∈ A such that for eachi < ω1, (Ai − D) ∩ A �= ∅. Let si ∈ (Ai − D) ∩ A; then{si : i <

ω1} ⊂ A andf (si) = ri . Thusf assumes uncountably many values onA in contradiction
to Claim 2. Thus our claim follows.

Claim 4. Let f ∈ C(Xδ). Then there existsr ∈ � such thatL − f −1(r) is countable.(We
call the numberr the ‘principal value’ off ).

To see this, note that by Claim 3 there is a countable subset{ri : i ∈ N} of � such
that L = ⋃

i∈N f −1(ri). As L is uncountable, there is somea ∈ N such thatf −1(ra) is
uncountable. ThenL − f −1(ra) = ⋃

i∈N−{a} f −1(ri). Suppose thatL − f −1(ra) is un-

countable. Then the same argument applied toL − f −1(ra) yields ab ∈ N − {a} such that
f −1(rb) is uncountable. Thus there exist points{p(Ai): i < ω1} and{p(Bi): i < ω1} such
thatf (p(Ai)) = ra andf (p(Bi)) = rb for eachi < ω1.

Let D1 = (
⋃

i<ω1
Ai − f −1(ra)) ∪ (

⋃
i<ω1

Bi − f −1(rb)). By Claim 2, using the argu
ment employed in the proof of Claim 3,|D1| � ω1.

Let D2 = {s ∈ κ: s ∈ Ai ∩ Bj for some(i, j) ∈ ω1 × ω1. By (i) of the definition|D2| �
ω1. Let D = D1 ∪D2. By (iii) of the definition there exists anA ∈A such that(Ai −D)∩
A �= ∅ and(Bi − D) ∩ A �= ∅ for all i < ω1. As (Ai − D) ∩ (Bj − D) = ∅ for each(i, j),
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bothA∩ (
⋃

i<ω1
Ai) andA∩ (

⋃
i<ω1

Bi) are uncountable sets, withf [A∩ (
⋃

i<ω1
Ai)] =

ra andf [A∩ (
⋃

i<ω1
Bi)] = rb. This contradicts Claim 2. HenceL−f −1(ra) is countable

and Claim 4 follows.

Claim 5. X is almost compact.

It suffices to show that iff,g ∈ C(X) andZ(f ) ∩ Z(g) = ∅ then eitherZ(f ) or Z(g)

is compact [4]. AsC(X) ⊂ C(Xδ) it follows from Claim 4 thatL∩Z(f ) andL∩Z(g) are
either countable or co-countable. As they are disjoint they cannot both be co-counta
assume without loss of generality thatL∩Z(f ) is countable. Using Claim 4 again, we s
that there exists anr ∈ � − {0} such thatf −1(r) is co-countable. (In fact, we are showi
that if s ∈ � − 0, thenL ∩ f −1(s) is finite.)

We next show thatL ∩ Z(f ) is finite. If not, there exists a countable infinite sub
{p(Ai): i ∈ N} ⊂ L ∩ Z(f ). Choose{p(Bj ): j � ω1} ⊂ L ∩ f −1(r).

Let

D =
( ⋃

j<ω1

(
Bj − f −1(r)

)) ∪
(⋃

i∈N

Ai − Z(f )

)

∪
[⋃{

S ∩ T : S,T ∈ {Bj : j < ω1} ∪ {Ai : i ∈ N}, S �= T
}]

.

By arguments similar to those used in Claims 3 and 4,|D| � ω1. By (iii) of Definition 1
there existsA ∈ A such that(Bj − D) ∩ A �= ∅ and (Ai − D) ∩ A �= ∅ for j < ω1 and
i ∈ N . Then by our choice ofD, there exists an uncountable subset{sj : j < ω1} of A ∩
f −1(r) and a countably infinite subset{ti : i ∈ N} of A ∩ Z(f ). The existence of thes
sets contradicts the continuity off at p(A), and we conclude thatL ∩ Z(f ) is finite as
claimed—sayL ∩ Z(f ) = {p(Ai): i = 1, . . . , n}.

ThenS = ⋃{K(Ai): i = 1, . . . , n} is compact.
Finally, we claim thatH = Z(f )−S is a finite set (and henceZ(f ) is compact). Clearly

H ⊂ κ . If H were infinite then by (ii) of Definition 1, there existsA ∈ A such thatA∩H is
countably infinite. This implies thatf (p(A)) = 0, soA is one of theAi which contradicts
the fact thatS ∩ A = ∅. The claim follows.

Claim 6. If f ∈ C(Xδ) thenf [X] is a countable set.

To see this note that by Claim 5,βX = X ∪ {p}, the one-point compactification ofX.
ClearlyβX is scattered andCB(βX) = 3. By [10, 5.7] it follows that(βX)δ is Lindelöf.
As {f −1(f (x)): x ∈ f [βX]} is a partition of(βX)δ into (βX)δ-open sets, it follows tha
f [βX] is countable. AsX is pseudocompact (by Claim 1),υX = βX. By [4, 5.6 and
5.7 ] υ(Xδ) = (υX)δ = (βX)δ. ThusXδ is dense andC-embedded in(βX)δ , sof [X] is
countable.

Claim 7. If f ∈ C(Xδ), there is a countable subset{p(Ai): i ∈ N} of L and a countable
subsetS of κ such that|f [L − (S ∪ (

⋃
i∈N K(Ai)))]| = 1. (In other words,f is constant

on the complement of aσ -compact cozero-set ofX.)
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To see this, note that there is anr ∈ � such thatL − f −1(r) = {p(Ai): i ∈ N} (using
Claim 4). Then as bothf −1(r) and

⋃
i∈N K(Ai) are clopen in theP -spaceXδ , the set

V = X − [f −1(r) ∪ ⋃
i∈N K(Ai)] is a clopen subset ofXδ that is contained inκ . If V is

uncountable, there is a bijectionb from an uncountable subsetT ⊂ V onto a subset of�.
Extendb so thatb[Xδ −T ] = 0. Thenb ∈ C(Xδ) and|b[Xδ]| is uncountable, contradictin
Claim 6. ThusV is countable, and(

⋃
i∈N K(Ai)) ∪ V is a σ -compact cozero-set ofX

whose complement is mapped byf to r .

Claim 8. X is anRG-space andrg(X) � 4.

Let f ∈ C(Xδ) and letr ∈ � such thatL ∩ f −1(r) is a co-countable set ofL. Let
g = f − r. ThenL∩Z(g) is a co-countable subset ofL and coz(g) is aσ -compact cozero
setW of X (see Claim 7). Letj ∈ C(X) such thatW = coz(j).

Now coz(j) is a Lindelöf scattered space ofCB index 1 or 2 so by [6, 2.11 an
2.12] coz(j) is an RG-space ofCB-index no greater than 3. Hence there arehi, gi ∈
C(coz(j)), i = 1,2,3, such thatg|coz(j) = ∑3

i=1 hig
∗
i . By [2, 3.1] there are, for eac

i, si , ti , ui , and wi ∈ C(X) such thathi = (si t
∗
i )|coz(j) and gi = (uiw

∗
i )|coz(j). It

is a straightforward computation to show thatg = jj∗(
∑3

i=1(si t
∗
i )(uiw

∗
i ). Thus f =

r + ∑3
i=1(jsiui)(j tiwi)

∗ soX is anRG-space andrg(X) � 4.

Claim 9. ThatX is almost-P is almost immediate. Suppose thatf ∈ C(X) is a function
with non-empty zero-setZ(f ). If a point fromκ lies in Z(f ) thenZ(F) has non-empty
interior. If no point fromκ lies in Z(F) thenf vanishes only at pointsp(A). But if f

vanishes atp(A) it also vanishes at points ofK(A) by Claim2.

Claim 10. Lastly we must show that we can get our spaces with arbitrary CB-index.
follows by repeatedly taking the product ofX with the spaceN∗ and using the argu
ments of the discussion that follows Theorem2. The successive new spaces areRG, they
are pseudocompact, they are almost compact, and their CB indices increase by1 at each
stage. �
Remark 2. It is interesting to compare the spaceX of Theorem 6 withΨ of [4, 5I]. Both
spaces are scattered, locally compact, and pseudocompact ofCB index 2.X is functionally
countable even in theGδ topology, andΨ is functionally countable when it is almo
compact. YetX is RG andΨ never is. It would be interesting to have a precise inte
(i.e., without reference to theGδ-topology) explanation as to why one isRG and the other
is not (see open question 5 below).

Remark 3. AlthoughX is scattered ofCB index 2, the following considerations show th
G(X) does not have regularity degree 2 overC(X).

First we need to describe the functions inCX)

Let f ∈ C(X) with principal valuer .
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(i) If f (p(A)) = s and iff differs froms onp(A) ∪ A at infinitely many points then th
values (different froms) assumed onA by f must haver (and onlyr) as a limit point.

(ii) If there are countably infinitely many different points on the upper level wheref is
different fromr then the values different fromr must haver (and onlyr) as a limit
point.

Part (i) holds because the relative topology onp(A) ∪ A is the one-point compactificatio
of A.

Part (ii) follows from property (iii) of Definition 1 as follows: letp(Ai) be a countably
infinite set from the upper level on whichf never equalsr . Sincef is bounded by Claim 1
the valuesf (p(Ai)) have a limit point sayr ′ �= r . Let p(A′

j ) be a set ofω1 points on the
upper level wheref equalsr . Let B = {Ai,A

′
j }. Let D be the union of the exception

points in each of the setsAi,A
′
j . The setD has cardinalityω1 becauseB does and becaus

of property (i). By property (iii) there is a setA ∈ A that meets each set inB. SoA has
ω1 points wheref equalsr and it also has countably many points whose functional va
converge tor ′. This is not possible on the one-point compactificationp(A) ∪ A.

Now let us see why we do not have regularity degree 2 forX.
Choose a countably infinite set of points{p(An),n ∈ ω} from the upper level ofX.

Each one point compactification{p(A) ∪ A} is compact open inX. It is an easy con
sequence of the countability of the discrete set{p(An), n ∈ ω} (see [4, 3L.2]) and the
zero-dimensionality ofX, that one can find disjoint compact setsBn each open inX, so
that for eachn one hasBn ⊂ p(A)∪A andp(An) ∈ Bn. Clearly eachBn is cocountable in
p(An) ∪ An because the familyA has pairwise intersections finite. Inside eachBn choose
a countably infinite subsetCn = {cn,m} of points fromκ .

Now define a functionf as follows:f equalsn + 1 onBn \ Cn, andf (cn,m) = n + m.
Also letf = 1 onX \⋃

Bn. It is clear thatf ∈ C(Xδ), and thatf has empty zeroset. No
suppose that there existeda1, a2, b1, b2 ∈ C(X) so thatf = a1(b1)

∗ + a2(b2)
∗. If both b1

andb2 were non-zero at a pointAn thenf coincides witha1
b1

+ a2
b2

on coz(b1) ∩ coz(b2)

an open neighbourhood ofAn in theX-topology, i.e., on a cofinite subset (and theref
compact) ofp(A) ∪ An. But this is clearly false becausef is unbounded on setCn. Thus
for eachAn we know that exactly one of the pair{b1, b2} must vanish atp(An) and there
are infinitely manyp(An) that lie in the zero set of one ofb1, b2, say with loss of generalit
b1. Call themp(Ank

). (Notice that the principal value ofb1 has to be zero and that fro
the principal value off we get 1= s2/t2, wheres2, t2 are respectively the principal valu
of a2 andb2. So for eachnk,f (p(Ank

)) = a2/b2(p(Ank
)) �= 0. Sincet2 �= 0, we have a

contradiction because the values off on theAnk
are supposed to approachs2/t2, whereas

they go to infinity.

Corollary 1. It is non-decidable byZFC whether there is a non-compact locally comp
pseudocompactRG-space of cardinalityω2.

Proof. Under the GCH Lemmas 5 and 6 apply toω2 and give a non-compact example. O
the other hand there are models of set theory in whichp > ω2 and for them Theorem
gives compactness.�
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Corollary 2. (ZFC) There is a pseudocompact non-compact almost-P , RG-space of car-
dinality (2ω1)+.

Proof. The successor cardinal(2ω1)+ is regular, and it satisfies the two exponential c
ditions of Theorem 5. �
Corollary 3. There is a pseudocompact non-compact almost-P , RG-space of cardinality
2ω1.

Proof. This is established by a reflection argument. One begins with anRG-MADfamily
A from [(2ω1)+](2ω1)+ .

TakeM an elementary submodel of the universe insideH(θ) with θ big enough. We
ask thatM be of cardinality 2ω1 and thatM be closed underω1-sequences. LetA′ be the
family {A ∩ |M|: A ∈A}.

One checks thatA′ and
⋃

A′ both have cardinality 2ω1.
Now we claim thatA′ is anRG-MADfamily onM .
Property (1) holds trivially because the sets inA were almost disjoint to begin with.
For Property (2) letX be a countable subset ofM ∩ (2ω1)+. SinceM is closed unde

ω1-sequences there is anA in M that works. For condition (3) letB′ ⊂ [A′]ω1. Now note
that since there is a 1–1 correspondence between the elements ofA and those ofA′ we can
let B ⊂ [A]ω1 be defined byB′ = {B ∩ |M|: B ∈ B}.

Now condition (3) gives the existence of a setD ∈ M ∩ [(2ω1)+]ω1.
Now by assumptionD ∈ M andB ∈ M becauseA ∈ M . Now by elementarity, the

formula (3) holds, i.e.,M |= ∃A ∈ A∀B ∈ B � B \ D ∩ A �= ∅ and sinceA ∈ M the inter-
section withM is non-empty giving(B ∩ M \ D) ∩ A ∩ M �= ∅. �

6. Open questions

1. If κ � max(ω2,p) does there exist a pseudocompact non-compactRG-space of car-
dinality κ? If so then an example that is not locally compact exists by the discu
after Theorem 2.

2. Are separable pseudocompactRG-spaces compact? Again, if not, then there will
an example that is not locally compact.

3. Does Theorem 4 hold without assuming local compactness?
4. Let D∗ be the one-point compactification of the uncountable discrete spaceD. Sup-

pose theX is RG. Must it follow thatX × D∗ is RG?
5. Suppose thatX is a pseudocompact scattered space of finiteCB index. Give necessar

and sufficient conditions forX to beRG. For example, give such conditions in t
case whereX is almost compact, and theCB index is 2.

6. Is there an example of a pseudocompactRG-space that is almost-P but not locally
compact?
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