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1. Introduction

Let X be a Tychonoff space and I€{X) be the ring of continuous real-valued functions
on X. As shown in [13, Section 5] and [6, Section 1] the study of epimorphisms in the
category of commutative rings yields an algebra of real-valued functions,afenoted
G(X), with some properties of interest. The rigg X) is Von Neumann regular, it is a
subring ofC (X;), and it is an epimorphic extension 6fX) in the category of rings [13,
2.7]. (As usual X5 denotes the underlying set &fwith the topology generated by tlig;-
sets of the spac&). The functions inG (X) are finite linear combinations of products of
functions inC(X) and their quasi-inverses, taken in the regular ). This explicit
representation provides a useful notion of “degree”. The definition of the quasi-inverse, and
the presentation of a functiofi in G(X) as well as its regularity degree (denoted f))
are found in [6, pp. 1, 2] as is the regularity degree of a spadenoted-g(X). We will
abuse notation and also speak of ‘rank’ interchangeably with ‘regularity degree’.

The class oRG-spaces was defined and studied in [6]. A sp&de RG (for regularly
good) if G(X) = C(Xs). It is equivalent to demand that the embeddih@X) — C(Xs)
be an epimorphism of rings. (One direction is clear since the embedding X9 is an
epimorphism. The converse follows from the algebraic fact that regular ring& ke
are “dominant” cf. [16]). AlthoughRG-spaces are generally difficult to determine, they
are characterized nicely in the compact case as follows [6, 3.4]: a compact sg&Ge is
iff it is scattered and of finite dispersal degree, i.e., of finite Cantor—Bendixon degree,
cf. [6].

In this note we are interested in studying pseudocompact spaces thRGamBeing
scattered of finite€Bindex is not sufficient because Isbell’s spacef [4, 51] is neverRG
even though there are versionsdfthat are almost compact).

We show that pseudocompaRG-spaces must be scattered strongly zero-dimensional
of finite CB index and of finite regularity degree (Proposition 1). Section 2 presents exam-
ples which show that there is quite a variety of pseudocompatsspaces (obtained via
the Generating Machine). These spaces need not be almost compact, in fact they need not
even be locally compact.

Pseudocompad@G-spaces of cardinality; and countably compadG-spaces of any
cardinality, must be compact (Proposition 2, Theorem 3).

We also show (Theorem 4) that a locally compact pseudocompatispace of
cardinality< p must be compactyis defined in [17]).

Later in Theorem 6 we show that if a cardinaladmits a certain kind of family of
maximal almost disjoint subsets, then &G-space ofCB index 2 can be constructed
that is pseudocompact, locally compact, almost compact, alipstt not compact. The
construction mimics that of Isbell’s spage It can always be done for regular cardinals
satisfyingx = «® = «®1, in particular for spaces of cardinalitg~1) ™. It turns out that it
is non-decidable in ZFC whether there is a locally compact non-compact pseudocompact
RG-space of cardinality, (Corollary 1).

All spaces discussed will be Tychonoff. Whéhis locally compact and € X, then
x € O C K will mean thatO is an open neighbourhood af and thatK is compact.

A spaceX is called almost compact [4, 6J] iBX — X| < 1. It is called almostP [9]
if every non-empty zero-set has non-empty interior cf. [9]. Our terminology and notation
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will be that of Gillman and Jerison [4] and Porter and Woods [11]. The paper [12] gives
an algebraic context for the study 6f X) and of RG-spaces and [14] has other results on
the topic.

2. Elementary results and some examples

Recall that a subspade of X is calledG-embedded [6, 2.1] if the natural restriction
homomorphisnG (X) — G(Y) is onto.
The following replies to [6, 4.5] and is based on an observation by M. Sanchis.

Lemma l. LetY be aGs-denseG-embedded subspace ¥f ThenX is RG if Y is RG.
In particular, if Y is RG andY C X C vY thenX is RG.

Proof. Take f € C((X);). Restricting toYs gives f|Y = a;b} for a;,b; € C(Y) be-
causeY is RG. By the G-embedding oft’ in X, this lifts to 3 C; D% for someC;, D; €
C(X), and now the functiong andZCjD;f agree on the dense (in the delta topology)
subsetr and therefore are equal. Thiiss G(X).

For the second claim note th&tis C-embedded (and hencg-embedded) inY and
itis Gs-dense invY by [4, 8.8(b)] or [11, 5.11(f)].

In factitis easy to see that(Ys) = (vY)s as follows. Since&’ is anRG-space( (Ys) =
G(Y), so theG-embedding off in vY implies thatY; is C-embedded irfvY)s, which is
realcompact becaus€ is. AlsoY; is dense invY)s (asY is Gs-dense invY), it follows
that(vY)s =v(Ys). O

Remark 1. We should point our here that the claim in[11, 5F(7)]—i.e., ihdfs) = (vY);s
in general—is false. Isbell’'s spade provides a counterexample.

Recall that the relationship betwe@B index and regularity degree iRG-spaces is
quite fluid. ClearlyP-spaces are alwayBG; they need not have any isolated points, (in
which case the notion aEB index is irrelevant), and if scattered, they can have fiGiBe
index, or have infiniteCB index. In the compact case the connection is very tight. It is
precisely when the space is scattered and of finite index that the sp&ce Mo such link
holds for almost compact spaces. But the following result underscores the proximity of the
pseudocompact case to the compact case.

Proposition 1. Suppose thaK is a pseudocompadG-space. TherX is scattered, it
is of finite CB index, functionally countable, and strongly zero-dimensional. Furthermore
rg(X), the regularity degree of the ring (X), is finite.

Proof. SinceX is pseudocompa@X = vX so by Lemma 18X is RG. Thus it is scat-
tered and of finiteCB index [6, 3.4]. Therefor&l is scattered of finit€B index. The space
X is functionally countable because itGsembedded i X and each function ogX has
countable range.
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Since compact scattered spaces are zero-dimensional [68X 3§ zero-dimensional
and thereforeX is strongly zero-dimensional by [3, 6.2.12].

It remains to show that the regularity degree is finite. fet C(X;). As in the proof of
Lemma 1,f lifts to a functionF € Clu(X;s)] = C[(vX)s]. But by Lemma 1p X = X
is an RG-space of finite regularity degree sayThereforeF € G(vX) andrg(F) < n. It
follows (by restriction) thatg(f) <n. O

Lemma 2. A spaceY is RG if it contains a cozero sdt such thatU is RG andY — U is
RG and G-embedded. The spageis of finite rank ifU andY — U are of finite rank.

Proof. Since cozero sets induce epimorphisms in the category of commutative rings, [1,
2.1(ii)] they are automaticallyz-embedded. Now the result is straightforward. Suppose
thatU = coz(m). Take f € C(Ys). Thenf|U e G{U) and f|Y —U e G(Y —U). AsU

andY — U areG-embedded irY there are functiond;, B;, C;, D; € C(Y) so thatf and

> A;B} agree o/ and f and}_ Cijf agree oY — U. Thus f = (mm*)(}_ A; Bf) +
(L—mm*) (3 C;DH eG(Y). O

For the next theorem we will need to cite the following result:

Theorem 1 (Starbird [15]) If K is a compact subspace Bf, thenX x K is C*-embedded
in X x W.

Theorem 2. Leta N be a compactification a¥ thatisRG. Let X be anRG-space of finite
rank. ThenY = X x aN is RG of finite rank. If CRX) = n, then CRX x N*)=n+ 1.

Proof. The spacerN is of finite CB index because it iRG.

We will induct onCB(aN). Let U be the union of the clopen seXsx {n}. The cozero
setU is RG because eacl x {n} is of the same (finite) regularity degree namely that of
X [6, 2.8].

WhenaN has index 2 (the least possible)N — N is finite andY — U is the free
union of a finite number of copies &f and thusRG. It is G-embedded because it¢s'-
embedded by Starbird’s theorem. By Lemm&2¢ a N is anRG-space of finite regularity
degree.

Now assume the result f&€B index n and consider the case wh&B(X) =n + 1.
The space&xN — N is compact ofCB indexn soY — U = (aN — N) x X is RG and of
finite regularity degree by inductive assumption. Alse- U is G-embedded because it is
C*-embedded again by Starbird’s theorem which is applicable sinte- N is compact.
The space’ is RG and of finite rank by Lemma 2.

The last claim concerns the raising of {68 index under taking the product withi'*
and it is the result of a straightforward consideration of the isolated points in the prod-
uct. O
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2.1. Generating machine

We now present a method for obtaining new examples from existing ones. Through-
out M will denote a pseudocompact non-comp&eE-space. An example that is almost
compact and almos® is constructed in Theorem 6 below.

By Theorem 2Y = M x N* isanRG-space. Itis pseudocompact because it is the prod-
uct of a pseudocompact space with a compact space. Hence by Glicksberg’s Theorem [5],
B(M x N*)=BM x BN* =M x N*. ThereforevY = BM x N*.

Now suppose thar is any space that lies betwe&nand Y. By Lemma 1,T is RG
and it is pseudocompact since it contalhas a dense subspace. There are many ways of
choosingT. SinceN* is not almostP, neither isY so it follows by a theorem of Levy [9,

2.2] thatgY is not almostP and hence by the same theorem that none of the space
generate will be almose.

2.2. Examples

1. A pseudocompa@®G-space that is not locally compact.
Let pe BM — M, and letT =Y U {(p, w)} wherew is the point at infinity ofN*.
Then the pointp, w) has no compact neighbourhoodiin

2. A pseudocompact locally compakRt -space that is not almost compact.
Take an instance a#f which is almost compact and consequently locally compact.
LetT =Y. ThenBT — T = (BM — M) x N* which is infinite. This means that is
certainly not a finite free union of almost compact spaces.

3. Other possibilities.
It is clear that for any spac& which the procedure produces, we can repeat the
procedure beginning witlT" in the place ofM. In particular we can manufacture
pseudocompacRG-spaces whose outgrowths are scattered of any fitBendex.
Thus the structure of the outgrowths of pseudocompa@Gtspaces can be compli-
cated.

3. Compactness when the spaceis of cardinality w1 or iscountably compact

The following result is obvious for spaces of cardinatitysince countable pseudocom-
pact spaces are compact.

Proposition 2. If X is pseudocompa®G of cardinalityws, thenX is compact.

Proof. Let X be pseudocompact of cardinali@ys. By Proposition 1,X is functionally
countable. SinceX is RG, and given the nature of the functions &(X), X;s is also
functionally countable. ThuXs cannot be written as the free union of an uncountable
collection of disjoint clopen subsets.

SupposeX is not compact. As it is pseudocompact, it follows that it is not Lindelof [4,
5.9, 8.2]. LetC be an open cover of with no countable subcover. L&t = {x,: a < w1}.
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Let§ < w1 and inductively assume that for eagh< § we have chosen a cozero-3&t of
X such that:

(1) xo € Va,
(i) if @1 < a2 <8 thenV,, isaproper subset df,,,
(i) v, c C, forsomeC, €C.

By (iii) and our choice o, X — |, s Vo # 9.

Let A(8) = min{y < w1: x, & Uy—s Vo). By (i) A(8) = 8. Thenx;s) € Cs for some
Cs € C. There is a cozero-sé¥s of X such thaty, ) € Ws C Cy. Let Vs = (U, -5 Vo) U
Ws. Then (i)—(iii) hold fora < 6.

Thus(Vy)a<e, is strictly increasingo;-sequence of cozero sets®f Clearly

{Vg - U Vi 8 <w1}
a<$

is an uncountable disjoint covering af by non-empty clopen sets df;, contradicting
what we asserted earlier. The proposition follows:

We will now prove that a countably compagiG-space must be compact. First we
introduce some notation and state a simple structural lemma.

Let Y be a scattered space wi@B(Y) = n. Let L1(Y) = I(Y) denote the set of iso-
lated points oft . If 1 < k < n, defineLy(Y) to bel (Y — | J'Z} L;(Y)). The following is
immediate [6, 3.2].

Lemma 3. Let X be a scattered space with CB) =n. Then

() {L;(X): 1<i < n}partitionsX.
(i) fke{l,...,n}thenL;(X) is aclosed discrete subspaceLgf‘:1 L;(X) and a dense
open subspace ¢ff;_, L;(X).
(i) If 1<k <nandp e Ly(X)thenp has anX-neighbourhood/ such that
k—1

V—{pclJLio.

i=1
The subseL;(X) is sometimes called th&-th level” of X.

Theorem 3. A countably compack G-space is compact.

Proof. Let X be a countably compadG-space. Sinc& is pseudocompact, by Proposi-
tion 1, X is scattered and of finit€B index sayn. ThuspX = J/_; Li (BX).

We will prove thatL; (8X) C X foreachi € {1, ..., n}. This will show that8 X = X so
X is compact. Clearly.1(8X) C X sinceL1(8X) =1(8X) andX is dense iBX.

Suppose if possible thdt; (8X) — X # ¢ for somei and letk be the smallest such
Clearlyk > 2. Let p € Ly (8X) — X. By (iii) in the preceding lemma, there is a compact

B X-neighbourhoodt of p such thatd — {p} c | U\— Li(BX). As Ly_1(BX) is dense and
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openinJ?_,_; Li(BX) (see (ii) above), it is evident thate clgx (A N Ly_1(BX)). Thus
AN Lg_1(BX) is an infinite discrete space by (ii) above. Butias 1(8X) is closed in
UZ$ Li(8X) and also discrete, it is clear that the o -limit point of A N Li_1(8X)
is p. Sincep ¢ X, the setA N L;_1(BX) is an infinite closed discrete subspaceXf
contradicting the hypothesis th&tis countably compact. The theorem followsa

4. The case of locally compact spaces of cardinality lessthan p

As noted earlier pseudocompaRiG-spaces need not be locally compact (although it
is easy to check that separable one€8findex < 3 are). The results in this section will
assume local compactness.

We recall [17, p. 115] that the sdt is a pseudo-intersection of a famiy if for each
F € F the setA — F isfinite. The familyF has the sfip (strong finite intersection property)
if every nonempty finite subfamily has an infinite intersection. The carginglmin|F|
as F ranges over countably infinite subfamilies @fwith the sfip and with no infinite
pseudo-intersection.

The purpose of this section is to establish the following result.

Theorem 4. If k < p, X has cardinalityx, and X is locally compact pseudocompact RG,
thenX is compact.

The theorem does not imply Proposition 2 because there are models of set theory in
whichp = w1—cf. [17, 3.1(a)].
In order to prove the theorem we require a series of lemmas.

Lemma 4. Let X be a locally compact space that contains a countably infiniteAsef
isolated points with the property that every compact sulisef X has finite intersection
with A. ThenX is not pseudocompact.

Proof. It suffices to show thad is closed inX. If so, it is an infinite discrete clopen subset
of X, and it admits an unbounded function that has a continuous extension toXall of
If possible, letg be in the closure ofA but not in A. By local compactnesg € O C K
compact. By assumptioki N A is a finite set of isolated points 9\ (K N A) is an open
neighbourhood of disjoint from A, a contradiction. O

As usualw(X) will denote the weight of the spacé (see [11]).

Lemmab. Let X be locally compact, non-compact, of finite CB index and of cardinality
Thenw(X) < «.

Proof. We induct onCB(X). If CB(X) = 1 thenX is discrete and{x}: x € X} is an open
base of cardinality sow(X) < «.

Now suppose the result holds for all locally compact spacé&Bsindex < n. Assume
thatCB(X) =n + 1 and that X| < k. Let T = L, (X) (see the beginning of Section 3).
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ThenT is a closed discrete subspaceXaf CB(X — T) =n andX — T is locally compact
with | X — T| < x. Thenw(X — T) < k. LetC be an open base fof — T of cardinality
< k. The members of are open inX sinceX — T is open inX.

Let p e T. As X is locally compact and’ is closed discrete, there exists a compact
subsetd of X such thatp einty A Cc AandANT = {p}. ThereforeCB(A — p) <n and
A — pislocally compact and of cardinalitg «k sow(A — p) < «.

It is routine to show that it is locally compact and non-compact theY*) = w(Y).
Thereforew(A) < k. But p €inty A so for all p € T, there exists an open neighbourhood
baseB, atp in X suchthai3,| <«.

But|T|<«.Let A=CU{B,: peT}. ThenAis an open base faX of cardinality
< k since it is the union of at mogt families of at mosk members. This completes the
induction step. O

Lemma 6. Let X be locally compact, non-compact, scattered, and of finite CB index. Then
there is a countable set of isolated points in X whose closure is not compact.

Proof. We induct onCB(X). The result is clear whe@B(X) = 1. If X is as hypothesized,
thenCB(X — 1(X)) < CB(X) so by assumption there is a countable sulssef Lo(X)
for which cly S is not compact. Iff € Lo(X) thens has a compact neighbourhodds)
such thatK (s) — {s} C I(X). Let A(s) be a countably infinite subset &f(s) — {s}, and
put A = J{A(s): s € S}. Clearly A is a countable subset ¢{X) that is dense iA U S;
thus cly S C clxy A so as ¢t S is not compact, neitherisgld. O

Lemma7. Suppose that < p. Let X be locally compact, non-compact, scattered, of finite
CB index, and suppose thgf| < «. ThenX is not pseudocompact.

Proof. By Lemma 6,X has a countable set of isolated poifdswhose closure is not
compact. The conclusion will hold if we show that contains an infinite subset that
satisfies the conditions of Lemma 4. The existenceiofill follow from the fact that

k < p. By the definition ofp, [17, p. 115], a family F of countably infinite sets will have
an infinite pseudo-intersection if the family has the strongly finite intersection property,
and if its cardinality is less thap. We choose as members Bfthose countably infinite
subsetsF of D with the property thatD \ F = D N C for some compact open subset
C of X. The family is non-empty sinc® € F. We check that it has the strong finite
intersection property. Lef, ..., F, € F with associated compact open sé€ts ..., C,.
Supposé ) F; is finite say{ds, ..., dx} C D. ThenD lies in the compact sét) C; U{d;}, so
the closure oD is compact, which is false. Now we want to show tlFghas size at most.

By Lemma 5,X has an open base of cardinaliyx. Let C be the collection of compact
open subsets oX. Then|F| < |C|, and as each member 6fis a union of finitely many
elements of3, |C|] < «. Thus|F| < k < p. Now let A be the infinite pseudo-intersection
of the family 7. O

Lastly we have:
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Proof of Theorem 4. The spaceX is scattered, and of finit€B index by Corollary 1. It
has weight at most by Lemma 5. If it is not compact, then it is not pseudocompact by
Lemma7. O

5. Non-compact examplesvia ¥-like spaces

In this section we will construct spaces that &€, almost compact, locally compact,
almostL, non compact, and of finit€B index.
The notion of a maximal almost disjoint family is found in [17, p. 115].

Definition 1 (RG-MAD: RG-maximal almost disjoint family a1). Let « be a cardinal,
kK > wp. An RG-MADfamily, A, is a collection of subsets af of cardinality at leastv,
obeying:

(i) if A, Be A, A# B,then|AnN B is finite,
(i) forall X € [«]*?, there is am € A such thatd N X has cardinalityvg,
(iii) for every subses; of A of cardinalityws, and for all setd in [«]“1, there isam € A
such that for allB € B, (B \ D) N (A) # @.

Note that (i) and (ii) imply that the familyd is maximal: if there were a subs&tof
cardinality at leasi; that could be added while retaining the almost disjoint property then
a countable subset ¢fcould also be added, and it could play the roleXoin (ii).

Theorem 5. Letk = k®° = x®! be a regular cardinal. Then there is an RG-MAD family
A, of cardinalityx on the sek.

Proof. Enumeratdx]“° as{X,: a < «} and[«]*t as{D,: « < k} making sure that each
D, occurs withe repetitions.

We will recursively construct a family that satisfies the conditions of Definition 1. (In
fact, something stronger than the third condition will hold.)

The setsA, will be of cardinality« and will be non-stationary, i.e., their individual
complements will contain a closed unbounded subsetdf [7, p. 78], [8, p. 57].

As well, the family A, will satisfy the following three conditions:

(1) if B <, Ag N Ag Will be finite,

(2) if | Xe NAg|l <o forall B <a, thenX, C A, (eitherX, has an infinite intersection
with a precedingd g, or else its intersection with,, is infinite),

(3) VB <a, Au N(Ag\ Dy) # 0.

First we note that once this is done, the three conditions of Definition 1 will be satisfied
by {A,: o < «k}. Condition (i) is identitical and condition (ii) is immediate, so it suffices
to check condition (iii). Let3 be a family ofw1 sets fromA, and letD be a subset of

of cardinalityw;. Recall that the seb occurs at least times in the sefD,}. Since the
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cofinality of x is greater tham,, there is ay greater than eacdl occurring as a subscript
in B. The corresponding,, is the setA that one wants for condition (jii).

To begin the construction, choose a detfrom [« ]* that is non-stationary and contains
Xo. This is possible as followsXg has cardinalitywg so it is hon-stationary. Its com-
plement contains a closed unbounded $etvhich is of cardinality« by [7, 6.12]. Now
chooseC a non-stationary subset §fof cardinalityx (say its set of non-limit points) and
let Ag = XoU C. ThusAg is non-stationary and of the right cardinality.

Conditions (1) and (3) are automatic and condition (2) holds by the choigeg.of

Now assume that aldg, B < « have been defined. Singeis a regular cardinal,
(U{Ag: B < «} is non-stationary [7, p. 78]. We now do a construction that “disjointifies”
the Ag by ignoring small intersections. Eadh, is of cardinalityw; So it is non-stationary.
For eachB, letBg = Ag\ (U A,: y <, ¥ # B)U Dy. Now Bg is not empty becauség
has cardinalityc and one is deleting fewer tharfinite sets from it. TheBg are disjoint by
construction. The sét) Bg C | Ag so it is non-stationary.

ChooseCy, non-stationary fronix]“, so thatC, is disjoint from( J Ag, B <. (We
needC, to make sure that the, that we construct is of size.) Again, this is possible be-
cause the complement of the non-stationary $eig, 8 < «, contains a closed unbounded
set which, in turn, contains, a non-stationary set of cardinality

Now for eachB < o choosebg € Bg and defined,, as follows:

Casel. Ifthere is 88 < « for which X, N Ag is infinite, letA, = C, U {bg: B < a}.

Case2. Ifforall 8 <a, X, N Agisfinite, letAy = Co U {bg: B <a}U X,.

We need to check that the three conditions hold:

(1) Incase 1A, N Ag ={bg}. In case 2A, N Ag = {bg} U (X N Ag) Which is finite in
this case.

(2) This holds by the construction df,, because we are in case 2.

(3) By constructionpg € A, N (Ag \ Dy), SO the intersection is not emptyD

Recall from Proposition 1 that a pseudocomp®E&t-space must be of finitEB-index.

Theorem 6. Let A be an RG-MAD family om > wp. Then there is a pseudocompact,
locally compact, almost compact, almadt-noncompacRG-space of CB indeR of size
Al + k.

Furthermore there is a pseudocompact, locally compact, almost compéaegpace of
each finite CB-index.

Proof. Let L be a set of cardinality4|, and letA — p(A) be a bijection fromA4 onto L.
LetX =«x U{p(A): Ae A} =« U L. Define a topology on X as follows:

t={VCX pA)eV=>A-V <o}

It is straightforward to verify thatX, 7) is a locally compact Hausdorff (hence Tychonoff)
space. It is reminiscent of¥-like” spaces used frequently as examples; see [4, 5I] for a
discussion ofV. Observe thatp(A)} U A = K (A) is the one point compactification of the
discrete open subspaceof X, and is a compact opeki-neighbourhood ofp(A). Also
note that/ (X) =«.
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We will prove thatX is an almost compa@ G-space. It is clear that is an infinite
closed discrete subspace ¥fso X is not countably compact, whil& is scattered and
CB(X) =2.

Claim 1. X is pseudocompact.

Forif f € C(X) — C*(X) assume without loss of generality th&t> 0. For eaclh € N
inductively choosex,, € X such thatf (x,+1) > f(x,) + 1. Ask is dense inX, for each
n € w choosea, € f~H(f(x,) — 1/4, f(xp) + 1/H]1 Nk and letS = {a,: n € w}. By
property (ii) of Definition 1 there exists afh € A such thajA N S| = w. Thenf|K (A) is
continuous and unbounded, white(A) is compact, a contradiction. Hence no sythan
exist andX is pseudocompact.

Claim 2. If f € C(Xs) and A € A, there is a countable subsét of A for which f is
constant onk (A) — C.

To see this, suppose th# p(A)) = r. Then asf~1(r) is open inX;s and theGs-sets
of X form an open base foXs, there is a countable familyW,,: n € N} of open sets ok
for which p(A) € K (A) N (N,,eny Wa) CK(A) N £710).

As X-open sets oK (A) that containp(A) are co-finite))
{x € K(A): f(x)=r}is co-countable. The claim follows.

W, is co-countable, so

new

Claim 3. Let f € C(Xs). Then|f[L]| € w.

To see this, suppose there is a suljsgtof f[L] of cardinalityws. For eachi < w;,
there existsA; € A for which f(p(A;)) = ri. Let D; = K(A;) — f~1(r;). By Claim 2,
D; is countable. LetD = Ui<w1 D;; then|D| = w1. By (iii) of Definition 1 there exists
A € A such that for each< w1, (A; — D)NA#@. Lets; € (A; — D)N A;then{s;: i <
w1} C A and f(s;) = r;. Thus f assumes uncountably many valuesAdim contradiction
to Claim 2. Thus our claim follows.

Claim 4. Let f € C(Xs). Then there exists € % such thatL — f~1(r) is countable(We
call the number- the ‘principal value’ of f).

To see this, note that by Claim 3 there is a countable sufssei € N} of i such
that L = J; .y f~Y(r;). As L is uncountable, there is soraec N such thatf ~1(r,) is
uncountable. Thel — f~1(ra) = Ujen_(q) /(i) Suppose thal — f~1(r,) is un-
countable. Then the same argument applietl to f ~1(r,) yields ab € N — {a} such that
f~1(rp) is uncountable. Thus there exist poifitg A;): i < w1} and{p(B;): i < w1} such
that f(p(A;)) =r, and f (p(B;)) = rp for eachi < ws.

Let D1 = (U; o, Ai = f10a)) U (U, Bi — f~*(rp)). By Claim 2, using the argu-
ment employed in the proof of Claim 8D1| < w1.

Let Do = {s e x: s € A; N B; for some(i, j) € w1 x wy. By (i) of the definition| Dy| <
w1. Let D = D1 U D». By (iii) of the definition there exists aA € A such thatA; — D) N
A#@Pand(B; —D)NA#@foralli <wi. As(4; — D) N (B; — D) =¥ for each(, j),
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bothAN (U, _,, Ai) andAN (U, _,, Bi) are uncountable sets, witt{A N (U, _,,, Ai)] =
rqeandf[AN (Ui<w1 Bi)] = rp. This contradicts Claim 2. Hende— f~1(r,) is countable
and Claim 4 follows.

Claim 5. X is almost compact.

It suffices to show that iff, g € C(X) andZ(f) N Z(g) = ¥ then eitherZ(f) or Z(g)
is compact [4]. AL (X) C C(Xy) it follows from Claim 4 thatL. N Z(f) andL N Z(g) are
either countable or co-countable. As they are disjoint they cannot both be co-countable, so
assume without loss of generality thHah Z (1) is countable. Using Claim 4 again, we see
that there exists ane % — {0} such thatf ~1(r) is co-countable. (In fact, we are showing
that if s € t — 0, thenL N f~1(s) is finite.)

We next show thal. N Z(f) is finite. If not, there exists a countable infinite subset
{p(Aj): i e NYCLNZ(f). Chooselp(B;): j<wi}C LN f1(r).

Let

D= ( U (8- fl(r))> U (U Ai— Z(f))

Jj<w1 ieN
U[UISNT: 8.7 e (B): j<wUlAi ieN), S£T}]

By arguments similar to those used in Claims 3 ant,< w1. By (iii) of Definition 1
there existsA € A such that(B; — D) N A # @ and(A; — D)N A # @ for j < w1 and
i € N. Then by our choice oD, there exists an uncountable sub8gt j < w1} of AN
f~1(r) and a countably infinite subsét: i € N} of A N Z(f). The existence of these
sets contradicts the continuity gf at p(A), and we conclude that N Z(f) is finite as
claimed—sayL. N Z(f) ={p(A;): i=1,...,n}.

ThenS = J{K(A;): i =1,...,n}is compact.

Finally, we claim that? = Z(f) — S is afinite set (and hencg&( 1) is compact). Clearly
H C k. If H were infinite then by (ii) of Definition 1, there existise A such thatAN H is
countably infinite. This implies that(p(A)) = 0, s0A is one of thed; which contradicts
the fact thatS N A = ¢. The claim follows.

Claim 6. If f € C(X;) then f[X] is a countable set.

To see this note that by Claim BX = X U {p}, the one-point compactification of.
Clearly 8X is scattered an@B(8X) = 3. By [10, 5.7] it follows that(8X)s is Lindel6f.
As {f~1(f(x)): x € f[BX]} is a partition of(8X)s into (8X)s-open sets, it follows that
fI[BX] is countable. AsX is pseudocompact (by Claim 13X = 8X. By [4, 5.6 and
571v(Xs) = (vX)s = (BX)s. Thus X; is dense and’-embedded i X)s, so f[X] is
countable.

Claim 7. If f € C(Xs), there is a countable subsgb(A;): i € N} of L and a countable
subsetS of k such that| f[L — (S U ([U;cy K(AD)]1| = 1. (In other words, f is constant
on the complement of@compact cozero-set df.)
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To see this, note that there is ar % such thatL — f~1(r) = {p(A;): i € N} (using
Claim 4). Then as bothf ~1(r) and Uien K(Aj) are clopen in theP-spaceX s, the set
V=X-[ftru Uien K(AD] is a clopen subset of s that is contained ir. If V is
uncountable, there is a bijectiagnfrom an uncountable subsg&tc V onto a subset df.
Extendb so thath[Xs — T] = 0. Thenb € C(Xs) and|b[X;]| is uncountable, contradicting
Claim 6. ThusV is countable, and| J;.y K (4;)) U V is ac-compact cozero-set of
whose complement is mapped Ifyto r.

Claim 8. X is an RG-space and-g(X) < 4.

Let f € C(Xs) and letr € % such thatL N f~1(r) is a co-countable set af. Let
g=f—r.ThenL N Z(g) is a co-countable subset bfand cozg) is ac-compact cozero
setW of X (see Claim 7). Lef € C(X) such thatW = coz(j).

Now coZj) is a Lindelof scattered space @B index 1 or 2 so by [6, 2.11 and
2.12] coZj) is an RG-space ofCB-index no greater than 3. Hence there areg; €
C(coxj)), i =1,2,3, such thag|coz(j) = > ;_, h;g;. By [2, 3.1] there are, for each
i, si.ti,u;, andw; € C(X) such thath; = (s;t/)|coz(j) and g; = (u;w})|cozj). It
is a straightforward computation to show that= jj*(Zl.Szl(s,-t;*)(u,-wj‘). Thus f =
r+ Z?zl(jsiui)(jtiwi)* SO0 X isanRG-space andg(X) < 4.

Claim 9. That X is almost® is almost immediate. Suppose that C(X) is a function
with non-empty zero-seéf(f). If a point fromk lies in Z(f) then Z(F) has non-empty
interior. If no point fromx lies in Z(F) then f vanishes only at pointg(A). But if f
vanishes ap(A) it also vanishes at points & (A) by Claim2.

Claim 10. Lastly we must show that we can get our spaces with arbitrary CB-index. This
follows by repeatedly taking the product &f with the spaceN* and using the argu-
ments of the discussion that follows Theo2rThe successive new spaces R@, they

are pseudocompact, they are almost compact, and their CB indices incredsat l@ach
stage. O

Remark 2. It is interesting to compare the spakeof Theorem 6 with? of [4, 51]. Both
spaces are scattered, locally compact, and pseudocomp@Btioflex 2.X is functionally
countable even in th& ;s topology, and¥ is functionally countable when it is almost
compact. YetX is RG and¥ never is. It would be interesting to have a precise internal
(i.e., without reference to th@é s-topology) explanation as to why oneRs5 and the other

is not (see open question 5 below).

Remark 3. Although X is scattered o€B index 2, the following considerations show that
G (X) does not have regularity degree 2 0GHIX).

First we need to describe the functiongdiX)
Let f € C(X) with principal valuer.
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() If f(p(A)) =s andif f differs froms on p(A) U A at infinitely many points then the
values (different frony) assumed o by f must have- (and onlyr) as a limit point.

(i) If there are countably infinitely many different points on the upper level wheigs
different fromr then the values different from must haver (and onlyr) as a limit
point.

Part (i) holds because the relative topology i) U A is the one-point compactification
of A.

Part (ii) follows from property (iii) of Definition 1 as follows: lgt(A;) be a countably
infinite set from the upper level on whichnever equals. Sincef is bounded by Claim 1
the valuesf (p(A;)) have a limit point say’ # r. Letp(A’j) be a set ofv; points on the
upper level wheref equalsr. Let B = {A;, A’,.}. Let D be the union of the exceptional
points in each of the set%;, A’.. The setD has cardinality»; becausés does and because
of property (i). By property (/iii) there is a set € A that meets each set if. So A has
w1 points wheref equals and it also has countably many points whose functional values
converge to”’. This is not possible on the one-point compactificatiqd ) U A.

Now let us see why we do not have regularity degree for

Choose a countably infinite set of points(A,),n € w} from the upper level ofX.
Each one point compactificatiofp(A) U A} is compact open irX. It is an easy con-
sequence of the countability of the discrete f§etA,), n € w} (see [4, 3L.2]) and the
zero-dimensionality ofX, that one can find disjoint compact séts each open inX, so
that for each: one hasB,, C p(A) U A andp(A,) € B,. Clearly eachB,, is cocountable in
p(A,) U A, because the familyl has pairwise intersections finite. Inside eahchoose
a countably infinite subset, = {c,_,,} of points from«.

Now define a functiory as follows: f equals: +1 on B, \ C,, and f (cy.;m) =n + m.
Alsolet f =1onX\ | B,. Itis clear thatf € C(X;), and thatf has empty zeroset. Now
suppose that there existed ap, b1, b € C(X) so thatf = a1(b1)* + a2(b2)*. If both by
andb, were non-zero at a poim,, then f coincides With% + Z—i on coZb1) N coz(ba)
an open neighbourhood df,, in the X-topology, i.e., on a cofinite subset (and therefore
compact) ofp(A) U A,,. But this is clearly false becauggis unbounded on s&f,. Thus
for eachA,, we know that exactly one of the pdib1, b2} must vanish ap(A,) and there
are infinitely manyp(A,) that lie in the zero set of one 6, b>, say with loss of generality
b1. Call themp(A,,). (Notice that the principal value @f has to be zero and that from
the principal value off we get 1= s,/12, wheresy, r» are respectively the principal values
of ap andby. So for eachuy, f(p(An,)) = a2/ba(p(A,,)) # 0. Sincer, # 0, we have a
contradiction because the valuesfobn theA,, are supposed to approacty s, whereas
they go to infinity.

Coroallary 1. It is non-decidable by FC whether there is a non-compact locally compact
pseudocompad G-space of cardinalityvs.

Proof. Under the GCH Lemmas 5 and 6 applydg and give a non-compact example. On
the other hand there are models of set theory in which w, and for them Theorem 4
gives compactness.O
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Corollary 2. (ZFC) There is a pseudocompact non-compact alnsRG-space of car-
dinality (2*1)*.

Proof. The successor cardiné?®1)* is regular, and it satisfies the two exponential con-
ditions of Theorem 5. O

Corollary 3. There is a pseudocompact non-compact alnfdsRG-space of cardinality
21,

Proof. This is established by a reflection argument. One begins wiR@GMAD family
A from [(2#1)T]@D7,

Take M an elementary submodel of the universe instfi@) with 6 big enough. We
ask thatM be of cardinality 21 and thatM be closed undep;-sequences. Letl’ be the
family {AN|M|: A e A}.

One checks thatl’ and|_J A’ both have cardinality 2.

Now we claim that4’ is anRG-MADfamily on M.

Property (1) holds trivially because the setsdiwere almost disjoint to begin with.

For Property (2) lefX be a countable subset 8f N (2#1)*. SinceM is closed under
w1-sequences there is anin M that works. For condition (3) le8’ C [ A']1“. Now note
that since there is a 1-1 correspondence between the elemehenafthose of4’ we can
let B C [A]“? be defined by3' = {B N |M|: B € B}.

Now condition (3) gives the existence of a $&& M N [(2°1)T]“1,

Now by assumptionD € M and5 € M becaused € M. Now by elementarity, the
formula (3) holds, i.e.M =3A € AYB € B> B\ DN A # ¢ and sinceA € M the inter-
section withM is non-empty givingBN M\ D)NANM #@. 0O

6. Open questions

1. If « > maxwy, p) does there exist a pseudocompact non-compagtspace of car-
dinality «? If so then an example that is not locally compact exists by the discussion
after Theorem 2.

2. Are separable pseudocomp@if-spaces compact? Again, if not, then there will be
an example that is not locally compact.

3. Does Theorem 4 hold without assuming local compactness?

4. Let D* be the one-point compactification of the uncountable discrete spa&up-
pose theX is RG. Must it follow thatX x D* is RG?

5. Suppose that is a pseudocompact scattered space of fllBéndex. Give necessary
and sufficient conditions foK to be RG. For example, give such conditions in the
case wher&X is almost compact, and tl@B index is 2.

6. Is there an example of a pseudocomp®&t-space that is almos®- but not locally
compact?



556 M. HruSak et al. / Topology and its Applications 153 (2005) 541-556

Acknowledgements

This work was begun during a visit to the UNAM-Morelia and was continued during
visits to Concordia in Montreal and the University of Manitoba in Winnipeg. We are grate-
ful for the hospitality shown during these visits, especially to Salvador Garcia-Ferreira. We
are also indebted to the referee and to M. Henriksen for comments on the initial draft.

References

[1] M. Barr, W.D. Burgess, R. Raphael, Ring epimormphisms @a#), Theory Appl. Categ. 11 (2003) 283—
308.
[2] R.L. Blair, A.W. Hager, Extensions of zero-sets and real-valued functions, Math. Z. 136 (1974) 41-52.
[3] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[4] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
[5] I. Glicksberg, Stone—Cech compactifications of products, Trans. Amer. Math. Soc. 90 (1959) 369-382.
[6] M. Henriksen, R. Raphael, R.G. Woods, A minimal regular ring extensian(af), Fund. Math. 172 (2002)
1-17.
[7] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[8] T. Jech, Set Theory, Academic Press, New York, 1978.
[9] R. Levy, Almost P-spaces, Canad. J. Math. 29 (2) (1977) 284-288.
[10] R. Levy, M.D. Rice, NormalP-spaces and thé€ s-topology, Coll. Math. 44 (1981) 227-240.
[11] J.R. Porter, R.G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.
[12] R. Raphael, Some regular epimorphic contexts, Theory Appl. Categ. 6 (1999) 94-104.
[13] R. Raphael, R.G. Woods, The epimorphic hulk®&fX ), Topology Appl. 105 (2000) 65—-88.
[14] R. Raphael, R.G. Woods, QRG-spaces and the regularity degree, 2004, submitted for publication.
[15] M. Starbird, Products with compact factors, Gen. Topology Appl. 6 (1976) 297-303.
[16] H.H. Storrer, Epimorphismen von kommutativen Ringen, Comment. Math. Helv. 43 (1968) 378—401.
[17] E.K. Van Dowen, The integers and topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic
Topology, North-Holland, Amsterdam, 1984.



