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Katětov order, Fubini property and
Hausdorff ultrafilters

Michael Hrušák and David Meza-Alcántara

Abstract. We study the Fubini property of ideals on ω and prove that
the Solecki’s ideal S is critical for this property in the Katětov order.
We show that a well-known Fσ-ideal is critical for Hausdorff ultrafilters
in the Katětov order, and by investigating the position of this ideal in
the Katětov order, we show some of the known properties of this class
of ultrafilters, including the Fubini property.
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1. Introduction

An ultrafilter U on an infinite set is Hausdorff if the ultrapower of N modulo
U , equipped with the S-topology, is Hausdorff. The S-topology is defined for
non-standard models ∗X of a topological space X, as the generated by the ∗A
sets, for open sets A ⊆ X. In the particular case of the ultrapower NN/U as a
non-standard model for the first-order arithmetic, we consider N equipped with
the discrete topology, and then, the S-topology on NN/U is Hausdorff if and
only if, for every f, g ∈ NN there exists U ∈ U such that either f � U = g � U
or f ′′U ∩ g′′U = ∅ (see Proposition 2.1).

Hausdorff ultrafilters have been studied recently by several authors, see
e.g. by M. di Nasso and M. Forti [6]. The main question about them is their
existence, that is, does ZFC prove the existence of a Hausdorff ultrafilter? In
this note we characterize this class of ultrafilters by using the Katětov order
and an Fσ-ideal on the integers that we call Gfc.

The Katětov order is defined as follows: for any two ideals I, J on countable
sets X and Y respectively, I ≤K J if there is a function f from Y to X so that
f−1[I] ∈ J for all I ∈ I. We write I ≤KB J (the Katětov-Blass order) when f
is a finite-to-one function. An introduction to the Katětov order can be found
in [8].

Katětov order is closely connected to Baumgartner’s notion of I-ultrafilter.
An ultrafilter U is an I-ultrafilter if and only if I �K U∗. Several classes of
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ultrafilters are characterized as I-ultrafilters, for example, selective ideals are
exactly the ED-ultrafilters (see [7, 10, 14]).

Information about the position of ideals in the Katětov order provides in-
formation about belonging to classical families of ultrafilters, like P-points,
Q-points and selective ultrafilters, since the I-ultrafilters (in the sense of Baum-
gartner [1]) are exactly the ultrafilters U such that I �K U∗.

We also study a property that Kanovei and Reeken [12] call the Fubini
property. It concerns ideals (and filters) in general. For simplicity, we use
a common notation: for any A ⊆ ω × 2ω, n ∈ ω and x ∈ 2ω we denote
(A)n = {y ∈ 2ω : (n, y) ∈ A} and (A)x = {k ∈ ω : (k, x) ∈ A}.
Definition 1.1. I satisfies the Fubini property if for any Borel subset A of
ω× 2ω and any ε > 0, {n < ω : λ((A)n) > ε} ∈ I+ implies λ∗({x ∈ 2ω : (A)x ∈
I+}) ≥ ε (here λ∗ means the Lebesgue outer measure on 2ω).

Particularly relevant for this work are the following ideals:

1. ED = {A ⊆ N2 : ∃n∀m > n|A ∩ ({m} × N)| ≤ n} is critical for selective
ultrafilters in the Katětov order.

2. Let us denote by ∆ the set {(n, m) : m ≤ n}. Then, the ideal EDfin =
{I ∩∆ : I ∈ ED} on ∆ is critical for Q-point ultrafilters in the Katětov-
Blass order.

3. The Solecki’s ideal S on the countable set Ω of all the clopen subsets of
2N with Lebesgue-measure equal to 1

2 , is generated by the family {A ⊆
Ω :

⋂
A 6= ∅}. It was defined in [16], where the author proved that S is

critical for the Fatou’s property.

4. Gfc = {A ⊆ [N]2 : ch(A) < ∞}, the ideals of graphs with finite chromatic
number,1 was used by Solecki in [16], where he asked if this ideal is critical
for the Fatou property. This question was answered in the negative in
[11].

5. Gc = {A ⊆ [N]2 : ∀B ∈ [N]ℵ0([B]2 \ A 6= ∅)}, the ideal of graphs without
infinite complete subgraphs.

The first four ideals are Fσ while the last is co-analytic.

2. Hausdorff ultrafilters and Gfc

We now prove that Gfc is critical for Hausdorff ultrafilters in the Katětov order,
i.e. U is Hausdorff if and only if Gfc �K U . First we prove the following easy

1The chromatic number ch(A) of a graph A on ω is defined as the minimal cardinal
number κ for which there is a coloring c : ω → κ so that c(a) 6= c(b) for all {a, b} ∈ A.
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characterizations of Hausdorff ultrafilters. Note that f and g are U-equivalent
if and only if there is U ∈ U such that f � U = g � U .

Proposition 2.1 ([6]). The following conditions are equivalent, for any ultra-
filter U on N.

1. U is Hausdorff,

2. for every f, g ∈ NN, f and g are U-equivalent or f ′′U ∩g′′U = ∅ for some
U ∈ U , and

3. for every f, g ∈ NN, if f(U) = g(U) then there is U ∈ U such that
f � U = g � U .

Proof. We denote by [h] the equivalence class of h ∈ NN modulo U . (1 ⇒ 2)
If f and g are not U-equivalent then there is A ⊆ N such that [f ] ∈ ∗A and
[g] ∈ ∗(N \ A), which means that there are V and W in U so that f ′′V ⊆ A
and g′′W ⊆ N \A. Let U = V ∩W .
(2 ⇒ 3) Assume f � X 6= g � X for all X ∈ U , and take U as in (2). From
f ′′(U) ∈ f(U) and g′′(U) ∈ g(U) follows f(U) 6= g(U).
(3 ⇒ 1) If f and g are non-U-equivalent then by (3) there is A ∈ f(U) \ g(U),
and then [f ] ∈ ∗A and [g] ∈ ∗(N \A).

Now we describe a useful characterization of the ideal Gfc. For each ordered
pair 〈A,B〉 of nonempty disjoint subsets of N, we define de set

I〈A,B〉 = {{n, m} : n ∈ A, m ∈ B, n < m}

Proposition 2.2. Gfc is generated by the sets I〈A,B〉.

Proof. On the one hand, it is clear that ch(I〈A,B〉) ≤ 2. On the other hand, note
that bipartite graphs are a base for Gfc, since if ch(G) = n then pick a coloring
c : ω → n so that {a, b} ∈ G implies c(a) 6= c(b), and for each pair 0 ≤ i < j < n
define Gi,j = {{a, b} : c(a) = i, c(b) = j}. Then, G ⊆

⋃
0≤i<j<n Gi,j . Finally,

note that I〈A,B〉 ∪ I〈B,A〉 is the bipartite graph defined by A and B.

We now prove the characterization of Hausdorff ultrafilters in the Katětov
order, and additionally two graph-theoretic characterizations.

Theorem 2.3. The following conditions are equivalent for any ultrafilter U
on N

1. U is Hausdorff,

2. for every graph (G, E) and every ϕ : N → E, there exists U ∈ U such
that ϕ′′U is contained in a bipartite graph.
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3. for every graph (G, E) on N and every ϕ : N → E, there exists U ∈ U
such that ch(ϕ′′U) < ∞, and

4. Gfc �K U∗,

Proof. (1 → 2) Let us assume U is Hausdorff, and let ϕ be a function from N
to [N]2. Define f(n) = min(ϕ(n)) and g(n) = max(ϕ(n)). It is clear that f 6= g
mod U . By 2.1 there is U ∈ U such that f ′′U ∩ g′′U = ∅. Clearly, I〈f ′′U,g′′U〉 is
contained in a bipartite graph, and ϕ′′U ⊆ I〈f ′′U,g′′U〉).

(2 → 3) and (3 → 4) are immediate.
(4 → 1) Let us assume Gfc � U∗, and let f and g two non U-equivalent

functions. Since {n : f(n) = g(n)} /∈ U , either {n : f(n) > g(n)} ∈ U
or {n : f(n) < g(n)} ∈ U . Let us assume the first case (the other one is
analogous), and define ϕ(n) = {g(n), f(n)} if g(n) < f(n), and ϕ(n) = {0, 1}
if not. Since there is V ∈ U such that ϕ′′V ∈ Gfc, and each element in Gfc is
covered by a finite family of basic sets, there exist disjoint sets A and B so that
for some W ⊆ {n ∈ V : g(n) < f(n)} in U , ϕ′′W ⊆ I〈A,B〉, but this implies
f ′′W ⊆ A and g′′W ⊆ B.

About the position of Gfc some results are known: The identity function in
[N]2 witnesses Gfc ≤K Gc. Solecki proved in [16] that S ≤K Gfc.

Lemma 2.4. [14] Gfc ≥KB EDfin

Proof. Define f from [N]2 to N× N by

f({n, m}) = (max{m,n},min{m,n}).

This f witnesses the Katětov relation since the chromatic numbers of the
f -preimages of sets {k} × N are equal to 2, and the chromatic numbers the
f -preimages of sets H = {(n, h(n)) : n ∈ ω} (h ∈ NN) are also equal to 2, since
we can construct recursively a coloring c by letting c(0) = 0, c(1) = 1 and for
n ≥ 2, c(n) = 1 − c(h(n)) if h(n) < n. Hence, if {n < m} ∈ f−1[H] then
n = h(m) and then c(n) 6= c(m).

Since ED ≤KB EDfin (inclusion of ∆ into ω×ω witnesses the Katětov-Blass
relation), we get immediately the following corollary.

Corollary 2.5 (Daguenet-Teissier [5]). Every selective ultrafilter is Hausdorff.

3. Fubini property

In [12, Proposition 24], Kanovei and Reeken claimed without a proof that
Fubini property is equivalent to the validity of Fatou’s lemma. We will prove
this as a corollary of the following Theorem, which is obtained by mimicking
Solecki’s proof of [16, Theorem 2.1].
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Theorem 3.1. Let I be an ideal on ω. Then, there exists an I-positive set X
such that I � X ≥K S if and only if I does not satisfy the Fubini property.

Proof. Let f : X → Ω be a witness of I � X ≥K S, and define A = {(n, x) : x ∈
f(n)}. Note that (A)n = f(n) and then λ((A)n) = 1

2 for all n ∈ X. For any
x ∈ 2ω, {S ∈ Ω : x ∈ S} ∈ S and then {n < ω : x ∈ (A)n} ∈ I for all x ∈ 2ω.

On the other hand, assume that I does not satisfy the Fubini property, and
take a Borel set A ⊆ ω × 2ω such that for some ε > 0, the set X := {n < ω :
λ((A)n) > ε} is I-positive, and if R := {x ∈ 2ω : (A)x ∈ I+} then λ∗(R) < ε.

First, we can assume that (1) R = ∅, (2) for any n ∈ X, An is closed and
(3) for any n ∈ X, λ(An) = ε. If it is not the case, we could replace (a) ε with
ε′ = ε − λ∗(R) and (b) for each n, An with a closed subset A′

n of An \ R′, so
that λ(A′

n) = ε′, where R′ is a Gδ-set so that R′ ⊇ R and λ(R′) = λ∗(R).
Let k < ω be so that (1 − ε)k < 1

3 . Recall that the power of Can-
tor space (2ω)k endowed with the product measure λk is isomorphic to the
Cantor space 2ω endowed with the Lebesgue measure λ, via a homeomor-
phism between those spaces. For any n < ω, we define a subset Bn of (2ω)k

by Bn =
⋃k

i=1 proj−1
i [An]. Then (2ω)k \ Bn =

∏k
i=1(2

ω \ An) and then
λk(Bn) > 2

3 . Note that the family {Bn : n ∈ X} fulfils that R′′ := {x ∈
(2ω)k : {n < ω : x ∈ Bn} ∈ I+} = ∅, since if x = 〈xi : 1 ≤ i ≤ k〉 then
{n < ω : x ∈ Bn} =

⋃k
i=1{n < ω : xi ∈ An} ∈ I.

Now, for n ∈ X choose a clopen subset Un of (2ω)k such that λk(Un) ≥ 7
12

and λk(Un \ Bn) < 1
3·2n+2 . If S := {x ∈ (2ω)k : {n ∈ ω : x ∈ Un} ∈ I+} then

S ⊆
⋂

m<ω

⋃
n≥m(Un \ Bn), proving that λk(S) = 0. Let {Cn : n < ω} be an

increasing family of clopen sets such that S ⊆
⋃

n<ω Cn and λk(
⋃

n<ω Cn) ≤ 1
12 .

Finally, by taking for any n ∈ X a clopen subset f(n) of Un\Cn with λk(f(n)) =
1
2 we get the Katětov function f wanted, since for any x ∈ 2ω = (2ω)k, if
{n ∈ X : x ∈ f(n)} is infinite then x /∈

⋃
Cn and then x /∈ S. Hence

{n ∈ X : x ∈ f(n)} ∈ I for all x ∈ 2ω.

From Solecki’s [16, Theorem 2.1] and the previous theorem we get:

Corollary 3.2. If I is a universally measurable ideal on ω then I has the Fubini
property if and only if I fulfils Fatou’s lemma. �

Example 3.3. Fin and Z have the Fubini property.

Proof. (Fin) Since S is a tall ideal and Fin is K-uniform we have that S �K

Fin � X, for all infinite subset X of ω.
(Z) Let f : ω → Ω be a function. By the classical Fubini’s Theorem, for

every n < ω, there is An ∈ Ω such that for all x ∈ An,

|{m ∈ [2n, 2n+1) : x ∈ f(m)}| ≥ 2n−1.
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Since Fin has the Fubini property, there is x ∈ 2ω and there is an increasing
sequence 〈nk : k ∈ ω〉 such that x ∈ Ank

. Then, for any k < ω,

lim sup
n→∞

|f−1[Ix] ∩ [2n, 2n+1)|
2n

≥ lim
k→∞

|f−1[Ix] ∩ [2nk , 2nk+1)|
2nk

≥ 1
2

proving that f is not a witness for S ≤K Z.

4. Fubini and Hausdorff ultrafilters

Let U be an ultrafilter on ω, and An a Borel subset of Cantor space 2ω, for all
n < ω. The U-limit of the sequence of sets is the set defined by

U- lim An = {x ∈ 2ω : {n ∈ ω : x ∈ An} ∈ U}.

If 〈xn : n < ω〉 is a sequence of real numbers then l ∈ R is the U-limit of the
sequence provided that {n < ω : |xn − l| < ε} ∈ U for all ε > 0.

As usual, an S-ultrafilter is a free ultrafilter U whose dual ideal is not
Katětov above the Solecki’s ideal S.

Theorem 4.1. Let U be a free ultrafilter. Then the following are equivalent:

1. U is an S-ultrafilter,

2. U∗ satisfies the Fubini property and

3. for any sequence 〈An : n < ω〉 of Borel subsets of 2ω,
if U- lim λ(An) > 0 then U- lim An 6= ∅.

Proof. Theorem 3.1 claims that the ideals I which do not have I-positive sets X
such that I � X ≥K S, are exactly those ideals satisfying the Fubini property,
and since every maximal ideal is Katětov equivalent to all its restrictions to
positive sets, we have that dual ideals of S-ultrafilters are exactly the maximal
ideals with the Fubini property. Now, Fubini property among maximal ideals
(or ultrafilters) means: for any sequence 〈An : n < ω〉 of Borel subsets of
2ω and any ε > 0, if {n < ω : λ(An) > ε} ∈ U then λ∗({x ∈ 2ω : {n <
ω : x ∈ An} ∈ U}) ≥ ε. Hence, if S �K U∗ and U- lim λ(An) > 0 then
λ∗(U- lim An) > 0 and then U- lim An 6= ∅. On the other hand, let suppose that
U- lim λ(An) > ε and λ∗(U lim An) = δ < ε, for some sequence 〈An : n < ω〉
and some ε > 0. For any k < ω let us choose a Borel set A′

k ⊆ Ak \ U limAn,
with λ(A′

k) = ε − δ. Then, U- lim λ(A′
n) ≥ ε − δ but U- lim A′

n = 0, since for
any x ∈ 2ω, {n : x ∈ An} ∈ U∗.

Corollary 4.2 (Benedikt). Every Fubini ulfrafilter is a Hausdorff ultrafilter.

Proof. Solecki proved in [16] that Gfc ≥K S and if U is Fubini then by 4.1
U∗ � S. Hence, U∗ �K Gfc.
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5. Final remarks and questions

The known Katětov relations are displayed in the following diagram:2

Gc

nwd
(Nowhere dense)

Gfc

(Hausdorff)

OO

S
(Fubini)

88rrrrrrrrrrrrr

OO

EDfin

(Q-points
in RB-order)

OO

Fin× Fin
(P-Points)

ED
(Selective)

ddIIIIIIIII

OO

Of course, the main question about Hausdorff ultrafilters is if ZFC implies
their existence. As a consequence of the fact that S ≤K nwd ([11, Theo-
rem 5.10]), every Fubini ultrafilter is a nowhere dense ultrafilter. This fact was
proved by Shelah ([15, Proposition 26]). The same does not hold for nowhere
dense and Hausdorff ultrafilters since in [11] it was proved that Gfc �K nwd,
which is a consequence of 2.4 and the following

Proposition 5.1. ED � nwd.

Proof. Let f be an arbitrary function from Q to ω × ω and let {Un : n < ω}
be a base for the open sets of Q. Assume that f−1(n× ω) ∈ nwd for all n < ω
(if it is not the case we finished). Choose q0 arbitrarily and recursively, choose
qn ∈ Un so that proj1(f(qn)) > max{proj1(f(qj)) : j < n}. This is possible
by our assumption. Then, {f(qn) : n < ω} ∈ ED but {qn : n < ω} is dense in
Q.

Di Nasso and Forti proved that if U and V are two isomorphic ultrafilters
then U × V is not Hausdorff. On the other hand, it is easy to prove that if U

2An ultrafilter U is:
(1) nowhere dense if for each function f from N to R, there is U ∈ U such that f ′′U is
nowhere dense.
(2) Q-point if for each partition {An : n < ω} of N such that each An is finite, there is U ∈ U
such that |U ∩An| ≤ 1 for all n.
(3) P-point if for each partition {An : n < ω} of N, there is U ∈ U such that |U ∩ An| < ℵ0

for all n.
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is nowhere dense and V is P-point then U × V is a nowhere dense ultrafilter.
Since every P-point is nowhere dense, for any P-point U we have that U ×U is
nowhere dense but not Hausdorff. Hence, from the consistency of the existence
of a P-point ultrafilter it follows that there is a nowhere dense non Hausdorff
ultrafilter. Consequently, a natural question is:
Problem 5.2: Are there consistently Hausdorff ultrafilters that are not no-
where dense?

It is well known that there is no P-point ultrafilter extending the filter nwd∗,
however we would like to know if (consistently) there is a Hausdorff ultrafilter
extending nwd∗, which is clearly a little stronger than Problem 5.2.

Di Nasso and Forti [6] asked about a set-theoretic hypothesis weaker than
those providing selective ultrafilters, which implies the existence of Hausdorff
ultrafilters, e.g. an equality or inequality between cardinal invariants of the
continuum. We think it would be interesting to understand generic existence
of Hausdorff ultrafilters3. For some classes of ideals this cardinal conditions are
well known, for example, Canjar [3] proved that cov(M) = c is equivalent to
generic existence of selective ultrafilters, and Benedikt [2] proved that cov(E) =
c is equivalent to generic existence of Fubini ultrafilters. The natural question
is
Problem 5.3: Is there a suitable cardinal condition which is equivalent to
generic existence of Hausdorff ultrafilters?

Finally, we want to ask about the existence of Gc ultrafilters.
Problem 5.4: Does ZFC prove that there exists a Gc-ultrafilter?
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