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Abstract. We deal with several types of spaces in which every dense sub-

space is Baire (D-Baire spaces). Baire almost P -spaces and open-hereditarily
irresolvable Baire spaces are example of D- spaces. We give a characterization

of D-Baire spaces and characterize a particular class of them. We give an

example of a D-Baire space whose square is not Baire.

1. Introduction

There is a wide variety of topological spaces in which every dense subset is Baire.
The most simple of them are those spaces which have a discrete open dense subset,
like locally compact Hausdorff extensions of discrete spaces. Baire almost P -spaces
are also D-Baire and the open-hereditarily irresolvable Baire spaces form a a class
of D-spaces (it is known that irresolvable D-Baire spaces without isolates points
exist only in some models of set theory (see [17] and [18])). Our purpose of this
paper is to give several characterizations of D-Baire spaces and open-hereditarily
irresolvable Baire spaces. We find some sufficient conditions on D-Baire spaces
to be metrizable or to have a discrete dense subspace. We finally explore some
invariance properties under finite products or under continuous open images.

2. Definitions and preliminary results

Our spaces will be T3. We recall the reader some basic definitions and after that
we list five equivalent known definitions of Baire spaces (for the proofs we referred
the reader to [12] which offers a complete survey on Baire spaces).

A ⊆ X is nowhere dense (respect to X) if intA− = ∅. A subset A ⊆ X is
a meager set (or of the first category) in X if A is a countable union of nowhere
dense sets. A space is called Baire if the intersection of countably many open dense
subsets of the space is dense.

Proposition 2.1. The following properties of a topological space X are equivalent:

(1) X is a Baire space.
(2) For every countable closed cover {Hn : n ∈ N} of X, the set

⋃∞
n=1 intHn

is dense in X.
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(3) For every sequence V1, V2, . . . of open sets with the same closure K, we

have K =

( ∞⋂
n=1

Vn

)−
.

(4) Every meager Gδ-set in X is nowhere dense.
(5) Every meager set has empty interior.

Every topological space which has a dense Baire subspace is evidently a Baire
space. The converse is not true: for instance, the real line is a Baire space but the
subspace of rationals is not. A useful necessary and sufficiente condition for a dense
subset A of a Baire space to be Baire is given in the next theorem of J. M. Aarts
and D. J. Lutzer [1] (for a proof see [12, Th. 1.24]):

Theorem 2.2. Let X be a Baire space and let A ⊆ X be dense. Then A is a Baire
space if and only if every Gδ-set in X contained in X \A is nowhere dense.

For the sake of completeness, we are going to give a proof of this theorem:

Lemma 2.3. Let X be a Baire space. If G =
⋂
n∈N Vn is a nonempty nowhere

dense Gδ-set of X, where Vn is an open subset of X for all n ∈ N, then for every
nonempty open subset V of X there is n ∈ N such that int[(X \Vn)∩ (V \G−)] 6= ∅.

Proof. Let V be a nonempty open subset of X. Then, V \G− is a nonempty open
subset of X; hence, V \ G− is also Baire. Since V \ G− ⊆

⋃
n∈N X \ Vn and each

X \Vn is a closed subset of X, by the third clause of Proposition 2.1, there is n ∈ N
such that int[(X \ Vn) ∩ (V \G−)] 6= ∅. �

Proof of Theorem 2.2. Necessity. Let G =
⋂
n∈N Vn, where Vn is an open subset

of X for each n ∈ N, that is contained in X \A. Then, A ⊆
⋃
n∈N X \Vn. In virtue

of Proposition 2.1,
⋃
n∈N intA(A∩(X \Vn)) is dense in A. Suppose that intG− 6= ∅.

Then, there is m ∈ N such that ∅ 6= intG− ∩ intA(A ∩ (X \ Vm)). On the other
hand, we know that G− ⊆ V −m = (Vm ∩A)−. Hence,

∅ 6= intG− ∩ intA(A ∩ (X \ Vm)) ⊆ (Vm ∩A)− ∩A = clA(Vm ∩A)

which implies that intG−∩ intA(A∩ (X \Vm))∩Vm∩A 6= ∅, but this is impossible.
Sufficiency. Assume that A is no Baire. According to Proposition 2.1, there is

a countable closed cover {Hn : n ∈ N} of A such that
⋃
n∈N intAHn is not dense

in A. For each n ∈ N, choose a closed subset Cn of X such that Hn = A ∩ Cn for
each n ∈ N. Let G =

⋂
n∈N(X \ Cn) which is a Gδ-set of X contained in X \A. If

G = ∅, then {Cn : n ∈ N} would be a closed cover of X and, by Proposition 2.1,
then

⋃
n∈N intCn would be dense in X which is not possible. So, G 6= ∅. Choose

an nonempty open subset V of X such that V ∩ A ∩ intAHn = ∅, for all n ∈ N.
By Lemma 2.3, we can find n ∈ N such that int[Cn ∩ (V \ G−)] 6= ∅. Hence,
∅ 6= int[Cn ∩ (V \G−)]∩A ⊆ intA(Cn ∩A)∩ V ∩A ⊆ intAHn ∩ V ∩A, but this is
a contradiction. Thus, A is Baire. �

In this paper, we shall study the following class of Baire spaces inspired in
Theorem 2.2.

Definition 2.4. We say a space X is D-Baire if every dense subspace of X is Baire.

An immediate consequence of Theorem 2.2 is the following:
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Corollary 2.5. Let X be a Baire space. Then, X is D-Baire if and only if every
Gδ-set in X with empty interior is nowhere dense.

A further corollary will be obtained after the next definition.

Following R. Levy [20], we say that a topological space X is an almost P -space
if every non-empty Gδ-set in X has a non-empty interior.

Corollary 2.6. Every Baire almost P -space is D-Baire.

The following results are taken from [20]:

Theorem 2.7. a) If X is locally compact and realcompact, then βX \X is almost
P -space.

b) A Tychonoff space X is almost P -space if and only if its Hewitt realcompact-
ification vX is almost P -space.

c) If X is a Tychonoff space, then βX is almost P -space if and only if X is
pseudocompact and almost P -space.

Corollary 2.8. If X is an infinite discrete space whose cardinality is not Ulam
measurable, then βX \X is D-Baire and βX is not almost P -space.

3. D-Baire spaces

To start this section we give several characterizations of D-Baire spaces. First,
we need to recall the definition of the σ-algebra PB.

Given a space X, the class PB(X) is the σ-algebra in X generated by all open
sets and all nowhere dense sets. In [19] it is proved that A ⊆ X belongs to the class
PB(X) if and only if A may be expressed in the form A = L ∪ D, where L is a
Gδ-set and D is meager. Obviously, the σ-algebra of Borel sets is contained in the
class PB(X).

Theorem 3.1. The following seven conditions on a space X are equivalent:

(1) X is D-Baire.
(2) X is Baire and every Gδ-set with empty interior is nowhere dense.
(3) Every meager subset A ⊆ X is nowhere dense.
(4) X is Baire and every dense Gδ-set has dense interior.
(5) X is Baire and every set in the class PB(X) with empty interior is nowhere

dense.
(6) X is Baire and every Borel set with empty interior is nowhere dense.
(7) X is Baire and the union of a Gδ-set with empty interior and a meager set

of X is nowhere dense.

Proof. (1) ⇐⇒ (2). This es Corollary 2.5.

(2) =⇒ (3). Let A ⊆ X be a meager set. Assume A =
∞⋃
n=1

Hn where Hn is

nowhere dense for all n ∈ N. Therefore, L = X \
⋃∞
n=1H

−
n =

⋂∞
n=1X \ H−n is a

Gδ-set in X and L is dense in X because its complemet is a meager set and X is
Baire. Let V = intL. The set L−V clearly has empty interior. Hence, L−V − is a
Gδ-set with empty interior, by hypothesis, L−V − is nowhere dense. Also L∩FrV
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is a nowhere dense set. Therefore, L − V = (L − V −) ∪ (L ∩ FrV ) is a nowhere
dense set as well. On the other hand,

X \ V = (L \ V ) ∪ (X \ L) = (L \ V ) ∪
∞⋃
n=1

H−n

is a meager set. Since X is Baire,

∅ = int(X \ V ) = X \ V − .
Therefore, V − = X and A ⊆ X \ V = FrV is nowhere dense.

(3) =⇒ (4). It follows from Proposition 2.1 thatX is a Baire space. Let L ⊆ X be
a dense Gδ-set of X. Since X\L is a meager set, the hypothesis implies that X\L is
nowhere dense, i.e. (X\L)− has empty interior. Therefore, V = X\(X\L)− = intL
is an open dense subspace of X.

(4) =⇒ (2). Let G be a Gδ-set with empty. First observe that int G− ⊆
(G− \ G)−. Since G− \ G is an Fσ-set with empty interior, X \ (G− \ G) is a
dense Gδ-set of X. By assumption, int (X \ (G− \G)) is also dense in X. That is,
X \ (G− \G)− is dense in X. Hence, int (G− \G)− = ∅ and so int G− = ∅.

(4) =⇒ (5). We have already established above the equivalence among the clauses
(1), (2), (3) and (4). The fifth clause follows directly from the properties of the
class PB(X) (see [19]) and the clauses (2) and (3).

(5) =⇒ (6). This implication is obvious because the σ-algebra of Borel sets is
contained in the class PB(X).

(6) =⇒ (1). It is enough to observe that (6) =⇒ (2) =⇒ (1).
(1) =⇒ (7). We know the first six statements are equivalent on to each other.

Thus clause (7) follows directly from clauses (2) and (3).
(7) =⇒ (1). This is a consequence of Theorem 2.1 and Corollary 2.5. �

Corollary 3.2. Every open subset of a D-Baire space is also D-Baire.

Let us state some particular classes of D-Baire spaces.

Definition 3.3. Let X be a Baire space.
(1) X is said to be D′-Baire if every set with empty interior is nowhere dense.
(2) We say that X is D′′-Baire if X has a dense discrete subspace.

As our spaces are T1, it is evident that in the definition of D′′-space we may say
that the space contains a dense subset of isolated points, and also we can removed
the condition Baire in the definition of D′′-Baire space. Thus, we have directly
that every D′′-Baire space is D′-Baire and every D′-Baire space is D-Baire. The
simplest examples of non-discrete D′′-space are those whose have only one non-
isolated point, and the Stone-Čech compactifications of discrete spaces are also
D′′-Baire.

We give now equivalent formulations for D′-Baire spaces.

For brevity, we say that A ⊆ X is a boundary set if intA = ∅ and let us consider
the following subsets of a space X.

B1 = {A ⊆ X | intA− = ∅}, B2 = {A ⊆ X |A is a meager set in X}
and

B3 = {A ⊆ X | intA = ∅}.
Obviously B1 ⊆ B2 and we also have that X is a Baire space iff B2 ⊆ B3.
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Theorem 3.4. In a topological space X, the following properties are equivalent:
(1) X is D′-Baire.
(2) X is Baire and for each dense set A ⊆ X, intA is also dense in X.
(3) X is Baire and each dense set contains a dense Gδ-set.
(4) The concepts boundary set, nowhere dense set and meager set are equiva-

lent.

(5) If {Hn : n ∈ N} is a countable family of dense subsets of X, then
∞⋂
n=1

Hn

is also dense in X.
(6) X is Baire and each finite intersection of dense sets in X is also dense in

X.
(7) The family of all boundary subsets of X is a σ-ideal.

Proof. The implications (2) =⇒ (3) and (5) =⇒ (6) and the equivalence (4) =⇒
(4) are obvious.

(1) =⇒ (2). Let A ⊆ X be dense. As X \ A has empty interior, by hypothesis,
X \ A is nowhere dense. Therefore, intA = X \ (X \ A)− is an open dense subset
of X.

(3) =⇒ (4). We only have to proveB3 ⊆ B1. Indeed, if L ⊆ X has empty interior,
X \ L is dense in X and, by hypothesis, there exists a dense Gδ-set H ⊆ X \ L.
Therefore, X \H is an Fδ-set with empty interior containing L. X \H and L are
then meager sets and B2 = B3. The hypothesis implies also that X is D-Baire,
since if D ⊆ X is dense in X and C is a Gδ-set of X disjoint from D, then C ⊆ X\A
where A is a dense Gδ-set of X contained in D. Therefore, X \A and C are meager
sets. Being a meager Gδ-set in a Baire space, C is nowhere dense. Therefore, by
Theorem 2.2, D is a Baire subspace of X and X is D-Baire. By Theorem 3.1,
B1 = B2 and hence conclude that B3 = B2 = B1.

(4) =⇒ (5). Let {Hn : n ∈ N} be a countable family of dense subsets of X.
Then, for every n ∈ N, X \Hn has empty interior and, by hypothesis, X \Hn is a
meager set. Then

∞⋃
n=1

(X \Hn) = X \
∞⋂
n=1

Hn

is also a meager set and, by hypothesis, it has empty interior. Therefore,
∞⋂
n=1

Hn is

dense in X.
(6) =⇒ (1). Let A ⊆ X be a set with empty interior and let L = X \A. Define

V = intL. Since L\V is a set with empty interior, the setX\(L\V ) = V ∪A is dense
in X. L = X \A is also dense in X. Therefore, by hypothesis, (V ∪A)∩(X \A) = V
is dense in X. Hence, X \ V is a nowhere dense set. Since A ⊆ X \ V , we deduce
that A is also a nowhere dense set and the proof is complete. �

The condition stated in clause (7) of Theorem 3.4 was considered in [21].

Corollary 3.5. Every D′-Baire space is D-Baire.

Proof. Use condition (3) from 3.1 and condition (4) in 3.4. �

By using the equality between two of the the sets B1, B2 and B3, we obtain that
X is a D-space iff B1 = B2 (Theorem 3.1) and:
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Corollary 3.6. For a space X the following conditions are equivalent:
(1) X is D′-Baire.
(2) Every boundary set is meager.
(3) Every boundary set is nowhere dense.

Corollary 3.7. Every nonempty open subset of a D′-Baire space is also D′-Baire.

Proof. Assume that X is a D′-Baire space and let U ⊆ X be open and nonempty.
It is known that U is also a Baire space (see [7, Ex. 3.9.J (a)]). Suppose that A is a
dense subset of U . Since A∪(X\U) is dense in X, by Theorem 3.4, int (A∪(X\U))
is also dense in X. Let ∅ 6= V ⊆ U . Then, ∅ 6= V ∩ int (A∪ (X \U)) and it is clear
that V ∩ int (A ∪ (X \ U)) ⊆ A. This implies that V ∩ intA 6= ∅. This shows that
int A is a dense subset of U . According to Theorem 3.4, U is D′-Baire. �

Following E. Hewitt [13] we say that a topological crowded1 space X is resolvable
if X has a dense subspace D whose complement X \D is also dense in X. A space
that cannot be split in two disjoint dense subsets is called irresolvable2. Most of
the spaces which we handle are resolvable. For example, it is shown in [13] that
all metric crowded spaces and all compact crowded spaces are resolvable (maxi-
mally resolvable). In a more general setting, E. G. Pytke’ev [22] showed that every
crowded k-space is resolvable. For more examples of resolvable spaces the reader
is referred to [5]. However, we may find multiple examples of irresolvable spaces in
the literature (see for instance [6], [8] and [13]).

A space X is called open-hereditarily irresolvable if every open subset of X is
irresolvable. In the following corollary, we shall prove that the D′-spaces are pre-
cisely the open-hereditarily irresolvable Baire spaces. The proof of the next lemma
is left to the reader.

Lemma 3.8. In a topological space X, the following properties are equivalent:
(1) Every subset of X with empty interior is nowhere dense.
(2) X is open-hereditarily irresolvable.

The following statement is a direct application of Theorem 3.4 and the previous
lemma.

Corollary 3.9. A space X is D′-Baire iff X is Baire and open-hereditarily irre-
solvable.

Thus, we have that every D′-space must be irresolvable. Hence, by Corollary
2.8, βN−N is D-Baire and, by Pytke’ev’s Theorem, we obtain that βN−N cannot
be D′-Baire. Corollary 3.9 is a particular case of Proposition 1.2 from [17] and the
implication (1) =⇒ (2) of Theorem 3.4 lies, in a more general form, in [13].

It is shown in [18] (see also [17]) that if there is a Baire irresolvable crowded
space, then there is a measurable cardinal in the inner model. Hence, if V = L,
then every Baire space without isolated points is resolvable. Using this assertion
and Corollary 3.9, we can prove that every D′-Baire space is D′′-Baire in a model
of ZFC where V = L.

1A space without isolated points is called crowded.
2A space with at least one isolated points cannot be divided in two disjoint dense subset; hence,

we may omit the condition crowded in the definition of irresolvable space.
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Theorem 3.10. Under the assumption of V = L, the set of isolated points of a
D′-Baire space is dense in the space. Thus, V = L implies that a space is D′-Baire
iff it is D′′-Baire.

Proof. Assume V = L. As we pointed above every Baire space without isolated
points must be resolvable. Hence and from Corollary 3.9 we must have that every
nonempty open subset of X has an isolated point. Therefore, X contains a dense
discrete subset. �

S. Shelah [23] showed the consistency (modulo reasonably large cardinals) of the
existence of a topological Baire irresolvable space with no isolated points of size ω1.
It is not hard to see that every Baire irresolvable crowded space must contain a
nonempty open subset open-hereditarily irresolvable. Since every open subset of a
Baire space is also Baire, Shelah’s example contains a D′-Baire crowded subspace
which cannot be D′′-Baire. So, the existence of a D′-Baire space which is not
D′′-Baire is undecidable in ZFC.

Next, we state a sufficient condition on a D-Baire space to be D′′-Baire.

Lemma 3.11. Let X be a crowded space. If X has a σ-locally finite π-base3, then
X has a dense meager subset.

Proof. Let B =
⋃
n∈B Bn be a π-base of X such that each family Bn is locally finite.

For each n ∈ N, enumerate Bn as {Bni : i ∈ In} and choose xni ∈ Bni for each
n ∈ N and for each i ∈ In. Now, we define Nn = {xni : i ∈ In} for every n ∈ N.
Clearly, Nn is discrete for every n ∈ N. Since X is crowded, we must have that Nn
is nowhere dense in X for all n ∈ N. Thus, N =

⋃
n∈N Nn is meager and dense. �

The following results follows directly from the previous lemma.

Theorem 3.12. Every D-Baire space with a σ-locally finite π-base is a D′′-Baire
space.

Proof. Suppose that X has a nonempty set U without isolated points. It is evident
that U also has a σ-locally finite π-base and, by Corollary , U is a D-Baire crowded
space. So, by Lemma 3.11, U has a dense meager subset which contradicts Theorem
3.1. �

Corollary 3.13. Every metric D-Baire space is D′′-Baire.

Proof. Suppose that the set of isolated points of X is not dense. For each n ∈ N,
let {B(d, 1

n+1 ) : d ∈ Dn}4 be a maximal pairwise disjoint family whose elements do
not contain any isolated point of X. Put U =

⋃
n∈N

⋃
i∈Dn

B(d, 1
n+1 ). Since U is

an open subset of X, by Corollary 3, U is a metric D-Baire crowded space. Clearly
U has a σ-locally finite π-base. By Theorem 3.12, U is a D′′-Baire space and so
contains a dense subset of isolated points which is a contradiction to the fact that
U does not contain any isolated point of X. �

Theorem 3.14. Let X be a D-Baire space. If there exists a dense set L ⊆ X having
a σ-discrete network, then X is D′′-Baire. In particular, a D-Baire, separable space
is D′′-Baire.

3A family B of nonempty open subsets of a space X is a π-base if every nonempty open subset

of X contains an element of B.
4B(x, ε) denotes the ball with center x and radio ε in a metric space.
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Proof. We may suppose, without loss of generality, that L = X. Let H =
∞⋃
n=1

Hn

be a network of X, where each family Hn is discrete (with respect to X). Choosing
a point in each member of H, we may find a dense set D ⊆ X which is a countable
union of closed discrete sets {Dn : n ∈ N}. Let En = Dn −Xa and Fn = Dn ∩Xa.

The set E =
∞⋃
n=1

En is open and discrete in X and each set Fn is nowhere dense.

Hence F =
∞⋃
n=1

Fn is a meager set. Since X is D-Baire, the set F is nowhere dense

(see condition 3) in 3.1). Since D = E ∪ F , we deduce X = E− ∪ F−. Necessarily
E− = X, because if V = X \ E− 6= ∅, the open set V would be contained in F−,
contradicting the fact that F is nowhere dense. Therefore, E is an open discrete
dense subspace of X and X is D′′-Baire. �

We give below a sufficient condition on a D′-Baire space to be D′′-Baire. We
give first a definition:

The derived sets of a space X are defined as follows:

X(0) = X

X(1) = Xa

Assuming X(α) is already defined for an ordinal number α, we define X(α+1) as the
set of limit points of X(α). If α is an infinite limit ordinal and if X(γ) is already
defined for each γ < α, we set:

X(α) =
⋂
γ<α

X(γ)

Therefore, there exists a minimum ordinal number β such that X(β) is crowded or
empty, i.e., such that X(β) = X(β+1). This set X(β) is called the last derived set of
X.

Theorem 3.15. Let X be a D′-Baire space whose last derived set X(β) is resolvable.
Then X is D′′-Baire. In fact, X \Xa is dense in X.

Proof. Let L ⊆ X(β) be such that L− = (X(β) − L)− = X(β). Clearly

D =
⋃

0≤α<β

(
X(α) −X(α+1)

)
∪ L

is dense in X. Because X is D′-Baire, intD is also dense in X.
But (X \ intD)− = (X(β) − L)− = X(β). Therefore, intD = X \ X(β) =⋃

0≤α<β

(
X(α) −X(α+1)

)
. We prove X \ X(1) is dense in intD and, hence, it is

dense in X. Suppose on the contrary, there exists a point

p ∈ (intD) ∩
[
X \ (X \X(1))−

]
.

Therefore, there exists an open set W ⊆ X such that

p ∈W ⊆ intD and W ∩ (X \X(1))− = ∅ .
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Let α be the minimum ordinal such that

W ∩
(
X(α) −X(α+1)

)
6= ∅

and select a point q ∈W ∩
(
X(α) −X(α+1)

)
. Let T be an open set in X such that

T ∩X(α) = {q}. Therefore, W ∩T = {q} and q ∈ X \X(1), a contradiction. Hence,
the discrete set X \X(1) is dense in X and X is D′′-Baire. �

Next, let us introduce a property that a D-space needs to be a D′-space.

Definition 3.16. A space X is called PB if PB(X) = P(X)5.

Theorem 3.17. A space X is D′-Baire iff X is PB and D-Baire.

Proof. Necessity. Assume that X is D′-Baire. By Corollary 3.5, X is D-Baire. Let
A ⊆ X. We know that A = intA ∪ (A\ int A). Clearly int A is a Gδ-set and since
(A\ int A) has empty interior, (A\ int A) is nowhere dense. Then, A ∈ PB(X).

Sufficiency. Assume that A ⊆ X has empty interior. By assumption, A = G∪M ,
where G is a Gδ-set and M is meager. Since X is a D-space, by Theorem 3.1, we
have that G is nowhere dense. So, A is nowhere dense. Therefore, X is a D′-
space. �

We now consider the following class of Baire spaces.

Definition 3.18. A space X is called extremally Baire if the union of a boundary
Gδ-set and a meager set is boundary.

It follows from Theorem 2.1 that every extremally Baire space is Baire and from
Theorem 3.1 that every D-Baire space is extremally Baire.

Theorem 3.19. If X is PB and extremally Baire, then X is D-Baire.

Proof. Let D be a dense subset of X. By hypothesis, D = G0 ∪M0 and X \D =
G1∪M1, where G0 and G1 are a Gδ-sets and M0 and M1 are meager. Without loss
of generality, we may assume that G0 ∩M0 = G1 ∩M1 = ∅. We claim that G0 is a
dense subset of G0 ∪G1. Indeed, suppose that there is a nonempty open subset V
of X such that (G0∪G1)∩V ⊆ G1. It is clear that V ∩G1 is a boundary Gδ-set and
since X is extremally Baire, we must have that (V ∩G1)∪ (V ∩M0)∪ (V ∩M1) = V
is a boundary set which is a contradiction. Thus, G0 is a dense subset of G0 ∪G1.
But, it is not hard to see that G0 ∪ G1 is a dense subset of X. So, G0 is a dense
Gδ-set of X and since Xis a Baire space, we have that G0 is also Baire. Therefore,
D is also a Baire space. �

4. Real-valued functions

Problem 109 of the Scottish Book posed by M. Katětov is the following: Is
there a crowded space on which every real-valued function is continuous at some
point ? In a very nice paper, V. I. Malykhin [21] prove that there is a irresolvable
Baire crowded space iff there is a space on which every real-valued function is
continuous at some point. Years later, it was shown in [10] that a Baire space X
is open-hereditarily irresolvable iff every real-valued function on X has a dense set
of points of continuity. In connection with these results, R. Bolstein [3] introduced
the notion of almost-resolvability: A space is called almost resolvable if it is the

5P(X) denotes the family of all subsets of a set X
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countable union of boundary sets (it is clear that every resolvable space is almost
resolvable). It is shown in [3] and [10] that a space X is almost resolvable iff one of
the following equivalent conditions holds:

(1) X admits an everywhere discontinuous real-valued function with countable
range.

(2) X admits an everywhere discontinuous real-valued function.
V. I. Malykhin [21] found a model of ZFC in which every topological space is
almost resolvable, and in the model of Shelah [23] there is a crowded Baire space
which is not almost resolvable. As a particular case of Proposition 1.2 from [17] is
the next result.

Proposition 4.1. For every space X the following conditions are equivalent.
(1) X is D′-Baire.
(2) For every space Y of countable weight and for every function f : X → Y

the set of points of continuity of f contains a dense open set.

From Corollary 3.7 and the previous proposition we have:

Corollary 4.2. A crowded space X is D′-Baire iff X does not contain a nonempty
almost resolvable open subset.

It is pointed out in [2] that a space X is D′′-Baire iff there is a dense subset D
of X such that every function f : X → R, f |D is continuous. In the paper, [2], the
D′′-Baire spaces are called UB-spaces.

5. Invariance properties

It is a well known fact that the Baire property is invariant under open continuous
maps. As far as the invariance under continuous maps is concerned, we can prove:

Theorem 5.1. Let ϕ : X → Y be open, continuous and onto. Then

i) If X is D-Baire, Y is also D-Baire.
ii) If X is almost P -space, Y is also almost P -space.

iii) If X is D′-Baire, Y is also D′-Baire.
iv) If X is D′′-Baire, Y is also D′′-Baire.

Proof. i). Let E ⊆ Y be a dense subset. Then D = ϕ−1(E) is dense in X. By
hypothesis, D is a Baire space. Since ϕ |D : D → E is continuous, open and
surjective, we deduce that E is also a Baire space.
ii). Let L ⊇ Y be a non-empty Gδ-set. Since ϕ−1(L) is also a non-empty Gδ-set,

we have intϕ−1(L) 6= ∅. Hence intL ⊇ ϕ(intϕ−1(L)) 6= ∅ and Y is an almost
P -space.
iii). Let E ⊆ Y be a dense subset of Y . Then D = ϕ−1(E) is dense in X.

Since X is D′-Baire, intD is dense in X. Therefore, ϕ(intD) is dense in Y . But
ϕ(intD) ⊆ E. Hence, intE is dense in Y and Y is a D′-Baire space.
iv). Let D ⊆ X be open, discrete and dense in X. To prove ϕ(D) is discrete,

select a point x ∈ D. Then {x} is an open set in X contained in D. Therefore
{ϕ(x)} is an open set in Y contained in ϕ(D) and ϕ(D) is discrete. Therefore, Y
is a D′′-Baire space. �

It is also obvious that the almost P -space and the D′′-Baire properties are pre-
served under finite products. There are many examples in the literature of Baire
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spaces (even metrizable Baire spaces) whose square is not Baire (see [4] and [9]).
On the other hand, there exist several topological properties P which imply the
Baire property and are invariant under arbitrary products: For instance, either
P = pseudocompleteness (see [1]) or P = weak pseudocompactness (see [11]).

We exhibit next a D-Baire space X whose square is not Baire. Obviously X
cannot be an almost P -space.

Example 5.2. To construct our example we need some basic notions from Set
Theory that the reader may find them in text books like [16] and [14]. We consider
the first uncountable ordinal number ω1 equipped with the order topology. Let S
be a stationary subset of ω1. Then, we define XS as the set of all compact subsets of
S. For A ∈ XS , we let let con(A) = {B ∈ XS : A ⊆ B and max(A) < min(B \A)},
that is con(A) is the set of all end-extensions of A. It is clear that if A,B ∈ XS

and con(A) ∩ con(B) 6= ∅, then either A is an end-extension of B or B is an end-
extension of A. The topology on XS is the topology generated by all cones and
their complements. Obviously, by definition, XS is zero dimensional and Hausdorff.

Claim 1. Let D ⊆ XS . Then, D contains dense open subset of XS if and only
if for every A in XS there is B ∈ con(A) such that con(B) ⊆ D.

Proof of Claim 1. It suffices to show that C = {con(A) : A ∈ XS} is a base
for the topology of XS . Indeed, suppose that A ∈ XS \ con(B). Without loss of
generality, we may assume that con(A) ∩ con(B) 6= ∅. Then, we must have that B
is a proper end-extension of A and so con(B) ⊆ con(A). Let γ = min(S \max(B)).
Then, A ∈ con(A ∪ {γ}) ⊆ XS \ con(B). This shows that C is a base for XS .

Claim 2. The intersection of countably many dense open sets contains a dense
open set.

Proof of Claim 2. For each n ∈ N take a dense open subset Dn of XS . Fix
A ∈ XS . We need to find an end-extension B of A so that con(B) ⊆

⋂
n∈N Dn.

In fact, let M be a countable elementary submodel such that S,Di ∈ M and
γ = M ∩ ω1 is in S. Choose an increasing sequence of ordinals γn converging to γ.
Recursively construct an increasing sequence Bn of elements of XS ∩M so that:

1) B0 ∈ con(A),
2) Bn+1 ∈ con(Bn), for each n ∈ N,
3) γn ≤ max(Bn), for each n ∈ N, and
4) con(Bn) ⊆ Dn, for each n ∈ N.

The construction of the Bn’s follows directly from Claim 1 using the fact that each
Dn is dense open in XS and M knows it. Put B = (

⋃
n∈N Bn) ∪ {γ}. As γ ∈ S

and γn ↗ γ, B ∈ XS and con(B) ⊆ con(Bn), for all n ∈ N. Another proof without
using elementary submodels can be achieved by proving that the set

C = {γ < ω1 : there is a sequence (Bn)n∈N in XS such that:

1) A ∈ con(B0),
2) Bn+1 ∈ con(Bn), for each n ∈ N,
3) con(Bn) ⊆ Dn, for each n ∈ N, and
4) (

⋃
n∈N Bn) ∪ {γ} ∈ XS}

is closed and unbounded in ω1.
Thus, according to Proposition 2.1, Theorem 3.1 and Claim 2, the space XS is

D-Baire.
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Claim 3. If S and T are disjoint stationary subsets of ω1, then XS ×XT is not
Baire.

Proof of Claim 3. For A ∈ XS and B ∈ XT we let

osc(A,B) = |{α ∈ A ∪B : α ∈ A iff min((A ∪B) \ α) ∈ B}|;

That is, osc(A,B) is the number of ”changes” from A to B and vice-versa. Given
A ∈ XS and B ∈ XT , osc(A,B) is finite. Indeed, if αn is an alternating element of
A and B, for each n ∈ N, then

α = sup{αn : n ∈ N} = sup{min((A ∪B) \ αn) : n ∈ N} ∈ A ∩B

since both sets are compact, but this is impossible since S and T are disjoint. For
each n ∈ N, we define En = {(A,B) ∈ XS × XT : osc(A,B) ≥ n}. Is clear that
each pair of elements A ∈ XS and B ∈ XT can extended to A′ ∈ XS and B′ ∈ XT

by alternating members of S and T , respectively, making the osc(A′, B′) as large
as desired. Thus, for each n ∈ N and for each (A,B) ∈ XS × XT , we can find
(A′, B′) ∈ XS ×XT so that A′ ∈ con(A), B′ ∈ con(B) and cone(A′)× cone(B′) ⊆
En. Therefore, En is a dense open subset of XS × XT for all n ∈ N. Since for
every A ∈ XS and B ∈ XT osc(A,B) is finite, we must have that

⋂
n∈N En = ∅.

This shows that the product XS × XT cannot be Baire. Thus, our space is the
topological sum X = XS tXT where S and T are disjoint stationary subsets of ω1.
We have that X is D-Baire but X ×X is not Baire.

We end this section with the following question.

Question 5.3. Is there a D′-Baire space whose square is not Baire in some
model of ZFC ?
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