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Abstract

Let A C [w]® be a maximal almost disjoint family and assufhés a forcing notion. Say is
P-indestructible ifA is still maximal in anyP-generic extension. We investigdfeindestructibility
for several classical forcing notioris In particular, we provide a combinatorial characterization of
P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families
which areP-indestructible yetQ-destructible for several pairs of forcing notio(®, Q). We close
with a detailed investigation of iterated Sacks indestructibility.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Almost disjoint families (AD families for short) and, in particular, maximal almost
disjoint families of sets of natural numbers (MAD families for short) play an important
role in set theory as well as in its applications, for example in general topology. Let us
mention but two sample examples, namely, the technique of almost disjoint coding in
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forcing theory and the construction of the Isbell-Mréwka space from an almost disjoint
family in set theoretic topology.

A fundamental question about MAD families is whether they survive forcing extensions
in which new real numbers are adjoined, and, until recently, surprisingly little was
known about this. In particular, the relationship @f the size of the smallest MAD
family, with other cardinal invariants of the continuum was little understood. This has
changed drastically with the advent of Shelah’s theory of iteration along templates (see
[19,6]) which provided a method of destroying MAD families with minimal damage.
For example, his technique allows for killing arbitrary MAD families while preserving
dominating families, and he thus obtained the consistengyofi, solving a long-standing
problem about cardinal invariants of the continuum. Shelah’s results spurred new interest
in the question under which condition is a MAD family (in)destructible by a given forcing
notion.

This question may be seen, in a broader context, as an attempt to classify MAD families,
and, ultimately, to arrive at some structural theory of MAD families. Note in this context
that one of the most basic constructions of a MAD family starts with a perfectTiree
the branches of which can be considered an AD family, and extends it to a maximal AD
family A using Zorn’s lemma. Since adjoining a new real naturally adds a new branch
to T, such a MAD family is necessarily destroyed &y forcing adding reals. On the
other hand, Kunenlf] constructed a Cohen-indestructible MAD famiiyassuming CH,
and his method of construction was later extended in various directions by many people.
This means the familied andB are fundamentally different.

Hrusak [LO] and Kurilic [16] independently characterized Cohen-indestructibility of
MAD families by using a combinatorial reformulation which doesn’t mention forcing
or models. HruSak 1[0] also investigated Sacks forcing and Miller forcing and, in
joint work with Garcia Ferreiralll], showed that Cohen-indestructibility and random-
indestructibility are incomparable notions. The latter work also provided a more general
framework for indestructibility using the Kétov ordering.

In Section 20of the present work, we shall continue this line of research and provide
a combinatorial characterization of forcing indestructibility of MAD families and, more
generally, tall ideals, for many classical forcing notions. The main new idea is that we work
with the Gs-closure G 5 of a subsefA of 2<“ (or w=*), namely, the set of alt € 2 (v®)
such that infinitely many initial segmentsxbelong toA. The advantage of this approach
is that it allows us to treat many rather distinct forcing notions adding real numbers (e.g.
tree-like forcings like Sacks forcings well as Cohen and random forcing) in one general
framework. Accordingly, we first set up this framework, prove a general characterization
theorem saying when a tall ideal Isindestructible for a given forcing notia which
falls into this framework Theorem 2.2.% and then show that all forcings we consider do
indeed satisfy the conditions of the framework. The price we have to pay for this is that
these conditions are rather technical, and that it is sometimes rather tedious to verify a
given forcing notion satisfies them (this is in particular true for forcing notions adjoining
dominating reals). On the other hand, the verification of the latter is trivial in other cases
and, furthermore, it is quite clear that the framework also works for many other forcing
notions which we have not studied in detail. The actual characterizations, then, are mere
corollaries. As an instance we mention:



J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312 273

Theorem 2.4.9. LetZ be atall ideal. The following are equivalent:

(i) Z is random-indestructible.
(i) VB € 2<? such that G is not null,Vf : B — w, 3| € Z such that G -1, is not
null.
(i) VB € 2<% such that Gg is not null,Vf : B — w finite-to-one3l € 7 such that
G¢-1», is not null.

This answers a question of Hru3&l0[.1 An immediate consequence of these characteri-
zations is that we get the following diagram about implications between forcing
indestructibility (se€.1for the definitions of the forcing notions):

B-indestructible——= S-indestructible

-

L-indestructible——= M-indestructible

| |

D-indestructible——= C-indestructible

Fig. 1. Diagram of forcing indestructibility.

A natural question is whether any of these arrows is reversible or whether there are any
other arrows. An even more fundamental question is whether we can always lRld a
indestructible MAD family (or, more generally, tall ideal) for a given forcing noffoand,
if so, whether this construction can be don&IrC alone.

We shall investigate this iBection 3and show that, indeed, there are no other arrows
in the diagram than those shown above. Furthermore, for tall idgatenstructions of
counterexamples to possible further arrows can be do#éd-@®. This is more tricky for
MAD families: first, adding a dominating real destroys all MAD families so that there
are noP-indestructible MAD families for forcing notion® adjoining a dominating real.
Furthermore, as of now, even the construction ofeéndestructible MAD family (which
is weaker than all of the others) requires hypotheses be¥& (seeConjecture 4.48
though we do not know whether they are really necessary. Such hypotheses are usually
of the formj = ¢ wherej is one of the standard cardinal invariants of the continuum.
Wherever possible, we shall construct a MAD family of the required kind (which is the
more difficult task). Sample results include:

Theorem 3.6.1. Assumeadd(N) = c¢. Then there is a random-indestructible Miller-
destructible MAD family of size

Theorem 3.7.3. There is a tall idealZ which is Laver-indestructible yet Cohen-
destructible.

1 Some characterizations can be done in terms of thétitarder. We do not know whether this is possible
for Theorem 2.4.9however. Se&ection 2.4or more details.
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Section 4provides an in-depth investigation of iterated forcing indestructibility in
the case of Sacks forcing. Apart from characterizing iterated Sacks indestructibility
(Sections 4.24.3and4.5), we prove:

Theorem 4.4.1. Assume eithecov(M) = cor b = ¢. There is a MAD familyd = {A, :
a < ¢} which isS-indestructible ye§,-destructible.

HereS, denotes the two step iteration of Sacks forcing

Theorem 4.7.1. In the Sacks model (the extension of a model of CH by iteratively adding
w2 Sacks reals with countable support), every iterated Sacks-indestructible MAD family
has sizeR;.

These results show that the case of Sacks forcing differs from that of Cohen or random
forcing while still being somewhat similar; namely, in the caseCoér B, the two step
iteration is the same as the single step, so there is no resudt ik on the other hand, it is
well-known that after adding many Cohen (or random) reals to a model of CH, any Cohen
(random, respectively) indestructible MAD family must have $iz€Theorem 4.1.11

Some of the proofs in this section are rather sketchy (or even left out) because, on
the one hand, they are quite technical while, on the other hand, they are rather standard
arguments (mostly fusion arguments) in iterated Sacks forcing. In particular, the arguments
should be easy to follow for anybody familiar with the representation of iterated Sacks
forcing S, as Borel sets i2)¥. See for example, the recent work of Ciesielski and
Pawlikowski [7] and of Zapletal22] for an in-depth investigation of iterated Sacks forcing.
The main argumentg(2, 4.4and4.7), however, are done in detail.

1.1. Notation and basic facts

Our notation is fairly standard. Se&Z] or [14] for set theory in general and forcing
theory in particular3® means “there are infinitely many € »” and v*>° stands for “for
all but finitely manyn € »". By the realsR, we usually mean the elements of the Cantor
space 2, of the Baire space®, or of [w]®, the infinite subsets of the natural numbers
B (or B(2*), B(w®)), then, denotes the Borel subsetdRofof 2* or w®, respectively).

Givens € 2<% (or =%), let[s] = {x € 2” : s C x}, the clopen set given by.
Given a treeT C 2<% (or =%), let[T] = {Xx € 2 : X|n, € T foralln € »} denote
the set of itshranches. stem{T) denotes thatem of T, that is, the unique € T which
has at least two immediate successors and is comparable with any. Fors € T,
Ts={teT:sCtort Cs}istherestrictionof T tos.

Forx,y € o, sayy eventually dominates x and writex <* y if x(n) < y(n) holds
for all but finitely manyn € w. The (un)bounding number b is the smallest size of an
unbounded family in the structut@®, <*) while thedominating number 0 is the least
size of a cofinal family infw®, <*). ¢ denotes the cardinality of the continuum. A family
A C [w]® is almost digoint (AD for short) if AN B is finite for any distinctA, B € A.
A is amaximal almost disoint (MAD) family if, additionally, for anyX e [w]®, there
is A € A such thatX N A is infinite. For simplicity, we shall assume through the paper
that AD families satisfyJA = w. Thealmost digointness number a is the least size of
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a MAD family. We assume familiarity with basic cardinal invariants of the continuum like
those mentioned here, as well as with their order relationship.1$ee [3] for details.
For A, B € [w]?, sayAis almost contained in B and writeA C* B if A\ B is finite.
X € [w]? is apseudo-intersection of F C [w]? if X C* Aforany A € F. All ideals
7 C P(w) we will consider in this paper are proper and contain the finite subset{sy
UZ = w), that is, they aréreeideals. An idealZ C P(w) is atall ideal if the dual filter
7 ={w\ A: A € 7} doesn’t have a pseudo-intersection.
Itis clear tall ideals are a generalization of MAD families.

Definition 1.1.1. Z(A) = {X € P(w) : AN)(F(A :i <n) € AHX <* [Jj_, Ai}isthe
ideal generated byl.

Fact 1.1.2. For an almost disjoint family4, A is MAD iff Z(A) is a tall ideal.

We proceed to argue that families of infinite subsetsvadire closely connected to
families of subsets of reals.

Definition 1.1.3 (Gs Closurd. For anyA € 2<“ or =<®, theG; closure ofA is
Ga={f e2?(ore®) : @°ncw)f|y e Al.

Clearly anyGp is aGs-set.

Lemma 1.1.4. The following are equivalent for an ideal

1. Zis atallideal.

2. Forany BC 2<¢ (orw~®)andany f: B - w, F = {G;-1rp : D € I} is a covering
of Gg.

3. Forany f: 2<®(or o=”) — w one-to-oneF = {G;-1-p : D € Z} is a covering of
the real line.

Proof. First we show 1 implies 2. Assumg is not a covering, i.e. there is @ €
Ge \ (Upez Gi-1p).- Let A = {f(gln) : N € ® A gln € B}. We first argue thaiA
is infinite. OtherwiseA € Z, andg € G;-1- 5 follows immediately, a contradiction. Next
chooseD € T arbitrarily. If AN D was infinite,g € G¢-1pnp € G¢-1p, again a
contradiction. Therefor& N D is finite. This shows thaf is not tall, the final contradic-
tion.

2 implies 3 is trivial.

To show 3 implies 1, assun®ewas not tall and choosA € [w]® such thatAN D is
finite for all D € Z. Fix g € 2“. Define a bijectionf : 2<® —  such thatf maps
{gln : h e w}to Aand ¢ \ {g|n : h € w} to w \ A. It is straightforward to see that
g ¢ G¢-1-p forall D € Z, a contradiction to 3. O

For MAD families we additionally have:

Lemmallb. Let A C [w]® and assume for any f 2<?(or w=®) — w oOne-to-one
F ={G-1p : D € A} is adisjoint covering of the real line. Thefis a MAD family.

Proof. We first argue tha# is an almost disjoint family. AssumBg, D1 € A, Do # Dj,
and |Dg N D3| = Ro. Fix g € 2”. Define a bijectionf : 2<“ — ® such thatf
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maps{g|n : N € w}to DgN Dy and Z®\ {glp : h € w} to w \ (Do N Dy). Clearly
g € G¢-1p,NG¢-1p,, acontradiction. To see thatis maximal, usé..1.2and1.1.4 [

In 1.1.5 the converse is false in general.

2. Characterization of forcing indestructibility

Hrusak [LO] and Kurilic [16] have characterized forcing indestructibility of MAD
families for Cohen forcingC. Using the concept ofGs-closure”, we will prove analogous
results for many classical forcing notion§ections 2.22.4). We start with briefly
reviewing the definitions of, and basic facts about, these forcing not®eion 2.1

2.1. Forcing notions and corresponding ideals

Let B(R), or B for short, be the family of Borel sets iR, whereR = 2* or v®. Also
assumdp C B is ac-ideal. We consider forcing notions of the foftn= B/Ip, ordered
by inclusion moduldp. Notice this is forcing equivalent t8 \ Ip ordered by inclusion,

and we shall use this description to avoid having to work with equivalence classes. Call

such forcing notionseal forcings. The following is well-known (see?2, Lemma 2.1.1]).

Lemma?2.1.1 (Zapleta). If G € P = B\ Ip is a generic filter, then there is a real
r € V[G] such that a Borel set B coded in V belongsto G i BV[C].,

We are going to investigate the iddalcorresponding to several famous proper forcing
notions.

Sacksforcing Sacks forcing is the set of all perfect trees i2 ordered by inclusion.
The perfect set theorem says:

Fact 2.1.2. For every analytic set )€ 2¢:
e either X is countable,
e Or X contains a perfect subset.

Let cntble be the ideal of (at most) countable sets of reals. So the above fact Shews
a dense subset #f(2¢)/cntble; these are forcing equivalent.

It is clear that any countable set coded in the ground model doesn'’t contain a Sacks
real (it doesn’t contain any new real). In this sense we can say Sacks forcing is the

“weakest” forcing which adds a new real.
Miller forcing Miller forcing M is the set of all rational perfect trees ordered by inclusion.

Definition 2.1.3. 1. A treeT C =% is rational perfect iffT is a tree such that
MteT)3seTHt CsA@>®n)sin) eT.

2. Asetof realsB C w® is o-bounded iff there is a countable det, € w® : N € w}
such thaiVy € B)(3K)y < xk.

An swith s{n) e T for infinitely manyn as in 1 of the definition is called assplitting
node of T. We denote bgplit(T) the set ofw-splitting nodes off .
It is well-known that
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Fact 2.1.4. For every analytic set XC o®:
e either X iso-bounded,
e Or X contains a rational perfect subset.

Let K, be the ideal ob-bounded sets. Then the above fact shdviss a dense subset
of B(w®)/Ks; they are forcing equivalent.

Laver forcing Laver forcingL is the set of all Laver trees ordered by inclusion, where

Definition 2.1.5. 1. T C v~ is a Laver tree iffivt € T)(3*°n € w)t(n) € T,
2. A set of realB C w® is strongly dominating iff for any : ®<“ — w, there is a
g € B such thatvV>®n € w)g(n) > ¢(g|n).

For more details, se@,20]. Then we have

Fact 2.1.6. For every analytic set )€ o®:
e either X is not strongly dominating,
e or X contains a Laver tree.

Let not-dominating be the ideal of not strongly dominating sets. Then the above fact
showslL is a dense subset 8(w®)/not-dominating; they are forcing equivalent.
Cohen forcing Cohen forcingC is the set of finite partial functions — 2 ordered by
inclusion. More generallyC, is the set of finite partial functions — 2.
Let M be the ideal of meager sets of reals. It is well-kndi/is a dense subset of
B(2)/ M; they are forcing equivalent.

Fact 2.1.7. Every analytic set XZ 2® has Baire property; that is, there is an open set
U such that UA X is meager.

Note that Cohen forcing adds an unbounded real.
Random forcing Random forcing® is the measure algebB(2?) /N whereN is the ideal

of null sets of reals. More generall§, is the measure algebra of.2t is well-known
asw®-bounding forcing.

Fact 2.1.8. Every analytic set is Lebesgue measurable.

We useu to denote Lebesgue measure.
Hechler forcing Hechler forcingD is the following poset.

Definition 2.1.9.

D={(s f):sew*Af et AsC f}
ordered by

(s, f) < (t,9) <= t<sAMKIgk < fK)].

By definition, D adds a dominating real. Here we defin&” to be the set of all strictly
increasing functions from to w. Similarly w®<¢ is the set of all strictly increasing
finite sequences. Clearky,® is homeomorphic to the Baire spao.

Following [17], we will define the dominating topolog® on ! corresponding to
Hechler forcing.
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Definition 2.1.10 (Dominating Topology 1. For any(s, f) € D,
Ust) ={Xxeo':sCxAf <x}
2. The dominating topolog® is the topology o' whose base ifUs 1) : (s, f) €
Dj}.
3. LetXp be the topological spade ', D).

We can defineD-meager setsP-Borel setsBp, etc. as for the usual topology. It is
trivial that B C Bp, etc.

Let Mp be the ideal oD-meager sets. As in the case of Cohen forcihgs a dense
subset oB(w'?)/ Mp; they are forcing equivalent.

For more details, sedf)].

In any case, we clearly have

Theorem 2.1.11. AssumeP is one of the above proper real forcings. ligé, be the name
of thelP-generic real. Let B be a Borel set coded in the ground model. Then

e either Be Ip (thenlk “rgen & B"),
e or B & Ip (then Bl “fgen € B”).

2.2. Weak fusion

All forcing notionsP we will consider have a dense set®f's in the following sense:

If BC 2=“orew~“with Gg € P(i.e.Gg ¢ Ip), andE < Gg,
then there i3’ € B with Gg' € P andGp' < E. (%)

Itis clear thatS, M, L, C, B andD have this property with respect to the corresponding
ideal.

Definition 221 LetP =5\ Ip.be a real forcing. Salp hasweak fusion if given E € P
and aP-nameC such thate IF “C € [w]®”, there are

e pairwise disjoint antichainB, C 2= (or w=?),

e antichains4, C P,

e one-to-one functionk,, : B, — Ap forn € w,

e and a one-to-one functiag: {(n, A):nhew A A€ An} - o withg(n, A) > n

such that

(1) Gg < E (in particularGg ¢ Ip),

(2) (VB' € Bwith Gg' € P)(Vk)(3n > k)(Is € B, N B').
e [S]NGp € P, and
e [s] N Gpg is compatible withhp(s),

(3) (YN)(VA € Ay) AlF“g(n, A) € C”,

whereB = [ J,,, Bn.

Let us first check this is enough to get the characterizatioR-widestructibility we are
heading for. Recall that all ideals € P(w) we consider here are free ideals (i.e. they
contain all finite sets).



J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312 279

Theorem 2.2.2. AssuméP = B\ Ip is a real forcing with weak fusion. L&t be a tall
ideal. Then the following are equivalent:

(1) Z isP-indestructible.

(2) VB € 2=?(orw=®)suchthat @ & Ip,Vf : B —> w,3l € Zsuchthat G-1,| ¢ Ip.

(3) VB C 2=?(or w=®) suchthat G ¢ Ip, Vf : B — w one-to-oneidl € Z such that
Gi-1) & lp.

Proof. To show (1) implies (2), suppose not (2). LBtC 2<“ be such thaGg ¢ Ip and
3f : B— wfunction,Vl € Z, G¢-11) € Ip.

Letr be alP-generic real such thate Gg. Suchr exists by the preceding discussion,
seeLemma 2.1.1In particular, iff is the name for the generic frotnl.1, Gg I+ “f € Gg”.
Note thatr ¢ G¢-1-; forall | € Z. Namely, sinceG;-1»; € Ip, 2° \ G¢-1+; belongs to
the generic filter, and soe 2° \ G;-1,.

Sincer € Gg, (3*n)r|, € B. SinceZ contains all finite setsf must be finite-to-one
onBN{r|y:n e w}. ThereforeA = {f(r|n) : r|n € B} isinfinite, yetAnN | is finite for
alll eZ.

(2) implies (3) is trivial.

We can show (3) implies (1) by using a fusion argument. Eet P, C be aP-name
such thate IF “C e [w]®”". Let By, An, hy andg be as in the definition of “weak fusion”.
ThenGg < E whereB = (., Bn.

Definef : B — w by f(s) = g(n, hy(s)) for all s € By. This makes sense because
the B,, are pairwise disjoint. Sinde, andg are one-to-one, so is. By the hypothesis (3),
thereisl € ZsuchthaG¢-1.| & Ip,i.e.G¢-1. € P. ClearlyG;-1.; < Gg. To complete

the proof, it suffices to show th&@ 1., IF “|I N C| = Ro”". For this, it is enough to prove
(VD < G4-1)(VK)@l = k)@D' < D)D' IF“l e I N C".

To see this, fixD < G;-1»; andk. By (x) there isB’ C f~1"| such thatGg < D.
By (2) there aren > k ands € B, N B’ such that[s] N Gg: € P and[s] N Gg’ is
compatible withh,(s). Let D’ be a common extension ¢§] N Gg andhn(s), and let
| = g(n, hn(s)) = f(s) > n=>k.Sincese B/,| € 1.By3, D’ I “l € C", and we are

done. O

Note that (1) implies (2) is true for every real forcing. Indeed, “weak fusion” was used
only for (3) implies (1).

If we don't care aboutf being one-to-one, we can get away with a notion which is
somewhat simpler than “weak fusion”. However, it turns out that havingne-to-one
makes the constructions Bection 3much more lucid, and this is the reason for (3) in
Theorem 2.2.2

We proceed to show that most of our forcing notions satisfy weak fusion.

Lemma 2.2.3. Sacks forcing, Miller forcing M, and Laver forcindL have weak fusion.

Proof. Since the proofs are all very similar, we do it only for Laver forcingvhich is,
in fact, the most difficult case. Here, as well as in a number of subsequent proofs, we
shall freely use rank arguments which have become a standard tool in the combinatorial
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investigation of forcing notions adjoining a dominating real since they have been
introduced for Hechler forcing by Baumgartner and Dor@al [

Fix E = [T] € L and anL-nameC for an element ofw]®. As usual, we think of
Laver forcing as forcing with trees, that is, we identjfly] with T, and considell < L.
Recursively construct antichair8, < T, antichainsA;, < L, one-to-one functions
hy : B, — A;, and one-to-one functiorg;, : A, — » with g,(A) > nforall A € Aj
such that

e if n < mando € By, theno |k € B/, for somek < o],

e hyisonto A, and ifo € B}, thenhy (o) is a Laver subtree of with stemo,

e forallnando € B, U{h;]+1(r) o0 C1,T€ Br’Hl} is a Laver subtree df, (o) with
stemo,

e hy(o) IF*g(hy(0)) € C™.

Let us argue that this construction can be carried out. Supp@se and for allm < n,
Br, Am, hr, @and gp, have been constructed as required (possible 0). We construct
B/, Ap. hy andg;. Fixo € B/_; (where we puB’ ; = {stem(T)}). h] _;(0) € A;_,is
a Laver subtree of with stemo by inductive assumption (wheré , (stem{T)) = T and
A, ={T}).Forr € h|_;(0), |z| > |o|, define the rank functiork(z) by recursion as
follows.

e rk(r) = 0 <= 3h(7) a subtree of_, (o) with stemr and3g,(h;,(r)) > t(lo|)
such that

hp(o) IF “gn(hi (o)) € C”.
o rk(r) <a <= 3I*l e wsuchthat’{l) € h)_;(o) andrk(r{l)) < a.

A standard rank argument shows thatwalt hy, (o), || > |o|, have rank< oco. Therefore
we may findBy, , € h;_, (o) such thatBy , is an antichainy € B, , impliesrk(r) =0,
andJthy(r) : o C 7,7 € By} is a Laver subtree df;,_, (o) with stemo. Let A}, , be
the image of8], , underhy,. Clearlyhj|g;  is one-to-one.

By pruningBy, , (and thusAj, ) but keeping the remaining properties, we may assume
gy is one-to-one o4y, . The point is that whenevek(r) = 1, and there are infinitely
manyl such that'{l) € By, ,, thengy must be finite-to-one ofhy (<)) : ©{l) € By ,}
for otherwiserk(z) = 0, a contradiction. This means that we can mgkene-to-one,
simultaneously for all such, and still keep infinitely manywith 7{l) € By ,.

Now unfixo, and letB, = (J{B},, : 0 € B]_;}, Ay = U{ AL, : 0 € B[_4}. Clearly,
hqle; is still one-to-one, and a further pruning argument along the same lines shows we
may assume that so &[4, . Clearly all of the required properties are satisfied, and the
construction is complete.

Clearly, if B" = U, Bh then properties1), (2), and @) in Definition 2.2.1are
satisfied forBy,, Ay, h, andg’ given byg'(n, A) = g,(A). However,g’ may not be one-
to-one. Yet it is easy to see that a simultaneous pruning argument Belds B/, A, =
hy” Bn, hn = hylg,, 0 = 9/|Un{n}x«4n which still have the properties exhibited in the above
recursive construction and such tiggeis one-to-one. This completes the proot.]
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We leave the following proof to the reader (in fact, this is similar to, but much simpler
than,Lemma 2.2.%elow).

Lemma 2.2.4. Cohen forcingC has weak fusion.
Note that both ir2.2.3and in2.2.4one in fact proves
(2) (¥n)(¥s € Bn)[s]N Gp < hn(s)

instead of 2) in Definition 2.2.10f “weak fusion”. To seg?2’) implies @), it suffices to
note that wheneveB’ C B with Gg' € P andk € w are given, then there are indeed
n > k ands € B, N B’ with [s] N Gg' € P. For, if [s] N Gg' € |p for all suchs, then
Ge = UIsINGr : se B'NU,-k Bn} € Ip becausdp is ac-ideal, a contradiction.

Lemma 2.2.5. Hechler forcingD has weak fusion.

Proof. Recall that we think o) asBB \ Mp (i.e. as a Boolean algebra) whekép is the
family of meager sets in the dominating topology. We will use the rank analy$iscofe
to Baumgartner and Dord&Z]

Fix E = (s, x) € D (which we identify withUs x)) and aD-nameC for an element
of [w]®. Recall that conditions in a dense subsetDofare of the form(s, x) where
S C x,8 € o'<®” andx e '@ are strictly increasing. Say is compatible with
(s,x)ift € '<® s Ct andt(|) > x(i) for all i € |t|. Recursively construct sets
Xn C 01<@, Yy C @l<® and(t! :i € o), (M ;i € w), (A ;i € w)fort’ e Yo such
that

[

. Xy is a maximal antichain df € w!<® compatible with(s, x),

. Yn is an antichain of’ € '<® compatible with(s, x),

. forallt € X, and ally € o' with t C y, there ist’ € Yn,1 compatible witht, y),
. forallt’ € Ypi1 thereid < |t'| with t']} € X,

. forallt € Xp41 thereid < |t]| with t]; € X,

. forallt’ € Yy thereisl > |t’| such that for all, t’ < t¥', and|t!| = I, " (t']) > i,
Cfort’ € Yy, if i # | thenm}/ £ mtj',

.t € Xn whenevet’ € Y, andi € o,

. theAl'|i € w,t’ € Yp, are an antichain i,

LAY EemE e ¢

11. Al is compatible with any condition of the fortt , y).

©O© 00 N OO0~ WN

(SN
o

SetX_1 = {s}. AssumeX has been constructed & —1). We describe how to produce
Yn+1 andXp41. Fixt € Xp. Letriy be a name for natural number such that

IF“ry € C A iy > d(Jt])”

whered is the name for th&®-generic real. Fot’ O t compatible witht, y) wheret C y
andy(i) = maxy( — 1) + 1, x(i)} fori > |t|, andm € o definerk("(t") by recursion as
follows.



282 J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312

[ ] rktm(t/) == 0 < (HX/ 2 t/) (t/, X/> H_ “ mt = m"'
° rktm(t/) <a < (E” > |t/|)(3<tn ‘ne Cl)))t/ g tn, |tn| — |,tn(|t/|) >n, rktm(tn) <
o.

Note thatrk{"(t) = oo for all m. (For if we hadrk("(t) < oo for somem, we could find
t’ O t compatible with(t, y) andx’ 2 t’ such that (|t|) > mand{t’, x") IF “m; = m".
This contradicts- “riy > d(]t])".)
Next definerk; (t") for sucht’ by:
o rki(t) =0 < @Am)rk"t’) < oo,
e rkit) <a < A > t'DAth :n e )t Ctp, ltal =1, th([t']) = n, rki(th) <
o.

A standard argument shows thiét (t") < oo for all ' compatible with(t, y). In particular
0 < rk¢(t) < oo. Unfixt. Let

Yne1 = {t’ : forsomet € Xp, rke(t’) = LArke(t']) > Lforall |t] <| < |t'|}.

The above conditions 2 and 4 are immediate and 3 can be shown by a standard rank

argument.
Fort' € Ypy1, choose(t’ : i € o) and(m' : i € w) such that for some
’ ’ / . t/ ’ /
I > ULt cth gttt = Lthgt) > i andrk;" (t') < oo, and such that then! are

pairwise distinct (this is clearly possible: chodSesuch thatk;(t') = 0 andm! such

t/ ’ / . . B
thatrktmi (tit) < oo; sincerk:(t") > 0 the mit 's are distinct without loss of generality).
This gives us 6 and 7. Le1 be any maximal antichain satisfyipg 5 and containing the
t' fort’ € Yy andi € w. So 1 and 8 hold. For' € Yyy1, let A be the union of all

conditions of the formit”, x””) wheret” D> tit’ is compatible with(t, y), rktmit )y =0
and (t”, x”y Ik “my = m} 9, 10 and 11 are immediate. This completes the recursive
construction.

By shrinking the collection ofit/ and mit/ if necessary (but preserving thg, andYy),
we may assume without loss of generality thatrrlr?’eare pairwise distinct for alland all
t'.NowletBy = {t!' ;i cwAt € Yol dn = (Al 1§ € w At € Yo}, hn(t!) = AV
andg(n, Al') = m'". PutB = J, Bn. By 1, 3 and 6 we see tha@g is Mp-dense in
E = (s, x), soin factGg = E moduloMp and @) in Definition 2.2.1holds. LetB’ € B
with Gg/ € D andk € w. For somen > k, there must bé& € B, N B’ such tha{t] N Gg’
is Mp-dense int, y) for somey. Sayt = tit' wheret’ € Y, andi € w. By 11 we know
[t''1N Gg is compatible withA!". S02.2.12) holds. Finally2.2.1(3) follows from 10. [

2.3. Random forcing

It is easy to see that random forcing does not satisfy weak fusion in the sense of the
preceding section. However, we get the following result which is only a slight weakening
of “weak fusion”.

Lemma 2.3.1. Random forcingd satisfies all clauses in the definition of “weak fusion”
except for the assumption that g be one-to-one. However, we may require g is finite-to-one.
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Proof. Let E € B, and letC be aB-name such thaE I “C € [w]®". Also let u be
Lebesgue measure oft.2
Recursively build

o finite antichaind, < 2<?,

e conditionsEy € B,

o finite antichains4,, € B,

e bijectionshy, : By — Ap,

e andafunctiog: {(n,A):new AAc Ap} -

such that

1. n < mando € By implieso|k € B, for somek < |o],
2. w(En) = w(E) - (3 + z2), Ent1 < En < E,

3. En = U.An,

4. foro € Bn,hn(0) =[0] N Ep,

5. forAe An, AlF*“g(n, A) € C”,

6. ifn<m, Ae A,andB € An, theng(n, A) < g(m, B).

Fix n, and assum®y,, Em, Am, hm, g have been constructed for < n. ConsiderE,_1
with the conventiorE_1 = E. Setl,—1 := max{g(in — 1, A) : A € Ap_1} withl_; = 0.
For each > ln_1, let E' = ||l € C|| N Eq_1. Sincep(En-1) > w(E) - (3 + 5=1),
we can findiy such thate (J{E' :In-1 <1 <In}) = w(E) - (3 + 55 + zo3)- Since
every measurable set can be approximated by a basic clopen set, we mBY find<®
such thatB, = U{B' :In—1 < | < Iy} is an antichain satisfying 1 and such that if we
let hn(o) = [6]1 N E' foro € B', Ay = {hn(0) : o € By}, andEn = |JAp, then
1(En) = n(E) - 3 + Zn—lﬂ). So 2, 3and 4 hold. Far € B', we letg(n, hn(c)) =1, and

5 and 6 follow. This completes the recursive construction.

By 6, g is finite-to-one. By 2E = [, En satisfiesu(Ex) > %E) and therefore
Ex € B, andEx < E. E,, = Gp is easy to see, and thus prope2t.11) is satisfied.
By 4, forallnand allo € By, [6]N Ex < [0]N Enh = hp(o) so that(2') (see afteR.2.9
and, a fortiori,2.2.1(2) holds. Condition 5 is proper8.2.13). O

2.4. Characterizations

Before explicitly stating the characterizations®indestructibility of MAD families
for our forcing notiondP, we briefly consider the following notion which simplifies the
characterization in several cases.

Definition 2.4.1. Say an idealp C B is strongly homogeneous if for all B € 2= (or

0=<*)with Gg ¢ lp, there is an injectioih : 2<“(or w=*) — B such that for allC C B,
if Gy-1c € IpthenGe ¢ Ip.

Proposition 2.4.2. LetZ be a tall ideal, and assume» IC B is strongly homogeneous.
Then the following are equivalent.

1. VB C 2=?(or =®) with Gg ¢ Ilp, Vf : B — w (one-to-one)dl € 7 with

G- & lp,
2. VT :2<?(0or o=<®) — w (one-to-one)dl € 7 with G;-1, & Ip.
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Proof. 1implies 2 is trivial.

To show 2 implies 1, leB € 2<“ suchthaGg ¢ Ip, f : B — w (one-to-one). Leh be
as in the definition of strong homogeneity. In cdsis one-to-onef oh is also one-to-one.
Sothereid € 7 suchthaG ;. -1 & Ip. ThereforeG¢-1| & Ip. O

We leave it to the reader to verify thantble, K, and M are strongly homogeneous
(think of M as an ideal on the Baire spa®®). The proofs are straightforward.

Definition 2.4.3 (HruSak and Garcia Ferreirall]). Let .7, Z be ideals omw. SayJ <k
7 if there is a functionf : @ —  such thatf ~1"| e T for everyl € 7. <k is called the
Katétov ordering.

PutZp = {lI C 2=¢(orw=®) : G| € Ip}. By 2.2.2 Zp is P-destructible. In fact,

Proposition 2.4.4 (Hrusak, Private Communicatign AssuméeP has weak fusion andpl
is strongly homogeneous. The following are equivalent for a tall igeal

1. J is P-destructible,
2. J <k Ip.

Proof. First we show 1 implies 2. If7 is P-destructible, then bg.4.2and2.2.2there is
f:2<® > wsuchthaG-1.; € Ipforall J € 7.Sof~1"J e Zpforall J € J. Thus
J =k Ip.

To show 2 implies 1 is analogous]

Note that 2 implies 1 uses neither of the assumptionB ¢imecause it uses only the easy
direction 0f2.2.2. Putting together everything we proved so far, we get:

Theorem 2.4.5. LetZ be a tall ideal. The following are equivalent:

(i) Z is S-indestructible.
(i) VB € 2<? suchthat G ¢ cntble,Vf : B — w, 3l € Z such that G-1., & cntble.
(i) VB € 2= such that G ¢ cntble, Vf : B — w one-to-onedl € 7 such that
Gf—l"| ¢ cntble.
(iv) VI :2<“ — @ one-to-onedl € 7 such that G-1.| & cntble.
(V) Z £k Zs = {l € 2=?: G, € cntble}.
(vi) Z is P-indestructible for some forcing which adds a new real.

Proof. The equivalence from (i) through (iii) follows fromTheorem 2.2.2and
Lemma 2.2.3 (iv) is Proposition 2.4.2and the comment after the proposition. (v) is
Proposition 2.4.4Concerning (vi) note that (i) implies (vi) is trivial, and the proof of (vi)
implies (i) is identical to the first part ofFheorem 2.2.2To see this, simply note that any
forcing adding a new real in fact adds a new real belonging to a given uncountable Borel
set coded in the ground model and that any new real must avoid any countable set coded in
the ground model. O

A few remarks concerning this theorem are in order. The equivalence of (i) and (vi) is
due to Hrusak1q]. The basic pattern of the above resultis also due to Hrusak: he attempted
a characterization along the same line, but there is a gap in his argument. Namely, instead
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of considering theS;-closureGg of a setB € 2<, he considered the closuBs that is,
the set of branches through the tree defined f&oy closingB under initial segments.
ClearlyGp C B, but the converse inclusion doesn't hold in general.

In fact, it can be shown by a tedious though not difficult argument that assuming, say,
CH there is a MAD family.4 on» which satisfies (iv) wittGg replaced byB while being
S-destructible. So his characterization is ultimately incorrect.

A similar remark applies to HruSak’s characterizatiobfindestructibility a correct
version of which we present in the next theorem whose proof is exactly analogous.

Theorem 2.4.6. LetZ be atall ideal. The following are equivalent:

(i) Z is M-indestructible.
(i) VB C w=~?suchthat® ¢ Ky, Vf : B — ,3l e Zsuchthat G-1,| & Ks.
(i) VB € w=“ suchthat G ¢ K,, Vf : B — o one-to-onedl e Z such that
Gf—1"| Q/ ’Ca’.
(iv) Vf : o<® — w one-to-onell € Z such that G-1,, & K,.
V) ZZ£Zk I ={l Cw~?:G| € K5}
(vi) Z is P-indestructible for some forcing which adds an unbounded real.

Theorem 2.4.7. LetZ be atall ideal. The following are equivalent:

(i) ZisL-indestructible.
(i) VB € »=® such that & ¢ not-dominating, Vf : B — w, 3l € Z such that
G¢-1 & not-dominating.
(i) VB C w=“ such that & ¢ not-dominating, Vf : B — w one-to-oneil € 7 such
that G-1», & not-dominating.
(iv) 7 isP-indestructible for some forcing which adds a dominating real.

Proof. The equivalence from (i) through (iii) follows again froffheorem 2.2.2and
Lemma 2.2.3 (i) implies (iv) is trivial, and for (iv) implies (ii) argue as follows. If

Gg ¢ not-dominating, then Gg contains a Laver tregl ] which is homeomorphic to

w®. Call arealy € w® strongly dominating if for any ¢ : ©<* — w in the ground model,

(Y*°n € w)g(n) > ¢(g|n). Clearly any strongly dominating real is dominating while
the converse fails in general. However, it is well-known (and easy to see) that whenever
there is a dominating real over some modelof ZFC, then there is also a strongly
dominating real ovel. Moreover, a strongly dominating real must avoid all sets from
not-dominating coded in the ground model. Therefore, the argument in the first half of
the proof ofTheorem 2.2.2pplies, and we get (iv) implies (ii). O

Theorem 2.4.8 (HruSak [10], Kurili'c [16]). Let Z be a tall ideal. The following are
equivalent:

(i) Z is C-indestructible.
(i) VB € 2<®?suchthat @ ¢ M,Vf : B — w,3l € Zsuchthat G-1,, ¢ M.
(i) VB € 2=<? such that G ¢ M, Vf : B — o one-to-onedl e Z such that
Gf—1"| Q/ ./\/l
(iv) Vf :25“ — wone-to-onedl € 7 suchthat G -1, & M.
V) ZZ£k Iec ={l € 2°?: G| € M}.
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The proof is analogous to the proof dheorem 2.4.5using 2.2.2 2.2.4and 2.4.1

The above result is phrased somewhat differently in Kaisiland HruSak’s work, but is
essentially the same. For example, in HruS§ak’s work, the stipulation in (iv) above is that
f=1"1 is not nowhere dense. This is, however, the same as sayinGthat, ¢ M for,

clearly,G;-1,; € f~1"I and, on the other hand, [if] is a clopen subset of ~1"1, then
[s]N G¢-1-, is dense ifs]. A similar comment applies to Kuriis characterization.

Theorem 2.4.9. LetZ be atall ideal. The following are equivalent:

() Z isB-indestructible.
(i) VB € 2<? suchthatG ¢ V,Vf : B — w,3l e Zsuchthat G-1,, ¢ N.
(i) VB € 2<? suchthat G ¢ N, Vf : B — o finite-to-one, 31 € 7 such that
Gf—l"| ¢N

This is clear byTheorem 2.2.2ndLemma 2.3.1This characterization answers a question
of Hrusak [LO, Question 9].
Finally we have, by2.2.2andLemma 2.2.5

Theorem 2.4.10. LetZ be atall ideal. The following are equivalent:

(i) Z isD-indestructible.
(i) VB € 2<?suchthat @ ¢ Mp,Vf:B — w,3l € ZsuchthatG-1», & Mp.
(i) VB € 2<® such that G ¢ Mp, Vf : B — w one-to-onedl e 7 such that
Gf-1 & Mp.

3. The hierarchy of forcing indestructibility

After reviewing some basic notions as well as some known results about the existence
of indestructible MAD families $ections 3.43.3), we prove a number of theorems saying
there are MAD families (or, at least, tall ideals) which Brendestructible for some forcing
P while being destructible for other forcing notiorsdctions 3.43.7).

3.1. The covering and additivity number of ideals

Here we introduce covering numbers and additivity numbers related to ideals. We will
see they are deeply connected with forcing indestructibility.

Definition 3.1.1 (Covering and Additivity Numbgr We define two basic cardinal invari-
ants as follows:

1. cov(l) =min{|A| : R =Jpcg ANAC 1},
2. add(l) = min{|A] : Jpcu AT AAC T}
Itis easy to see thatdd(l) < cov(l) for any ideall .

First we will investigate covering numbers of the ideals which correspond to forcing
notions.
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Sacksforcing cov(cntble) = ¢ andadd(cntble) = w;.

Miller forcing cov(K,) = 2 andadd (K, ) = b (see L]).

Laver forcing cov(not-dominating) = add(not-dominating) = b (see R3] and [22]).
Cohen forcing This is justcov(M) andadd(M).

Random forcing Similarly, this is justcov(N') andadd(\).

Hechler forcing cov(Mp) = add(M) andadd(Mp) = w1 (see [L7)).

These numbers are important when we construct examplBsirmdestructible MAD
families. Especially, we will use the following lemma.

Lemma3.1.2. Assume we have the following characterizationPeihdestructibility of
MAD families: for any MAD family4, A is P-indestructible iff for any BS 2<¢(or w=%)
such that G ¢ Ip and any f: B — w there exists some B A such that G-1.p & Ip.
Also assumé is homogeneous in the sense that(Ip|g) = cov(lp) for all Borel sets
G ¢ Ip.

Let.A be a MAD family of size less thaov(lp). ThenA is P-indestructible.

Proof. Fix any B and any functionf : B — . Assume our hypothesis about the
characterization, and is a MAD family of size less thanov(lp). By Lemma 1.1.4we
have ou{G;-1-p : D € A} is a covering family oiGg of size less thagov(lp). Then
there must be some € A suchthalG-1.p & lp. O

Corollary 3.1.3. Assume we are in the situationloédmma3.1.2anda < cov(lp) holds.
Then there is &-indestructible MAD family.

Proof. Any MAD family of size a is P-indestructible. O

HruSak [LJ] used this lemma implicitly when he constructedSzmdestructible MAD
family. We shall use it below in the proof &.4.1and4.6.1 In the special casB = C
(Cohen forcing) andp = M, 3.1.3was proved by HruSakip, Proposition 6] and
Kurili € [16, Corollary 3] (independently). Note that, even in the situation the assumption
of Corollary 3.1.2holds, it still remains a problem whethePandestructible MAD family
of size continuum exists or not.

3.2. The existence of indestructible MAD families

First we address: is the diagrarRig. 1) really meaningful: can we construct
indestructible MAD family or tall ideal, for any forcing?

Cohen forcing One can construct indestructible MAD families by forcing or under some
cardinal invariant hypothesis.
For example,

Theorem 3.2.1. (1) (Kunen) Assume CH. Then there exists a MAD family ofisize
which isC,-indestructible for any.

(2) (Stepens) After adding?; many Cohen reals, there is a MAD family of sie
which isC-indestructible.

Proof. See 4 and 21]. O
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Note that by the product lemm@&-indestructible and’, -indestructible is the same
thing.

Lemma 3.2.2 (Hrusak, Kurili€). b = ¢ implies the existence of @-indestructible
MAD family.

For more details, sed (), Proposition 6] andl6, Theorem 6].
Stepans R1] raised a question: can we construc€eandestructible MAD family
under ZFC? Throughout this paper, we will see forcing indestructibility and the
covering number of the corresponding ideal are closely related, so his question seems
to have a negative answer.
Random forcing The following theorem is well-known.

Theorem 3.2.3. Assume CH. There is B, -indestructible MAD family of siz& for
anyx.

Proof. One can shows = 83 in the random model, by adapting the proof of
Theorem 3.2.@1). The MAD family witnessing this is in fad, -indestructible for any
«. For more details, se@&[Section 11.4]. [

Laver and Hechler These forcings add a dominating real, so there aré.nfandD-)
indestructible MAD families.

In the following subsections, we will construBtindestructible MAD families (or tall
ideals), for any forcingp.

3.3. The hierarchy of forcing indestructibility

We can easily see, for example, any aeibounded subset of reals is uncountable. So it
is clear anyM-indestructible MAD family is als&-indestructible.

Using the characterizations dbection 2 we can build a hierarchy of forcing
indestructibility, sed=ig. 1

Looking at that diagram, we may ask: do the converses of these implications hold? In
other words, for example, do@4-destructibility implyS-destructibility? Or, is there an
S-indestructibleM-destructible MAD family?

It is knownC-indestructibility doesn’t implyB-indestructibility.

Definition 3.3.1. 1. Two partial functiond, g € w® are eventually differentifff Ng| <
No.

2. Afamily A is a maximal family of eventually different partial functions Mfis a family
of eventually different partial functions which is maximal.

Theorem 3.3.2. Assume CH. There is a maximal family of eventually different partial
functions of siz&4 which isC-indestructible.

Proof. One can construct such a family by adapting the proofteéorem 3.2.(11). For
more details, see4, Theorem 4.2] or11, Proposition IV.1]. O

Note that we can think of any maximal family of eventually different partial functions
A as a MAD family onw x w.
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It is clear the maximality of such a maximal family of eventually different partial
functions is destroyed by random forcing because the latter adds eventually different reals.
Note that this result also shows neitidrindestructibility norS-indestructibility imply
B-indestructibility.

On the other hand, Hru§dk and Garcia Ferreifia Proposition 1V.2] proved that under
CH, given anyw®-bounding proper forcing of sizec = R4, there is a@P-indestructible,
C-destructible MAD family. In particular, there isxindestructible{C-destructible MAD
family. This also follows from ouTheorem 3.6.below.

Clearly any MAD family is destroyed by adding a dominating real. So this
shows C-indestructibility, B-indestructibility andM-indestructibility imply neitherlL-
indestructibility norD-indestructibility.

We will show analogous results for other forcings, and we will see this diagram forms
really a hierarchy. Wherever possible, we will construct MAD families of the required
kind. Note, however, that such constructions usually need hypotheses hély@n(like
3.4.],3.5.4and3.6.]), while tall ideals of the same kind can always be construct&d-@
(see3.7.3and3.7.4 this is also true for the results Bections 3.43.6).

3.4. Construction of a-indestructible MAD family

We can construct ars-indestructible MAD family by using the characterization
in the previous sectionTheorem 2.4.5 Originally, the existence of such a family
underZFC was claimed by Hrusakip]; however, his construction was based on his
false characterization @-indestructibility (see the discussion affEheorem 2.4.5 we
still do not know whether this argument can indeed be carried out solelgFH@
(Conjecture 4.483 During the Set theory and Analysis Prograat the Fields Institute
(Toronto) in fall 2002, HruSak and the first author of the present paper obtained the
existence of aB-indestructible MAD family undecov(M) = ¢. We provide the argument
below (Theorem 3.4.land thank HruSéak for allowing us to include it here.

Note that byLemma 3.2.2(and Theorem 2.4} the existence of aS-indestructible
MAD family also follows fromb = ¢, an assumption which is well-known to be
independent frontov(M) = ¢ [1]. We shall exploit this below irBection 4where we
will carry out related constructions which also can be done either wm&mn1) = ¢ or
underb = ¢ (Theorems 4.4.4nd4.6.1). Finally, we remark thad.4.1is well-known under
CH and follows from Spinas’ resulB[ Section 11.5] that = R4 in the iterated Sacks
model (see the comments after the statemeiihaebrem 4.6.1

Theorem 3.4.1. Assumeov(M) = c. There is arS-indestructible MAD family.

Proof. If a < ¢, we already know any MAD family of size is S-indestructible (see
Corollary 3.1.3see also10]).

Assumea = c. First enumerate all one-to-one functions’2— w as{f, : 2<% — w
one-to-oney < c}. We are going to construct &indestructible MAD familyA = { A, :
a < ¢} by induction inc steps as follows: for any < «,

e A, is almost disjoint from anyAg such thaig < «,
o if Gf_l,,Aﬁis countable for alB < «, Gf_l,,Aa is uncountable.
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This is sufficient byTheorem 2.4.5
step o < ¢ We consider two cases.

3B < a)G Ty isuncountable In this case fix any sef as A, such thatA is almost
disjoint from anyAg wheref < «. Sincex < a = ¢, {Ag : B < «} is not MAD, so
there exists such a sét We need the hypothesis= ¢ only in this case.

Otherwise Inthiscasewe haw/ < a) G A is countable. Sinceov(cntble) = «,

we have| Uﬂ<a G oL Aﬁ| < ¢, SO we can fix a perfect trée such that

(VB < oz)Gfa_l,,Aﬂ N[T] =4.

Note that even if the intersection with th@;-closure is empty, it is possible that

fL Ag N [T]is infinite for someg. This happens for example when the intersection
forms an anti-chain inT. However, we can prove the following lemma by the
assumption:

Lemma 3.4.2. Assume&ov(M) = c¢. For anya < ¢, assumgAg : B < a} is a AD
family such thatvg < o) G tlag € cntble. Then we can find A o such that

e Ais almost disjoint from Aforanys < «,

. Gfil,, A & cntble.

It is enough to letA, = A and the proof of this theorem is completd.]

Proof of Lemma 3.4.2. We will find B € T such thaf f,” B N Ag| < » holds.

Note that{ f ;%" AgNT : B < «} forms an off-branch family (selefinition 3.5.1(2))
of T. Therefore for any8 < « the set of node¥ \ fa‘l" Ag contains a subset which is
open dense il : if there is no open dense subset, then we can fix a bran€thadfich has
an infinite intersection wittf 1" Az. Let D4 be such an open dense set.

Next we consider an elementary submodeYofLet M be a model oZFC such that
{Ag: B <a} S Mand|M| = |x| < cinV. Then

Claim 3.4.3. Thereis a Cohenreale RNV overM.

Proof of Claim 3.4.3. V | “IM| = |¢| < ¢” means, inV there are at mogtx| many
meager sets whose Borel codes ardlinSinceV = “a < cov(M) = ¢” there is a real
¢ € RNV which isn'tincluded in any such meager set; it is Cohen &er O

It is well-known that once we have a Cohen real, then we have a perfect set of Cohen
reals: if we define a forcing notiah by

e Se Piff SC T is a finite subtree of such that all of its top nodes have the same
length:(3n) if t € Sis a maximal node thejt| = n,

e § < §iff 2 F and is an end-extension @, i.e. N 2= = § wherem is
the height ofS;.

Let G be aP-generic filter, and let us work iM[G]. ClearlyP is a countable forcing
notion, so it is essentially the same as Cohen forcing. So we may assumé/ and
M[G] C V.
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Claim 3.4.4. 1. S® = J{Se P: Se G} is a perfect subtree of T,
2. Foranyr € R, ifr e M[G] N [S®] thenr is a Cohen real (in the relative topology of
[T]) overM.

Proof of Claim 3.4.4. 1. By easy density argument: for a®y P and for allt € Sthere
is S < Ssuch thatS has a splitting node above

2. This s clear from the genericity: in fact for arfye [SC] we can construct &@-generic
filter Gs suchthalGs ={peC: pc f}. O

Claim 3.4.5. S° N f, 1" Az is finite for all B < «.

Proof. We prove this claim by a density argument. Fix &g P, and letm be the height
of S. Fix anyB < «a. We construc& < Ssuch that for any maximal nodee &, for any
o 21,0 ¢ f71" Ag. Then clearly we hav& I “|S® N ;1" Az < »”, so we are done.
Recall Dg is open dense iff. For any top-node of S, there is ar, € Dg such that
o C 1,. Clearly there is no node which is a memberfgfl” Ag abover, becauseDy is
open.
Therefore it is enough to let

S = | (T, : o isatop-node o} N 2="
wheren = max{|z,| : o is atop-node of5}. [

Let A, = f,”SC, and we are done.O
3.5. Construction of aiMi-indestructible MOB family

Definition 3.5.1. (1) B C [w=*]* isa branchiff3f € v*)B={o : 0 C f}.

(2) A C [w=?]? is an off-branch family iff for anyA € A and for any branclB,
|AN B| < ®g and.A is almost disjoint,

3) A C [w=*]? is a maximal off-branch family (MOB) iff4 is off-branch and maximal
with respect to inclusion,

(4) A C [w=?]® is a maximal antichain family iff4 is a maximal almost disjoint family
of antichains ofo=®.

(5) o = min{|A] : AisaMOB},

(6) o = min{|A] : A is a maximal antichain family.

These notions are due to Leathrubd], Clearly any maximal antichain family is MOB; so
o < 0. Furthermore: < o is well-known [1§].

Itis known that bottC andB destroy any MOB family (for more details, s€k8[5]). So
to show neitheC norB-destructibility impliesM-destructibility, it is enough to construct
anMe-indestructible MOB family. In fact, the existence obM&indestructible MOB family
is well-known under CH. Namely, Shelah and Spinas (unpublished) proved thai1
in the Miller model (the model obtained by iteratitMj w, times with countable support
over a model for CH). This was used to show the consistendy-ofo, a result obtained
independently around the same time by the first-named author of the present paper viaa ccc
forcing argument which turned out to be much simpler than investigating the combinatorics
of the Miller model (see 4] for details). The result of Shelah and Spinas necessarily



292 J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312

involved constructing under CH a maximal antichain family which is iterated Miller-
indestructible (more explicitly, which i¥1,-indestructible for all countable ordinadg
whereM,, denotes the-stage countable support iterationdf seeSection 4in particular
4.5, for the analogous discussion in case of Sacks foréhgNow, in general M-
indestructibility is stronger than mebd-indestructibility (seet.4 for the corresponding
result on Sacks forcing). In any case, under CH;heorem 3.5.below is due to Shelah
and Spinas.

In view of recent work of ZapletalZ3], there is another way to look at the Shelah—
Spinas result. Namely2B] says that the Miller model is a “minimal model” for making
large in the sense that for every cardinal invarjarfthe continuum which has a reasonably
easy definition, ifi < 0 is consistent, thef = wj in the Miller model. Sinces falls
into Zapletal's framework, we may argue as follovay: [5], 0 < 0 is consistent; ergo,
by Zapletal's worko = w1 in the Miller model; ergo, there exists avi-indestructible
maximal antichain family under CH.

For the remainder of this subsection, we will consider only maximal antichain families.
As in Section 2 we get the following characterization (see, in particuldweorem 2.4.%

Lemma 3.5.2. The following are equivalent: for any maximal antichain famiy

(1) Ais M-indestructible.

(2) A isP-indestructible for some forcing which adds an unbounded real.

(3) VA C w=? such that G ¢ K,,Vf : A — »=® such that f A is an antichain,
3B € A such that the G-1.5 & K.

(4) VA C w=? such that G ¢ Ky, Vf : A — »=“ one-to-one such that"fA is an
antichain,3B € A such thatthe G-1.5 & K.

(B) VI : = — »=“ one-to-one such that ran¢€) is an antichainaB e 4 such that
Gf—l"B Q/ ’Ca’.

Proof. First we will show (2) implies (3). Assume there is &AnC »=® such thatG ¢
Ks,9: A— o= suchthag”Ais an antichain an@vB € A)Gg-1-g is o-bounded. Say
fs € »” is an eventually dominating real f@g-1.g. In the generic extension, l&tbe a
new unbounded real iGa (so it is unbounded by alfg), then we havex ¢ Gg-1-g for
anyB € A. As in the proof ofTheorem 2.2.2define

D={0cw®:@3no =gXn}

Clearly this is an infinite antichain and almost disjoint from &y A.
(1) implies (2), (3) implies (4), and (4) implies (5): they are trivial.
The proof (4) implies (1) is also similar, except that we use the following lemma.

Lemma 3.5.3 (Main Lemma fofM-Indestructible Maximal Antichain Famijly Assume
T € M, C is anM-name such that T- “C € »=® is an antichain”.

Then we can find a tree'T< T, a set AC »<?, and a one-to-one function
g: A— o= such that

o [T'] =G,

e (Vo € AT, IF“g(0) € C”,
e g"Ais an antichain ino=®.
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Similarly the reason (5) implies (4) is thit, is strongly homogeneous

Proof of Lemma 3.5.3. The proof is best characterized as a “diagonal” fusion argument
on a Miller tree. AssumeT € M, C is a M-name such thaff I “C C

w=? is an antichain”. Then by a proof similar to the ond.eimma 2.2.3we may assume
without loss of generality there B C T such that

e Gg =[T], .
o VMt e B)YArt € 0Tt IF "1y € C7,
e the correspondente— t; is one-to-one.

We may assum® C split(T). Note for any branclh € [T] we have{r; : t C h}is an
antichain.

So all we have to do is findinds € B infinite and definingg such thatg” A is an
antichain ands 4 is still a Miller tree. Letg(t) = r; forallt € B. Let{s, : h € w} be an
enumeration ofo=“ such thas, C s, impliesn < m.

Construction of A: We construct a systewy,, tn € =%, By € »=“ andP, € M such
that, for anyn € w,
(i) Po=T, Bp = B, op = stem(T),
(i) Bn C split(Py) andGp, = [Pnl,
(i) g(on) = n,
(iv) {oj :i <n} € ByandBny1 C By,
(V) Pni1 <n Pn (where<, denotes the fusion order &vi and means that the firat
splitting nodeqo; : i < n} of P, also belong tdPy11),
(Vi) oi Noj = oniff § N'Sj = s, (this means that the common initial segmentpf
andoj is op iff the common initial segment & ands; is sp),
(vii) Vs e Bn\ {on}:09(s)Ln.
If this is possible, it suffices to put
e A= {on:n € w},
o T =\peo Pn-
By clause (v),T’ € M; by (ii) and (iv), Ga € [T’]. In fact, by clause (vi)Ga still
contains a rational perfect tree so that we may assGne= [T’] without loss of
generality. By (iii), (iv) and (vii),g” Ais indeed an antichain. Hence it suffices to check
we can carry out the recursive construction.
step0: Pp = T, Bp = B, 09 = stem{T) andzg = g(op). Then all clauses are satisfied.
Note, in particular, that (vii) holds becausg C s for all s € Bo.
stepnfor n > 0: Let 8, € split(Br_1) such that for alli, j < n, 6 Noj = o iff
S$NSj =5.
For notation, letBy_1|t = {S € Bh—1 : s D t} for anyt € Bp_1. For simplicity we
will write g instead ofg(s) (andz; for g(oj)).
We shall use the following well-known partition result for rational perfect trees: if
Se M,C C split(S), G¢c = [S] andh : C — 2, then there ar§ < SandC’ € C
such thath|c/ is constant andten(S) = stem(S), C’ C split(S) andG¢r = [S].
Recursively construdo! : j < n)suchthat, 26%2>-.-26l 106l D... D
"1 > o, as follows.
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theinitial step Leto ™ = dn = g(on).
step j <n If there arec 2 o)1, 0 € By_1, and a subtre&! < (Py_1),; and
Cl € By_1 such thatsten151) = aJ,CJ c split(s)), Gej = [SI]andz, C 7
foralls € C!, then we le! be such a.
Otherwise we let! = o1 -1,
step n Choosery such thab "1 ¢ o, andoy, € Bp_1.
Letty = 14,.
For eachj < n for which the first alternative holds, also f8{ andC! as above.
Foranyj < nforwhich the second alternative is true defirie: Bn-1N(Pn-1)o; —
2 by

0 if 'CnJ_'CS

1 if 'Cn”fs

hi(s) =

for anys € Bn-1 N (Pn-1),i. By the partition result mentioned above, we may find
S < (P Dyl stemS!) = ¢/, andC/ < Bp_ 1 such thath! |ci is constant on
cl c split(s') and Gei = [S']. Now note ththJ|CJ = 1 is impossible because
if it was true thenon, would witness the first alternative in the above construction, a
contradiction. Thereforéy) |; = 0, andry Lzs foralls € CJ.
Similarly, for eachj < n for which the first alternative holdsy Lz, because
Tn = To, ando C on. Thereforer, Lts foralls e Cl.
This means, however, we can put
e Bh={o:i <n} UUj<nCJ U Bn—1lopn,
o Ph= Uj<n S' U Pn_iloy-
ThenP, <n_1 Pa_1,[Pn] = Gg,, theoj, j < n, are splitting nodes dP,, and we also
have thats = g(s)_Lt, for all s € B, \ {on} so that (ii) to (vii) are indeed satisfied.
This completes the proof.(]

Using the previous characterization, we can construtleindestructible MOB family
under certain hypotheses. Redak= add(K,).

Theorem 3.5.4. Assumeb = c¢. Then there is arM-indestructible maximal antichain
family of sizex.

Proof. Let us enumerate all one-to-one functidigs : <% — »=®;a < ¢} such that
rangeggy) is an antichain for ang. By c-step induction, we are going to construct a
maximal antichain famil{A, : « < ¢} such that if(V8 < «) G is o-bounded

—1»
Qo Aﬂ
thenG Ay contains a rational perfect set.

step o < ¢ We have two cases.
cael: (A8 < a) Gggl,,Aﬂ ¢ Ko. Recall thatZFC impliesb < a <0 <c¢. So{Ag : 8 <

a} is not maximal. Therefore we can find an infinite antichAinC » <% such that

[Ag N Ag| < Ro.
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case 2: otherwise i.e. (VB < @) Gggl,,Aﬂ e Ko.
We haveU/ka Gg_l,,A/S € K, becauser < b = add(K,). So there i € w® such

o

thatx <* hforallx € g, Gggl.,Aﬂ. By Lemma 3.5.2ve need to construct a rational
perfecttreel C = andA C T such that

e GAo=[T],

e (g; ¥ Ag) N Alis finite for all 8 < a.

First recursively buildos : s € ®<%) C w=® such that

e sC timpliesos C ot,

e n < mimpliesog ) (los|) < ogm)(los)),

e forallsandallg < a, {n: gu(ogn)) € Ag} is finite,

o foralli < |og|, os(i) > h(i).

Note that the first two conditions imply that the will generate a rational perfect tree.

Assumeos has been constructed. LEK, : n € w} € w® such thatos C
Xn, Xn(i) > h() for all i, and Xn(Jos|]) < Xm(los|) whenevem < m. X5 > h
implies in particular thaX,, ¢ Uﬁ<a Gggl,,Aﬁ.

Therefore, for each and eaclp < «, the sefm : g, (Xnlm) € Ag} is finite. Hence,
for eachn and for each < «, we can findkg(n) € o such thatgy (Xnlm) & Ag
for anym > Kg(n). Sincea < b, there isk € »® such that for allf < «, the set
{n: gu(Xnlkn)) € Ag} is finite. Therefore, lettingg 1y = Xnlkn), all requirements
are satisfied. This completes the recursive construction.

Forg < «, define a functiots : 0= — w such that for alm > 15(s), gu (0 (m)) &
Ag. Sincea < b, there isl € w® such thatg <* | for all B < «. This means that for
all B <, theseffs: s(i) > I(s|i) foralli < [s| andgy(os) € Ag} is finite. So we let
o A={os:s(i) > 1(s|j) foralli < |s|},

o T ={os|j :05 € Aandj < |osl}.
Clearly[T] = Ga andg; " As N Ais finite for all 8 < a.
Now let A, = g," A. Then|A, N Agl < Roforall 8 <« andg;l"Aa = A so that

Gg_l,,Aa contains a rational perfect tree. This completes the proof of the theoriém.

3.6. Construction of @-indestructible M-destructible MAD family

Theorem 3.6.1. Assumeadd(N') = ¢. Then there is @-indestructibleM-destructible
MAD family of size.

Proof. Let us enumerate finite-to-one functiofts: B — w; B € 2<? andGg ¢ N}
as{gy : o < c}. Fix any bijectionf : ®=“ — w. By ¢-step induction, we are going to
construct a MAD family{ A, : « < ¢} such that

o if (VB < oz)Gggl.,Aﬂ € ./\/’thenGgglnAa gN.
[ ) folnAa S ’ng

for anya < c. Notice that this is sufficient, byheorems 2.4.6nd2.4.9

step @ < ¢ We consider two cases.
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cael: (38 < oz)Gga_l,,A/S ¢ N. In this case it suffices to fiA € w such thaiG; 1.5 €

K, andA is almost disjoint from anyAg. add(N) = ¢ impliesa = ¢, so we can easily
get an infinite seAA with |[A N Ag| < Rg andG¢-1-p € K;. Let A, = Aas above.
case 2: otherwise By o < ¢ = add(\), we haveU/ka Gg_l,,A/S e N. Recall the

o

fact for any X € 2® measurables > 0, we can get a closed subsgtC X such
that u(X \ C) < e. Therefore we may fix a tre€ € 2<¢ such tha{T] ¢ N and
[T1<S Gg, \ (Uﬂ<a Gg_l,,Aﬁ) whereB, = don(g,). We use

o

Lemma 3.6.2 (Main Lemma foiB-IndestructibleM-Destructible MAD Family. For

any AC 2<% such that G, ¢ N and for any g: A — o= finite-to-one, there exists a
B € A such that

o u(Gg) >0,
o Ggg € Ko.

It is enough to applftemma3.6.20 A = T N B, andg = f~1 o g,, then we get
A, = g," B as required. This completes the proof of the theorem.

Proof of Lemma 3.6.2. Foro € w=® define
Xe ={f €2?:3°M[flne Aro Cg(fn]}
= Utf€2: flne Aro cg(fln)} S Ga

mew n>m
S0 X, is aG; set. Foro € w=“ andi € w, we take the difference
Yo,i = Xs \ X(f(i)
={fe2?:@n)[flne Aro S g(fln)]
A{n: flne AAg(fln) 2 oY)} isfinite}.

SinceY,,i is an intersection of dI) and a Xy set, it is aA3 set. Foro € o=, let
Yo = Nice Yo.i- SOYo is I set. NoteX, = X, UYs,i foralli € w. Therefore

Xo = X1y VYo

iew

casel: u(Y,) > Ofor someo € w=®. There is a closed set contained¥Yp which still

has positive measure. So [BtC 2<® be a tree such thaT] C Y, and[T] ¢ V.

First note[T] = Gant, SOGanT € N. Similarly [T] = Gy for A ={t e ANT :
g(t) 2 o}; to show[T] € Gu, note that anyf € [T] C Y, satisfies(@*n)[f|, € A
andg(f|n) 2 o], s0(3*°n) f|, € A'. The converse is clear.

To getB < A’ such thatGg'g € K, let us consideft € ANT : g(t) 2 o¥i)}.
Since[T] C Y,, we know thatV f € [T])(Vi € w) there are finitely manyp € » such
that f|, € Aandg(f|n) 2 o).

Construction of B: So we are going to construct recursively finite $§tsc ANT C 2<¢
and number§ such that

o ifi < j,thenmaxit|:t e Bj} <lj <min{|t| : t € Bj},




J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312 297

e if t € B, theno(j) C g(t) for somej withlj_1 < j <ljfori > 0,0< j < Igfor
i =0,
o n({f elTl: (¥j =@M TFIne B = pnlTh - (1— Zj<izts).
stepi < w: Assume we already hav@;j for j < i. SinceVf e [TIVj < lj_1 there are
only finitely manyn € w such thatg(f|n) 2 o{j) andVf € [T] there are infinitely
manyn with g(f|) 2 o,

[T] = U {(fe[T]:@n Pllici<n<lAa

lew,|>l;_1
lica<j<lAg(fln) 201}

and the union on the right-hand side is increasing.
Therefore we can finf such that

pdfelTl:@n Plli-t =n<lialics < j <liag(fln) 2071

1
> u(TDh - <1— ﬁ) .

PutB = {t : li—1 < |t| <li A@Dllic1 < j <li Agt) 2 dY(j)1}. ClearlyB; is as
required.
step w: LetB =i, Bi.
We will checkGp satisfies the requirements.
By the aboveGg C [T]. Similarly by constructiont(Gg) > u (”%) > 0.
We claim thatGg-g is empty. To see this note that
e 0 Cg(t)forallt € B,
e forall j € w there are finitely many € B with o'(j) € g(t) (hamelyt € B; with
li—1 < j <l inthis case).
So if x € w® then there are only finitely manysuch thatx|, = g(t) for somet € B.
Therefore we are done.
case 2. (Yy) =0for all 0 € =“. This meansu(Xo) = uUic, Xoviy) for all o e
w=?,
Construction of B: We can recursively construct set§, Z; < 2¢, finite setsB; <
2=“, Dj, Ej € »=* and numberk; such that
e Uj={feGa:( <)H@nfl,e B},
o n(UjNZj=uGa) - (- s 52),
o Zj =seg; Xo andforallo € Ej, X, has positive measure,
Ej C ol
(VT € Dj)‘L'||J-71 € Ej_1,
VTt e EJ)T||J‘71 € Ej_1,
glg; : Bj — Dj onto,
if o € Dj thenlj_1 < |o| <|j,
e if t € Bj thenlj_1 < |t] <j.
step j < w: Assume we already hav4, Z, B, Dy, E, | forl < j.
First chooseB; such thatt| > |j_; forallt € Bj, suchthapu({f e Uj_1NZj_1:
(@n) f|n e Bj}) is close enough teu(Uj_1 N Zj_3), and such that for all € By,
g(t) D o holds for somer € Ej_;.
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LetDj = {g(t) : t € Bj}. Choosd| suchthat; > |t|, |g(t)| for anyt € B;.
Finally we can findEj by assumption of case 2: chodsg so thatZj = |
andu(Zj NUj) is close enough tp(Zj_1 N Uj).
step w: LetB = J, Bj, and we will checlGg satisfies the requirements.
Clearly {f € Ga : (V))@n)f|n € Bj} € Gg and the first set has measure
> LB - 0 by construction. SGg ¢ N.
LetD = j¢, Dj- Theng’B = D, so we havé&g g = Gp.
It suffices to showGp C [T] where[T] = {X € w?® : (Vj)x||j e Ej} (note
T is a compact tree). To show this, assumes Gp. Then (3*n)x|, € D, so
3*j)@Enx|y € Dj, therefore(EI"oj)x||j71 € Ej_1. So we havaV)x|; € Ej; this
meanx € [T]. O

Xo

o€Ej

3.7. Destructibility and indestructibility of ideals

In Section 2 we characterized the ideals which &éndestructible for a given forcing
notionP. Conversely, we may fix some (definable) tall ideal and ask which forcing notions
destroy it. Natural candidates for such ideals are those derived from the forcing notions
we are studying. Recall (segection 2.4 thatZp = {I <€ 2<?(orw=<®) : G| € Ip}
wherelP = B\ Ip is a real forcing. So, e.d¢c = {I € 2=® : G, is meage}, etc. By
Theorem 2.4.8(vi)—(v)), Zs = {I € 2=“ : G| € cntble} is destroyed by any forcing
notionP which adds a new real, thatis, the ideal generate@‘o‘m VP is nottall. Similarly,
we get, as pointed out by the referee:

Proposition 3.7.1. The following are equivalent for a forcing notidh

(i) P adds an unbounded real,
(i) Pdestroysiy = {l Cw~?: G| € K5}

Proof. First we show (i) implies (ii). This is the same as (vi) implies (v)imeorem 2.4.6

The proof of the converse is as follows. Assuthés »®-bounding. We need to show
1y, still generates a tall ideal M”. So letA € [0=©]®. We need to find € Zy; such that
[N Al = Ro.

casel: AssumeA contains a branch. That is, therexse »® such thatx|, € A for
infinitely manyn. SinceP is »®-bounding, there i§ € K,V such thax € G. In fact,
there isl € II\\’41 such tha|, € | forall n. Thus|AN || = R as required.

case2: Assume A has no branch. Then, by a compactness argument, there must be
o € o= such that for infinitely many € o there ist, such that"(ny'z, € A. Since
P is w®-bounding, there ig : @ — [w=®]=? in V such that for alh, if there ist such
thato™(ny't € A, then there is suchwith T € g(n). Letl = {o"(nf't : T € g(N)} € V.
ClearlyG, =% € K,V. Thusl € II\\’ﬂ. SincelAN || = Rg we are done. [J

Proposition 3.7.2. The following are equivalent for a forcing notidh

(i) P adds a Cohen real,
(i) Pdestroysic = {l C w~?: G| € M},
(i) P destroysZpng = {l Cw=?: G| € nwd}.
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Proof. First we prove (i) implies (ii). This is the same as (i) implies (v)lineorem 2.4.8
(ii) implies (iii) is trivial.
For (iii) implies (i) we argue as follows. LeA € [2<”]® be such thatAN || < Rq for
alll € wad- By compactness of2 A has a branclx, i.e. x|y € A for infinitely many
n € . We claim thatx is Cohen oveV. For assume this were not the case. Then, for
some closed nowhere dense tiee 2<¢ belonging toV, x € [T]. Clearly[T] = Gt so

T eI/, Sincex|n € T foralln, we get| AN T| = Ro, a contradiction. O

We believe an analogous result holds for random for@inigut we were unable to prove it.

Theorem 3.7.3. There is arlL-indestructible andC-destructible tall ideal. Namel¢c =
{l Cw~?:G) e M}yandZppg = {l C 0=?: G| € hwd} are such ideals.

Proof. This is immediate fronfProposition 3.7.2 [

Theorem 3.7.4. There is aD-indestructible and-destructible tall ideal. Namelyy =
{I €2=¢:G) € N}issuchanideal.

Proof. By Theorem 2.4.97 = Iy is B-destructible. Thus it is enough to show that
7 is D-indestructible. ByTheorem 2.4.10it suffices to prove that for all one-to-one
partial functionsf : o!<® — 2<¢ with Gdon(f) &€ Mp, there isl € T such that
Gi-1r, ¢ Mp. We shall even establish therelisc 2= such thatj/l N 2" < 1 for
all nwith G¢-1, € Mp. Clearlyl € Z for suchl .

So fix f as required. Sinc&gomry ¢ Mp, there exists(sp, hg) € D such that
U(so.hg) \ Gdontf) € Mop (i.€. Ggon ) is D-comeager it g, hy))-

Let To € »'<“ be the collection of alb € < compatible with(sp, ho); i.e.s € Ty
iff sp Csands(i) > hg(i) foralli € |s|. Fors € Tp define the rank functiork(s) by

rkg(s) = 0iff (3m > |s))(3(th : N € w) C To)|tn|
=mASCty Ata(IS]) = nAty, € domf)
rkg(s) < Biff Am > |s@(th : N € ) S M)ty
=MASCth Ath(IS]) > nArk(ty) < B.
As is usual for rank arguments () is either< w1, or undefined (in which case we write
rk(s) = o0).
Claim 3.7.5. For any se Tg, rk(s) < oo.

Proof of Claim 3.7.5. Assumerk(s) is undefined for soms € Tp. We recursively define
h € w® suchthas C h, h(i) > hg(i) foralli € w, and

whenevet € Tp, s C t, is compatible with(s, h),
thenrk(t) = oo andt ¢ dont f). (%)
Sincerk(s) = oo, we findh(|s|) > ho(|s|) such that wheneverC t, |t| = |s|+ 1, t(|s]) >
h(|s|), thenrk(t) = co andt ¢ don f).
Assumem > |s| andh|m has been defined such tha) folds for allt € Tp of length

< m. We need to definke(m) such that£) still holds for allt € Tp of length< m + 1.
Assume this is impossible. Then there is a sequéhce n € w) C Tp such that



300 J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312

[th = m+ 1, ta(Mm) > n, S C ty, ta(i) > h() foralli < m, and

e eitherrk(tp) < oo,
e Ort, e domf)

for all n € w. By pruning the sequendé, : n € ), we may assume there $ € Ty,
s’ 2's,|s'| < m, such that’ C t, andty(|s'|) > n for all n. Noterk(s') = oo and either
s = sors ¢ dom f) by inductive hypothesisk). By definition of rank we must have
rk(tn) = oo andt, ¢ dom( f) for almost alln, a contradiction.

Therefore the recursive construction can be carried out. Clelgly, < U s,.n) and, by
(%), G NUs hy = ¥. This contradicts the fact th&@qon 1) is D-comeager ity hyy. O

Fors € Towith rk(s) = 0, fixm® € w, {3 : n € w) C Tp with |t5] = m®,s C
t3,t3(Is|) > nandti € dom(f). Using thatf is one-to-one and pruning the sequences
(t3 : n € w) if necessary, we may assume that, if we let

| ={f(t):s€To,newrks) =0}

then for eactm there is at most onee 2™ such that € |. Sol € Z, and we need to check
thatG¢-1. € Mp. Infact, we shall argue th&s ; 1., is still D-comeager itJg hy)-
Choose(s, h) such thatis hy € Uiso hg); thatis,s € To andh(i) > ho(i) for alli. By
the claim,rk(s) < oo. By a standard induction ark(s) we argue that there i € Tp
compatible with(s, h) such thatk(s") = 0 (if rk(s) = 0, = sworks. Ifrk(s) > 0, find
s’ € Tp compatible with{s, h) such thatk(s") < rk(s) and use the inductive assumption).
Then, by definition of rank and choice of th&, we findn such that$ is compatible
with (s, h). So tﬁ' e f~1"1. Since the(s, h) was arbitrary, this argument in fact shows
G-1r) NUsh) # 9, and we are done.

4. Iterated Sacksforcing indestructibility

We generalize the results about single-step Sacks forcing indestructibility to iterated
Sacks forcing.

4.1. Product forcing and isomorphisms of names arguments

Here we summarize the known results about iterated forcing indestructibility and
product forcing indestructibility of MAD families. Using “isomorphism of names”
arguments, one can prove the following theorem:

Theorem 4.1.1 (Kunen). Letx be any uncountable cardinal such thet = «.

1. In the model obtained by addingmany Cohen reals over a model of CH, the size of
any MAD family is eithei1 or «. Furthermore there is a Cohen indestructible MAD
family of size1, and no Cohen indestructible MAD family of siz& this model.

2. In the model obtained by addirngmany random reals over a model of CH, the size of
any MAD family is eithelR; or «. Furthermore there is a random indestructible MAD
family of size1, and no random indestructible MAD family of siz this model.
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For more details, se8[L4] (see also 10, Proposition 7]). InSections 4.4and4.7 below,
we shall investigate to which extent similar results can be proved for iterated Sacks forcing.
It is easy to proveTheorem 4.1.1because these forcings can be thought of as large
products and they satisfy the factor lemm&][ Moreover finite support product and finite
support iteration of Cohen forcing is the same.
For non-c.c.c. forcings, we can't use a finite support product, because it coltépses
The “isomorphism of names” argument also works for countable support products. So we
can prove a similar result for Sacks forcing. For any X5, we have

Theorem 4.1.2 (Folklore). Letx be any uncountable cardinal such thett = «.
Any infinite MAD family is either of siz&; or of sizex in the model obtained by adding
«-many Sacks reals by countable support product over a model of CH.

Since there is no factor lemma for side-by-side Sacks forcing, we can't argue that a MAD
family of sizec is S-destructible in this model (see al€wmnjecture 4.4 4

However, the countable support product of tree forcings whose conditions are
isomorphic tow=<“, M andL, collapsest;. So we have no analogue 4f1.2in this case.

4.2. Characterization db,-indestructibility

Our goal in this and the next sections is to characterize iterated Sacks indestructibility
in the same vein as the characterizatiorSehdestructibility fromTheorem 2.4.5For
simplicity, let us first conside8, = S = S, the two step iteration of Sacks forcing. It is
well-known thatS; is forcing equivalent td3((22)?) \ cntble® whereB((2¢)2) are the
Borel sets in the plane arahtble? is the Fubini power of the ideal of countable sets (see
[1322,7] for details).

Here, for any ideal < P(2?), we define it ubini power 12 C P((2)?) by

Xel?s{(xe2?: Xy &l}el.
For X € P((2°)2), Xx = {y : (X, y) € X} denotes theertical section atx € 2¢.
Lemma4.2.1. S; has weak fusion.

Proof. LetE € Sy = B((22)?) \ cntble? and arS;-nameC for an infinite subset ab be
given. Without loss, we may assurlie= [T] whereT C (2<©)2is a tree such that

e (Vs € p(T)) if to, t1 are such thats, to), (s,t1) € T, thenp(TEW) = p(TGW) js
perfect,

e (Vx € [p(T)]) the vertical sectioy = {t : (X|;1),t) € T}is perfect,
where

e p(T) = {s: () (s,t) € T} denotes the projection af onto the first coordinate and
[p(T)] is of course the set of branches throygf),

e TEY = {(8,t) e T : (s, t) C (5,1') v (5,1') C (s, 1)} is the subtree of defined by
(s, 1), for(s,t) e T.
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Call such treed nice.
(Itis well-known that for every analytic subsatof RZ which does not belong tontble?,
we may find a nice perfect tréesuch tha{T] € A. See 2] or [7] for details.)

We construct, by recursion ane o,

o finite antichaindB, = {(S,, to.r) : 0 € 2", T € 2"} C (259)?,
e nice treedl, € Sy,

o finite antichainsd, C Sy,

e bijectionshy, : By — Ap,

e aone-to-one functiog : (., {n} x An — o,

such that

(@ ifn<mando,r € 2",0',7' €2™,0 Co’, v C 7/, thens, € s andty ; C ty o/,
) Thy1 <nTh<p—1---<0To =T,

(€) (S5, t0) € Taforo, v € 2", andTn < U, reanl(Ss to.2)],

(d) hn(ss.to,0) = [(S5, to,0)] N Ta foro, T € 27,

(e) Al-“g(n, A) e C"for A € Ap,

where <, denotes the standard fusion order $in(in its representation aB((2)2) \
cntble?). Namely,S <, T if S < T and all(2")2 nodes on tha-th splitting level of T
belong toS.

Fix n, and assum®&,, Tm, Am, hm, g have been constructed for < n. ConsidefM,_1
(with the convention that_; = T).

n =0 In this case simply leB, = Bo = {(sp, t;),()} Where(sy, t;.) is the stem ofT .
The rest of the construction is as in the general case.

n> 0 Fix o € 2", Consider{(s,.t,.;) : T € 2"1}. SinceT,_1 is nice, there is a tree
S € 2= such thatp((Th_1)& 1)) = Sforall r € 2"1. Letxo # X1 belong to[S].
Again by niceness;Th_1)y, is perfectfori € 2, and, a fortiori, aIK(Tn_l)(Sv*tv»f))Xi are
perfect. This means we may firgghj, andt,~; ;) all of the same length far, j € 2
and forr € 2" such that

® Soiiy € Xis

* S0 1),

oty 1)) € (Tn—1)® ), which meanss, iy, tyi).«1j) € Tn-1,
* to4i),10) Llotiy, o) -

Fixi e 2. SinceT,_1 is nice, there iS € 2<¢ such thatp((T,_1) & b)) = &
for all T € 2", List {=x : k € 2"} = 2". By recursion ork < 2" we construct perfect
treesS C 2<%, nice treesT? ():k  T,_1 and natural numbers such that
e 11 S S-S HCES,
o Sc=pT7hh,
o the stem ofT 7 1)K extends(s, iy, toiy.q.)
o TOK|Lu“n eC”
e theng are all distinct.
This is clearly possible. At stadgesimply consider the treél'n_l)(so”“)’tﬂ‘%fk) N(S_1 %
2<®) (whereS_; = S'in casek = 0). This is a nice tree, and we may find a nice subtree
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T )k forcing a numben to belong toC which is distinct from the previously by
chosen numbers. Finally I& = p(T° "-K). This completes thk-recursion.
Let
o hn(&y, toiya) = T7 UK,
o g(n, T WKy =y,
Finally define

T — (U{Tﬂ‘%k ke 2“}) N (Sn_1 x 259).
T2 is easily seen to be a nice tree wipliT? 1) = Spn_1.
Unfixi ando, and put

To=JT"":0e2™trie2).

Clearly Ty is still a nice tree andy, <n—1 Th—1 is immediate. Next,
o Bn = {(S7i): toiyn) 1 0 € 2" L0 € 2,k € 2"} is an antichain,
e An = hn[By] is an antichain,

e hy is a bijection,

and properties (a) through (e) are obvious by construction.

Finally, if we carry out the above construction by going recursively through all pairs
(0,i) € 271 x 2 (instead of dealing with them simultaneously), we may also assume
thatg(n, -) is one-to-one, and that the rangegih, -) is disjoint from the range of
g(m, -) for m < n. This showsgy will be one-to-one, and completes thaecursion.

We are left with showing that (a) through (e) above imply tSathas weak fusion.
However, if we let

Tw=[Th

nNew

then[Ty] = Gg is clear by (¢), andTo] & cntble? by (b). So 1 inDefinition 2.2.1holds.
(2") (and hence 2) is immediate by (d), and 3 is property (e). This completes the proof of
the lemma. O

Theorem 4.2.2. LetZ be a tall ideal. The following are equivalent:

(i) Z isSy-indestructible.
(i) VB < (2<®)2 such that G ¢ cntble?, Vf : B — w, 31 € T such that
G- ¢ cntble?.
(i) VB € (2<©)2 such that G ¢ cntble?, Vf : B — w one-to-onedl € Z such that
G- ¢ cntble?.
(iv) VT :(2<®)2 = w one-to-onell € Z such that G-1., ¢ cntble?.

Proof. The equivalence of (i) to (iii) is immediate froemma 4.2.JandTheorem 2.2.2
Concerning (iv), note thatntble? is strongly homogeneous, and sé.2 [
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4.3. Characterization d§,-indestructibility

Theorem 4.2.Zan be generalized to an analogous resulSfofor countable ordinals
a, whereS,, is thea-stage iteration of Sacks forcing. This is done as follows.

For any ideall € P(2*), define thex-th Fubini power 1* C P((2*)*) to consist of
setsX C (2¢)¢ such that there is a familjyAy € | : x € (2)<%} such that for ally € X
there is 8 < o such thay(B) € Ay,. This notion is due to Zapleta2P]. His definition is
in terms of infinite games and is easily seen to be equivalent to ours. For another equivalent
definition, seeT].

It is obvious that 1 = | and that the present definition bf is equivalent to the one in
the last section. It is well-known th&}, is forcing equivalent td3 ((22)%) \ cntble® where
B((2*)*) are the Borel subsets 2*)* (see R2] and [7] for detalils).

For countable, let Fn(a, 2=¢) = {¢ : domg) C « finite A ran(y) < 2" for somenj.
Note thatFn(«, 2<®) plays the same role for countables do Z* or (2<?)" in the finite
case. For anA C Fn(x, 2=°), put

dom(g) 2 F,ran(p) < 2™,

Ga=1{xe 2% (VF <@y (vn)(Am > n)(3 A
AZ @R ellOMEN=ME €A L domenxB)lm = ¢(8)

the Gs-closure of A (note it is obviouss 5 is aGs-subset 0f2*)%).
We omit the details of the following natural generalizatiombtorem 4.2.2

Theorem 4.3.1. LetZ be atall ideal. The following are equivalent:

(i) Z isSg-indestructible.
(i) VB € Fn(a,2<¢) such that G ¢ cntble*, Vf : B — w, 31 € Z such that
Gf—l"| ¢ cntble®.
(i) VB € Fn(a, 2<“) such that G ¢ cntble*,Vf : B — w one-to-onedl € Z such
that Gf—1"| Q/ cntble*.
(iv) Vf : Fn(a, 2<”) —> w one-to-oneill € 7 suchthat G -1+, ¢ cntble®.

4.4. Construction of a-indestructible S>-destructible MAD family
In this subsection we prove the following strengthening@loéorem 3.4.1
Theorem 4.4.1. Assume eithetov(M) = c or b = ¢. There is a MAD family4 such that

1. Ais S-indestructible,
2. Ais Sp-destructible.

Proof. Let{f, : 2<® — (2<©)2; o < ¢} be an enumeration of one-to-one functions.

We are going to construct a MAD familgt = {A, : @ < ¢} € P((2<®)?) by recursion
in ¢ steps such that

(@) if (VB8 < O[)Gfa—lu Ay € cntble thenta_l., A ¢ cntble,
(b) Ga, € cntble?.
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By (a) andTheorem 2.4.5A is S-indestructible, and by (b) antheorem 4.2.24 is S»-
destructible.
In fact, instead of (b), we shall guarantee the following stronger condition:

(b’) (b'1) either(@x € 2°)Ga, < {X} x 2¢,
(b'2) or (¥x € 2*)[(Gpa x| = 1.

Itis obvious(b”) implies (b).
We consider two cases in stage

casel: (38 < O[)Gf[x—lnAﬁ isuncountable Then (a) is trivially satisfied, and we need to
find A, almost disjoint from anyAg, 8 < «, such that (b’) holds. Sincer| < ¢ there
isx € 2¢ such that for alp < «, if Ga, C {y} x 2¢ for somey (i.e. (b’1) holds), then
x # y. Nextfindy € 2* such that for alp < «, if (b’2) holds for 8, theny & (Ga,)x-
So(x,y) & Ga, forall B < a. Let Ay = {(X|n, YIn) : N € w}. ThenGp, = {(X, ¥)}
and|A, N Ag| < Rpforall 8 < a.

case 2: otherwise i.e. (V8 < a)Gf(;l,,Aﬂ € cntble.

We proceed in two steps. First we show

Lemma4.4.2. Let f : 2<® — (2<©)2 be any one-to-one function. There exists a set
A € [(2<?)2]® such that

1. G- p & Cnitble,

2.

(b"1) either(3x € 2°)Ga C {Xx} x 22,

(b"2) or (¥x € 2°)|(Ga)x| < L.

Let us first argue how the proof of case 2 is completed usergma 4.4.2Apply 4.4.2
with f = f, to getA. Clearly A satisfies (a) an(b’), but it need not be almost disjoint
from the Ag, B < «.

If cov(M) = ¢, applyLemma 3.4.2vith f, replaced by1‘0¢|fa_1,,A (it is easy to see
3.4.2also applies in this more general case), andAgett A almost disjoint fromAg,

B < a,suchthalG;-1-5, & cntble. SinceA, is a subset oA, (b’) still holds, and we
are done.

If b = ¢, either argue directly that the analogue3o4.2holds or use the argument
of HruSak [L0] or Kurili€ [16] in the proof thatt = ¢ implies the existence of &-
indestructible MAD family. (In fact, unde = ¢, the strengthening d.4.2obtained
by replacingcntble by M holds. See10] or [16] for details.) Then proceed as in the
casecov(M) =c.

This completes the proof of the theorenti]

Proof of Lemma 4.4.2. Let f : 2<©® — (2<®)2 one-to-one be given. Writé = (fp, f1)
where f; denotes thé-th coordinate off (So f(t) = (fo(t), f1(t)) forallt € 2<“ and
fi(t) e 2=» forallt € 2<* andi € 2).

casel: (AX € 2?) (A € 2<®)(Vn)(Vs 2 ) (3t 2 s) fo(t) 2 X|n. Fix suchx andsy. Itis
straightforward to constru@ < 2<® such thaty C t forallt € B and
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1. Gg is perfect,

2. (Vn)(V®t € B) fo(t) 2 X|n.

LetA= f"B.SoB = f~1”A. By 2, itis immediate thaG a C {x} x 2°. So we are in

case (b"1).

case 2: otherwise; (Vx € 29)(Vsp € 2<?)(An)(Is 2 ) (Vt D s) fp(t) 2 X|n. Inthis case

we recursively construds, : o € 2<“} and{t, : 0 € 2<?} such that

() o C vimpliess, Ct; C s,

(i) oLt impliess, Ls;,

(ii) forall n,if o # t € 2", then fo(sy)L fo(s;) and (¥t 2 t,) fo(t) L fo(s;),

(iv) lo| < |z implies| fo(ss)| < | fo(s)I-

Note first that as a consequence we get

(v) fo(sy) C fo(sy) implieso C 7.

(By (iv), we must havgo| < |z|. Letn = |o]|. If T|y # o, then by (iii) and (i),

fo(s)L fo(s;), a contradiction. Hence|, = o, ando C 7 follows.)
Let us check that the recursive construction can be carriedgut. () = t;.
Assumen > 0 and{s, : o € 2" 1} and{t, : o € 2"1} have been constructed

so that (i) through (iv) hold. List2as{c; : i € 2"}. First fixu,, 2 Lo |y PAIrWISE

incompatible. Then construct, by recursioniornxi € 2, nj € w,S; € 2<“’,t} €

2<®(j € 2" such that

o fo(Sy) 2 Xiln;»

o (Vj#i)(Vt2 t}) fo(t) 2 Xiln»

o Uy C tio c...c tii—l c tii —s, C tii+1 c...C tizn—l_

Note thatt} will be produced simultaneously for gli(for fixedi).

stepi =0 Letxg € {fo(t) : Uy, C t}, that is,Xg is a limit point of the fg(t), us, < t.
That such a limit exists follows from compactness and from the fact tha
one-to-one. By assumption, we can fing and tJo D Us; (j # 0) such that
(Vj # 0)(Vt D t?) fo(t) 2 Xolny. Lettd = s,, be such thau,, < s, and
fo(Sye) 2 Xolne-

stepi + 1 This is almost identical. Leki 1 € {fo(t): tiiJrl C t}. Find nj1; and
it 2 th (j # i+ 1) such thatt¥j # i + (¥t 2 ™) fot) 2 Xitaln,,-

Lett/ ] = s,,, be suchthat; € s,., and fo(Sy.,) 2 Xi1ln.s-

In the end, let;, = ti2"_1. Then property (iii) is satisfied (this is the main point of the
above construction). (i) and (ii) are also clear by choice ofuhjeand by construction.
Concerning (iv), we can easily make it hold by choosing the almvarge enough.
This completes the recursive construction.

Itis relatively easy to further prune the family, : o € 2<%} such that
(vi) if o C T andtherei® D 7 such thatfi(s,) C f1(s), thenfi(s,) C fi(s;)

(thet, are no longer relevant).

SetB = {s, : 0 € 2<?}andA = f"B. SoB = f~1"A. By (i) and (ii), Gg is
perfect. So it suffices to check th@ty satisfies (b"2). Fixx € 2*, and assume there are
Yo # Y1 With (Xg, Yo), (X1, Y1) € Ga. This means there are infinite s&fgi € 2) and
ol forn € Y; such that

Xn. yiln) = f(8,1) = (To(s,y). Ta(8,y)
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foralln € Y andi e 2. Note that ifn < mandn, m € Yo U Yy, theno! C o by
property (v) (where (j respectively) is such that € Y; (m € Y] respectively)). Fixk
such thatyp|k # yilk- Findk < ng < n1 < mg such thaing, mg € Yp andni € Y;.
Thus, by the preceding remark}, C o) C o . Also fl(sa,?o) = Yolny C Yolmy =

fl(sar%o)' Therefore, by (vi)yoln, = fl(sar?o) C fl(sanll) = Y1ln;-
This contradiction finishes the proof bémma 4.4.2 O

Notice that the MAD family of Theorem 4.4.1necessarily has size: since
Cov(cntb/ez) = ¢, by Lemma 3.1.2any MAD family of size<c is Sp-indestructible.

Our original motivation to prové.4.1came from a question of Hru$4k(Q, Question 3].
Namely, he asked whether it is consistent that no MAD family of sizeS-indestructible
(more exactly, he conjectured there is no such MAD family in the Sacks model). This, in
turn, was motivated by his incorrect argument showing there $-maestructible MAD
family in ZFC.

Originally, Theorem 4.4.1vas intended to give a negative answer to Hru§ak’s question.
However, since the result builds on assumptions beydf@d (cov(M) = corb = ¢), we
were not able to achieve this. Still, the wait. 1is proved fronB.4.1strongly suggests that
if there is anS-indestructible MAD family inZFC, then there is also a$rindestructible
MAD family of sizec in ZFC. Note, in particular, thatemma 4.4.2s aZFC-result. We
believe that both are true.

Conjecture4.4.3. There is arfS-indestructible MAD family irzZ FC.

Conjecture4.4.4. There is anS-indestructible MAD family of size in ZFC. More
explicitly, there is ars-indestructible So-destructible MAD family irZ FC.

HruSak’s original conjecture was motivated by the fact (Ekeorem 4.1.1that there
is no C-indestructible MAD family of size in the Cohen model. However, the situation
with C andS is basically different, foiC,, (the «-stage finite support iteration or finite
support product of) is forcing equivalent t«C for countablex while S, Sz, S3, ..., Sy
are all different. Accordingly, we shall see$ection 4.%hat HruSak’s conjecture is correct
in the sense there is r§,, -indestructible MAD family of sizec in the Sacks model
(Theorem4.7.1

4.5. S, -indestructibility

In Section 4.3 we characterize®,-indestructibility for countable ordinala (see
Theorem 4.3.1 We now briefly consider uncountalde In fact, by the following result
which seems to be well-known (see, for example, the comment in Blass’s survey &ticle [
Section 11.5]), this boils down to the countable case. We include a sketch of the proof for
the sake of completeness.

Theorem 4.5.1. The following are equivalent for a tall idedl.

(i) ZisSg-indestructible for alkr.

(i) Z isSg-indestructible for some uncountahite
(iii) Z is S, -indestructible.
(iv) T isSg-indestructible for all countable.
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Proof. Clearly (i) implies (ii), (ii) implies (iii), and (iii) implies (iv). In fact, since no new
reals arise in limit stages of uncountable cofinality of the iteration, the equivalence of (iii)
and (iv) is easy to see. We shall sketch the argument for (iv) implies (i).

Lemma4.5.2. Leta be an ordinal. Assumegpe S, and A is anyS,-name for a subset
of w. Then there is p< pp such that for all BC w, ifthereisq< pwithql-“BNA = @",
then there is r< p with

e supir) = supi(p),
e I is compatible with q,
erlF“BNA=g,

where suptp) = {8 < « : p(8) # 1} denotes theupport of p.

Sketch of Proof of Lemma4.5.2. This is a canonical fusion argument. Namely, one
builds a decreasing sequen@p : n € w) of conditions and auxiliaryF, C « finite:
n € w) such that

® Po=0o=F,0= 01> - ZF_y,n-10n ZFan - s

L d Unew Fn = Unew SUp(Qn), .
e (n can be thought of as a finite union of conditions deciding"A".

Essentially, at stage, we consider the-th splitting levels of they,(8) whereg € Fy.
Since this is a standard argument, we leave out the details.

Let p = (pe,, dn be the fusion. Thesupi(p) = Upe, Fn = Une, SUPTON). Now let
B € wandq < psuchthat I “BN A = #”. Note there are finite maximal antichaiit,
of conditions belowp such that € Hy, decides h € A” and such thasuptr) = supip)
for allr € Hp. This meangp = X' Hp for all n. Forn € B let G, € H, be such that
forr € Gp,r I-“n ¢ Aand forr € Hy\ Gp, r IF “n € A”. Clearly,q < XG, for
all n € B. Thereforeq < (,cg ¥Gn =: r. supi{r) = supip) is straightforward by
construction. [OJ

The above means that whatever is decided afohy a condition belowp is in fact
already decided by a condition with suppersupi(p).

A similar fusion argument shows that given apy € S, there isp < pg such that
for all 8 € suptp), whatever is decided abopi8) by a condition belowp|g is in fact
already decided by a condition with suppeftsuptplg) = supip) N 8. Call suchp
canonical. Informally, we may think of such a condition as an elemenSgfyp). In
particular, if we letag = otp(supi{p)) < w1, then there is a projection mapping
sendingp to w(p) € Sy, such that for eaclfp < ag, 7(P)(Bo) is theSg,-name for a
condition inS corresponding to th&s-namep(8) whereg is thefo-th element obupi p).
This makes sense becausg) depends only on coordinatessapi p|g). Note thatr is
an order-isomorphism between canonical conditionSsiipyp) (below p) and canonical
conditions inSy, (below 7(p)). Some care has to be taken because Whilgyp) is a
suborder of5,, it is notcompletely embedded By, . Still, given arS,-nameA for a subset
of w such that the paitp, A) satisfies the condition 0f.5.2 we may think ofA as an
Ssuptp)-name (belowp), and we may also canonically project it to ﬁgo-namen(A).
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This projection has the property that for all canonigak p,q € Ssuptp) and for all
newqlks, “ne A < n(q) IFs,, “N € (A"

Now assume is S,-indestructible for all countable, yet there is an uncountabde
such thatf is S,-destructible. We shall reach a contradiction. lpet S, and A be such
thatp Iks, “|AN 1| < R for any | € Z". Without loss p is canonical and the pair
(p, A) satisfiesLemma 4.5.2Let ap = otp(sup(p)), and letr : Ssuptp) = S« be as
above. Without lossup{(p) N w1 € w1. Letar = supi(p) N w;. Then7r|ga1 =id, and
p andx(p) are canonically compatible with common extensir) 7 (p); in fact, any
condition inSsypypy below p is compatible withrr (p) and any condition irf,, below
7 (p) is compatible withp. Let B = 7 (A).

By assumption, findj < 7(p), q € Sq, and! € Z such thag I-s, “IBN 1| = R
Thenz=1(q) € Ssuptp)» 771(@) < p andg andz~1(q) are compatible with common
extensionq U 7~1(q). Findro € S, ro < qU z~1(q) andn € o such thatrg I,
“AN 1 C n". For simplicity assume thap IFs, “AN | = ¢". By Lemma 4.5.2there is
r < p,r e Ssuptp) such that is compatible withrg andr I+ “AN = ¢@". Sincer andrg
are compatible, alsp andx —1(q) are compatible, and we may assume without loss that
r < z~1Qq). Thenz(r) < q,7(r) € Sep- Finds < 7 (r), s € Sy, andn € | such that
slks,, “ne B”. Thenz~1(s) € Ssupip), 7 (s) < 1, andr~1(s) IFs,, “N € A", This is
a contradiction, and the proof of the theorem is complete.

4.6. Construction of an iterated Sacks indestructible MAD family
In this section, we sketch the proof of the following strengtheningheforem 3.4.1

Theorem 4.6.1. Assume eithecov(M) = ¢ or b = ¢. Then there is a MAD familyl
which isS,-indestructible for any.

Before starting out with the proof, a few comments are in order. First notice that in view
of Theorem 4.5 ]lit suffices to consider countakdewhen doing the construction. Next, as
mentioned already when discussi®g.], this result is well-known in the case CH holds.
Namely, to show that = R in the iterated Sacks model one must construct a MAD family
which isSy-indestructible for all countable. The former, however, was proved by Spinas
[3, Section 11.5] (or se€/[8] for an alternative proof).

Sketch of Proof. If a < ¢, we are done: for all countable cov(cntble®) = ¢ so that by
Corollary 3.1.3any MAD family of sizea will be S,-indestructible for ale. Therefore
assume: = .

In view of 4.3.1and4.5.1, list all one-to-one function$ : Fn(a, 2<%) — w (@ < w1)
as{fg : B < c}. We need to construct pairwise almost disjdiAk : 8 < c} such that

o forall g <, if fg: Fn(e, 2<°) - o andeﬁ_l,,Ay € cntble® for all y < B, then
Gfl;l., As ¢ cntble*.
If the antecedent of this clause fails, stggeof the construction is trivial. If it holds,

as in the proof 0f3.4.1 we may find a treeT < Fn(«, 2<“) (wherea is such that
fg : Fn(e, 2<”) — w) suchtha{T] & cntble” andegl,,Ay N[T]=¢forally < B.
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If cov(M) = ¢, a real Cohen over the objects constructed so far easily yields a set
B C T with Gg ¢ cntble® and|B N Gfﬂ_l,,AV| < Roforally < 8,sothatAg = fg"B

works (sed.emma 3.4.2and its proof).
If b = ¢, a dominating real does the same. (See the comments in the proof of
Theorem 4.4.]as well as 10] and [16].) This completes the argument]

4.7. There are no iterated Sacks indestructible MAD families ofcsizéhe Sacks model
Finally we show:

Theorem 4.7.1. In the Sacks model (the extension of a model of CH by forcingSwith
any MAD family which i§,-indestructible for alkx has sizeX;.

We mentioned already at the end $é&ction 4.4that this gives a positive answer to a
modified version of a question of Hru§&k( Question 3], and that this can be considered
an analogue of the corresponding results on Cohen and random fordihgamem 4.1.1

Proof. Assume the theorem was false and there is a MAD fadily= {A, : o < w2}
which isS,, -indestructible (this is the same Gjreorem 4.5.1 Let A = {A, : a < wp}
be anS,,-name forA. By standard arguments, there exists:arclub C C w» such that
foralla € C,

ks, “Aqy = {Ag : B < a} is a MAD family”

(in particular, this means that for g8l < o, Ag is anS,-name). Since nol,, is maximal
in the ultimate extension, we clearly have

ks, “Aq is Sw,-destructible”
forall« € C. Hence, byTheorem 4.5.1
ks, “Aq is S,,-destructible”

foralla € C. IntheS,-extension, there are an ordinal < w1, a conditiong® € Sy« and
aS,«-nameA” for a subset ofv such that

9% IFs e A% is almost disjoint from allAg, 8 < .
Let B® = A®. Back in the ground model, we have namigs q*, B* for these objects, i.e.

IFs, “q% IFkg, " B* is almost disjoint from alldg, 8 < «

Sincecf (o) = w1 forall« € C, we may findg* < « andp” € Sge such thaty*, ¢* and
B areSge-names and, in fact, we may also assume fitatlecides the value gi*, say

p()l ”_Sﬁ[x u)}(x — yan

for some ordinaly* < w1. Note that the functiom — B* is regressive, so there are
B < wp and a stationary s& C C such thaig* = g forall« € S.



J. Brendle, S. Yatabe / Annals of Pure and Applied Logic 132 (2005) 271-312 311

By further pruning, we may then also assume therepaeeSg, y < w1, anSg-nameq
for a condition mS and anSg-nameB for anS, -name for a subset @$ such that for all
aeS p*=py*=y 4" =q§andB? = B. So in particular,

plks, “d |ng “B is almost disjoint from allAs, § < «

forall @ € S Notice that whileB is aSg-name and is always interpreted as the same
Sy-nameB = Ain theSg-extension, the interpretation éfdepends o, namely, on the
interval[«, o + y) in which A is adjoined, in the above formula.

Claim4.7.2. pls, “qlg, “B is almost disjoint from alis, § < w;””
Again B arises in theSg-extension a8 = A, andA is then adjoined by forcing witB,,
over theS,,-extension. Clearly the claim finishes the proof of the theorem.

Proof of Claim 4.7.2. By stepping into th&g-extension withp belonging to the generic
filter, if necessary, we may assume without loss of generalityfhat0. Then we have
andB = A. We use

Lemma4.7.3. Let V be a model cZFC. Lety be an ordinal and letg € V, A ans, -
name for a subset @ with A € V. Then there is < do,q € V, such that whenever
W 2V isamodel oZFC,r <q,r € W and ne o withr kg, “n € A" in W are given,

then there is s< g, s € V, s compatible with r, with 8-g, “n € A" (in V).

Proof. This follows readily from properness. Namely, I8t € V be an elementary
substructure containing, do and A, and letq < do, g € V, be(S,, N)-generic. Clearly
qis asrequired:if < q,r € W,n € wwithr kg, “n € A” are given, there isp € N
compatible withr such thatp Iks, “n € A’ ands = s - q is as required.

Alternatively, this can be shown directly with a fusion argument very similar to the proof
of the relatedemma 4.5.2

Assume the claim was false, and et wp andrg < g, ro € S,+y, be such that
“IAN As| = Ro".

o ||—§w oty

Findae € S a > §, such thatrgl,, € Sy (i.€. supiro) N w2 S o) androlwy,wy+y)
is an Sy,-name. Step into th&,-extension withrol|,, belonging to the generic filter.
Sinceroliwy, wp+y) € VS« can be thought of as a condition 8f, we can findsy <
rol{ws,wa+7)> S0 € S, andng € w such that

S ”_SV “AnN As € ng”

(in V5¢). Without loss of generality, we may assume the psjr A) satisfies4.7.3(with
V beingV5«). Since

ks, “S0 ks, IAN As| = Ro”
we find, inW = V52, a conditionr < %, €Sy, andn € As, n > ng, such that

Mg, “ne A"
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(in W). By Lemma 4.7.3there iss < 5, s € V5, such that
slkg, “ne A”

(in VSe). This contradiction completes the proof@faim 4.7.2 [
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