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Abstract

Let A ⊆ [ω]ω be a maximal almost disjoint family and assumeP is a forcing notion. SayA is
P-indestructible ifA is still maximal in anyP-generic extension. We investigateP-indestructibility
for several classical forcing notionsP. In particular, we provide a combinatorial characterization of
P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families
which areP-indestructible yetQ-destructible for several pairs of forcing notions(P,Q). We close
with a detailed investigation of iterated Sacks indestructibility.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Almost disjoint families (AD families for short) and, in particular, maximal almost
disjoint families of sets of natural numbers (MAD families for short) play an important
role in set theory as well as in its applications, for example in general topology. Let us
mention but two sample examples, namely, the technique of almost disjoint coding in
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forcing theory and the construction of the Isbell-Mrówka space from an almost disjoint
family in set theoretic topology.

A fundamental question about MAD families is whether they survive forcing extensions
in which new real numbers are adjoined, and, until recently, surprisingly little was
known about this. In particular, the relationship ofa, the size of the smallest MAD
family, with other cardinal invariants of the continuum was little understood. This has
changed drastically with the advent of Shelah’s theory of iteration along templates (see
[19,6]) which provided a method of destroying MAD families with minimal damage.
For example, his technique allows for killing arbitrary MAD families while preserving
dominating families, and he thus obtained the consistency ofd < a, solving a long-standing
problem about cardinal invariants of the continuum. Shelah’s results spurred new interest
in the question under which condition is a MAD family (in)destructible by a given forcing
notion.

This question may be seen, in a broader context, as an attempt to classify MAD families,
and, ultimately, to arrive at some structural theory of MAD families. Note in this context
that one of the most basic constructions of a MAD family starts with a perfect treeT
the branches of which can be considered an AD family, and extends it to a maximal AD
family A using Zorn’s lemma. Since adjoining a new real naturally adds a new branch
to T , such a MAD family is necessarily destroyed byany forcing adding reals. On the
other hand, Kunen [14] constructed a Cohen-indestructible MAD familyB assuming CH,
and his method of construction was later extended in various directions by many people.
This means the familiesA andB are fundamentally different.

Hrušák [10] and Kurilić [16] independently characterized Cohen-indestructibility of
MAD families by using a combinatorial reformulation which doesn’t mention forcing
or models. Hrušák [10] also investigated Sacks forcing and Miller forcing and, in
joint work with García Ferreira [11], showed that Cohen-indestructibility and random-
indestructibility are incomparable notions. The latter work also provided a more general
framework for indestructibility using the Katětov ordering.

In Section 2of the present work, we shall continue this line of research and provide
a combinatorial characterization of forcing indestructibility of MAD families and, more
generally, tall ideals, for many classical forcing notions. The main new idea is that we work
with theGδ-closure GA of a subsetA of 2<ω (or ω<ω), namely, the set of allx ∈ 2ω (ωω)
such that infinitely many initial segments ofx belong toA. The advantage of this approach
is that it allows us to treat many rather distinct forcing notions adding real numbers (e.g.
tree-like forcings like Sacks forcingas well as Cohen and random forcing) in one general
framework. Accordingly, we first set up this framework, prove a general characterization
theorem saying when a tall ideal isP-indestructible for a given forcing notionP which
falls into this framework (Theorem 2.2.2), and then show that all forcings we consider do
indeed satisfy the conditions of the framework. The price we have to pay for this is that
these conditions are rather technical, and that it is sometimes rather tedious to verify a
given forcing notion satisfies them (this is in particular true for forcing notions adjoining
dominating reals). On the other hand, the verification of the latter is trivial in other cases
and, furthermore, it is quite clear that the framework also works for many other forcing
notions which we have not studied in detail. The actual characterizations, then, are mere
corollaries. As an instance we mention:
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Theorem 2.4.9. LetI be a tall ideal. The following are equivalent:

(i) I is random-indestructible.
(ii) ∀B ⊆ 2<ω such that GB is not null,∀ f : B → ω, ∃I ∈ I such that Gf −1” I is not

null.
(iii) ∀B ⊆ 2<ω such that GB is not null,∀ f : B → ω finite-to-one,∃I ∈ I such that

G f −1” I is not null.

This answers a question of Hrušák [10].1 An immediate consequence of these characteri-
zations is that we get the following diagram about implications between forcing
indestructibility (see2.1for the definitions of the forcing notions):

B-indestructible �� S-indestructible

L-indestructible �� M-indestructible

���������������

D-indestructible

��

�� C-indestructible

��

Fig. 1. Diagram of forcing indestructibility.

A natural question is whether any of these arrows is reversible or whether there are any
other arrows. An even more fundamental question is whether we can always build aP-
indestructible MAD family (or, more generally, tall ideal) for a given forcing notionP and,
if so, whether this construction can be done inZFC alone.

We shall investigate this inSection 3and show that, indeed, there are no other arrows
in the diagram than those shown above. Furthermore, for tall idealsI, constructions of
counterexamples to possible further arrows can be done inZFC. This is more tricky for
MAD families: first, adding a dominating real destroys all MAD families so that there
are noP-indestructible MAD families for forcing notionsP adjoining a dominating real.
Furthermore, as of now, even the construction of anS-indestructible MAD family (which
is weaker than all of the others) requires hypotheses beyondZFC (seeConjecture 4.4.3)
though we do not know whether they are really necessary. Such hypotheses are usually
of the form j = c wherej is one of the standard cardinal invariants of the continuum.
Wherever possible, we shall construct a MAD family of the required kind (which is the
more difficult task). Sample results include:

Theorem 3.6.1. Assumeadd(N ) = c. Then there is a random-indestructible Miller-
destructible MAD family of sizec.

Theorem 3.7.3. There is a tall ideal I which is Laver-indestructible yet Cohen-
destructible.

1 Some characterizations can be done in terms of the Katětov order. We do not know whether this is possible
for Theorem 2.4.9, however. SeeSection 2.4for more details.
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Section 4provides an in-depth investigation of iterated forcing indestructibility in
the case of Sacks forcingS. Apart from characterizing iterated Sacks indestructibility
(Sections 4.2, 4.3and4.5), we prove:

Theorem 4.4.1. Assume eithercov(M) = c or b = c. There is a MAD familyA = {Aα :
α < c} which isS-indestructible yetS2-destructible.

HereS2 denotes the two step iteration of Sacks forcingS.

Theorem 4.7.1. In the Sacks model (the extension of a model of CH by iteratively adding
ω2 Sacks reals with countable support), every iterated Sacks-indestructible MAD family
has sizeℵ1.

These results show that the case of Sacks forcing differs from that of Cohen or random
forcing while still being somewhat similar; namely, in the case ofC or B, the two step
iteration is the same as the single step, so there is no result like4.4.1; on the other hand, it is
well-known that after adding many Cohen (or random) reals to a model of CH, any Cohen
(random, respectively) indestructible MAD family must have sizeℵ1 (Theorem 4.1.1).

Some of the proofs in this section are rather sketchy (or even left out) because, on
the one hand, they are quite technical while, on the other hand, they are rather standard
arguments (mostly fusion arguments) in iterated Sacks forcing. In particular, the arguments
should be easy to follow for anybody familiar with the representation of iterated Sacks
forcing Sα as Borel sets in(2ω)α. See for example, the recent work of Ciesielski and
Pawlikowski [7] and of Zapletal [22] for an in-depth investigation of iterated Sacks forcing.
The main arguments (4.2, 4.4and4.7), however, are done in detail.

1.1. Notation and basic facts

Our notation is fairly standard. See [12] or [14] for set theory in general and forcing
theory in particular.∃∞ means “there are infinitely manyn ∈ ω” and ∀∞ stands for “for
all but finitely manyn ∈ ω”. By the realsR, we usually mean the elements of the Cantor
space 2ω, of the Baire spaceωω, or of [ω]ω, the infinite subsets of the natural numbersω.
B (orB(2ω),B(ωω)), then, denotes the Borel subsets ofR (of 2ω or ωω, respectively).

Given s ∈ 2<ω (or ω<ω), let [s] = {x ∈ 2ω : s ⊆ x}, the clopen set given bys.
Given a treeT ⊆ 2<ω (or ω<ω), let [T] = {x ∈ 2ω : x|n ∈ T for all n ∈ ω} denote
the set of itsbranches. stem(T) denotes thestem of T , that is, the uniques ∈ T which
has at least two immediate successors and is comparable with anyt ∈ T . For s ∈ T ,
Ts = {t ∈ T : s⊆ t or t ⊆ s} is therestriction of T to s.

For x, y ∈ ωω, sayy eventually dominates x and writex ≤∗ y if x(n) ≤ y(n) holds
for all but finitely manyn ∈ ω. The (un)bounding number b is the smallest size of an
unbounded family in the structure(ωω,≤∗) while thedominating number d is the least
size of a cofinal family in(ωω,≤∗). c denotes the cardinality of the continuum. A family
A ⊆ [ω]ω is almost disjoint (AD for short) if A ∩ B is finite for any distinctA, B ∈ A.
A is amaximal almost disjoint (MAD) family if, additionally, for anyX ∈ [ω]ω, there
is A ∈ A such thatX ∩ A is infinite. For simplicity, we shall assume through the paper
that AD families satisfy∪A = ω. Thealmost disjointness number a is the least size of
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a MAD family. We assume familiarity with basic cardinal invariants of the continuum like
those mentioned here, as well as with their order relationship. See [1] or [3] for details.

For A, B ∈ [ω]ω, sayA is almost contained in B and writeA ⊆∗ B if A \ B is finite.
X ∈ [ω]ω is a pseudo-intersection of F ⊆ [ω]ω if X ⊆∗ A for any A ∈ F . All ideals
I ⊆ P(ω) we will consider in this paper are proper and contain the finite subsets ofω (so
∪I = ω), that is, they arefree ideals. An idealI ⊆ P(ω) is a tall ideal if the dual filter
I∗ = {ω \ A : A ∈ I} doesn’t have a pseudo-intersection.

It is clear tall ideals are a generalization of MAD families.

Definition 1.1.1. I(A) = {X ∈ P(ω) : (∃n)(∃〈Ai : i < n〉 ⊆ A)X ⊆∗ ⋃
i<n Ai } is the

ideal generated byA.

Fact 1.1.2. For an almost disjoint familyA, A is MAD iff I(A) is a tall ideal.

We proceed to argue that families of infinite subsets ofω are closely connected to
families of subsets of reals.

Definition 1.1.3 (Gδ Closure). For anyA ⊆ 2<ω or ω<ω, theGδ closure ofA is

GA = { f ∈ 2ω( or ωω) : (∃∞n ∈ ω) f |n ∈ A}.
Clearly anyGA is aGδ-set.

Lemma 1.1.4. The following are equivalent for an idealI.

1. I is a tall ideal.
2. For any B⊆ 2<ω (or ω<ω) and any f : B → ω, F = {G f −1” D : D ∈ I} is a covering

of GB.
3. For any f : 2<ω(or ω<ω) → ω one-to-one,F = {G f −1” D : D ∈ I} is a covering of

the real line.

Proof. First we show 1 implies 2. AssumeF is not a covering, i.e. there is ag ∈
GB \

(⋃
D∈I G f −1” D

)
. Let A = { f (g|n) : n ∈ ω ∧ g|n ∈ B}. We first argue thatA

is infinite. OtherwiseA ∈ I, andg ∈ G f −1” A follows immediately, a contradiction. Next
chooseD ∈ I arbitrarily. If A ∩ D was infinite,g ∈ G f −1” A∩D ⊆ G f −1” D, again a
contradiction. ThereforeA ∩ D is finite. This shows thatI is not tall, the final contradic-
tion.

2 implies 3 is trivial.
To show 3 implies 1, assumeI was not tall and chooseA ∈ [ω]ω such thatA ∩ D is

finite for all D ∈ I. Fix g ∈ 2ω. Define a bijectionf : 2<ω → ω such that f maps
{g|n : n ∈ ω} to A and 2<ω \ {g|n : n ∈ ω} to ω \ A. It is straightforward to see that
g �∈ G f −1” D for all D ∈ I, a contradiction to 3. �

For MAD families we additionally have:

Lemma 1.1.5. Let A ⊆ [ω]ω and assume for any f: 2<ω(or ω<ω) → ω one-to-one
F = {G f −1” D : D ∈ A} is a disjoint covering of the real line. ThenA is a MAD family.

Proof. We first argue thatA is an almost disjoint family. AssumeD0, D1 ∈ A, D0 �= D1,
and |D0 ∩ D1| = ℵ0. Fix g ∈ 2ω. Define a bijection f : 2<ω → ω such that f
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maps{g|n : n ∈ ω} to D0 ∩ D1 and 2<ω \ {g|n : n ∈ ω} to ω \ (D0 ∩ D1). Clearly
g ∈ G f −1” D0

∩G f −1” D1
, a contradiction. To see thatA is maximal, use1.1.2and1.1.4. �

In 1.1.5, the converse is false in general.

2. Characterization of forcing indestructibility

Hrušák [10] and Kurilić [16] have characterized forcing indestructibility of MAD
families for Cohen forcingC. Using the concept of “Gδ-closure”, we will prove analogous
results for many classical forcing notions (Sections 2.2–2.4). We start with briefly
reviewing the definitions of, and basic facts about, these forcing notions (Section 2.1).

2.1. Forcing notions and corresponding ideals

Let B(R), or B for short, be the family of Borel sets inR, whereR = 2ω or ωω. Also
assumeIP ⊆ B is aσ -ideal. We consider forcing notions of the formP = B/IP, ordered
by inclusion moduloIP. Notice this is forcing equivalent toB \ IP ordered by inclusion,
and we shall use this description to avoid having to work with equivalence classes. Call
such forcing notionsreal forcings. The following is well-known (see [22, Lemma 2.1.1]).

Lemma 2.1.1 (Zapletal). If G ⊆ P = B \ IP is a generic filter, then there is a real
r ∈ V [G] such that a Borel set B coded in V belongs to G iff r∈ BV[G].

We are going to investigate the idealIP corresponding to several famous proper forcing
notions.

Sacks forcing Sacks forcingS is the set of all perfect trees in 2<ω ordered by inclusion.
The perfect set theorem says:

Fact 2.1.2. For every analytic set X⊆ 2ω:
• either X is countable,
• or X contains a perfect subset.

Let cntble be the ideal of (at most) countable sets of reals. So the above fact showsS is
a dense subset ofB(2ω)/cntble; these are forcing equivalent.

It is clear that any countable set coded in the ground model doesn’t contain a Sacks
real (it doesn’t contain any new real). In this sense we can say Sacks forcing is the
“weakest” forcing which adds a new real.

Miller forcing Miller forcing M is the set of all rational perfect trees ordered by inclusion.

Definition 2.1.3. 1. A tree T ⊆ ω<ω is rational perfect iffT is a tree such that
(∀t ∈ T)(∃s ∈ T)t ⊆ s∧ (∃∞n)s 〈̂n〉 ∈ T .

2. A set of realsB ⊆ ωω is σ -bounded iff there is a countable set{xn ∈ ωω : n ∈ ω}
such that(∀y ∈ B)(∃k)y ≤ xk.

An s with s 〈̂n〉 ∈ T for infinitely manyn as in 1 of the definition is called anω-splitting
node of T . We denote bysplit(T) the set ofω-splitting nodes ofT .

It is well-known that
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Fact 2.1.4. For every analytic set X⊆ ωω:
• either X isσ -bounded,
• or X contains a rational perfect subset.

Let Kσ be the ideal ofσ -bounded sets. Then the above fact showsM is a dense subset
of B(ωω)/Kσ ; they are forcing equivalent.

Laver forcing Laver forcingL is the set of all Laver trees ordered by inclusion, where

Definition 2.1.5. 1. T ⊆ ω<ω is a Laver tree iff(∀t ∈ T)(∃∞n ∈ ω)t 〈̂n〉 ∈ T ,
2. A set of realsB ⊆ ωω is strongly dominating iff for anyφ : ω<ω → ω, there is a

g ∈ B such that(∀∞n ∈ ω)g(n) ≥ φ(g|n).
For more details, see [4,9,20]. Then we have

Fact 2.1.6. For every analytic set X⊆ ωω:
• either X is not strongly dominating,
• or X contains a Laver tree.

Let not-dominating be the ideal of not strongly dominating sets. Then the above fact
showsL is a dense subset ofB(ωω)/not-dominating; they are forcing equivalent.

Cohen forcing Cohen forcingC is the set of finite partial functionsω → 2 ordered by
inclusion. More generally,Cκ is the set of finite partial functionsκ → 2.

Let M be the ideal of meager sets of reals. It is well-knownC is a dense subset of
B(2ω)/M; they are forcing equivalent.

Fact 2.1.7. Every analytic set X⊆ 2ω has Baire property; that is, there is an open set
U such that U�X is meager.

Note that Cohen forcing adds an unbounded real.
Random forcing Random forcingB is the measure algebraB(2ω)/N whereN is the ideal

of null sets of reals. More generally,Bκ is the measure algebra on 2κ . It is well-known
asωω-bounding forcing.

Fact 2.1.8. Every analytic set is Lebesgue measurable.

We useµ to denote Lebesgue measure.
Hechler forcing Hechler forcingD is the following poset.

Definition 2.1.9.

D = {〈s, f 〉 : s ∈ ω↑<ω ∧ f ∈ ω↑ω ∧ s⊆ f }
ordered by

〈s, f 〉 ≤ 〈t, g〉 ⇐⇒ t ⊆ s∧ (∀k)[g(k) ≤ f (k)].
By definition,D adds a dominating real. Here we defineω↑ω to be the set of all strictly
increasing functions fromω to ω. Similarly ω↑<ω is the set of all strictly increasing
finite sequences. Clearly,ω↑ω is homeomorphic to the Baire spaceωω.

Following [17], we will define the dominating topologyD onω↑ω corresponding to
Hechler forcing.
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Definition 2.1.10 (Dominating Topology). 1. For any〈s, f 〉 ∈ D,
U〈s, f 〉 = {x ∈ ω↑ω : s ⊆ x ∧ f ≤ x}.

2. The dominating topologyD is the topology onω↑ω whose base is{U〈s, f 〉 : 〈s, f 〉 ∈
D}.

3. Let XD be the topological space〈ω↑ω,D〉.
We can defineD-meager sets,D-Borel setsBD, etc. as for the usual topology. It is
trivial thatB ⊂ BD, etc.

LetMD be the ideal ofD-meager sets. As in the case of Cohen forcing,D is a dense
subset ofB(ω↑ω)/MD; they are forcing equivalent.

For more details, see [17].

In any case, we clearly have

Theorem 2.1.11. AssumeP is one of the above proper real forcings. Letṙgen be the name
of theP-generic real. Let B be a Borel set coded in the ground model. Then

• either B∈ IP (then� “ ṙgen �∈ B” ),
• or B �∈ IP (then B� “ ṙgen∈ B” ).

2.2. Weak fusion

All forcing notionsP we will consider have a dense set ofGδ ’s in the following sense:

If B ⊆ 2<ω or ω<ω with GB ∈ P (i.e. GB �∈ IP), andE ≤ GB,

then there isB′ ⊆ B with GB′ ∈ P andGB′ ≤ E. (∗)
It is clear thatS, M, L, C, B andD have this property with respect to the corresponding
ideal.

Definition 2.2.1. Let P = B \ IP be a real forcing. SayP hasweak fusion if given E ∈ P

and aP-nameĊ such thatE � “ Ċ ∈ [ω]ω”, there are

• pairwise disjoint antichainsBn ⊆ 2<ω (or ω<ω),
• antichainsAn ⊆ P,
• one-to-one functionshn : Bn → An for n ∈ ω,
• and a one-to-one functiong : {(n, A) : n ∈ ω ∧ A ∈ An} → ω with g(n, A) ≥ n

such that

(1) GB ≤ E (in particularGB �∈ IP),
(2) (∀B′ ⊆ B with GB′ ∈ P)(∀k)(∃n ≥ k)(∃s ∈ Bn ∩ B′).

• [s] ∩ GB′ ∈ P, and
• [s] ∩ GB′ is compatible withhn(s),

(3) (∀n)(∀A ∈ An) A � “g(n, A) ∈ Ċ”,

whereB =⋃
n∈ω Bn.

Let us first check this is enough to get the characterization ofP-indestructibility we are
heading for. Recall that all idealsI ⊆ P(ω) we consider here are free ideals (i.e. they
contain all finite sets).
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Theorem 2.2.2. AssumeP = B \ IP is a real forcing with weak fusion. LetI be a tall
ideal. Then the following are equivalent:

(1) I is P-indestructible.
(2) ∀B ⊆ 2<ω(or ω<ω) such that GB �∈ IP, ∀ f : B → ω, ∃I ∈ I such that Gf −1” I �∈ IP.
(3) ∀B ⊆ 2<ω(or ω<ω) such that GB �∈ IP, ∀ f : B → ω one-to-one,∃I ∈ I such that

G f −1” I �∈ IP.

Proof. To show (1) implies (2), suppose not (2). LetB ⊆ 2<ω be such thatGB �∈ IP and
∃ f : B → ω function,∀I ∈ I, G f −1” I ∈ IP.

Let r be aP-generic real such thatr ∈ GB. Suchr exists by the preceding discussion,
seeLemma 2.1.1. In particular, ifṙ is the name for the generic from2.1.1, GB � “ ṙ ∈ GB”.
Note thatr �∈ G f −1” I for all I ∈ I. Namely, sinceG f −1” I ∈ IP, 2ω \ G f −1” I belongs to
the generic filter, and sor ∈ 2ω \ G f −1” I .

Sincer ∈ GB, (∃∞n)r |n ∈ B. SinceI contains all finite sets,f must be finite-to-one
on B ∩ {r |n : n ∈ ω}. ThereforeA = { f (r |n) : r |n ∈ B} is infinite, yetA∩ I is finite for
all I ∈ I.

(2) implies (3) is trivial.
We can show (3) implies (1) by using a fusion argument. LetE ∈ P, Ċ be aP-name

such thatE � “ Ċ ∈ [ω]ω”. Let Bn,An, hn andg be as in the definition of “weak fusion”.
ThenGB ≤ E whereB =⋃

n∈ω Bn.
Define f : B → ω by f (s) = g(n, hn(s)) for all s ∈ Bn. This makes sense because

theBn are pairwise disjoint. Sincehn andg are one-to-one, so isf . By the hypothesis (3),
there isI ∈ I such thatG f −1” I �∈ IP, i.e.G f −1” I ∈ P. ClearlyG f −1” I ≤ GB. To complete
the proof, it suffices to show thatG f −1” I � “ |I ∩ Ċ| = ℵ0”. For this, it is enough to prove

(∀D ≤ G f −1” I )(∀k)(∃l ≥ k)(∃D′ ≤ D) D′ � “ l ∈ I ∩ Ċ” .

To see this, fixD ≤ G f −1” I andk. By (∗) there isB′ ⊆ f −1” I such thatGB′ ⊆ D.
By (2) there aren ≥ k and s ∈ Bn ∩ B′ such that[s] ∩ GB′ ∈ P and [s] ∩ GB′ is
compatible withhn(s). Let D′ be a common extension of[s] ∩ GB′ andhn(s), and let
l = g(n, hn(s)) = f (s) ≥ n ≥ k. Sinces ∈ B′, l ∈ I . By 3, D′ � “ l ∈ Ċ”, and we are
done. �

Note that (1) implies (2) is true for every real forcing. Indeed, “weak fusion” was used
only for (3) implies (1).

If we don’t care aboutf being one-to-one, we can get away with a notion which is
somewhat simpler than “weak fusion”. However, it turns out that havingf one-to-one
makes the constructions inSection 3much more lucid, and this is the reason for (3) in
Theorem 2.2.2.

We proceed to show that most of our forcing notions satisfy weak fusion.

Lemma 2.2.3. Sacks forcingS, Miller forcing M, and Laver forcingL have weak fusion.

Proof. Since the proofs are all very similar, we do it only for Laver forcingL which is,
in fact, the most difficult case. Here, as well as in a number of subsequent proofs, we
shall freely use rank arguments which have become a standard tool in the combinatorial
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investigation of forcing notions adjoining a dominating real since they have been
introduced for Hechler forcing by Baumgartner and Dordal [2].

Fix E = [T] ∈ L and anL-nameĊ for an element of[ω]ω. As usual, we think of
Laver forcing as forcing with trees, that is, we identify[T] with T , and considerT ∈ L.
Recursively construct antichainsB′n ⊆ T , antichainsA′n ⊆ L, one-to-one functions
h′n : B′n → A′n and one-to-one functionsg′n : A′n → ω with g′n(A) ≥ n for all A ∈ A′n
such that

• if n < m andσ ∈ B′m thenσ |k ∈ B′n for somek < |σ |,
• h′n is ontoA′n and ifσ ∈ B′n, thenh′n(σ ) is a Laver subtree ofT with stemσ ,
• for all n andσ ∈ B′n,

⋃{h′n+1(τ ) : σ ⊆ τ, τ ∈ B′n+1} is a Laver subtree ofh′n(σ ) with
stemσ ,

• h′n(σ ) � “g′n(h′n(σ )) ∈ Ċ”.

Let us argue that this construction can be carried out. Supposen ∈ ω and for allm < n,
B′m,A′m, h′m and g′m have been constructed as required (possiblyn = 0). We construct
B′n,A′n, h′n andg′n. Fix σ ∈ B′n−1 (where we putB′−1 = {stem(T)}). h′n−1(σ ) ∈ A′n−1 is
a Laver subtree ofT with stemσ by inductive assumption (whereh′−1(stem(T)) = T and
A′−1 = {T}). For τ ∈ h′n−1(σ ), |τ | > |σ |, define the rank functionrk(τ ) by recursion as
follows.

• rk(τ ) = 0 ⇐⇒ ∃h′n(τ ) a subtree ofh′n−1(σ ) with stemτ and∃g′n(h′n(τ )) ≥ τ (|σ |)
such that

h′n(τ ) � “g′n(h′n(τ )) ∈ Ċ” .

• rk(τ ) ≤ α ⇐⇒ ∃∞l ∈ ω such thatτ 〈̂l 〉 ∈ h′n−1(σ ) andrk(τ 〈̂l 〉) < α.

A standard rank argument shows that allτ ∈ h′n(σ ), |τ | > |σ |, have rank< ∞. Therefore
we may findB′n,σ ⊆ h′n−1(σ ) such thatB′n,σ is an antichain,τ ∈ B′n,σ impliesrk(τ ) = 0,
and

⋃{h′n(τ ) : σ ⊆ τ, τ ∈ B′n,σ } is a Laver subtree ofh′n−1(σ ) with stemσ . LetA′n,σ be
the image ofB′n,σ underh′n. Clearlyh′n|B′n,σ

is one-to-one.
By pruningB′n,σ (and thusA′n,σ ) but keeping the remaining properties, we may assume

g′n is one-to-one onA′n,σ . The point is that wheneverrk(τ ) = 1, and there are infinitely
manyl such thatτ 〈̂l 〉 ∈ B′n,σ , theng′n must be finite-to-one on{h′n(τ 〈̂l 〉) : τ 〈̂l 〉 ∈ B′n,σ }
for otherwiserk(τ ) = 0, a contradiction. This means that we can makeg′n one-to-one,
simultaneously for all suchτ , and still keep infinitely manyl with τ 〈̂l 〉 ∈ B′n,σ .

Now unfixσ , and letB′n =
⋃{B′n,σ : σ ∈ B′n−1},A′n =

⋃{A′n,σ : σ ∈ B′n−1}. Clearly,
h′n|B′n is still one-to-one, and a further pruning argument along the same lines shows we
may assume that so isg′n|A′n . Clearly all of the required properties are satisfied, and the
construction is complete.

Clearly, if B′ = ⋃
n∈ω B′n, then properties (1), (2), and (3) in Definition 2.2.1are

satisfied forB′n,A′n, h′n andg′ given byg′(n, A) = g′n(A). However,g′ may not be one-
to-one. Yet it is easy to see that a simultaneous pruning argument yieldsBn ⊆ B′n,An =
h′n” Bn, hn = h′n|Bn, g = g′|⋃

n{n}×An which still have the properties exhibited in the above
recursive construction and such thatg is one-to-one. This completes the proof.�
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We leave the following proof to the reader (in fact, this is similar to, but much simpler
than,Lemma 2.2.5below).

Lemma 2.2.4. Cohen forcingC has weak fusion.

Note that both in2.2.3and in2.2.4one in fact proves

(2’) (∀n)(∀s ∈ Bn)[s] ∩ GB ≤ hn(s)

instead of (2) in Definition 2.2.1of “weak fusion”. To see(2’) implies (2), it suffices to
note that wheneverB′ ⊆ B with GB′ ∈ P andk ∈ ω are given, then there are indeed
n ≥ k ands ∈ Bn ∩ B′ with [s] ∩ GB′ ∈ P. For, if [s] ∩ GB′ ∈ IP for all suchs, then
GB′ =⋃{[s] ∩ GB′ : s ∈ B′ ∩⋃

n≥k Bn} ∈ IP becauseIP is aσ -ideal, a contradiction.

Lemma 2.2.5. Hechler forcingD has weak fusion.

Proof. Recall that we think ofD asB \MD (i.e. as a Boolean algebra) whereMD is the
family of meager sets in the dominating topology. We will use the rank analysis ofD due
to Baumgartner and Dordal [2].

Fix E = 〈s, x〉 ∈ D (which we identify withU〈s,x〉) and aD-nameĊ for an element
of [ω]ω. Recall that conditions in a dense subset ofD are of the form〈s, x〉 where
s ⊆ x, s ∈ ω↑<ω and x ∈ ω↑ω are strictly increasing. Sayt is compatible with
〈s, x〉 if t ∈ ω↑<ω, s ⊆ t and t (i ) ≥ x(i ) for all i ∈ |t|. Recursively construct sets
Xn ⊆ ω↑<ω, Yn ⊆ ω↑<ω and〈t t ′

i : i ∈ ω〉, 〈mt ′
i : i ∈ ω〉, 〈At ′

i : i ∈ ω〉 for t ′ ∈ Yn such
that

1. Xn is a maximal antichain oft ∈ ω↑<ω compatible with〈s, x〉,
2. Yn is an antichain oft ′ ∈ ω↑<ω compatible with〈s, x〉,
3. for all t ∈ Xn and ally ∈ ω↑ω with t ⊆ y, there ist ′ ∈ Yn+1 compatible with〈t, y〉,
4. for all t ′ ∈ Yn+1 there isl ≤ |t ′| with t ′|l ∈ Xn,
5. for all t ∈ Xn+1 there isl ≤ |t| with t|l ∈ Xn,
6. for all t ′ ∈ Yn there isl > |t ′| such that for alli , t ′ ⊆ t t ′

i , and|t t ′
i | = l , t t ′

i (|t ′|) ≥ i ,

7. for t ′ ∈ Yn, if i �= j thenmt ′
i �= mt ′

j ,

8. t t ′
i ∈ Xn whenevert ′ ∈ Yn andi ∈ ω,

9. theAt ′
i , i ∈ ω, t ′ ∈ Yn, are an antichain inD,

10. At ′
i � “mt ′

i ∈ Ċ”,

11. At ′
i is compatible with any condition of the form〈t t ′

i , y〉.
SetX−1 = {s}. AssumeXn has been constructed (n ≥ −1). We describe how to produce
Yn+1 andXn+1. Fix t ∈ Xn. Let ṁt be a name for natural number such that

� “ṁt ∈ Ċ ∧ ṁt ≥ ḋ(|t|)”
whereḋ is the name for theD-generic real. Fort ′ ⊇ t compatible with〈t, y〉 wheret ⊆ y
andy(i ) = max{y(i − 1)+ 1, x(i )} for i ≥ |t|, andm ∈ ω definerkm

t (t ′) by recursion as
follows.
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• rkm
t (t ′) = 0 ⇐⇒ (∃x′ ⊇ t ′) 〈t ′, x′〉 � “ṁt = m”,

• rkm
t (t ′) ≤ α ⇐⇒ (∃l > |t ′|)(∃〈tn : n ∈ ω〉) t ′ ⊆ tn, |tn| = l , tn(|t ′|) ≥ n, rkm

t (tn) <

α.

Note thatrkm
t (t) = ∞ for all m. (For if we hadrkm

t (t) < ∞ for somem, we could find
t ′ ⊇ t compatible with〈t, y〉 andx′ ⊇ t ′ such thatt (|t|) > m and〈t ′, x′〉 � “ṁt = m”.
This contradicts� “ṁt ≥ ḋ(|t|)”.)

Next definerkt (t ′) for sucht ′ by:

• rkt (t ′) = 0 ⇐⇒ (∃m) rkm
t (t ′) <∞,

• rkt (t ′) ≤ α ⇐⇒ (∃l > |t ′|)(∃〈tn : n ∈ ω〉) t ′ ⊆ tn, |tn| = l , tn(|t ′|) ≥ n, rkt (tn) <

α.

A standard argument shows thatrkt (t ′) < ∞ for all t ′ compatible with〈t, y〉. In particular
0 < rkt (t) <∞. Unfix t . Let

Yn+1 = {t ′ : for somet ∈ Xn, rkt (t
′) = 1∧ rkt (t

′|l ) > 1 for all |t| ≤ l < |t ′|}.
The above conditions 2 and 4 are immediate and 3 can be shown by a standard rank
argument.

For t ′ ∈ Yn+1, choose〈t t ′
i : i ∈ ω〉 and 〈mt ′

i : i ∈ ω〉 such that for some

l > |t ′|, t ′ ⊆ t t ′
i , |t t ′

i | = l , t t ′
i (|t|) ≥ i and rk

mt ′
i

t (t t ′
i ) < ∞, and such that themt ′

i are

pairwise distinct (this is clearly possible: chooset t ′
i such thatrkt (t t ′

i ) = 0 andmt ′
i such

that rk
mt ′

i
t (t t ′

i ) < ∞; sincerkt (t ′) > 0 themt ′
i ’s are distinct without loss of generality).

This gives us 6 and 7. LetXn+1 be any maximal antichain satisfying 5 and containing the
t t ′
i for t ′ ∈ Yn and i ∈ ω. So 1 and 8 hold. Fort ′ ∈ Yn+1, let At ′

i be the union of all

conditions of the form〈t ′′, x′′〉 wheret ′′ ⊇ t t ′
i is compatible with〈t, y〉, rk

mt ′
i

t (t ′′) = 0

and 〈t ′′, x′′〉 � “ṁt = mt ′
i ”. 9, 10 and 11 are immediate. This completes the recursive

construction.
By shrinking the collection oft t ′

i andmt ′
i if necessary (but preserving theXn andYn),

we may assume without loss of generality that themt ′
i are pairwise distinct for alli and all

t ′. Now let Bn = {t t ′
i : i ∈ ω ∧ t ′ ∈ Yn},An = {At ′

i : i ∈ ω ∧ t ′ ∈ Yn}, hn(t t ′
i ) = At ′

i

andg(n, At ′
i ) = mt ′

i . Put B = ⋃
n Bn. By 1, 3 and 6 we see thatGB is MD-dense in

E = 〈s, x〉, so in factGB = E moduloMD and (1) in Definition 2.2.1holds. LetB′ ⊆ B
with GB′ ∈ D andk ∈ ω. For somen ≥ k, there must bet ∈ Bn ∩ B′ such that[t] ∩ GB′
is MD-dense in〈t, y〉 for somey. Sayt = t t ′

i wheret ′ ∈ Yn andi ∈ ω. By 11 we know

[t t ′
i ]∩GB′ is compatible withAt ′

i . So2.2.1(2) holds. Finally,2.2.1(3) follows from 10. �

2.3. Random forcing

It is easy to see that random forcing does not satisfy weak fusion in the sense of the
preceding section. However, we get the following result which is only a slight weakening
of “weak fusion”.

Lemma 2.3.1. Random forcingB satisfies all clauses in the definition of “weak fusion”
except for the assumption that g be one-to-one. However, we may require g is finite-to-one.
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Proof. Let E ∈ B, and letĊ be aB-name such thatE � “ Ċ ∈ [ω]ω”. Also let µ be
Lebesgue measure on 2ω.

Recursively build

• finite antichainsBn ⊆ 2<ω,
• conditionsEn ∈ B,
• finite antichainsAn ⊆ B,
• bijectionshn : Bn → An,
• and a functiong : {(n, A) : n ∈ ω ∧ A ∈ An} → ω

such that

1. n < m andσ ∈ Bm impliesσ |k ∈ Bn for somek < |σ |,
2. µ(En) ≥ µ(E) · (1

2 + 1
2n+2 ), En+1 ≤ En ≤ E,

3. En =⋃An,
4. for σ ∈ Bn, hn(σ ) = [σ ] ∩ En,
5. for A ∈ An, A � “g(n, A) ∈ Ċ”,
6. if n < m, A ∈ An andB ∈ Am, theng(n, A) < g(m, B).

Fix n, and assumeBm, Em,Am, hm, g have been constructed form < n. ConsiderEn−1
with the conventionE−1 = E. Setln−1 := max{g(n− 1, A) : A ∈ An−1} with l−1 = 0.
For eachl > ln−1, let El = ‖l ∈ Ċ‖ ∩ En−1. Sinceµ(En−1) ≥ µ(E) · (1

2 + 1
2n+1 ),

we can findln such thatµ
(⋃{El : ln−1 < l ≤ ln}

) ≥ µ(E) · (1
2 + 1

2n+2 + 1
2n+3 ). Since

every measurable set can be approximated by a basic clopen set, we may findBl ⊆ 2<ω

such thatBn = ⋃{Bl : ln−1 < l ≤ ln} is an antichain satisfying 1 and such that if we
let hn(σ ) = [σ ] ∩ El for σ ∈ Bl ,An = {hn(σ ) : σ ∈ Bn}, and En = ⋃An, then
µ(En) ≥ µ(E) · (1

2 + 1
2n+2 ). So 2, 3 and 4 hold. Forσ ∈ Bl , we letg(n, hn(σ )) = l , and

5 and 6 follow. This completes the recursive construction.
By 6, g is finite-to-one. By 2,E∞ = ⋂

n En satisfiesµ(E∞) ≥ µ(E)
2 , and therefore

E∞ ∈ B, andE∞ ≤ E. E∞ = GB is easy to see, and thus property2.2.1(1) is satisfied.
By 4, for all n and allσ ∈ Bn, [σ ] ∩ E∞ ≤ [σ ] ∩ En = hn(σ ) so that(2’) (see after2.2.4)
and, a fortiori,2.2.1(2) holds. Condition 5 is property2.2.1(3). �

2.4. Characterizations

Before explicitly stating the characterizations ofP-indestructibility of MAD families
for our forcing notionsP, we briefly consider the following notion which simplifies the
characterization in several cases.

Definition 2.4.1. Say an idealIP ⊆ B is strongly homogeneous if for all B ⊆ 2<ω (or
ω<ω) with GB �∈ IP, there is an injectionh : 2<ω(or ω<ω) → B such that for allC ⊆ B,
if Gh−1”C �∈ IP thenGC �∈ IP.

Proposition 2.4.2. Let I be a tall ideal, and assume IP ⊆ B is strongly homogeneous.
Then the following are equivalent.

1. ∀B ⊆ 2<ω(or ω<ω) with GB �∈ IP, ∀ f : B → ω (one-to-one),∃I ∈ I with
G f −1” I �∈ IP,

2. ∀ f : 2<ω(or ω<ω)→ ω (one-to-one),∃I ∈ I with Gf −1” I �∈ IP.
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Proof. 1 implies 2 is trivial.
To show 2 implies 1, letB ⊆ 2<ω such thatGB �∈ IP, f : B → ω (one-to-one). Leth be

as in the definition of strong homogeneity. In casef is one-to-one,f ◦h is also one-to-one.
So there isI ∈ I such thatG( f ◦h)−1” I �∈ IP. ThereforeG f −1” I �∈ IP. �

We leave it to the reader to verify thatcntble, Kσ , andM are strongly homogeneous
(think ofM as an ideal on the Baire spaceωω). The proofs are straightforward.

Definition 2.4.3 (Hrušák and García Ferreira [11] ). LetJ ,I be ideals onω. SayJ ≤K

I if there is a functionf : ω → ω such thatf −1” I ∈ I for everyI ∈ J . ≤K is called the
Katětov ordering.

PutIP = {I ⊆ 2<ω( or ω<ω) : GI ∈ IP}. By 2.2.2, IP is P-destructible. In fact,

Proposition 2.4.4 (Hrušák, Private Communication). AssumeP has weak fusion and IP
is strongly homogeneous. The following are equivalent for a tall idealJ .

1. J is P-destructible,
2. J ≤K IP.
Proof. First we show 1 implies 2. IfJ is P-destructible, then by2.4.2and2.2.2there is
f : 2<ω → ω such thatG f −1” J ∈ IP for all J ∈ J . So f −1” J ∈ IP for all J ∈ J . Thus
J ≤K IP.

To show 2 implies 1 is analogous.�

Note that 2 implies 1 uses neither of the assumptions onP (because it uses only the easy
direction of2.2.2). Putting together everything we proved so far, we get:

Theorem 2.4.5. LetI be a tall ideal. The following are equivalent:

(i) I is S-indestructible.
(ii) ∀B ⊆ 2<ω such that GB �∈ cntble, ∀ f : B → ω, ∃I ∈ I such that Gf −1” I �∈ cntble.
(iii) ∀B ⊆ 2<ω such that GB �∈ cntble, ∀ f : B → ω one-to-one,∃I ∈ I such that

G f −1” I �∈ cntble.
(iv) ∀ f : 2<ω → ω one-to-one,∃I ∈ I such that Gf −1” I �∈ cntble.
(v) I �≤K IS = {I ⊆ 2<ω : GI ∈ cntble}.
(vi) I is P-indestructible for some forcingP which adds a new real.

Proof. The equivalence from (i) through (iii) follows fromTheorem 2.2.2and
Lemma 2.2.3. (iv) is Proposition 2.4.2and the comment after the proposition. (v) is
Proposition 2.4.4. Concerning (vi) note that (i) implies (vi) is trivial, and the proof of (vi)
implies (ii) is identical to the first part ofTheorem 2.2.2. To see this, simply note that any
forcing adding a new real in fact adds a new real belonging to a given uncountable Borel
set coded in the ground model and that any new real must avoid any countable set coded in
the ground model. �

A few remarks concerning this theorem are in order. The equivalence of (i) and (vi) is
due to Hrušák [10]. The basic pattern of the above result is also due to Hrušák: he attempted
a characterization along the same line, but there is a gap in his argument. Namely, instead
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of considering theGδ-closureGB of a setB ⊆ 2<ω, he considered the closurēB, that is,
the set of branches through the tree defined fromB by closingB under initial segments.
ClearlyGB ⊆ B̄, but the converse inclusion doesn’t hold in general.

In fact, it can be shown by a tedious though not difficult argument that assuming, say,
CH there is a MAD familyA onω which satisfies (iv) withGB replaced byB̄ while being
S-destructible. So his characterization is ultimately incorrect.

A similar remark applies to Hrušák’s characterization ofM-indestructibility a correct
version of which we present in the next theorem whose proof is exactly analogous.

Theorem 2.4.6. LetI be a tall ideal. The following are equivalent:

(i) I is M-indestructible.
(ii) ∀B ⊆ ω<ω such that GB �∈ Kσ , ∀ f : B → ω, ∃I ∈ I such that Gf −1” I �∈ Kσ .
(iii) ∀B ⊆ ω<ω such that GB �∈ Kσ , ∀ f : B → ω one-to-one,∃I ∈ I such that

G f −1” I �∈ Kσ .
(iv) ∀ f : ω<ω → ω one-to-one,∃I ∈ I such that Gf −1” I �∈ Kσ .
(v) I �≤K IM = {I ⊆ ω<ω : GI ∈ Kσ }.
(vi) I is P-indestructible for some forcingP which adds an unbounded real.

Theorem 2.4.7. LetI be a tall ideal. The following are equivalent:

(i) I is L-indestructible.
(ii) ∀B ⊆ ω<ω such that GB �∈ not-dominating, ∀ f : B → ω, ∃I ∈ I such that

G f −1” I �∈ not-dominating.
(iii) ∀B ⊆ ω<ω such that GB �∈ not-dominating, ∀ f : B → ω one-to-one,∃I ∈ I such

that Gf −1” I �∈ not-dominating.
(iv) I is P-indestructible for some forcingP which adds a dominating real.

Proof. The equivalence from (i) through (iii) follows again fromTheorem 2.2.2and
Lemma 2.2.3. (i) implies (iv) is trivial, and for (iv) implies (ii) argue as follows. If
GB �∈ not-dominating, thenGB contains a Laver tree[T] which is homeomorphic to
ωω. Call a realg ∈ ωω strongly dominating if for anyφ : ω<ω → ω in the ground model,
(∀∞n ∈ ω)g(n) ≥ φ(g|n). Clearly any strongly dominating real is dominating while
the converse fails in general. However, it is well-known (and easy to see) that whenever
there is a dominating real over some modelV of ZFC, then there is also a strongly
dominating real overV . Moreover, a strongly dominating real must avoid all sets from
not-dominating coded in the ground model. Therefore, the argument in the first half of
the proof ofTheorem 2.2.2applies, and we get (iv) implies (ii).�

Theorem 2.4.8 (Hrušák [10], Kurili ć [16] ). Let I be a tall ideal. The following are
equivalent:

(i) I is C-indestructible.
(ii) ∀B ⊆ 2<ω such that GB �∈M, ∀ f : B → ω, ∃I ∈ I such that Gf −1” I �∈M.
(iii) ∀B ⊆ 2<ω such that GB �∈ M, ∀ f : B → ω one-to-one,∃I ∈ I such that

G f −1” I �∈M.
(iv) ∀ f : 2<ω → ω one-to-one,∃I ∈ I such that Gf −1” I �∈M.
(v) I �≤K IC = {I ⊆ 2<ω : GI ∈M}.
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The proof is analogous to the proof ofTheorem 2.4.5, using 2.2.2, 2.2.4 and 2.4.1.
The above result is phrased somewhat differently in Kurilić’s and Hrušák’s work, but is
essentially the same. For example, in Hrušák’s work, the stipulation in (iv) above is that
f −1” I is not nowhere dense. This is, however, the same as saying thatG f −1” I �∈ M for,

clearly,G f −1” I ⊆ f −1” I and, on the other hand, if[s] is a clopen subset off −1” I , then
[s] ∩ G f −1” I is dense in[s]. A similar comment applies to Kurilić’s characterization.

Theorem 2.4.9. LetI be a tall ideal. The following are equivalent:

(i) I is B-indestructible.

(ii) ∀B ⊆ 2<ω such that GB �∈ N , ∀ f : B → ω, ∃I ∈ I such that Gf −1” I �∈ N .

(iii) ∀B ⊆ 2<ω such that GB �∈ N , ∀ f : B → ω finite-to-one,∃I ∈ I such that
G f −1” I �∈ N .

This is clear byTheorem 2.2.2andLemma 2.3.1. This characterization answers a question
of Hrušák [10, Question 9].

Finally we have, by2.2.2andLemma 2.2.5:

Theorem 2.4.10. LetI be a tall ideal. The following are equivalent:

(i) I is D-indestructible.

(ii) ∀B ⊆ 2<ω such that GB �∈MD, ∀ f : B → ω, ∃I ∈ I such that Gf −1” I �∈MD.

(iii) ∀B ⊆ 2<ω such that GB �∈ MD, ∀ f : B → ω one-to-one,∃I ∈ I such that
G f −1” I �∈MD.

3. The hierarchy of forcing indestructibility

After reviewing some basic notions as well as some known results about the existence
of indestructible MAD families (Sections 3.1–3.3), we prove a number of theorems saying
there are MAD families (or, at least, tall ideals) which areP-indestructible for some forcing
P while being destructible for other forcing notions (Sections 3.4–3.7).

3.1. The covering and additivity number of ideals

Here we introduce covering numbers and additivity numbers related to ideals. We will
see they are deeply connected with forcing indestructibility.

Definition 3.1.1 (Covering and Additivity Number). We define two basic cardinal invari-
ants as follows:

1. cov(I ) = min{|A| : R = ⋃
A∈A A∧A ⊆ I },

2. add(I ) = min{|A| : ⋃A∈A A �∈ I ∧A ⊆ I }.
It is easy to see thatadd(I ) ≤ cov(I ) for any idealI .

First we will investigate covering numbers of the ideals which correspond to forcing
notions.
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Sacks forcing cov(cntble) = c andadd(cntble) = ω1.
Miller forcing cov(Kσ ) = d andadd(Kσ ) = b (see [1]).
Laver forcing cov(not-dominating) = add(not-dominating) = b (see [23] and [22]).
Cohen forcing This is justcov(M) andadd(M).
Random forcing Similarly, this is justcov(N ) andadd(N ).
Hechler forcing cov(MD) = add(M) andadd(MD) = ω1 (see [17]).

These numbers are important when we construct examples ofP-indestructible MAD
families. Especially, we will use the following lemma.

Lemma 3.1.2. Assume we have the following characterization ofP-indestructibility of
MAD families: for any MAD familyA, A is P-indestructible iff for any B⊆ 2<ω(or ω<ω)

such that GB �∈ IP and any f : B → ω there exists some D∈ A such that Gf −1” D �∈ IP.
Also assumeP is homogeneous in the sense thatcov(IP|G) = cov(IP) for all Borel sets
G �∈ IP.

LetA be a MAD family of size less thancov(IP). ThenA is P-indestructible.

Proof. Fix any B and any functionf : B → ω. Assume our hypothesis about the
characterization, andA is a MAD family of size less thancov(IP). By Lemma 1.1.4, we
have our{G f −1” D : D ∈ A} is a covering family ofGB of size less thancov(IP). Then
there must be someD ∈ A such thatG f −1” D �∈ IP. �

Corollary 3.1.3. Assume we are in the situation ofLemma3.1.2anda < cov(IP) holds.
Then there is aP-indestructible MAD family.

Proof. Any MAD family of sizea is P-indestructible. �

Hrušák [10] used this lemma implicitly when he constructed anS-indestructible MAD
family. We shall use it below in the proof of3.4.1and4.6.1. In the special caseP = C

(Cohen forcing) andIP = M, 3.1.3 was proved by Hrušák [10, Proposition 6] and
Kurili ć [16, Corollary 3] (independently). Note that, even in the situation the assumption
of Corollary 3.1.3holds, it still remains a problem whether aP-indestructible MAD family
of size continuum exists or not.

3.2. The existence of indestructible MAD families

First we address: is the diagram (Fig. 1) really meaningful: can we construct aP-
indestructible MAD family or tall ideal, for any forcingP?

Cohen forcing One can construct indestructible MAD families by forcing or under some
cardinal invariant hypothesis.

For example,

Theorem 3.2.1. (1) (Kunen) Assume CH. Then there exists a MAD family of sizeℵ1
which isCκ -indestructible for anyκ .

(2) (Steprāns) After addingℵ1 many Cohen reals, there is a MAD family of sizeℵ1
which isC-indestructible.

Proof. See [14] and [21]. �
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Note that by the product lemma,C-indestructible andCκ -indestructible is the same
thing.

Lemma 3.2.2 (Hrušák, Kurilić). b = c implies the existence of aC-indestructible
MAD family.

For more details, see [10, Proposition 6] and [16, Theorem 6].
Stepr̄ans [21] raised a question: can we construct aC-indestructible MAD family

under ZFC? Throughout this paper, we will see forcing indestructibility and the
covering number of the corresponding ideal are closely related, so his question seems
to have a negative answer.

Random forcing The following theorem is well-known.

Theorem 3.2.3. Assume CH. There is aBκ -indestructible MAD family of sizeℵ1 for
anyκ .

Proof. One can showa = ℵ1 in the random model, by adapting the proof of
Theorem 3.2.1(1). The MAD family witnessing this is in factBκ -indestructible for any
κ . For more details, see [3, Section 11.4]. �

Laver and Hechler These forcings add a dominating real, so there are noL- (andD-)
indestructible MAD families.

In the following subsections, we will constructP-indestructible MAD families (or tall
ideals), for any forcingP.

3.3. The hierarchy of forcing indestructibility

We can easily see, for example, any notσ -bounded subset of reals is uncountable. So it
is clear anyM-indestructible MAD family is alsoS-indestructible.

Using the characterizations ofSection 2, we can build a hierarchy of forcing
indestructibility, seeFig. 1.

Looking at that diagram, we may ask: do the converses of these implications hold? In
other words, for example, doesM-destructibility implyS-destructibility? Or, is there an
S-indestructible,M-destructible MAD family?

It is knownC-indestructibility doesn’t implyB-indestructibility.

Definition 3.3.1. 1. Two partial functionsf, g ∈ ωω are eventually different iff| f ∩ g| <
ℵ0.

2. A familyA is a maximal family of eventually different partial functions iffA is a family
of eventually different partial functions which is maximal.

Theorem 3.3.2. Assume CH. There is a maximal family of eventually different partial
functions of sizeℵ1 which isC-indestructible.

Proof. One can construct such a family by adapting the proof ofTheorem 3.2.1(1). For
more details, see [24, Theorem 4.2] or [11, Proposition IV.1]. �

Note that we can think of any maximal family of eventually different partial functions
A as a MAD family onω × ω.
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It is clear the maximality of such a maximal family of eventually different partial
functions is destroyed by random forcing because the latter adds eventually different reals.
Note that this result also shows neitherM-indestructibility norS-indestructibility imply
B-indestructibility.

On the other hand, Hrušák and García Ferreira [11, Proposition IV.2] proved that under
CH, given anyωω-bounding proper forcingP of sizec = ℵ1, there is aP-indestructible,
C-destructible MAD family. In particular, there is aB-indestructible,C-destructible MAD
family. This also follows from ourTheorem 3.6.1below.

Clearly any MAD family is destroyed by adding a dominating real. So this
showsC-indestructibility, B-indestructibility andM-indestructibility imply neitherL-
indestructibility norD-indestructibility.

We will show analogous results for other forcings, and we will see this diagram forms
really a hierarchy. Wherever possible, we will construct MAD families of the required
kind. Note, however, that such constructions usually need hypotheses beyondZFC (like
3.4.1, 3.5.4and3.6.1), while tall ideals of the same kind can always be constructed inZFC
(see3.7.3and3.7.4; this is also true for the results inSections 3.4–3.6).

3.4. Construction of anS-indestructible MAD family

We can construct anS-indestructible MAD family by using the characterization
in the previous section (Theorem 2.4.5). Originally, the existence of such a family
underZFC was claimed by Hrušák [10]; however, his construction was based on his
false characterization ofS-indestructibility (see the discussion afterTheorem 2.4.5); we
still do not know whether this argument can indeed be carried out solely inZFC
(Conjecture 4.4.3). During theSet theory and Analysis Programat the Fields Institute
(Toronto) in fall 2002, Hrušák and the first author of the present paper obtained the
existence of anS-indestructible MAD family undercov(M) = c. We provide the argument
below (Theorem 3.4.1) and thank Hrušák for allowing us to include it here.

Note that byLemma 3.2.2(and Theorem 2.4.5), the existence of anS-indestructible
MAD family also follows from b = c, an assumption which is well-known to be
independent fromcov(M) = c [1]. We shall exploit this below inSection 4where we
will carry out related constructions which also can be done either undercov(M) = c or
underb = c (Theorems 4.4.1and4.6.1). Finally, we remark that3.4.1is well-known under
CH and follows from Spinas’ result [3, Section 11.5] thata = ℵ1 in the iterated Sacks
model (see the comments after the statement ofTheorem 4.6.1).

Theorem 3.4.1. Assumecov(M) = c. There is anS-indestructible MAD family.

Proof. If a < c, we already know any MAD family of sizea is S-indestructible (see
Corollary 3.1.3, see also [10]).

Assumea = c. First enumerate all one-to-one functions 2<ω → ω as{ fα : 2<ω → ω

one-to-one;α < c}. We are going to construct anS-indestructible MAD familyA = {Aα :
α < c} by induction inc steps as follows: for anyα < c,

• Aα is almost disjoint from anyAβ such thatβ < α,
• if G f −1

α ” Aβ
is countable for allβ < α, G f −1

α ” Aα
is uncountable.
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This is sufficient byTheorem 2.4.5.

step α < c We consider two cases.

(∃β < α)G f −1
α ” Aβ

is uncountable In this case fix any setA as Aα such thatA is almost
disjoint from anyAβ whereβ < α. Sinceα < a = c, {Aβ : β < α} is not MAD, so
there exists such a setA. We need the hypothesisa = c only in this case.

Otherwise In this case we have(∀β < α) G f −1
α ” Aβ

is countable. Sincecov(cntble) = c,

we have|⋃β<α G f −1
α ” Aβ

| < c, so we can fix a perfect treeT such that

(∀β < α)G f −1
α ” Aβ

∩ [T] = ∅.
Note that even if the intersection with theGδ-closure is empty, it is possible that
f −1
α ” Aβ ∩ [T] is infinite for someβ. This happens for example when the intersection

forms an anti-chain inT . However, we can prove the following lemma by the
assumption:

Lemma 3.4.2. Assumecov(M) = c. For anyα < c, assume{Aβ : β < α} is a AD
family such that(∀β < α) G f −1

α ” Aβ
∈ cntble. Then we can find A⊆ ω such that

• A is almost disjoint from Aβ for anyβ < α,
• G f −1

α ” A �∈ cntble.

It is enough to letAα = A and the proof of this theorem is complete.�

Proof of Lemma 3.4.2. We will find B ⊆ T such that| fα” B ∩ Aβ | < ω holds.
Note that{ f −1

α ” Aβ ∩ T : β < α} forms an off-branch family (seeDefinition 3.5.1(2))
of T . Therefore for anyβ < α the set of nodesT \ f −1

α ” Aβ contains a subset which is
open dense inT : if there is no open dense subset, then we can fix a branch ofT which has
an infinite intersection withf −1

α ” Aβ . Let Dβ be such an open dense set.

Next we consider an elementary submodel ofV. Let M be a model ofZFC such that
{Aβ : β < α} ⊆ M and|M| = |α| < c in V. Then

Claim 3.4.3. There is a Cohen real c∈ R ∩ V overM.

Proof of Claim 3.4.3. V |= “ |M| = |α| < c” means, inV there are at most|α| many
meager sets whose Borel codes are inM. SinceV |= “α < cov(M) = c” there is a real
c ∈ R ∩ V which isn’t included in any such meager set; it is Cohen overM. �

It is well-known that once we have a Cohen real, then we have a perfect set of Cohen
reals: if we define a forcing notionP by

• S ∈ P iff S ⊆ T is a finite subtree ofT such that all of its top nodes have the same
length:(∃n) if t ∈ S is a maximal node then|t| = n,

• S0 ≤ S1 iff S0 ⊇ S1 andS0 is an end-extension ofS1, i.e. S0 ∩ 2≤m = S1 wherem is
the height ofS1.

Let G be aP-generic filter, and let us work inM[G]. Clearly P is a countable forcing
notion, so it is essentially the same as Cohen forcing. So we may assumeG ∈ V and
M[G] ⊆ V.
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Claim 3.4.4. 1. SG = ⋃{S∈ P : S∈ G} is a perfect subtree of T ,
2. For any r ∈ R, if r ∈ M[G] ∩ [SG] then r is a Cohen real (in the relative topology of
[T]) overM.

Proof of Claim 3.4.4. 1. By easy density argument: for anyS∈ P and for allt ∈ S there
is S′ ≤ Ssuch thatS′ has a splitting node abovet .

2. This is clear from the genericity: in fact for anyf ∈ [SG] we can construct aC-generic
filter G f such thatG f = {p ∈ C : p ⊆ f }. �

Claim 3.4.5. SG ∩ f −1
α ” Aβ is finite for allβ < α.

Proof. We prove this claim by a density argument. Fix anyS∈ P, and letm be the height
of S. Fix anyβ < α. We constructS0 ≤ Ssuch that for any maximal nodeτ ∈ S0, for any
σ ⊇ τ , σ �∈ f −1

α ” Aβ . Then clearly we haveS0 � “ |SG ∩ f −1
α ” Aβ | < ω”, so we are done.

Recall Dβ is open dense inT . For any top-nodeσ of S, there is aτσ ∈ Dβ such that
σ ⊆ τσ . Clearly there is no node which is a member off −1

α ” Aβ aboveτσ becauseDβ is
open.

Therefore it is enough to let

S0 =
⋃
{Tτσ : σ is a top-node ofS} ∩ 2≤n

wheren = max{|τσ | : σ is a top-node ofS}. �

Let Aα = fα” SG, and we are done.�

3.5. Construction of anM-indestructible MOB family

Definition 3.5.1. (1) B ⊆ [ω<ω]ω is a branch iff(∃ f ∈ ωω)B = {σ : σ ⊆ f }.
(2) A ⊆ [ω<ω]ω is an off-branch family iff for anyA ∈ A and for any branchB,

|A∩ B| < ℵ0 andA is almost disjoint,
(3) A ⊆ [ω<ω]ω is a maximal off-branch family (MOB) iffA is off-branch and maximal

with respect to inclusion,
(4) A ⊆ [ω<ω]ω is a maximal antichain family iffA is a maximal almost disjoint family

of antichains ofω<ω.
(5) o = min{|A| : A is a MOB},
(6) ō = min{|A| : A is a maximal antichain family}.
These notions are due to Leathrum [18]. Clearly any maximal antichain family is MOB; so
o ≤ ō. Furthermorea ≤ o is well-known [18].

It is known that bothC andB destroy any MOB family (for more details, see [18,5]). So
to show neitherC norB-destructibility impliesM-destructibility, it is enough to construct
anM-indestructible MOB family. In fact, the existence of aM-indestructible MOB family
is well-known under CH. Namely, Shelah and Spinas (unpublished) proved thatō = ω1
in the Miller model (the model obtained by iteratingM ω2 times with countable support
over a model for CH). This was used to show the consistency ofō < d, a result obtained
independently around the same time by the first-named author of the present paper via a ccc
forcing argument which turned out to be much simpler than investigating the combinatorics
of the Miller model (see [5] for details). The result of Shelah and Spinas necessarily
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involved constructing under CH a maximal antichain family which is iterated Miller-
indestructible (more explicitly, which isMα-indestructible for all countable ordinalsα,
whereMα denotes theα-stage countable support iteration ofM; seeSection 4, in particular
4.5, for the analogous discussion in case of Sacks forcingS). Now, in general,Mα-
indestructibility is stronger than mereM-indestructibility (see4.4 for the corresponding
result on Sacks forcingS). In any case, under CH,Theorem 3.5.4below is due to Shelah
and Spinas.

In view of recent work of Zapletal [23], there is another way to look at the Shelah–
Spinas result. Namely, [23] says that the Miller model is a “minimal model” for makingd
large in the sense that for every cardinal invariantj of the continuum which has a reasonably
easy definition, ifj < d is consistent, thenj = ω1 in the Miller model. Sincēo falls
into Zapletal’s framework, we may argue as follows:by [5], ō < d is consistent; ergo,
by Zapletal’s work,̄o = ω1 in the Miller model; ergo, there exists anM-indestructible
maximal antichain family under CH.

For the remainder of this subsection, we will consider only maximal antichain families.
As in Section 2, we get the following characterization (see, in particular,Theorem 2.4.6).

Lemma 3.5.2. The following are equivalent: for any maximal antichain familyA,

(1) A is M-indestructible.
(2) A is P-indestructible for some forcingP which adds an unbounded real.
(3) ∀A ⊆ ω<ω such that GA �∈ Kσ , ∀ f : A → ω<ω such that f” A is an antichain,

∃B ∈ A such that the Gf −1” B �∈ Kσ .
(4) ∀A ⊆ ω<ω such that GA �∈ Kσ , ∀ f : A → ω<ω one-to-one such that f” A is an

antichain,∃B ∈ A such that the Gf −1” B �∈ Kσ .
(5) ∀ f : ω<ω → ω<ω one-to-one such that range( f ) is an antichain,∃B ∈ A such that

G f −1” B �∈ Kσ .

Proof. First we will show (2) implies (3). Assume there is anA ⊆ ω<ω such thatGA �∈
Kσ , g : A→ ω<ω such thatg” A is an antichain and(∀B ∈ A)Gg−1” B is σ -bounded. Say
fB ∈ ωω is an eventually dominating real forGg−1” B. In the generic extension, letx be a
new unbounded real inGA (so it is unbounded by allfB), then we havex �∈ Gg−1” B for
anyB ∈ A. As in the proof ofTheorem 2.2.2, define

D = {σ ∈ ω<ω : (∃n)σ = g(x|n)}.
Clearly this is an infinite antichain and almost disjoint from anyB ∈ A.

(1) implies (2), (3) implies (4), and (4) implies (5): they are trivial.
The proof (4) implies (1) is also similar, except that we use the following lemma.

Lemma 3.5.3 (Main Lemma forM-Indestructible Maximal Antichain Family). Assume
T ∈ M, Ċ is anM-name such that T� “ Ċ ⊆ ω<ω is an antichain”.

Then we can find a tree T′ ≤ T , a set A ⊆ ω<ω, and a one-to-one function
g : A→ ω<ω such that

• [T ′] = GA,
• (∀σ ∈ A)T ′σ � “g(σ ) ∈ Ċ” ,
• g” A is an antichain inω<ω.
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Similarly the reason (5) implies (4) is thatKσ is strongly homogeneous.�

Proof of Lemma 3.5.3. The proof is best characterized as a “diagonal” fusion argument
on a Miller tree. AssumeT ∈ M, Ċ is a M-name such thatT � “ Ċ ⊆
ω<ω is an antichain”. Then by a proof similar to the one ofLemma 2.2.3, we may assume
without loss of generality there isB ⊆ T such that

• GB = [T],
• (∀t ∈ B)(∃τt ∈ ω<ω)Tt � “τt ∈ Ċ”,
• the correspondencet → τt is one-to-one.

We may assumeB ⊆ split(T). Note for any branchh ∈ [T] we have{τt : t ⊆ h} is an
antichain.

So all we have to do is findingA ⊆ B infinite and definingg such thatg” A is an
antichain andGA is still a Miller tree. Letg(t) = τt for all t ∈ B. Let {sn : n ∈ ω} be an
enumeration ofω<ω such thatsn ⊆ sm impliesn ≤ m.

Construction of A: We construct a systemσn, τn ∈ ω<ω, Bn ⊆ ω<ω and Pn ∈ M such
that, for anyn ∈ ω,

(i) P0 = T, B0 = B, σ0 = stem(T),
(ii) Bn ⊆ split(Pn) andGBn = [Pn],
(iii) g(σn) = τn,
(iv) {σi : i ≤ n} ⊆ Bn andBn+1 ⊆ Bn,
(v) Pn+1 ≤n Pn (where≤n denotes the fusion order onM and means that the firstn

splitting nodes{σi : i ≤ n} of Pn also belong toPn+1),
(vi) σi ∩ σ j = σn iff si ∩ sj = sn (this means that the common initial segment ofσi

andσ j is σn iff the common initial segment ofsi andsj is sn),
(vii) ∀s ∈ Bn \ {σn} : g(s)⊥τn.
If this is possible, it suffices to put
• A = {σn : n ∈ ω},
• T ′ =⋂

n∈ω Pn.
By clause (v),T ′ ∈ M; by (ii) and (iv), GA ⊆ [T ′]. In fact, by clause (vi),GA still
contains a rational perfect tree so that we may assumeGA = [T ′] without loss of
generality. By (iii), (iv) and (vii),g” A is indeed an antichain. Hence it suffices to check
we can carry out the recursive construction.

step 0: P0 = T, B0 = B, σ0 = stem(T) andτ0 = g(σ0). Then all clauses are satisfied.
Note, in particular, that (vii) holds becauseσ0 ⊆ s for all s ∈ B0.

step n for n > 0: Let δn ∈ split(Bn−1) such that for alli , j < n, δn ∩ σ j = σi iff
sn ∩ sj = si .

For notation, letBn−1|t = {s ∈ Bn−1 : s ⊃ t} for any t ∈ Bn−1. For simplicity we
will write τs instead ofg(s) (andτi for g(σi )).

We shall use the following well-known partition result for rational perfect trees: if
S ∈ M, C ⊆ split(S), GC = [S] andh : C → 2, then there areS′ ≤ S andC′ ⊆ C
such thath|C′ is constant andstem(S′) = stem(S), C′ ⊆ split(S′) andGC′ = [S′].

Recursively construct〈σ j : j < n〉 such thatδn ⊇ σ 0 ⊇ · · · ⊇ σ j−1 ⊇ σ j ⊇ · · · ⊇
σ n−1 ⊇ σn as follows.
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the initial step Let σ−1 = δn = g(σn).
step j < n If there areσ ⊇ σ j−1, σ ∈ Bn−1, and a subtreeSj ≤ (Pn−1)σ j and

C j ⊆ Bn−1 such thatstem(Sj ) = σ j , C j ⊆ split(Sj ), GC j = [Sj ] andτσ ⊆ τs

for all s ∈ C j , then we letσ j be such aσ .
Otherwise we letσ j = σ j−1.

step n Chooseσn such thatσ n−1 ⊂ σn andσn ∈ Bn−1.
Let τn = τσn .

For eachj < n for which the first alternative holds, also fixSj andC j as above.
For any j < n for which the second alternative is true defineh j : Bn−1∩(Pn−1)σ j →

2 by

h j (s) =
{

0 if τn⊥τs

1 if τn‖τs

for any s ∈ Bn−1 ∩ (Pn−1)σ j . By the partition result mentioned above, we may find
Sj ≤ (Pn−1)σ j , stem(Sj ) = σ j , and C j ⊆ Bn−1 such thath j |C j is constant on
C j ⊆ split(Sj ) and GC j = [Sj ]. Now note thath j |C j = 1 is impossible because
if it was true thenσn would witness the first alternative in the above construction, a
contradiction. Therefore,h j |C j = 0, andτn⊥τs for all s ∈ C j .

Similarly, for each j < n for which the first alternative holds,τn⊥τσ j because
τn = τσn andσ j ⊂ σn. Thereforeτn⊥τs for all s ∈ C j .

This means, however, we can put
• Bn = {σi : i ≤ n} ∪⋃

j <n C j ∪ Bn−1|σn ,

• Pn = ⋃
j <n Sj ∪ Pn−1|σn .

ThenPn ≤n−1 Pn−1, [Pn] = GBn, theσ j , j ≤ n, are splitting nodes ofPn, and we also
have thatτs = g(s)⊥τn for all s ∈ Bn \ {σn} so that (ii) to (vii) are indeed satisfied.

This completes the proof.�

Using the previous characterization, we can construct anM-indestructible MOB family
under certain hypotheses. Recallb = add(Kσ ).

Theorem 3.5.4. Assumeb = c. Then there is anM-indestructible maximal antichain
family of sizec.

Proof. Let us enumerate all one-to-one functions{gα : ω<ω → ω<ω; α < c} such that
range(gα) is an antichain for anyα. By c-step induction, we are going to construct a
maximal antichain family{Aα : α < c} such that if(∀β < α) Gg−1

α ” Aβ
is σ -bounded

thenGg−1
α ” Aα

contains a rational perfect set.

step α < c: We have two cases.
case 1: (∃β < α) Gg−1

α ” Aβ
�∈ Kσ . Recall thatZFC impliesb ≤ a ≤ ō ≤ c. So{Aβ : β <

α} is not maximal. Therefore we can find an infinite antichainAα ⊆ ω<ω such that

|Aα ∩ Aβ | < ℵ0.
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case 2: otherwise i.e. (∀β < α) Gg−1
α ” Aβ

∈ Kσ .

We have
⋃

β<α Gg−1
α ” Aβ

∈ Kσ becauseα < b = add(Kσ ). So there ish ∈ ωω such

thatx ≤∗ h for all x ∈⋃
β<α Gg−1

α ” Aβ
. By Lemma 3.5.2we need to construct a rational

perfect treeT ⊆ ω<ω andA ⊆ T such that
• GA = [T],
• (g−1

α ” Aβ) ∩ A is finite for allβ < α.
First recursively build〈σs : s ∈ ω<ω〉 ⊆ ω<ω such that
• s⊆ t impliesσs ⊆ σt ,
• n < m impliesσŝ 〈n〉(|σs|) < σŝ 〈m〉(|σs|),
• for all s and allβ < α, {n : gα(σŝ 〈n〉) ∈ Aβ} is finite,
• for all i < |σs|, σs(i ) ≥ h(i ).
Note that the first two conditions imply that theσs will generate a rational perfect tree.

Assumeσs has been constructed. Let{Xn : n ∈ ω} ⊆ ωω such thatσs ⊆
Xn, Xn(i ) ≥ h(i ) for all i , and Xn(|σs|) < Xm(|σs|) whenevern < m. Xn ≥ h
implies in particular thatXn �∈⋃

β<α Gg−1
α ” Aβ

.

Therefore, for eachn and eachβ < α, the set{m : gα(Xn|m) ∈ Aβ} is finite. Hence,
for eachn and for eachβ < α, we can findkβ(n) ∈ ω such thatgα(Xn|m) �∈ Aβ

for any m ≥ kβ(n). Sinceα < b, there isk ∈ ωω such that for allβ < α, the set
{n : gα(Xn|k(n)) ∈ Aβ} is finite. Therefore, lettingσŝ 〈n〉 = Xn|k(n), all requirements
are satisfied. This completes the recursive construction.

Forβ < α, define a functionlβ : ω<ω → ω such that for allm ≥ lβ(s), gα(σŝ 〈m〉) �∈
Aβ . Sinceα < b, there isl ∈ ωω such thatlβ <∗ l for all β < α. This means that for
all β < α, the set{s : s(i ) ≥ l (s|i ) for all i < |s| andgα(σs) ∈ Aβ} is finite. So we let
• A = {σs : s(i ) ≥ l (s|i ) for all i < |s|},
• T = {σs| j : σs ∈ A and j ≤ |σs|}.
Clearly[T] = GA andg−1

α ” Aβ ∩ A is finite for allβ < α.
Now let Aα = gα” A. Then|Aα ∩ Aβ | < ℵ0 for all β < α andg−1

α ” Aα = A so that
Gg−1

α ” Aα
contains a rational perfect tree. This completes the proof of the theorem.�

3.6. Construction of aB-indestructible,M-destructible MAD family

Theorem 3.6.1. Assumeadd(N ) = c. Then there is aB-indestructibleM-destructible
MAD family of sizec.

Proof. Let us enumerate finite-to-one functions{g : B → ω; B ⊆ 2<ω andGB �∈ N }
as{gα : α < c}. Fix any bijection f : ω<ω → ω. By c-step induction, we are going to
construct a MAD family{Aα : α < c} such that

• if (∀β < α)Gg−1
α ” Aβ

∈ N thenGg−1
α ” Aα

�∈ N .

• G f −1” Aα
∈ Kσ ,

for anyα < c. Notice that this is sufficient, byTheorems 2.4.6and2.4.9.

step α < c: We consider two cases.
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case 1: (∃β < α)Gg−1
α ” Aβ

�∈ N . In this case it suffices to fixA ⊆ ω such thatG f −1” A ∈
Kσ andA is almost disjoint from anyAβ . add(N ) = c impliesa = c, so we can easily
get an infinite setA with |A∩ Aβ | < ℵ0 andG f −1” A ∈ Kσ . Let Aα = A as above.

case 2: otherwise By α < c = add(N ), we have
⋃

β<α Gg−1
α ” Aβ

∈ N . Recall the

fact for any X ⊆ 2ω measurable,ε > 0, we can get a closed subsetC ⊆ X such
that µ(X \ C) < ε. Therefore we may fix a treeT ⊆ 2<ω such that[T] �∈ N and
[T] ⊆ GBα \ (

⋃
β<α Gg−1

α ” Aβ
) whereBα = dom(gα). We use

Lemma 3.6.2 (Main Lemma forB-IndestructibleM-Destructible MAD Family). For
any A⊆ 2<ω such that GA �∈ N and for any g: A→ ω<ω finite-to-one, there exists a
B ⊆ A such that
• µ(GB) > 0,
• Gg” B ∈ Kσ .

It is enough to applyLemma 3.6.2to A = T ∩ Bα andg = f −1 ◦ gα, then we get
Aα = gα” B as required. This completes the proof of the theorem.�

Proof of Lemma 3.6.2. Forσ ∈ ω<ω define

Xσ = { f ∈ 2ω : (∃∞n)[ f |n ∈ A∧ σ ⊆ g( f |n)]}
=

⋂
m∈ω

⋃
n≥m

{ f ∈ 2ω : f |n ∈ A∧ σ ⊆ g( f |n)} ⊆ GA

so Xσ is aGδ set. Forσ ∈ ω<ω andi ∈ ω, we take the difference

Yσ,i = Xσ \ Xσ 〈̂i 〉
= { f ∈ 2ω : (∃∞n)[ f |n ∈ A∧ σ ⊆ g( f |n)]
∧ {n : f |n ∈ A∧ g( f |n) ⊇ σ 〈̂i 〉} is finite}.

SinceYσ,i is an intersection of aΠ 0
2 and aΣ0

2 set, it is a∆0
3 set. Forσ ∈ ω<ω, let

Yσ = ⋂
i∈ω Yσ,i . SoYσ is aΠ 0

3 set. NoteXσ = Xσ 〈̂i 〉∪̇Yσ,i for all i ∈ ω. Therefore

Xσ =
⋃
i∈ω

Xσ 〈̂i 〉∪̇Yσ .

case 1: µ(Yσ ) > 0 for some σ ∈ ω<ω. There is a closed set contained inYσ which still
has positive measure. So letT ⊆ 2<ω be a tree such that[T] ⊆ Yσ and[T] �∈ N .

First note[T] = GA∩T , soGA∩T �∈ N . Similarly [T] = GA′ for A′ = {t ∈ A∩ T :
g(t) ⊇ σ }; to show[T] ⊆ GA′ , note that anyf ∈ [T] ⊆ Yσ satisfies(∃∞n)[ f |n ∈ A
andg( f |n) ⊇ σ ], so(∃∞n) f |n ∈ A′. The converse is clear.

To get B ⊆ A′ such thatGg” B ∈ Kσ , let us consider{t ∈ A ∩ T : g(t) ⊇ σ 〈̂i 〉}.
Since[T] ⊆ Yσ , we know that(∀ f ∈ [T])(∀i ∈ ω) there are finitely manyn ∈ ω such
that f |n ∈ A andg( f |n) ⊇ σ 〈̂i 〉.

Construction of B: So we are going to construct recursively finite setsBi ⊆ A∩T ⊆ 2<ω

and numbersl i such that
• if i < j , then max{|t| : t ∈ Bi } < l i ≤ min{|t| : t ∈ Bj },
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• if t ∈ Bi , thenσ 〈̂ j 〉 ⊆ g(t) for some j with l i−1 ≤ j < l i for i > 0, 0≤ j < l0 for
i = 0,

• µ({ f ∈ [T] : (∀ j ≤ i )(∃n) f |n ∈ Bj }) ≥ µ([T]) · (1−� j≤i
1

2 j+2 ).

step i < ω: Assume we already haveBj for j < i . Since∀ f ∈ [T]∀ j < l i−1 there are
only finitely manyn ∈ ω such thatg( f |n) ⊇ σ 〈̂ j 〉 and∀ f ∈ [T] there are infinitely
manyn with g( f |n) ⊇ σ ,

[T] =
⋃

l∈ω,l≥l i−1

{ f ∈ [T] : (∃n, j )[l i−1 ≤ n < l ∧

l i−1 ≤ j < l ∧ g( f |n) ⊇ σ 〈̂ j 〉]}
and the union on the right-hand side is increasing.

Therefore we can findl i such that

µ({ f ∈ [T] : (∃n, j )[l i−1 ≤ n < l i ∧ l i−1 ≤ j < l i ∧ g( f |n) ⊇ σ 〈̂ j 〉]})
≥ µ([T]) ·

(
1− 1

2i+2

)
.

Put Bi = {t : l i−1 ≤ |t| < l i ∧ (∃ j )[l i−1 ≤ j < l i ∧ g(t) ⊇ σ 〈̂ j 〉]}. Clearly Bi is as
required.

step ω: Let B = ⋃
i∈ω Bi .

We will checkGB satisfies the requirements.

By the aboveGB ⊆ [T]. Similarly by constructionµ(GB) ≥ µ
( [T ]

2

)
> 0.

We claim thatGg” B is empty. To see this note that
• σ ⊆ g(t) for all t ∈ B,
• for all j ∈ ω there are finitely manyt ∈ B with σ 〈̂ j 〉 ⊆ g(t) (namelyt ∈ Bi with

l i−1 ≤ j < l i in this case).
So if x ∈ ωω then there are only finitely manyn such thatx|n = g(t) for somet ∈ B.
Therefore we are done.

case 2: µ(Yσ ) = 0 for all σ ∈ ω<ω. This meansµ(Xσ ) = µ(
⋃

i∈ω Xσ 〈̂i 〉) for all σ ∈
ω<ω.

Construction of B: We can recursively construct setsUj , Z j ⊆ 2ω, finite setsBj ⊆
2<ω, Dj , Ej ⊆ ω<ω and numbersl j such that
• Uj = { f ∈ GA : (∀l ≤ j )(∃n) f |n ∈ Bl },
• µ(Uj ∩ Z j ) ≥ µ(GA) · (1− Σl≤ j

1
2l+2 ),

• Z j = ⋃
σ∈Ej

Xσ and for allσ ∈ Ej , Xσ has positive measure,

• Ej ⊆ ωl j ,
• (∀τ ∈ Dj )τ |l j−1 ∈ Ej−1,
• (∀τ ∈ Ej )τ |l j−1 ∈ Ej−1,
• g|Bj : Bj → Dj onto,
• if σ ∈ Dj thenl j−1 < |σ | < l j ,
• if t ∈ Bj thenl j−1 < |t| < l j .

step j < ω: Assume we already haveUl , Zl , Bl , Dl , El , l l for l < j .
First chooseBj such that|t| > l j−1 for all t ∈ Bj , such thatµ({ f ∈ Uj−1 ∩ Z j−1 :

(∃n) f |n ∈ Bj }) is close enough toµ(Uj−1 ∩ Z j−1), and such that for allt ∈ Bj ,
g(t) ⊃ σ holds for someσ ∈ Ej−1.
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Let Dj = {g(t) : t ∈ Bj }. Choosel j such thatl j > |t|, |g(t)| for anyt ∈ Bj .
Finally we can findEj by assumption of case 2: chooseEj so thatZ j =⋃

σ∈Ej
Xσ

andµ(Z j ∩Uj ) is close enough toµ(Z j−1 ∩Uj ).
step ω: Let B = ⋃

j∈ω Bj , and we will checkGB satisfies the requirements.
Clearly { f ∈ GA : (∀ j )(∃n) f |n ∈ Bj } ⊆ GB and the first set has measure

≥ µ(GA)
2 > 0 by construction. SoGB �∈ N .

Let D = ⋃
j∈ω Dj . Theng” B = D, so we haveGg” B = GD.

It suffices to showGD ⊆ [T] where[T] = {x ∈ ωω : (∀ j )x|l j ∈ Ej } (note
T is a compact tree). To show this, assumex ∈ GD. Then (∃∞n)x|n ∈ D, so
(∃∞ j )(∃n)x|n ∈ Dj , therefore(∃∞ j )x|l j−1 ∈ Ej−1. So we have(∀ j )x|l j ∈ Ej ; this
meansx ∈ [T]. �

3.7. Destructibility and indestructibility of ideals

In Section 2, we characterized the ideals which areP-indestructible for a given forcing
notionP. Conversely, we may fix some (definable) tall ideal and ask which forcing notions
destroy it. Natural candidates for such ideals are those derived from the forcing notions
we are studying. Recall (seeSection 2.4) that IP = {I ⊆ 2<ω( or ω<ω) : GI ∈ IP}
whereP = B \ IP is a real forcing. So, e.g.IC = {I ⊆ 2<ω : GI is meager}, etc. By
Theorem 2.4.5((vi)→(v)), IS = {I ⊆ 2<ω : GI ∈ cntble} is destroyed by any forcing
notionP which adds a new real, that is, the ideal generated byIV

S
in VP is not tall. Similarly,

we get, as pointed out by the referee:

Proposition 3.7.1. The following are equivalent for a forcing notionP:

(i) P adds an unbounded real,
(ii) P destroysIM = {I ⊆ ω<ω : GI ∈ Kσ }.
Proof. First we show (i) implies (ii). This is the same as (vi) implies (v) inTheorem 2.4.6.

The proof of the converse is as follows. AssumeP is ωω-bounding. We need to show
IV
M

still generates a tall ideal inVP. So letA ∈ [ω<ω]ω. We need to findI ∈ IV
M

such that
|I ∩ A| = ℵ0.

case 1: AssumeA contains a branch. That is, there isx ∈ ωω such thatx|n ∈ A for
infinitely manyn. SinceP is ωω-bounding, there isG ∈ Kσ

V such thatx ∈ G. In fact,
there isI ∈ IV

M
such thatx|n ∈ I for all n. Thus|A∩ I | = ℵ0 as required.

case 2: Assume A has no branch. Then, by a compactness argument, there must be
σ ∈ ω<ω such that for infinitely manyn ∈ ω there isτn such thatσˆ〈n〉̂ τn ∈ A. Since
P is ωω-bounding, there isg : ω → [ω<ω]<ω in V such that for alln, if there isτ such
thatσˆ〈n〉̂ τ ∈ A, then there is suchτ with τ ∈ g(n). Let I = {σˆ〈n〉̂ τ : τ ∈ g(n)} ∈ V.
ClearlyGI = ∅ ∈ Kσ

V. ThusI ∈ IV
M

. Since|A∩ I | = ℵ0 we are done. �

Proposition 3.7.2. The following are equivalent for a forcing notionP:

(i) P adds a Cohen real,
(ii) P destroysIC = {I ⊆ ω<ω : GI ∈M},
(iii) P destroysInwd = {I ⊆ ω<ω : GI ∈ nwd }.
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Proof. First we prove (i) implies (ii). This is the same as (i) implies (v) inTheorem 2.4.8.
(ii) implies (iii) is trivial.
For (iii) implies (i) we argue as follows. LetA ∈ [2<ω]ω be such that|A∩ I | < ℵ0 for

all I ∈ IV
nwd. By compactness of 2ω, A has a branchx, i.e. x|n ∈ A for infinitely many

n ∈ ω. We claim thatx is Cohen overV. For assume this were not the case. Then, for
some closed nowhere dense treeT ⊆ 2<ω belonging toV, x ∈ [T]. Clearly[T] = GT so
T ∈ IV

nwd. Sincex|n ∈ T for all n, we get|A∩ T | = ℵ0, a contradiction. �

We believe an analogous result holds for random forcingB, but we were unable to prove it.

Theorem 3.7.3. There is anL-indestructible andC-destructible tall ideal. Namely,IC =
{I ⊆ ω<ω : GI ∈M} andInwd = {I ⊆ ω<ω : GI ∈ nwd } are such ideals.

Proof. This is immediate fromProposition 3.7.2. �

Theorem 3.7.4. There is aD-indestructible andB-destructible tall ideal. Namely,IB =
{I ⊆ 2<ω : GI ∈ N } is such an ideal.

Proof. By Theorem 2.4.9, I = IB is B-destructible. Thus it is enough to show that
I is D-indestructible. ByTheorem 2.4.10, it suffices to prove that for all one-to-one
partial functions f : ω↑<ω → 2<ω with Gdom( f ) �∈ MD, there is I ∈ I such that
G f −1” I �∈ MD. We shall even establish there isI ⊆ 2<ω such that|I ∩ 2n| ≤ 1 for
all n with G f −1” I �∈MD. Clearly I ∈ I for suchI .

So fix f as required. SinceGdom( f ) �∈ MD, there exists〈s0, h0〉 ∈ D such that
U〈s0,h0〉 \ Gdom( f ) ∈MD (i.e. Gdom( f ) isD-comeager inU〈s0,h0〉).

Let T0 ⊆ ω↑<ω be the collection of alls ∈ ω↑<ω compatible with〈s0, h0〉; i.e. s ∈ T0
iff s0 ⊆ s ands(i ) ≥ h0(i ) for all i ∈ |s|. Fors ∈ T0 define the rank functionrk(s) by

rkk(s) = 0 iff (∃m > |s|)(∃〈tn : n ∈ ω〉 ⊆ T0)|tn|
= m∧ s⊆ tn ∧ tn(|s|) ≥ n∧ tn ∈ dom( f )

rkk(s) ≤ β iff (∃m > |s|)(∃〈tn : n ∈ ω〉 ⊆ ωm)|tn|
= m∧ s⊆ tn ∧ tn(|s|) ≥ n∧ rk(tn) < β.

As is usual for rank arguments,rk(s) is either< ω1, or undefined (in which case we write
rk(s) =∞).

Claim 3.7.5. For any s∈ T0, rk(s) < ∞.

Proof of Claim 3.7.5. Assumerk(s) is undefined for somes ∈ T0. We recursively define
h ∈ ωω such thats⊆ h, h(i ) ≥ h0(i ) for all i ∈ ω, and

whenevert ∈ T0, s 	 t, is compatible with〈s, h〉,
thenrk(t) = ∞ andt �∈ dom( f ). (∗)

Sincerk(s) = ∞, we findh(|s|) ≥ h0(|s|) such that whenevers 	 t, |t| = |s|+1, t (|s|) ≥
h(|s|), thenrk(t) = ∞ andt �∈ dom( f ).

Assumem > |s| andh|m has been defined such that (∗) holds for allt ∈ T0 of length
≤ m. We need to defineh(m) such that (∗) still holds for all t ∈ T0 of length≤ m+ 1.

Assume this is impossible. Then there is a sequence〈tn : n ∈ ω〉 ⊆ T0 such that
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|tn| = m+ 1, tn(m) ≥ n, s⊆ tn, tn(i ) ≥ h(i ) for all i < m, and

• eitherrk(tn) <∞,
• or tn ∈ dom( f )

for all n ∈ ω. By pruning the sequence〈tn : n ∈ ω〉, we may assume there iss′ ∈ T0,
s′ ⊇ s, |s′| ≤ m, such thats′ ⊆ tn andtn(|s′|) ≥ n for all n. Noterk(s′) = ∞ and either
s′ = s or s′ �∈ dom( f ) by inductive hypothesis (∗). By definition of rank we must have
rk(tn) = ∞ andtn �∈ dom( f ) for almost alln, a contradiction.

Therefore the recursive construction can be carried out. ClearlyU〈s,h〉 ⊆ U〈s0,h0〉 and, by
(∗), GB ∩U〈s,h〉 = ∅. This contradicts the fact thatGdom( f ) isD-comeager inU〈s0,h0〉. �

For s ∈ T0 with rk(s) = 0, fix ms ∈ ω, 〈ts
n : n ∈ ω〉 ⊆ T0 with |ts

n| = ms, s ⊆
ts
n, ts

n(|s|) ≥ n and ts
n ∈ dom( f ). Using that f is one-to-one and pruning the sequences

〈ts
n : n ∈ ω〉 if necessary, we may assume that, if we let

I = { f (ts
n) : s ∈ T0, n ∈ ω, rk(s) = 0}

then for eachm there is at most onet ∈ 2m such thatt ∈ I . So I ∈ I, and we need to check
thatG f −1” I �∈MD. In fact, we shall argue thatG f −1” I is still D-comeager inU〈s0,h0〉.

Choose〈s, h〉 such thatU〈s,h〉 ⊆ U〈s0,h0〉; that is,s ∈ T0 andh(i ) ≥ h0(i ) for all i . By
the claim,rk(s) < ∞. By a standard induction onrk(s) we argue that there iss′ ∈ T0
compatible with〈s, h〉 such thatrk(s′) = 0 (if rk(s) = 0, s′ = s works. If rk(s) > 0, find
s′ ∈ T0 compatible with〈s, h〉 such thatrk(s′) < rk(s) and use the inductive assumption).
Then, by definition of rank and choice of thets′

n , we find n such thatts′
n is compatible

with 〈s, h〉. So ts′
n ∈ f −1” I . Since the〈s, h〉 was arbitrary, this argument in fact shows

G f −1” I ∩U〈s,h〉 �= ∅, and we are done.�

4. Iterated Sacks forcing indestructibility

We generalize the results about single-step Sacks forcing indestructibility to iterated
Sacks forcing.

4.1. Product forcing and isomorphisms of names arguments

Here we summarize the known results about iterated forcing indestructibility and
product forcing indestructibility of MAD families. Using “isomorphism of names”
arguments, one can prove the following theorem:

Theorem 4.1.1 (Kunen). Letκ be any uncountable cardinal such thatκω = κ .

1. In the model obtained by addingκ many Cohen reals over a model of CH, the size of
any MAD family is eitherℵ1 or κ . Furthermore there is a Cohen indestructible MAD
family of sizeℵ1, and no Cohen indestructible MAD family of sizec in this model.

2. In the model obtained by addingκ many random reals over a model of CH, the size of
any MAD family is eitherℵ1 or κ . Furthermore there is a random indestructible MAD
family of sizeℵ1, and no random indestructible MAD family of sizec in this model.
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For more details, see [3,14] (see also [10, Proposition 7]). InSections 4.4and4.7 below,
we shall investigate to which extent similar results can be proved for iterated Sacks forcing.

It is easy to proveTheorem 4.1.1, because these forcings can be thought of as large
products and they satisfy the factor lemma [15]. Moreover finite support product and finite
support iteration of Cohen forcing is the same.

For non-c.c.c. forcings, we can’t use a finite support product, because it collapsesℵ1.
The “isomorphism of names” argument also works for countable support products. So we
can prove a similar result for Sacks forcing. For anyκ ≥ ℵ2, we have

Theorem 4.1.2 (Folklore). Letκ be any uncountable cardinal such thatκω = κ .
Any infinite MAD family is either of sizeℵ1 or of sizeκ in the model obtained by adding

κ-many Sacks reals by countable support product over a model of CH.

Since there is no factor lemma for side-by-side Sacks forcing, we can’t argue that a MAD
family of sizec is S-destructible in this model (see alsoConjecture 4.4.4).

However, the countable support product of tree forcings whose conditions are
isomorphic toω<ω, M andL, collapsesℵ1. So we have no analogue of4.1.2in this case.

4.2. Characterization ofS2-indestructibility

Our goal in this and the next sections is to characterize iterated Sacks indestructibility
in the same vein as the characterization ofS-indestructibility fromTheorem 2.4.5. For
simplicity, let us first considerS2 = S ∗ Ṡ, the two step iteration of Sacks forcing. It is
well-known thatS2 is forcing equivalent toB((2ω)2) \ cntble2 whereB((2ω)2) are the
Borel sets in the plane andcntble2 is the Fubini power of the ideal of countable sets (see
[13,22,7] for details).

Here, for any idealI ⊆ P(2ω), we define itsFubini power I 2 ⊆ P((2ω)2) by

X ∈ I 2 ⇔ {x ∈ 2ω : Xx �∈ I } ∈ I .

For X ∈ P((2ω)2), Xx = {y : (x, y) ∈ X} denotes thevertical section at x ∈ 2ω.

Lemma 4.2.1. S2 has weak fusion.

Proof. Let E ∈ S2 = B((2ω)2) \ cntble2 and anS2-nameĊ for an infinite subset ofω be
given. Without loss, we may assumeE = [T] whereT ⊆ (2<ω)2 is a tree such that

• (∀s ∈ p(T)) if t0, t1 are such that(s, t0), (s, t1) ∈ T , then p(T (s,t0)) = p(T (s,t1)) is
perfect,

• (∀x ∈ [p(T)]) the vertical sectionTx = {t : (x||t |, t) ∈ T} is perfect,

where

• p(T) = {s : (∃t) (s, t) ∈ T} denotes the projection ofT onto the first coordinate and
[p(T)] is of course the set of branches throughp(T),

• T (s,t) = {(s′, t ′) ∈ T : (s, t) ⊆ (s′, t ′) ∨ (s′, t ′) ⊆ (s, t)} is the subtree ofT defined by
(s, t), for (s, t) ∈ T .
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Call such treesT nice.
(It is well-known that for every analytic subsetA of R2 which does not belong tocntble2,
we may find a nice perfect treeT such that[T] ⊆ A. See [22] or [7] for details.)

We construct, by recursion onn ∈ ω,

• finite antichainsBn = {(sσ , tσ,τ ) : σ ∈ 2n, τ ∈ 2n} ⊆ (2<ω)2,
• nice treesTn ∈ S2,
• finite antichainsAn ⊆ S2,
• bijectionshn : Bn → An,
• a one-to-one functiong : ⋃n∈ω{n} ×An → ω,

such that

(a) if n < m andσ, τ ∈ 2n, σ ′, τ ′ ∈ 2m, σ ⊆ σ ′, τ ⊆ τ ′, thensσ ⊆ sσ ′ andtσ,τ ⊆ tσ ′,τ ′ ,
(b) Tn+1 ≤n Tn ≤n−1 · · · ≤0 T0 ≤ T ,
(c) (sσ , tσ,τ ) ∈ Tn for σ, τ ∈ 2n, andTn ≤ ⋃

σ,τ∈2n[(sσ , tσ,τ )],
(d) hn(sσ , tσ,τ ) ≥ [(sσ , tσ,τ )] ∩ Tn for σ, τ ∈ 2n,
(e) A � “g(n, A) ∈ Ċ” for A ∈ An,

where≤n denotes the standard fusion order onS2 (in its representation asB((2ω)2) \
cntble2). Namely,S ≤n T if S ≤ T and all(2n)2 nodes on then-th splitting level ofT
belong toS.

Fix n, and assumeBm, Tm,Am, hm, g have been constructed form < n. ConsiderTn−1
(with the convention thatT−1 = T).

n = 0 In this case simply letBn = B0 = {(s〈〉, t〈〉,〈〉)} where(s〈〉, t〈〉,〈〉) is the stem ofT .
The rest of the construction is as in the general case.

n > 0 Fix σ ∈ 2n−1. Consider{(sσ , tσ,τ ) : τ ∈ 2n−1}. SinceTn−1 is nice, there is a tree
S⊆ 2<ω such thatp((Tn−1)

(sσ ,tσ,τ )) = S for all τ ∈ 2n−1. Let x0 �= x1 belong to[S].
Again by niceness,(Tn−1)xi is perfect fori ∈ 2, and, a fortiori, all((Tn−1)

(sσ ,tσ,τ ))xi are
perfect. This means we may findsσ 〈̂i 〉 andtσ 〈̂i 〉,τ 〈̂ j 〉 all of the same length fori , j ∈ 2
and forτ ∈ 2n−1 such that
• sσ 〈̂i 〉 ⊆ xi ,
• sσ 〈̂0〉⊥sσ 〈̂1〉,
• tσ 〈̂i 〉,τ 〈̂ j 〉 ∈ ((Tn−1)

(sσ ,tσ,τ ))xi which means(sσ 〈̂i 〉, tσ 〈̂i 〉,τ 〈̂ j 〉) ∈ Tn−1,
• tσ 〈̂i 〉,τ 〈̂0〉⊥tσ 〈̂i 〉,τ 〈̂1〉.

Fix i ∈ 2. SinceTn−1 is nice, there isS′ ⊆ 2<ω such thatp((Tn−1)
(sσ 〈̂i 〉,tσ 〈̂i 〉,τ )) = S′

for all τ ∈ 2n. List {τk : k ∈ 2n} = 2n. By recursion onk < 2n we construct perfect
treesSk ⊆ 2<ω, nice treesTσ 〈̂i 〉,k ⊆ Tn−1 and natural numbersnk such that
• Sk+1 ⊆ Sk ⊆ · · · ⊆ S0 ⊆ S′,
• Sk = p(Tσ 〈̂i 〉,k),
• the stem ofTσ 〈̂i 〉,k extends(sσ 〈̂i 〉, tσ 〈̂i 〉,τk ),
• Tσ 〈̂i 〉,k � “nk ∈ Ċ”,
• thenk are all distinct.
This is clearly possible. At stagek simply consider the tree(Tn−1)

(sσ 〈̂i 〉,tσ 〈̂i 〉,τk
)∩(Sk−1×

2<ω) (whereS−1 = S′ in casek = 0). This is a nice tree, and we may find a nice subtree
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Tσ 〈̂i 〉,k forcing a numbernk to belong toĊ which is distinct from the previously by
chosen numbers. Finally letSk = p(Tσ 〈̂i 〉,k). This completes thek-recursion.

Let
• hn(sσ 〈̂i 〉, tσ 〈̂i 〉,τk ) = Tσ 〈̂i 〉,k,
• g(n, Tσ 〈̂i 〉,k) = nk.
Finally define

Tσ 〈̂i 〉 =
(⋃

{Tσ 〈̂i 〉,k : k ∈ 2n}
)
∩ (S2n−1× 2<ω).

Tσ 〈̂i 〉 is easily seen to be a nice tree withp(Tσ 〈̂i 〉) = S2n−1.
Unfix i andσ , and put

Tn =
⋃
{Tσ 〈̂i 〉 : σ ∈ 2n−1 ∧ i ∈ 2}.

ClearlyTn is still a nice tree andTn ≤n−1 Tn−1 is immediate. Next,
• Bn = {(sσ 〈̂i 〉, tσ 〈̂i 〉,τk ) : σ ∈ 2n−1, i ∈ 2, k ∈ 2n} is an antichain,
• An = hn[Bn] is an antichain,
• hn is a bijection,
and properties (a) through (e) are obvious by construction.

Finally, if we carry out the above construction by going recursively through all pairs
(σ, i ) ∈ 2n−1 × 2 (instead of dealing with them simultaneously), we may also assume
that g(n, ·) is one-to-one, and that the range ofg(n, ·) is disjoint from the range of
g(m, ·) for m < n. This showsg will be one-to-one, and completes then-recursion.

We are left with showing that (a) through (e) above imply thatS2 has weak fusion.
However, if we let

T∞ =
⋂
n∈ω

Tn

then[T∞] = GB is clear by (c), and[T∞] �∈ cntble2 by (b). So 1 inDefinition 2.2.1holds.
(2’) (and hence 2) is immediate by (d), and 3 is property (e). This completes the proof of
the lemma. �

Theorem 4.2.2. LetI be a tall ideal. The following are equivalent:

(i) I is S2-indestructible.
(ii) ∀B ⊆ (2<ω)2 such that GB �∈ cntble2, ∀ f : B → ω, ∃I ∈ I such that

G f −1” I �∈ cntble2.

(iii) ∀B ⊆ (2<ω)2 such that GB �∈ cntble2, ∀ f : B → ω one-to-one,∃I ∈ I such that
G f −1” I �∈ cntble2.

(iv) ∀ f : (2<ω)2 → ω one-to-one,∃I ∈ I such that Gf −1” I �∈ cntble2.

Proof. The equivalence of (i) to (iii) is immediate fromLemma 4.2.1andTheorem 2.2.2.
Concerning (iv), note thatcntble2 is strongly homogeneous, and use2.4.2. �
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4.3. Characterization ofSα-indestructibility

Theorem 4.2.2can be generalized to an analogous result forSα for countable ordinals
α, whereSα is theα-stage iteration of Sacks forcing. This is done as follows.

For any idealI ⊆ P(2ω), define theα-th Fubini power I α ⊆ P((2ω)α) to consist of
setsX ⊆ (2ω)α such that there is a family{Ax ∈ I : x ∈ (2ω)<α} such that for ally ∈ X
there is aβ < α such thaty(β) ∈ Ay|β . This notion is due to Zapletal [22]. His definition is
in terms of infinite games and is easily seen to be equivalent to ours. For another equivalent
definition, see [7].

It is obvious thatI 1 = I and that the present definition ofI 2 is equivalent to the one in
the last section. It is well-known thatSα is forcing equivalent toB((2ω)α) \ cntbleα where
B((2ω)α) are the Borel subsets of(2ω)α (see [22] and [7] for details).

For countableα, let Fn(α, 2<ω) = {ϕ : dom(ϕ) ⊆ α finite ∧ ran(ϕ) ⊆ 2n for somen}.
Note thatFn(α, 2<ω) plays the same role for countableα as do 2<ω or (2<ω)n in the finite
case. For anyA ⊆ Fn(α, 2<ω), put

GA =
{

x ∈ (2ω)α : (∀F ∈ [α]<ω)(∀n)(∃m≥ n)(∃ϕ ∈ A)
dom(ϕ) ⊇ F, ran(ϕ) ⊆ 2m,

(∀β ∈ dom(ϕ))x(β)|m = ϕ(β)

}

theGδ-closure of A (note it is obviousGA is aGδ-subset of(2ω)α).
We omit the details of the following natural generalization ofTheorem 4.2.2.

Theorem 4.3.1. LetI be a tall ideal. The following are equivalent:

(i) I is Sα-indestructible.
(ii) ∀B ⊆ Fn(α, 2<ω) such that GB �∈ cntbleα , ∀ f : B → ω, ∃I ∈ I such that

G f −1” I �∈ cntbleα.
(iii) ∀B ⊆ Fn(α, 2<ω) such that GB �∈ cntbleα, ∀ f : B → ω one-to-one,∃I ∈ I such

that Gf −1” I �∈ cntbleα.
(iv) ∀ f : Fn(α, 2<ω)→ ω one-to-one,∃I ∈ I such that Gf −1” I �∈ cntbleα .

4.4. Construction of anS-indestructible,S2-destructible MAD family

In this subsection we prove the following strengthening ofTheorem 3.4.1.

Theorem 4.4.1. Assume eithercov(M) = c or b = c. There is a MAD familyA such that

1. A is S-indestructible,
2. A is S2-destructible.

Proof. Let { fα : 2<ω → (2<ω)2; α < c} be an enumeration of one-to-one functions.

We are going to construct a MAD familyA = {Aα : α < c} ⊆ P((2<ω)2) by recursion
in c steps such that

(a) if (∀β < α)G f −1
α ” Aβ

∈ cntble thenG f −1
α ” Aα

�∈ cntble,

(b) GAα ∈ cntble2.
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By (a) andTheorem 2.4.5, A is S-indestructible, and by (b) andTheorem 4.2.2, A is S2-
destructible.

In fact, instead of (b), we shall guarantee the following stronger condition:

(b’) (b’1) either(∃x ∈ 2ω)GAα ⊆ {x} × 2ω,
(b’2) or (∀x ∈ 2ω)|(GAα )x| ≤ 1.

It is obvious(b’) implies (b).
We consider two cases in stageα.

case 1: (∃β < α)G f −1
α ” Aβ

is uncountable Then (a) is trivially satisfied, and we need to
find Aα almost disjoint from anyAβ , β < α, such that (b’) holds. Since|α| < c there
is x ∈ 2ω such that for allβ < α, if GAβ ⊆ {y} × 2ω for somey (i.e. (b’1) holds), then
x �= y. Next findy ∈ 2ω such that for allβ < α, if (b’2) holds forβ, theny �∈ (GAβ )x.
So (x, y) �∈ GAβ for all β < α. Let Aα = {(x|n, y|n) : n ∈ ω}. ThenGAα = {(x, y)}
and|Aα ∩ Aβ | < ℵ0 for all β < α.

case 2: otherwise i.e. (∀β < α)G f −1
α ” Aβ

∈ cntble.

We proceed in two steps. First we show

Lemma 4.4.2. Let f : 2<ω → (2<ω)2 be any one-to-one function. There exists a set
A ∈ [(2<ω)2]ω such that
1. G f −1” A �∈ cntble,
2.
(b”1) either(∃x ∈ 2ω)GA ⊆ {x} × 2ω,
(b”2) or (∀x ∈ 2ω)|(GA)x| ≤ 1.

Let us first argue how the proof of case 2 is completed usingLemma 4.4.2. Apply 4.4.2
with f = fα to getA. Clearly A satisfies (a) and(b’), but it need not be almost disjoint
from theAβ , β < α.

If cov(M) = c, applyLemma 3.4.2with fα replaced byfα| f −1
α ” A (it is easy to see

3.4.2also applies in this more general case), and getAα ⊆ A almost disjoint fromAβ ,
β < α, such thatG f −1” Aα

�∈ cntble. SinceAα is a subset ofA, (b’) still holds, and we
are done.

If b = c, either argue directly that the analogue of3.4.2holds or use the argument
of Hrušák [10] or Kurili ć [16] in the proof thatb = c implies the existence of aC-
indestructible MAD family. (In fact, underb = c, the strengthening of3.4.2obtained
by replacingcntble by M holds. See [10] or [16] for details.) Then proceed as in the
casecov(M) = c.

This completes the proof of the theorem.�

Proof of Lemma 4.4.2. Let f : 2<ω → (2<ω)2 one-to-one be given. Writef = 〈 f0, f1〉
where fi denotes thei -th coordinate off (So f (t) = 〈 f0(t), f1(t)〉 for all t ∈ 2<ω and
fi (t) ∈ 2<ω for all t ∈ 2<ω andi ∈ 2).

case 1: (∃x ∈ 2ω)(∃s0 ∈ 2<ω)(∀n)(∀s ⊇ s0)(∃t ⊇ s) f0(t) ⊇ x|n. Fix suchx ands0. It is
straightforward to constructB ⊆ 2<ω such thats0 ⊆ t for all t ∈ B and
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1. GB is perfect,
2. (∀n)(∀∞t ∈ B) f0(t) ⊇ x|n.
Let A = f ” B. SoB = f −1” A. By 2, it is immediate thatGA ⊆ {x}× 2ω. So we are in
case (b”1).

case 2: otherwise; (∀x ∈ 2ω)(∀s0 ∈ 2<ω)(∃n)(∃s⊇ s0)(∀t ⊇ s) f0(t) �⊇ x|n. In this case
we recursively construct{sσ : σ ∈ 2<ω} and{tσ : σ ∈ 2<ω} such that

(i) σ ⊆ τ impliessσ ⊆ tσ ⊆ sτ ,
(ii) σ⊥τ impliessσ⊥sτ ,
(iii) for all n, if σ �= τ ∈ 2n, then f0(sσ )⊥ f0(sτ ) and(∀t ⊇ tσ ) f0(t)⊥ f0(sτ ),
(iv) |σ | < |τ | implies| f0(sσ )| < | f0(sτ )|.
Note first that as a consequence we get
(v) f0(sσ ) ⊂ f0(sτ ) impliesσ ⊂ τ .

(By (iv), we must have|σ | ≤ |τ |. Let n = |σ |. If τ |n �= σ , then by (iii) and (i),
f0(sσ )⊥ f0(sτ ), a contradiction. Henceτ |n = σ , andσ ⊂ τ follows.)

Let us check that the recursive construction can be carried out.s〈〉 = 〈〉 = t〈〉.
Assumen > 0 and{sσ : σ ∈ 2n−1} and{tσ : σ ∈ 2n−1} have been constructed

so that (i) through (iv) hold. List 2n as{σi : i ∈ 2n}. First fix uσi ⊇ tσi |(n−1)
pairwise

incompatible. Then construct, by recursion oni , xi ∈ 2ω, ni ∈ ω, sσi ∈ 2<ω, t i
j ∈

2<ω( j ∈ 2n) such that
• f0(sσi ) ⊇ xi |ni ,
• (∀ j �= i )(∀t ⊇ t i

j ) f0(t) �⊇ xi |ni ,

• uσi ⊆ t0
i ⊆ · · · ⊆ t i−1

i ⊆ t i
i = sσi ⊆ t i+1

i ⊆ · · · ⊆ t2n−1
i .

Note thatt i
j will be produced simultaneously for allj (for fixed i ).

step i = 0 Let x0 ∈ { f0(t) : uσ0 ⊆ t}, that is,x0 is a limit point of the f0(t), uσ0 ⊆ t .
That such a limit exists follows from compactness and from the fact thatf is
one-to-one. By assumption, we can findn0 and t0

j ⊇ uσ j ( j �= 0) such that

(∀ j �= 0)(∀t ⊇ t0
j ) f0(t) �⊇ x0|n0. Let t0

0 = sσ0 be such thatuσ0 ⊆ sσ0 and
f0(sσ0) ⊇ x0|n0.

step i + 1 This is almost identical. Letxi+1 ∈ { f0(t) : t i
i+1 ⊆ t}. Find ni+1 and

t i+1
j ⊇ t i

j ( j �= i + 1) such that(∀ j �= i + 1)(∀t ⊇ t i+1
j ) f0(t) �⊇ xi+1|ni+1.

Let t i+1
i+1 = sσi+1 be such thatt i

i+1 ⊆ sσi+1 and f0(sσi+1) ⊇ xi+1|ni+1.

In the end, lettσi = t2n−1
i . Then property (iii) is satisfied (this is the main point of the

above construction). (i) and (ii) are also clear by choice of theuσi and by construction.
Concerning (iv), we can easily make it hold by choosing the aboveni large enough.
This completes the recursive construction.

It is relatively easy to further prune the family{sσ : σ ∈ 2<ω} such that
(vi) if σ ⊂ τ and there isθ ⊃ τ such thatf1(sσ ) ⊂ f1(sθ ), then f1(sσ ) ⊂ f1(sτ )

(thetσ are no longer relevant).
Set B = {sσ : σ ∈ 2<ω} and A = f ” B. So B = f −1” A. By (i) and (ii), GB is

perfect. So it suffices to check thatGA satisfies (b”2). Fixx ∈ 2ω, and assume there are
y0 �= y1 with (x0, y0), (x1, y1) ∈ GA. This means there are infinite setsYi (i ∈ 2) and
σ i

n for n ∈ Yi such that

〈x|n, yi |n〉 = f (sσ i
n
) = 〈 f0(sσ i

n
), f1(sσ i

n
)〉
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for all n ∈ Yi and i ∈ 2. Note that ifn < m andn, m ∈ Y0 ∪ Y1, thenσ i
n ⊂ σ

j
m by

property (v) (wherei ( j respectively) is such thatn ∈ Yi (m ∈ Yj respectively)). Fixk
such thaty0|k �= y1|k. Find k ≤ n0 < n1 < m0 such thatn0, m0 ∈ Y0 andn1 ∈ Y1.
Thus, by the preceding remark,σ 0

n0
⊂ σ 1

n1
⊂ σ 0

m0
. Also f1(sσ0

n0
) = y0|n0 ⊂ y0|m0 =

f1(sσ0
m0

). Therefore, by (vi),y0|n0 = f1(sσ0
n0

) ⊂ f1(sσ1
n1

) = y1|n1.

This contradiction finishes the proof ofLemma 4.4.2. �
Notice that the MAD family of Theorem 4.4.1necessarily has sizec: since

cov(cntble2) = c, by Lemma 3.1.2, any MAD family of size<c is S2-indestructible.
Our original motivation to prove4.4.1came from a question of Hrušák [10, Question 3].

Namely, he asked whether it is consistent that no MAD family of sizec is S-indestructible
(more exactly, he conjectured there is no such MAD family in the Sacks model). This, in
turn, was motivated by his incorrect argument showing there is anS-indestructible MAD
family in ZFC.

Originally,Theorem 4.4.1was intended to give a negative answer to Hrušák’s question.
However, since the result builds on assumptions beyondZFC (cov(M) = c or b = c), we
were not able to achieve this. Still, the way4.4.1is proved from3.4.1strongly suggests that
if there is anS-indestructible MAD family inZFC, then there is also anS-indestructible
MAD family of sizec in ZFC. Note, in particular, thatLemma 4.4.2is aZFC-result. We
believe that both are true.

Conjecture 4.4.3. There is anS-indestructible MAD family inZFC.

Conjecture 4.4.4. There is anS-indestructible MAD family of sizec in ZFC. More
explicitly, there is anS-indestructible,S2-destructible MAD family inZFC.

Hrušák’s original conjecture was motivated by the fact (seeTheorem 4.1.1) that there
is noC-indestructible MAD family of sizec in the Cohen model. However, the situation
with C andS is basically different, forCα (the α-stage finite support iteration or finite
support product ofC) is forcing equivalent toC for countableα while S, S2, S3, . . . , Sα

are all different. Accordingly, we shall see inSection 4.7that Hrušák’s conjecture is correct
in the sense there is noSω1-indestructible MAD family of sizec in the Sacks model
(Theorem 4.7.1).

4.5. Sω1-indestructibility

In Section 4.3, we characterizedSα-indestructibility for countable ordinalsα (see
Theorem 4.3.1). We now briefly consider uncountableα. In fact, by the following result
which seems to be well-known (see, for example, the comment in Blass’s survey article [3,
Section 11.5]), this boils down to the countable case. We include a sketch of the proof for
the sake of completeness.

Theorem 4.5.1. The following are equivalent for a tall idealI.

(i) I is Sα-indestructible for allα.
(ii) I is Sα-indestructible for some uncountableα.
(iii) I is Sω1-indestructible.
(iv) I is Sα-indestructible for all countableα.
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Proof. Clearly (i) implies (ii), (ii) implies (iii), and (iii) implies (iv). In fact, since no new
reals arise in limit stages of uncountable cofinality of the iteration, the equivalence of (iii)
and (iv) is easy to see. We shall sketch the argument for (iv) implies (i).

Lemma 4.5.2. Let α be an ordinal. Assume p0 ∈ Sα and Ȧ is anySα-name for a subset
ofω. Then there is p≤ p0 such that for all B⊆ ω, if there is q≤ p with q � “ B∩ Ȧ = ∅” ,
then there is r≤ p with

• supt(r ) = supt(p),
• r is compatible with q,
• r � “ B ∩ Ȧ = ∅” ,

where supt(p) = {β < α : p(β) �= 1̇} denotes thesupport of p.

Sketch of Proof of Lemma 4.5.2. This is a canonical fusion argument. Namely, one
builds a decreasing sequence〈qn : n ∈ ω〉 of conditions and auxiliary〈Fn ⊆ α finite:
n ∈ ω〉 such that

• p0 ≥ q0 ≥F0,0≥ q1 ≥ · · · ≥Fn−1,n−1 qn ≥Fn,n · · · ,
• ⋃

n∈ω Fn = ⋃
n∈ω supt(qn),

• qn can be thought of as a finite union of conditions deciding “n ∈ Ȧ”.

Essentially, at stagen, we consider then-th splitting levels of theqn(β) whereβ ∈ Fn.
Since this is a standard argument, we leave out the details.

Let p = ⋂
n∈ω qn be the fusion. Thensupt(p) = ⋃

n∈ω Fn = ⋃
n∈ω supt(qn). Now let

B ⊆ ω andq ≤ p such thatq � “ B∩ Ȧ = ∅”. Note there are finite maximal antichainsHn

of conditions belowp such thatr ∈ Hn decides “n ∈ Ȧ” and such thatsupt(r ) = supt(p)

for all r ∈ Hn. This meansp = Σ Hn for all n. For n ∈ B let Gn ⊆ Hn be such that
for r ∈ Gn, r � “n �∈ Ȧ” and for r ∈ Hn \ Gn, r � “n ∈ Ȧ”. Clearly, q ≤ ΣGn for
all n ∈ B. Thereforeq ≤ ⋂

n∈B ΣGn =: r . supt(r ) = supt(p) is straightforward by
construction. �

The above means that whatever is decided aboutȦ by a condition belowp is in fact
already decided by a condition with support= supt(p).

A similar fusion argument shows that given anyp0 ∈ Sα there isp ≤ p0 such that
for all β ∈ supt(p), whatever is decided aboutp(β) by a condition belowp|β is in fact
already decided by a condition with support= supt(p|β) = supt(p) ∩ β. Call suchp
canonical. Informally, we may think of such a condition as an element ofSsupt(p). In
particular, if we letα0 = otp(supt(p)) < ω1, then there is a projection mappingπ
sendingp to π(p) ∈ Sα0 such that for eachβ0 < α0, π(p)(β0) is theSβ0-name for a
condition inS corresponding to theSβ -namep(β) whereβ is theβ0-th element ofsupt(p).
This makes sense becausep(β) depends only on coordinates insupt(p|β). Note thatπ is
an order-isomorphism between canonical conditions inSsupt(p) (below p) and canonical
conditions inSα0 (below π(p)). Some care has to be taken because whileSsupt(p) is a
suborder ofSα , it is notcompletely embedded inSα . Still, given anSα-nameȦ for a subset
of ω such that the pair(p, Ȧ) satisfies the condition of4.5.2, we may think ofȦ as an
Ssupt(p)-name (belowp), and we may also canonically project it to anSα0-nameπ(Ȧ).
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This projection has the property that for all canonicalq ≤ p, q ∈ Ssupt(p) and for all
n ∈ ω, q �Sα “n ∈ Ȧ” ⇐⇒ π(q) �Sα0

“n ∈ π(Ȧ)”.
Now assumeI is Sα-indestructible for all countableα, yet there is an uncountableα

such thatI is Sα-destructible. We shall reach a contradiction. Letp ∈ Sα and Ȧ be such
that p �Sα “ |Ȧ ∩ I | < ℵ0 for any I ∈ I”. Without loss p is canonical and the pair
(p, Ȧ) satisfiesLemma 4.5.2. Let α0 = otp(supt(p)), and letπ : Ssupt(p) → Sα0 be as
above. Without losssupt(p) ∩ ω1 ∈ ω1. Let α1 = supt(p) ∩ ω1. Thenπ |Sα1

= id, and
p andπ(p) are canonically compatible with common extensionp ∪ π(p); in fact, any
condition in Ssupt(p) below p is compatible withπ(p) and any condition inSα0 below
π(p) is compatible withp. Let Ḃ = π(Ȧ).

By assumption, findq ≤ π(p), q ∈ Sα0 and I ∈ I such thatq �Sα0
“ |Ḃ ∩ I | = ℵ0”.

Thenπ−1(q) ∈ Ssupt(p), π
−1(q) ≤ p andq andπ−1(q) are compatible with common

extensionq ∪ π−1(q). Find r0 ∈ Sα, r0 ≤ q ∪ π−1(q) and n ∈ ω such thatr0 �Sα
“ Ȧ∩ I ⊆ n”. For simplicity assume thatr0 �Sα “ Ȧ ∩ I = ∅”. By Lemma 4.5.2, there is
r ≤ p, r ∈ Ssupt(p) such thatr is compatible withr0 andr � “ Ȧ∩ I = ∅”. Sincer andr0
are compatible, alsor andπ−1(q) are compatible, and we may assume without loss that
r ≤ π−1(q). Thenπ(r ) ≤ q, π(r ) ∈ Sα0. Find s ≤ π(r ), s ∈ Sα0, andn ∈ I such that
s �Sα0

“n ∈ Ḃ”. Thenπ−1(s) ∈ Ssupt(p), π
−1(s) ≤ r , andπ−1(s) �Sα0

“n ∈ Ȧ”. This is
a contradiction, and the proof of the theorem is complete.�

4.6. Construction of an iterated Sacks indestructible MAD family

In this section, we sketch the proof of the following strengthening ofTheorem 3.4.1.

Theorem 4.6.1. Assume eithercov(M) = c or b = c. Then there is a MAD familyA
which isSα-indestructible for anyα.

Before starting out with the proof, a few comments are in order. First notice that in view
of Theorem 4.5.1, it suffices to consider countableα when doing the construction. Next, as
mentioned already when discussing3.4.1, this result is well-known in the case CH holds.
Namely, to show thata = ℵ1 in the iterated Sacks model one must construct a MAD family
which isSα-indestructible for all countableα. The former, however, was proved by Spinas
[3, Section 11.5] (or see [7,8] for an alternative proof).

Sketch of Proof. If a < c, we are done: for all countableα, cov(cntbleα) = c so that by
Corollary 3.1.3any MAD family of sizea will be Sα-indestructible for allα. Therefore
assumea = c.

In view of 4.3.1and4.5.1, list all one-to-one functionsf : Fn(α, 2<ω) → ω (α < ω1)

as{ fβ : β < c}. We need to construct pairwise almost disjoint{Aβ : β < c} such that

• for all β < c, if fβ : Fn(α, 2<ω) → ω andG f −1
β ” Aγ

∈ cntbleα for all γ < β, then

G f −1
β ” Aβ

�∈ cntbleα .

If the antecedent of this clause fails, stageβ of the construction is trivial. If it holds,
as in the proof of3.4.1, we may find a treeT ⊆ Fn(α, 2<ω) (whereα is such that
fβ : Fn(α, 2<ω)→ ω) such that[T] �∈ cntbleα andG f −1

β ” Aγ
∩ [T] = ∅ for all γ < β.
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If cov(M) = c, a real Cohen over the objects constructed so far easily yields a set
B ⊆ T with GB �∈ cntbleα and|B ∩ G f −1

β ” Aγ
| < ℵ0 for all γ < β, so thatAβ = fβ ” B

works (seeLemma 3.4.2and its proof).
If b = c, a dominating real does the same. (See the comments in the proof of

Theorem 4.4.1, as well as [10] and [16].) This completes the argument.�

4.7. There are no iterated Sacks indestructible MAD families of sizec in the Sacks model

Finally we show:

Theorem 4.7.1. In the Sacks model (the extension of a model of CH by forcing withSω2),
any MAD family which isSα-indestructible for allα has sizeℵ1.

We mentioned already at the end ofSection 4.4that this gives a positive answer to a
modified version of a question of Hrušák [10, Question 3], and that this can be considered
an analogue of the corresponding results on Cohen and random forcing inTheorem 4.1.1.

Proof. Assume the theorem was false and there is a MAD familyA = {Aα : α < ω2}
which isSω1-indestructible (this is the same byTheorem 4.5.1). Let Ȧ = {Ȧα : α < ω2}
be anSω2-name forA. By standard arguments, there exists anω1-club C ⊆ ω2 such that
for all α ∈ C,

�Sα “Ȧα = {Ȧβ : β < α} is a MAD family”

(in particular, this means that for allβ < α, Ȧβ is anSα-name). Since noAα is maximal
in the ultimate extension, we clearly have

�Sα “Ȧα is Sω2-destructible”

for all α ∈ C. Hence, byTheorem 4.5.1,

�Sα “Ȧα is Sω1-destructible”

for all α ∈ C. In theSα-extension, there are an ordinalγ α < ω1, a conditionqα ∈ Sγ α and
aSγ α -nameȦα for a subset ofω such that

qα �Sγα “ Ȧα is almost disjoint from allAβ, β < α” .

Let Bα = Ȧα. Back in the ground model, we have namesγ̇ α, q̇α, Ḃα for these objects, i.e.

�Sα “qα �
Ṡγ̇ α

“ Ḃα is almost disjoint from allȦβ, β < α” ” .

Sincec f (α) = ω1 for all α ∈ C, we may findβα < α and pα ∈ Sβα such thatγ̇ α, q̇α and
Ḃα areSβα -names and, in fact, we may also assume thatpα decides the value oḟγ α, say

pα �Sβα “ γ̇ α = γ α”

for some ordinalγ α < ω1. Note that the functionα → βα is regressive, so there are
β < ω2 and a stationary setS⊆ C such thatβα = β for all α ∈ S.
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By further pruning, we may then also assume there arep ∈ Sβ, γ < ω1, anSβ -nameq̇
for a condition inṠγ and anSβ -nameḂ for an Ṡγ -name for a subset ofω such that for all
α ∈ S, pα = p, γ α = γ, q̇α = q̇ andḂα = Ḃ. So, in particular,

p �Sα “ q̇ �
Ṡγ

“ Ḃ is almost disjoint from allȦδ, δ < α” ”

for all α ∈ S. Notice that whileḂ is a Sβ -name and is always interpreted as the same
Sγ -nameB = Ȧ in theSβ -extension, the interpretation oḟA depends onα, namely, on the
interval[α, α + γ ) in which Ȧ is adjoined, in the above formula.

Claim 4.7.2. p �Sω2
“ q̇ �Sγ “ Ḃ is almost disjoint from allȦδ, δ < ω2” ” .

Again Ḃ arises in theSβ -extension asB = Ȧ, and Ȧ is then adjoined by forcing withSγ

over theSω2-extension. Clearly the claim finishes the proof of the theorem.�

Proof of Claim 4.7.2. By stepping into theSβ -extension withp belonging to the generic
filter, if necessary, we may assume without loss of generality thatβ = 0. Then we haveq
andB = Ȧ. We use

Lemma 4.7.3. Let V be a model ofZFC. Let γ be an ordinal and let q0 ∈ V , Ȧ anSγ -
name for a subset ofω with Ȧ ∈ V . Then there is q≤ q0, q ∈ V , such that whenever
W ⊇ V is a model ofZFC, r ≤ q, r ∈ W and n∈ ω with r �Sγ “n ∈ Ȧ” in W are given,

then there is s≤ q, s ∈ V , s compatible with r , with s�Sγ “n ∈ Ȧ” (in V ).

Proof. This follows readily from properness. Namely, letN ⊆ V be an elementary
substructure containingγ, q0 and Ȧ, and letq ≤ q0, q ∈ V , be(Sγ , N)-generic. Clearly
q is as required: ifr ≤ q, r ∈ W, n ∈ ω with r �Sγ “n ∈ Ȧ” are given, there iss0 ∈ N

compatible withr such thats0 �Sγ “n ∈ Ȧ”, ands= s0 · q is as required.
Alternatively, this can be shown directly with a fusion argument very similar to the proof

of the relatedLemma 4.5.2. �

Assume the claim was false, and letδ < ω2 andr0 ≤ q, r0 ∈ Sω2+γ , be such that

r0 �Sω2+γ
“ |Ȧ∩ Ȧδ| = ℵ0” .

Find α ∈ S, α > δ, such thatr0|ω2 ∈ Sα (i.e. supt(r0) ∩ ω2 ⊆ α) and r0|[ω2,ω2+γ )

is an Sα-name. Step into theSα-extension withr0|ω2 belonging to the generic filter.
Sincer0|[ω2,ω2+γ ) ∈ VSα can be thought of as a condition ofSγ , we can finds0 ≤
r0|[ω2,ω2+γ ), s0 ∈ Sγ andn0 ∈ ω such that

s0 �Sγ “ Ȧ∩ Aδ ⊆ n0”

(in VSα ). Without loss of generality, we may assume the pair(s0, Ȧ) satisfies4.7.3(with
V beingVSα ). Since

�Sω2
“s0 �Sγ |Ȧ∩ Aδ| = ℵ0”

we find, inW = VSω2 , a conditionr ≤ s0, r ∈ Sγ , andn ∈ Aδ, n ≥ n0, such that

r �Sγ “n ∈ Ȧ”
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(in W). By Lemma 4.7.3, there iss ≤ s0, s ∈ VSα , such that

s �Sγ “n ∈ Ȧ”

(in VSα ). This contradiction completes the proof ofClaim 4.7.2. �
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