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TOPOLOGICAL PROPERTIES OF INCOMPARABLE FAMILIES

G. CAMPERO-ARENA, J. CANCINO, M. HRUŠÁK, D. MEZA-ALCÁNTARA,
AND F. E. MIRANDA-PEREA

Abstract. We say that two sets a, b ⊆ ω are incomparable if both a\b and b\a are infinite.
We study topological properties of families of mutually incomparable subsets of ω. We raise
the question whether there may be an analytic maximal incomparable family and show that
(1) it can not be Kσ, and (2) every incomparable family with the Baire property is meager.
On the other hand, we show that a non-meager incomparable families exist in ZFC, while
the existence of a non-null incomparable family is consistent. Finally, we show that there
are maximal incomparable families which are both meager and null assuming either r = c
or the existence of a completely separable MAD family, in particular they exist if c < ℵω.
Assuming CH, we can even construct a maximal incomparable family which is concentrated
on a countable set, and hence of strong measure zero.

Introduction

This paper explores certain topological conditions that incomparable and maximal incom-
parable families of infinite subsets of ω may or may not fulfil. We mainly consider two orders
over ω: the usual inclusion, and the almost-inclusion, that is, the relation ⊆∗ such that
a ⊆∗ b iff a \ b is finite. Hence, a and b are incomparable, if a \ b and b \ a are infinite; and
a family A is incomparable, if each distinct pair of elements in A is incomparable. In order
to avoid triviality, we consider incomparable families with more than one element. Incom-
parable families in Boolean algebras have been studied by Monk in [7]. There he asked if it
is consistent that there is a maximal incomparable family of size strictly less than the size
of the continuum. This question was answered negatively in [1].

Incomparable families as subsets of the power set P(ω) are seen as subspaces of the Cantor
space 2ω, the product topology of the discrete space 2 = {0, 1}. We have considered the
following topological properties: Borel (analytic) complexity, Baire property and Lebesgue
measurability. Several kinds of families of subsets of ω have been studied in the light of
their definability. Ideals and filters are the most studied families, but some others have also
been relevant such as independent1 and almost disjoint2 families. For example, Mathias [4]
proved that there are no infinite analytic maximal almost disjoint (MAD) families. Törnquist
[9] extended this result by proving that in the Solovay’s model there are no infinite MAD
families. On the other hand, Horowitz and Shelah [3] showed that, surprisingly, there is a
Borel maximal family of eventually different functions in ωω.

Independent and almost disjoint families are incomparable; however, no independent or
almost disjoint family is maximal incomparable. From these facts we may deduce some
information about topological properties of incomparable families, for example, that there is

The research of the third author was partially supported by PAPIIT grants IN108014, and CONACYT
grant 177758.

The fourth author was supported by PAPIIT grant IN106017.
1A family I ⊆ P(ω) is independent if

⋂
F0 \

⋃
F1 is inifinite for any pair of finite disjoint F0, F1 ⊆ I.

2A family A ⊆ P(ω) is almost disjoint if a ∩ b is finite for any pair of distinct elements a, b of A.
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a perfect incomparable family. Actually independent and almost disjoint families may have
different properties, for example, all almost disjoint families are meager and null (they are
contained in the Borel ideal Fin × Fin), while there are non-meager independent families,
as Medini, Repovš and Zdomskyy proved in [5]. However, incomparable families may have
different properties, for example, it is well known that maximal independent and maximal
almost disjoint families may (consistently) have cardinality strictly less than c.

In this paper we prove that there are no maximal incomparable families which are Fσ. We
also prove that there is a non-meager incomparable family (this proof is essentially different
than Medini-Repovš-Zdomskyy’s proof of this result for independent families), however, we
show that independent families having the Baire property are meager. Moreover, we present
three proofs of consistency of the existence of meager and null maximal incomparable families:
assuming CH, assuming r = c, and assuming the existence of a completely separable MAD
family. In the last section we repay a debt from [1], where we proved that assuming the
existence of a completely separable MAD family, there is a maximal incomparable family
which (with the obviously needed addition of ω as the root) is a maximal tree, by constructing
such a family without any extra assumption.

1. Topological properties of incomparable families in P(ω)/Fin

Probably the most interesting question about maximal incomparable families is whether
they can be analytic or Borel. The question remains wide open as we were able to make
only very partial progress by showing that there are not any which are Fσ, and that any
incomparable family with the Baire property is meager.

Theorem 1.1. Let G be a Gδ-set containing Q∗ = {a ⊆ ω : |a| < ω ∨ |ω \ a| < ω}. Then
there is an infinite set y ∈ G incomparable with every x /∈ G.

Proof. Let us write P(ω) \ G =
⋃
nKn, where {Kn : n ∈ ω} is an increasing sequence of

compact sets.

Lemma 1.2. If K ⊆ P(ω) \Q∗ is compact, then for all n ∈ ω there is n′ > n such that for
all x ∈ K

x ∩ [n, n′) 6= ∅ and [n, n′) \ x 6= ∅.

Proof of Lemma. Let us suppose otherwise, and let n0 be such that for all n ≥ n0, there
is xn ∈ K satisfying xn ∩ [n0, n) = ∅ or [n0, n) ⊆ xn. By compactness of K, there is a
subsequence xnk

converging to some x ∈ K, and this x satisfies x ∩ [n0, n) = ∅ for all n, or
[n0, n) ⊆ x for all n. Hence, x is finite or cofinite, which is a contradiction. �

By the lemma, there is a sequence of intervals In ⊆ ω satisfying:

• min I0 = 0,
• min In+1 = max In + 1,
• x ∩ In 6= ∅ 6= In \ x, for all x ∈ Kn.

Define y =
⋃
n I2n. Clearly, y ∈ G and y is incomparable with all x in Kn, for all n. �

Corollary 1.3. There are no maximal incomparable families which are Fσ.

�
Definable incomparable families are not large in the sense of category, as the following

theorem claims.
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Theorem 1.4. If A is a non-meager family satisfying the Baire property, then A is not
incomparable.

Proof. Let U be a non-empty open set so that U ∩ A is comeager in U , and let s ∈ 2<ω be
such that 〈s〉 ⊆ U . Let {Un : n ∈ ω} be a decreasing sequence of dense open subsets of 〈s〉
with A ⊇

⋂
n Un. We now define x and y in

⋂
n Un such that x ⊆ y. Recursively, define an

increasing sequence nk in ω, with restrictions on x and y in nk(= [0, nk)), as follows:

(1) n0 = min{m ≥ |s| : ∃t ∈ 2m : t ⊇ s ∧ 〈t〉 ⊆ U0};
(2) x � n0 = t = y � n0, for a whitness t for n0;
(3) if k = 2j, then let nk+1 be the minimal m > nk for which there is r ∈ 2m such that

r ⊇ y � nk 1̂ and 〈r〉 ⊆ Uj+1; in this case, define y � nk+1 = r and x � nk+1 =
x̂ 0nk+1−nk ;

(4) if k = 2j + 1, then let nk+1 be the minimal m > nk for which there is t ∈ 2m

such that t ⊇ x � nk 0̂ and 〈t〉 ⊆ Uj+1; in this case, define x � nk+1 = t and
y � nk+1 = y � nk 1̂nk+1−nk .

It is clear that x ⊆ y, and that for all m ∈ ω, 〈x � n2m〉 ⊆ Um and 〈y � n2m+1〉 ⊆ Um+1,
which proves that x, y ∈ A. �

Corollary 1.5. If A is a Gδ-incomparable family, then A is nowhere dense.

Proof. If A was dense in a basic set 〈s〉 with |s| = n, then A′ = {A \ n : A ∈ A} would be a
dense Gδ-incomparable family on ω = ω \ n, contradicting Theorem 1.4. �

On the other hand, there are non-meager (and by Theorem 1.4 not definable) maximal
incomparable families.

Theorem 1.6. There exists a non-meager incomparable family.

Proof. We will construct the non-meager incomparable family A by a recursion of length c,
justified by the following result.

Lemma 1.7. Let U be a dense Gδ-set and A an infinite subset of ω. Then, there exists a
perfect almost-disjoint family P such that for all B ∈ P , |A \ B| = |A ∩ B| = |B \ A| = ℵ0
and A M B ∈ U .

Proof of Lemma. First, note that for a fixed w ∈ 2ω, the function ϕw(x) = w M x (=
x +mod 2 y) is an autohomeomorphism of 2ω, and ϕ−1w = ϕw. Then, it is sufficient to prove
that every dense Gδ-subset of 2ω contains a perfect almost disjoint family.

Without lose of generality, we may assume that U ⊆ [ω]ω. Let {Un : n ∈ ω} be a decreasing
family of open sets such that U =

⋂
n Un. For s, t ∈ 2≤ω, let us denote by s ∗ t, the maximal

r ∈ 2≤ω so that r ⊆ s ∩ t. Recursively, we now define a function ϕ from 2ω to 2ω and a
sequence kn satisfying the following:

(1) ϕ(s) ∗ ϕ(t) = ϕ(s ∗ t), in particular, s ⊆ t implies ϕ(s) ⊆ ϕ(t),
(2) |ϕ(s)−1(1)| ≥ |s|,
(3) if |s| = |t| and ϕ(s)(i) = 1 = ϕ(t)(i), then i < |ϕ(s ∗ t)|,
(4) |ϕ(s)| = kn, for all s ∈ 2n,
(5) for all n and all s ∈ 2n, 〈ϕ(s)〉 ⊆ Un.

Before finalizing the construction, note that by (2), if x 6= y ∈ 2ω, then ϕ(x)−1(1) ∩
ϕ(y)−1(1) = ϕ(x ∗ y)−1(1), where ϕ(x) :=

⋃
n ϕ(x � n), proving that {ϕ(x)−1(1) : x ∈ 2ω} is

almost disjoint; and by (5), ϕ(x) ∈ U , for all x ∈ 2ω.
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Now let us do the construction. Let ϕ(∅) be so that 〈ϕ(∅)〉 ⊆ U0. Assume ϕ(s) has been
defined for all s ∈ 2n satisfying (1), (2) and (3). Enumerate 2n = {sj : j = 0, . . . , 2n − 1}.
We now define an auxiliary function ψ from 2n+1 to 2<ω as follows. For j = 0, we take
ψ(s0̂ 1) as an extension r of ϕ(s0)̂ 1 so that 〈r〉 ⊆ Un+1; and take ψ(s0̂ 0) as an extension
r of ϕ(s0)̂ 0|ψ(s0̂1)|−kn 1̂ so that 〈r〉 ⊆ Un+1. If j < 2n − 1, take ψ(sj+1̂ 1) as an exten-
sion r of ϕ(sj+1)̂ 0|ψ(sĵ0)|−kn 1̂ so that 〈r〉 ⊆ Un+1; and take ψ(sj 0̂) as an extension r of
ϕ(sj )̂ 0|ψ(sĵ1)|−kn̂1 so that 〈r〉 ⊆ Un+1. Now, define kn+1 = |ψ(s2n−1̂ 0)| and then, for all
s ∈ 2n+1, define ϕ(s) = ψ(s)̂ 0kn+1−|ψ(s)|. It is clear that properties (1) to (5) are fulfilled. �

We now return to the proof of the Theorem. Let {Nα : α < c} be an enumeration of the
family of all meager Fσ-sets. Let us denote [ω]ω \Nα as Uα. Let A0 be any infinite coinfinite
element of U0, and suppose {Aβ : β < α} is an incomparable family so that Aβ ∈ Uβ for
all β < α. Let P be a perfect almost-disjoint family so that A0 M B ∈ Uα, for all B ∈ P .
Note that, for each β < α, there are no more than one B ∈ P such that A0 \ Aβ ⊆∗ B,
and analogously, there are no more than one C ∈ P such that Aβ \ A0 ⊆∗ C . This is true
since P is almost-disjoint. By cardinality, we may pick B ∈ P such that (A0 \ Aβ) \ B and
(Aβ \ A0) \ B are infinite, for all β < α. Define Aα := A0 M B. We now prove that Aα is
incomparable with Aβ for all β < α. Just note that Aα \ A0 = B \ A0, A0 \ Aα = A0 ∩ B,
and for 0 < β < α, Aβ \ Aα ⊇ (Aβ \ A0) \ B and Aα \ Aβ ⊇ (A0 \ Aβ) \ B. Then, Aα \ Aβ
and Aβ \ Aα contain infinite sets, for all β < α. �

Using the trivial fact that the union of a chain of incomparable families is incomparable,
it follows that there is a non-meager maximal incomparable family. However, by Theorem
1.4, there are no comeager incomparable families.

Considering now the Lebesgue measure of incomparable, and more specifically, indepen-
dent families, we have the following result.

Theorem 1.8. It is consistent that there is a non-null independent family, and consequently,
that there is a non-null incomparable family.

Proof. It is well known (see Miller’s book [6]) that in the random real model, the set of
reals given by the generic filter is a Sierpiński set, that is, it is an uncountable set whose
intersection with any null set is countable. By adding ℵ1 random reals, we have a Sierpiński
set of independent sets, which is obviously non-null. �

On the other hand, under CH, r = c3, or assuming that there exists a completely separable
MAD family, we can prove that there are meager and null (even at the same time) maximal
incomparable families. Moreover, assuming CH, there is a maximal incomparable family
which is of strong measure zero. Recall that a set X ⊆ 2ω is concentrated on Q if X ∩U 6= ∅
for all Gδ-set U which contains Q.

Theorem 1.9 (CH). There is a maximal incomparable family which is concentrated on
Q(= Fin).

Proof. The following lemma justifies a recursive construction.

3Recall that r is the minimal cardinality of a reaping family, i. e. a family R of infinite subsets of ω such
that, for all inifinite A, there is R ∈ R such that A ⊆∗ R or A ∩R =∗ ∅
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Lemma 1.10. Let A be a countable incomparable family, U a Gδ-set containing Q, and B
an infinite subset of ω such that B is incomparable with A, for all A ∈ A. Then there is an
infinite subset C of B, which is in U and is incomparable with every A ∈ A.

Proof of Lemma. Let us enumerate A = {An : n ∈ ω} and write U =
⋂
n Un with {Un : n <

ω} a decreasing sequence of open sets containing Q. We construct the following:

• an increasing sequence kn ∈ ω,
• a sequence of pairs of disjoint sets Ln and Mn in [B]n+1, and
• an end-extension increasing sequence of finite subsets Cn of B,

satisfying that

(1) Ln = {lj : j ≤ n}, Mn = {mj : j ≤ n}, and for each j ≤ n, lj ∈ Aj and mj /∈ Aj},
(2) Ln ∪Mn ⊆ [k2n, k2n+1),
(3) C0 = ∅, Cn+1 = Cn ∪Mn,
(4) k2n+2 > max(LN ∪Mn) and 〈χCn+1 � k2n+2〉 ⊆ Un.

It is possible to construct such sequences because of the incomparability of B with all Aj,
and hence B has enough elements inside and outside of each Aj, allowing to fulfil conditions
1 and 2. Condition 3 is trivially satisfied and condition 4 is possible since each Un is a
neighbourhood of each finite set. Fix C =

⋃
nCn. Then, by 1, for all n, C \ An and An \ C

have at least one element in each interval [k2m, k2m+1) for all m ≥ n, which proves that C is
incomparable with An. By 4, C ∈ U . �

Now we do the recursive construction. Let {Uα : α ∈ ω1} be an enumeration of the family
of all the Gδ-subsets of 2ω, and {Bα : α ∈ ω1} an enumeration of [ω]ω. For each α ∈ ω1, we
define a set Cα ∈ [ω]ω such that Cα is comparable with Bα, and if it is also comparable with
Cβ (β < α), then Cα = Cβ. Let C0 = B0 and suppose Cβ has been defined for all β < α.
If Bα is comparable with some Cβ, let Cα = Cβ for a minimal such β, and if not, by the
previous lemma, there exists a Cα comparable with Bα, and incomparable with Cβ for all
β < α, which is in the Gδ set

⋂
β≤α Uβ. Now, making A = {Cα : α ∈ ω1} we have finished,

since every infinite subset of ω is comparable with some Cα, and for all α, there is β ≥ α
such that Cβ ∈ Uα, because of the non-maximality of countable incomparable families. �

Brendle and Flašková (Blobner)4 defined the generic existence number ge(I) of an ideal I
as the minimal cardinality κ such that every filter base with cardinality less than κ can be
extended to an I-ultrafilter U , that is, an ultrafilter which satisfies that for every function
f ∈ ωω, there is U ∈ U with f ′′U ∈ I. The cofinality of an ideal is defined by cof(J) =
min{|B| : B ⊆ J ∧ (∀J ∈ J)(∃B ∈ B)J ⊆ B}. Brendle and Flašková proved that ge(I) =
min{cof(J) : I ⊆ J}. Clearly, ge(I) ≤ cof(I).

Theorem 1.11. There is an analytic tall ideal L such that for every L-positive set X, ge(L �
X) = c.

Proof. Let C be a perfect independent family and define L as the ideal generated by C∪{A ⊆
ω : (∃D ∈ [C]ω)(∀D ∈ D)|A ∩D| < ω}. Clearly, by its definition, L is an analytic ideal. Let
us prove that ge(L) = c. Let J be an ideal containing L. Then, every J ∈ J almost-contains
just finitely many C ∈ C. If B ∈ [C]<c, then |{C ∈ C : (∃B ∈ B)C ⊆∗ B}| = |B|, and
then there is C ∈ C, which is not contained in any element of B. Now, let us note that for

4Brendle and Flašková mention that this definition was done independently by Hong and Zhang [?].
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every L-positive set X, the family C � X is a perfect independent family on X and L � X is
generated by (C � X) ∪ {B ⊆ X : (∃D ∈ [C � X]ω)(∀D ∈ D)|B ∩D| < ω}. By the previous
argument in this proof, we are done. �

Let us recall that from old results by Sierpiński and Kolmogorov, every ideal which satisfies
the Baire Property is meager, and every Lebesgue measurable ideal is null. In particular,
Borel and analytic ideals are meager and null.

Theorem 1.12. If r = c, then there is a meager and null maximal incomparable family.

Proof. Let {Aα : α < c} an enumeration of [ω]ω. We are going to recursively construct a
maximal incomparable family {Bα : α < c} included in the meager and null ideal L, as
follows. For α = 0, let B0 be some infinite subset of A0 in L, and for all 0 < α < c we
consider three cases.

(1) If there is γ < α such that Bγ ⊆∗ Aα or Aα ⊆∗ Bγ, take Bα = Bγ for such γ.
(2) If Aα ∈ L and is not in the previous case, by our hypothesis, D = {Bγ∩Aα : γ < α}∩

[Aα]ω is not reaping on Aα, then we can pick Bα ⊆ Aα with |Bα∩Bγ| = ℵ0 = |Bα\Bγ|,
for all γ < α such that Bγ∩Aα is in D. However, for all γ < α, Bγ \Aα is infinite and
so, Bγ \Bα is infinite. Finally, since Bα is infinite, for all γ < α, Bα \Bγ is infinite.

(3) In any other case, note that {Bγ ∩ Aα : γ < α} is not a cofinal family of L � Aα,
hence, there is a set B in L � Aα such that B *∗ Bγ, for all γ < α. Now B is like Aα
in case 2, then we can pick Bα in the same way, and it will be contained in Aα.

From this construction, it is clear that {Bα : α < c} is an incomparable family contained in
L, and every infinite subset of ω is comparable with some Bα. �

Let us recall that if A is a MAD family, I(A) denotes the ideal generated by A, and this
ideal is tall and contained in a copy of the Borel ideal Fin×Fin. A MAD family is completely
separable if every I(A)-positive set X contains an element (equivalently, c-many elements) of
A. Consequently, if A is a completely separable MAD family, then for every I(A)-positive
set X and every family B ⊆ I(A) with |B| < c, there is A ∈ A such that A ⊆ X and A *∗ B,
for all B ∈ B. The question of the existence of completely separable MAD families in ZFC
is an old open question due to Erdös and Shelah [2]. They do exist in all known models of
ZFC. In particular, Shelah [8] proved that assuming 2ℵ0 < ℵω there are such families.

Theorem 1.13. If a completely separable MAD family exists, then there is a meager and
null maximal incomparable family.

Proof. Let A be a completely separable MAD family and let {Cα : α < c} be an enumeration
of [ω]ω. For all α < c, let Bα be an infinite subset of ω recursively chosen as follows:

• if Cα is comparable with some Bβ (β < α), then make Bα = Bβ,
• if Cα is not comparable with any Bβ (β < α) and Cα ∈ I(A), then make Bα = Aα,

and
• if Cα is I(A)-positive and is not comparable with any Bβ (β < α), then choose Bα ∈ A

contained in Cα and such that Bα is not almost contained in any Bβ for β < α.

From this construction, it is clear that {Bα : α < c} is a maximal incomparable family. It is
meager and null because it is contained in I(A). �
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2. Final remarks and questions

We now construct a maximal incomparable famly which is also a maximal tree, as was
promised in [1], but first we include some definitions and remarks.

Definition 2.1. Let B be a Boolean algebra. A subset T of B is a tree if 〈T,≤� T × T 〉 is a
tree (initial segments are well ordered). Among trees, we consider the end-extension order.

Remark 2.2. A tree T on P(ω)/Fin is a maximal tree if and only if for every B ∈ [ω]ω,
either C ⊆∗ B for some C ∈ T , or there are C0 6= C1 ∈ T such that B ⊆∗ C0 ∩ C1.

Proposition 2.2 in [1] claims that assuming the existence of a completely separable MAD
family, there is a maximal incomparable family which is also a maximal tree (with the
obvious addition of the root ω). Actually this assumption is not needed, as the following
result shows.

Theorem 2.3. There is a maximal incomparable family which is also a maximal tree.

Proof. It follows from a simple recursion based on the following result.

Lemma 2.4. If A is an incomparable family with |A| < c and B ∈ [ω]ω, then there is an
incomparable family A′ ⊇ A with |A′| ≤ |A| + 2 and such that either there is A ∈ A′ with
A ⊆∗ B, or there are A0 6= A1 ∈ A′ such that B ⊆∗ A0 ∩ A1.

Proof of Lemma. Take A′ = A∪{B} if this set is incomparable. If there is A ∈ A such that
A ⊆∗ B, or there are distinct A0, A1 ∈ A such that B ⊆∗ A0 ∩ A1, then take A′ = A. The
remaining case is when there is a unique Ā ∈ A such that B ⊆∗ Ā. Let us use some almost
disjoint family C of subsets of ω \ Ā with cardinality c. Note that for each A ∈ A \ {Ā},
there is at most one C ∈ C such that A ⊆ B ∪ C, since C is almost disjoint. Moreover,
for all A ∈ A \ {Ā} and all C ∈ C it is not the case that B ∪ C ⊆ A. Since |A| < c,
there are C0 6= C1 ∈ C such that B ∪ C0 and B ∪ C1 do not contain any A ∈ A. Define
A′ = A ∪ {B ∪ C0, B ∪ C1}. It is obvious that such A′ satisfies the lemma. �

Now we display the recursion. Let {Bα : α < c} be an enumeration of all the infinite coin-
finite subsets of ω, and by using the previous lemma, for all α < c we take an incomparable
family Aα such that either there is A ∈ Aα with A ⊆∗ Bα, or there are A0 6= A1 ∈ Aα so
that Bα ⊆ A0 ∩A1. In step 0 we define A0 = {B0}, and for 0 < α < c, let Aα = (

⋃
β<αAβ)′,

as in the lemma. Then
⋃
α<cAα is the maximal tree which is also a maximal incomparable

family. �

Let us recall from [1] that the number tr is defined as the minimal cardinality of a maximal
tree T on P(ω)/Fin, and in this same paper we proved that it is consistent with ZFC that
tr < non(M)5. In particular, this shows that, consistently, there are meager maximal trees.
For more on maximal trees see [?]

We conclude with a list of some open questions. The most intriguing is the following:

Question 2.5. Is there an analytic (or even Borel or Gδ) maximal incomparable family?

We needed some mild extra assumptions to construct “small” maximal incomparable
familes. They should exist in ZFC alone:

5Recall that non(M) is the minimal cardinalty of a non-meager subset of the Cantor space.
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Question 2.6. Is there, in ZFC, a meager and null maximal incomparable family? Is there
a nowhere dense one?

Question 2.7. Can there be a co-null incomparable family? Is every Lebesgue-measurable
incomparable family necessarily null?

Question 2.8. Is there, in ZFC, a meager (null) maximal tree? Is there an analytic or Borel
one?
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