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Abstract

We answer several questions of Hrušák, Simon and Zindulka regarding
weak partition relations on trees. In particular, we show that the Namba
forcing on add(N ) and cof (N ) does not have the Sacks property. We also
construct a model where there is a singular cardinal κ such that cof (κ)
has the boundedness property but κ does not.

In [5] Hrušák, Simon and Zindulka studied several partition relations on
trees. With a different notation, they introduced the following concepts: (where
NB (κ) denotes the Namba forcing on κ).

Definition 1 Let κ be a cardinal and g : ω −→ ω.

1. We say κ is a Zindulka cardinal if for every coloring χ : κ<ω −→ ω there
is a T ∈ NB (κ) with stem ∅ such that T has only finitely many colors in
each level.

2. We say κ is a g-Zindulka cardinal if for every coloring χ : κ<ω −→ ω there
is a T ∈ NB (κ) with stem ∅ such that |χ [Tn]| ≤ g (n) for every n ∈ ω.

In [5] the following questions were asked:

Problem 2 (Hrušák, Simon, Zindulka) Let g : ω −→ ω be an increasing
function.

1. Is b the first regular uncountable cardinal that is not Zindulka?

2. Could cof(N ) be a g-Zindulka cardinal?

3. Could add(N ) be a g-Zindulka cardinal?

∗The first and second authors were supported by CONACyT and PAPIIT. The first-listed
author was supported by CONACyT scholarship 420090. The second-listed author was sup-
ported by a PAPIIT grant IN 102311 and CONACyT grant 177758. The fourth author was
partially supported by NSF grant DMS 1161078.
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4. Could mσ−linked be a g-Zindulka cardinal?

It is not hard to see (see the next section) that κ is a Zindulka cardinal if
and only the Namba forcing on κ does not add unbounded reals. In [4] the
preservation properties of Namba forcing were studied in detail and the first
question was answered positively. In this note, we will prove that NB (κ) has
the Sacks property if and only if κ is a g-Zindulka cardinal for some (any)
increasing function g. Then we will prove that cof(N ) and add(N ) can not be
g-Zindulka cardinals while mσ−linked may consistently be.

In [5] the following property was also studied: a cardinal κ has the Bounded-
ness Property if for every sequence A = 〈fα | α ∈ κ〉 where fα : ω −→ ω, there
is g : ω −→ ω such that the set {α | fα < g} has size κ. In [5] it was proved
that if κ has the Boundedness property then cof(κ) also has the Boundedness
property and it was asked if the converse is also true. We will answer negatively
their question, and we study some variants of this property. The definitions of
the cardinal invariants used in this paper may be consulted in [2].

1 Basic properties of Namba forcing

In this section we fix some notation and will quote the relevant results we need
from [4]. Let κ be a cardinal, a tree T ⊆ κ<ω is called a κ-Namba tree (or
just Namba tree if the cardinal κ is clear by context) if there is s ∈ T (called
the stem of T ) such that every t ∈ T is comparable with s; furthermore if
t @ s then t has just one immediate successor and if s v t then t has κ many
immediate successors. By NB (κ) we will denote the set of all κ-Namba trees
ordered by inclusion; in this way, NB (ω) is the Laver forcing. A generic filter
for NB (κ) may be coded as a sequence which we will denote by ngen : ω −→ κ.
It is easy to see that NB (κ) forces κ to have countable cofinality. Given S
and T two κ-Namba trees, S ≤0 T will mean that S ≤ T and both S and T
have the same stem. By [T ] we denote the set of branches of T and if s ∈ T
then we define Ts as the set of all t ∈ T such that either t v s or s v t and
sucT (s) = {α ∈ κ | s_α ∈ T} . By B (T ) we denote the set of nodes of T that
extend the stem. By stem (T ) we denote the stem of T and NB0 (κ) will denote
the set of all κ-Namba trees with empty stem.

Let T be a tree, given F : T −→ ω define the function F : [T ] −→ ωω such
that if x ∈ κω and n ∈ ω then F (x) � n = F (x) . A function H : [T ] −→ ωω

is called Lipschitz if there is a function F : T −→ ω such that H = F . Clearly
every Lipschitz function is continuous. IfG : κω −→ µω is a continuous function,
define G∗ : κ<ω −→ ω<ω where G∗ (s) = (

⋃
{t | G [〈s〉] ⊆ 〈t〉}) � |s| . The

following result is probably well know (see [4] for a proof).
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Proposition 3 Let κ be a cardinal of uncountable cofinality, T ∈ NB (κ) and ẏ
a NB (κ)-name such that T 
 “ẏ ∈ ωω”. Then there is S ≤0 T such that:

1. If s ∈ S then Ss decides ẏ � (|s|+ 1) .

2. There is F : S −→ ω such that S 
 “F (ngen) = ẏ”.

We will need the following result from [4]:

Proposition 4 Let κ be a cardinal µ < cof(κ) and let {Aα | α ∈ µ} be a family
of Borel sets of κω such that κω =

⋃
α<µ

Aα. Then there is T ∈ NB0 (κ) and α < µ

such that [T ] ⊆ Aα.

2 g-Zindulka cardinals

In this section we will prove that cof(N ) and add(N ) can not be g-Zindulka
cardinals while mσ−linked may consistently be (for g an incresing function). We
will need the following definitons:

Definition 5 Let κ be a cardinal and g : ω −→ ω.

1. We say κ is a weak Zindulka cardinal if for every coloring F : κ<ω −→ ω
there is a T ∈ NB (κ) such that F [Tn] is finite for every n ∈ ω.

2. We say κ is a weak g-Zindulka cardinal if for every coloring F : κ<ω −→ ω
there is a T ∈ NB (κ) such that |F [Tn]| ≤ g (n) is finite for every n ∈ ω.

In [5] it was proved that b is not a Zindulka cardinal and that κ is a Zindulka
cardinal if and only if κ is a weak Zindulka cardinal. By the Lipschitz reading
of names of κ-Namba forcing, it is easy to prove that NB (κ) does not add
unbounded reals if and only if κ is a weak Zindulka cardinal.

Proposition 6 ([4])

1. κ is a Zindulka cardinal if and only if NB (κ) does not add an unbounded
real.

2. b is the first uncountable regular cardinal that is not a Zindulka cardi-
nal.

Let C = {g ∈ ωω | lim (g (n)) =∞∧ ∀n (g (n) > 0)} . For any g ∈ C we define
the g-slaloms as the set of all S : ω −→ [ω]

<ω
such that |S (n)| ≤ g (n) for every

n ∈ ω. Denote by SLg the set of all g-slaloms. If f ∈ ωω and S ∈ SLg
then f v∗ S means that f (n) ∈ S (n) holds for almost every n ∈ ω. Given
F : κ<ω −→ ω, S : ω −→ [ω]

<ω
and T ∈ NB (κ) we will say that S captures
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(F, T ) if F [Tn] ⊆ S (n) for every n ∈ ω. In this way, κ is g-Zindulka if and only
if for every F : κ<ω −→ ω there is a T ∈ NB (κ) with empty stem and S ∈ SLg
such that S captures (F, T ) . In a similar way, we say S almost captures (F, T )
if for every x ∈ [T ] it is the case that F (x) v∗ S.

Lemma 7 Let κ be a cardinal of uncountable cofinality, g ∈ C, F : κ<ω −→ ω
and T ∈ NB (κ). Then the following are equivalent:

1. There is S ∈ SLg and T ′ ≤0 T such that S captures (F, T ′) .

2. There is S ∈ SLg and T ′ ≤0 T such that S almost captures (F, T ′) .

Proof. Clearly 1 implies 2 , we will show that 2 implies 1, let S and T ′ as
in 2. Given x ∈ [T ′] define ax = {n | F (x � n) /∈ S (n)} and we also define
bx = {(n, F (x � n)) | n ∈ ax} . Note that both ax and bx are finite sets. Given
a ∈ [ω]

<ω
and b ∈ [ω × ω]

<ω
let B (a, b) = {x ∈ [T ] | ax = a ∧ bx = b} . Clearly

each B (a, b) is a Borel set and [T ′] =
⋃
a,b

B (a, b) and since every B (a, b) is Borel

and κ has uncountable cofinality, there are T ′′ ≤0 T
′ and a, b such that [T ′′] ⊆

B (a, b). Let a = {ni | i < l} and b = {(ni,mi) | i ∈ l} define S′ : ω −→ [ω]
<ω

such that S′ (k) = S (k) if k /∈ a and S′ (ni) = {mi} for every i < l. Then S′

captures (F, T ′′).

In this way, if κ has uncountable cofinality, then κ is a g-Zindulka cardinal
if and only if for every F : κ<ω −→ ω there is a T ∈ NB (κ) with empty stem
and S ∈ SLg such that S almost captures (F, T ) .

Definition 8 We say (A,B,−→) is an invariant if,

1. −→ ⊆ A×B.

2. For every a ∈ A there is a b ∈ B such that a −→ b (which means (a, b) ∈
−→).

3. There is no b ∈ B such that a −→ b for all a ∈ A.

The evaluation of (A,B,−→) (denoted by ‖A,B,−→‖) is defined as the
minimum size a family D ⊆ B such that for every a ∈ A there is a d ∈ D such
that a −→ d. The invariant (A,B,−→) is called a Borel invariant if A,B and
−→ are Borel subsets of some polish space. Most (but not all) of the usual
invariants are in fact Borel invariants.

Definition 9 Let (A−, A+,−→A) and (B−, B+,−→B) be two Borel invariants.
We define the following relations:
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1. (A−, A+,−→A) ≤BT (B−, B+,−→B) ((A−, A+,−→A) is Borel-Tukey be-
low (B−, B+,−→B)) if there are Borel functions F− : A− −→ B− and
F+ : B+ −→ A+ such that for every a ∈ A− and b ∈ B+ the following
holds:

If F− (a) −→B b then a −→A F
+ (b) .

2. (A−, A+,−→A) 'BT (B−, B+,−→B) ((A−, A+,−→A) is Borel-Tukey equiv-
alent to (B−, B+,−→B)) if (A−, A+,−→A) ≤BT (B−, B+,−→B) and
(B−, B+,−→B) ≤BT (A−, A+,−→A) .

It is easy to see that if (A−, A+,−→A) 'BT (B−, B+,−→B) then (A+, A−,

A 6←−) 'BT (B+, B−, B 6←−). Given a Borel invariant (A,B,−→) and a forcing
notion P, we say that P destroys (A,B,−→) if there is a P-name ṙ such that
P 
 “ṙ ∈ A” and if b ∈ B (with b ∈ V ) then P 
 “ṙ 9 b”. The following lemma
is well known and easy to prove:

Lemma 10 Let (A−, A+,−→A), (B−, B+,−→B) be two Borel invariants such
that (A−, A+,−→A) ≤BT (B−, B+,−→B) and P a forcing notion. If P destroys
(A−, A+,−→A) then P destroys (B−, B+,−→B) .

The following proposition is well known but we included a proof for the
convenience of the reader:

Proposition 11 Let f, g ∈ C then (ωω,SLf ,v∗) 'BT (ωω,SLg,v∗) . More-
over, there are R : ωω −→ ωω, H : SLf −→ SLg and k ∈ ω such that the
following holds:

1. R and H are continuous.

2. For every x ∈ ωω, S ∈ SLf if R (x) v∗ S then x v∗ H (S) .

3. For every x ∈ ωω, S ∈ SLf if R (x) v S then x (m) ∈ H (S) (m) for every
m > k.

Proof. We define an interval partition P = {Pn | n ∈ ω} such that
for every n,m ∈ ω if Pn ⊆ m then f (n) ≤ g (m) . Let {tn | n ∈ ω} be an
enumeration of all functions p : s −→ ω where s ∈ [ω]

<ω
and define R : ωω −→

ωω such that if m ∈ ω and x ∈ ωω then x � Pm+1 = tR(x)(m). Now define
H : SLf −→ SLg such that if S ∈ SLf then the following holds:

Case 12 m ∈ P0. Then H (S) (m) = {0} .

Case 13 m ∈ Pi+1. Let S (i) =
{
l1, ..., lf(n)

}
then define the set H (S) (m) =

{tl1 (m) , ..., tlf(n)
(m)}.
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It is easy to see that both R and H are continuous. Let k = max (P0) , we
will prove 3 and 2 will follow by the proof of 3. Let x ∈ ωω, S ∈ SLf and m > k
such that R (x) v S. Let i ∈ ω such that m ∈ Pi+1, since R (x) (i) ∈ S (i) then
x (m) = (x � Pi+1) (m) = tR(x)(i) (m) ∈ H (S) (m) .

The last proposition implies the well known result that a forcing notion P
has the Sacks property if and only if it does not destroy (ωω,SLf ,v∗) for every
(any) f ∈ C. It is easy to see that if κ has uncountable cofinality, then NB (κ)
has the Sacks property if and only if κ is a weak f -Zindulka cardinal for every
(any) f ∈ C.

Proposition 14 Let κ be a cardinal and f, g ∈ C. Then κ is a f -Zindulka
cardinal if and only if κ is a g-Zindulka cardinal.

Proof. It is easy to see that if κ has countable cofinality then κ is not a Zindulka
cardinal, so in particular, it is neither f -Zindulka or g-Zindulka. Now assume
that κ is an f -Zindulka cardinal of uncountable cofinality. Fix R : ωω −→ ωω,
H : SLf −→ SLg and k as in the previous proposition. Let F : κ<ω −→ ω,
we can then find T ∈ NB0 (κ) and G : B (T ) −→ ω such that T 
 “G (ngen) =
RF (ngen) ”. Since κ is f -Zindulka we can then find S ∈ SLf and T ′ ≤0 T such
S captures (G,T ′) . We claim that H (S) almost captures (F, T ′) .

Let t ∈ T ′ such that |t| = n > k. We will show that F (t) ∈ H (S) (n) . Since
S captures (G,T ′) we know that G (t) ∈ S (n) . Let n : ω −→ κ be a generic
branch through T ′ extending t. In this way, RF (n) (n) = G (ngen) (n) = G (t)
so RF (n) (n) ∈ S (n) . In this way, F (t) = F (n) (n) ∈ H (S) (n) .

Let f, g ∈ C and S1 ∈ SLf , S2 ∈ SLg. Define S1 ≤ S2 if S1 (n) ⊆ S2 (n)
for every n ∈ ω and S1 ≤∗ S2 if S1 (n) ⊆ S2 (n) holds for almost all n ∈ ω. We
now recursively build functions {fn | n ∈ ω} ⊆ ωω as follows: f0 (m) = m + 1

for every m ∈ ω and fn+1 (m) = (m+ 1)
2
fn (m) . Finally, let fω : ω −→ ω such

that fn ≤∗ fω for every n ∈ ω.

Lemma 15 Let κ such that NB (κ) has the Sacks property and n ∈ ω. If
{Sα | α ∈ κ} ⊆ SLfn then there is A ∈ [κ]

κ
and S ∈ SLfn+1

such that Sα ≤ S
for every α ∈ A.

Proof. Let n : ω −→ κ be a generic sequence for NB (κ) . In V [n] we define Z :
ω −→ [ω]

<ω
where Z (m) =

⋃
i≤m

Sn(i) (m) . Note that |Z (m)| ≤ (m+ 1) fn (m).

Let [ω]
<ω

= {tm | m ∈ ω} and (still in V [n]) we define h : ω −→ ω such that
Z (m) = th(m) for every m ∈ ω. Since NB (κ) has the Sacks property then there

is T ∈ NB (κ) and W : ω −→ [ω]
<ω

such that if m ∈ ω then |W (m)| ≤ m + 1
and T 
 “h (m) ∈ W (m) ”. Without losing generality, we may assume that if
i ∈W (m) then |ti| ≤ (m+ 1) fn (m) .
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We now define S : ω −→ [ω]
<ω

such that S (m) =
⋃

i∈W (m)

ti. Note that

|S (m)| ≤ (m+ 1)
2
fn (m) so S ∈ SLfn+1

. It follows by the definitions that
T 
 “Z ≤ S”. Let s be the stem of T and A = sucT (s) . We claim that if α ∈ A
and m > |s| + 1 then Sα (m) ⊆ S (m) . Let T ′ ≤ T such that s_α ⊆ st (T ′) ,
in this way, T ′ 
 “Sα (m) ⊆ Z (m) ” and then T ′ 
 “Sα (m) ⊆ S (m) ” so
Sα (m) ⊆ S (m) .

Since κ has uncountable cofinality, it is then easy to find A′ ∈ [A]
κ

and S′ a
finite modification of S such that Sα ≤ S′ for every α ∈ A′.

We have the following combinatorial characterization of the Sacks property
for κ-Namba forcing:

Proposition 16 Let κ be a cardinal. Then NB (κ) has the Sacks property if
and only if κ is a g-Zindulka cardinal for some (every) g ∈ C.

Proof. If κ has countable cofinality then κ is not g-Zindulka for some (every)
g ∈ C and since Laver forcing NB (ω) does not have the Sacks property, neither
does NB (κ) . We now assume that κ has uncountable cofinality. Since every f -
Zindulka cardinal is a weak f -Zindulka cardinal, it follows that if κ is f -Zindulka
then NB (κ) has the Sacks property.

Let κ be a cardinal of uncountable cofinality such that NB (κ) has the Sacks
property. We will prove that κ is an fω-Zindulka cardinal. Let F : κ<ω −→ ω,
define a rank function rk : κ<ω −→ OR ∪ {∞} as follows:

1. rk (s) = 0 if there are n ∈ ω, T ∈ NB (κ) with stem s and S ∈ SLfn that
captures (T, F ) .

2. rk (s) ≤ α if |{ξ | rk (s_ξ) < α}| = κ.

3. rk (s) = α if rk (s) ≤ α and there is no β < α such that rk (s) ≤ β.

4. rk (s) =∞ if there is no α such that rk (s) ≤ α.

We will first prove that rk (s) 6= ∞ for every s ∈ κ<ω. Assume this is not
the case, we can then recursively build T ∈ NB (κ) such that stem (T ) = s and
rk (t) =∞ for every t ∈ B (t) . We then arrive at a contradiction since κ was a
weak f0-Zindulka cardinal.

We now claim that rk (∅) = 0. Assume this is not the case, then we can
find s ∈ κ<ω such that rk (s) = 1 and let A = {α | rk (s_α) = 0} . Note that
|A| = κ since rk (s) = 1. For every α ∈ A choose nα ∈ ω, Tα ∈ NB (κ) with
stem s_α and Sα ∈ SLfnα such that Sα captures (Tα, F ) . We can then find
n ∈ ω such that B = {α ∈ A | nα = n} has size κ. By the previous lemma,
there are C ∈ [B]

κ
and S ∈ SLfn+1

such that Sα ≤ S for every α ∈ C. Define
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T = {s � i | i ≤ |s|} ∪
⋃
α∈C

Tα then S captures (F, T ), but this is a contradiction

since rk (s) = 1.

In this way, there are n ∈ ω, T ∈ NB (κ) and S ∈ SLfn such that stem (T ) =
∅ and S captures (T, F ) . Since fn ≤∗ fω we can find S1 ∈ SLfω such that S1

almost captures (T, F ).

Fix a set C = {Cnm | n,m ∈ ω} with the following properties:

1. Each Cnm ⊆ 2ω is a clopen set of Lebesgue measure at most 1
2n .

2. If D ⊆ 2ω is a clopen set of measure at most 1
2n then there is m ∈ ω such

that D = Cnm.

Given f : ω −→ ω define N (f) =
⋂
n∈ω

⋃
i>n

Cif(i) which clearly is a null set. It

is known that {N (f) | f ∈ ωω} is a cofinal subset of null sets (see [1] lemma 3.2).
Given f, g ∈ ωω define f ≤N g if N (f) ⊆ N (g) . We will need the following
important result:

Proposition 17 (see [1]) (ωω,SL,v∗) 'BT (ωω, ωω,≤N ) .

In this way, a forcing P has the Sacks property if and only if every null set
in an extension by P is contained in a ground model null set. We can then prove
the following:

Theorem 18 Neither NB(add(N )) nor NB(cof(N )) have the Sacks property.

Proof. We first show that NB(cof(N )) does not have Sacks property. Let
D = {Nα | α ∈ cof(N )} be a cofinal family of null sets. Given β < cof(N )
define Dβ = {xα | α ≤ β}. Since Dβ is not cofinal, there is Mβ ∈ N such that
Mβ * Nα for every α ≤ β.

Let n : ω −→ cof(N ) be a generic sequence for NB(cof(N )). In V [n] let
M =

⋃
n∈ω

Mn(n) which is clearly a null set. We claim that M is not contained in

any element of N ∩ V, it is enough to prove that if α ∈ cof(N ) then M * Nα.
By genericity, there is m ∈ ω such that α < n (m) , since Mn(m) ⊆ M while
Mβ * Nα we conclude that M * Nα.

Now we prove that NB(add(N )) does not have Sacks property, this is just
the dual argument of the previous proof. Let B = {Nα | α ∈ add(N )} ⊆ N
such that

⋃
B /∈ N . Given β < add(N ) define Bβ = {xα | α ≤ β}. Since β <
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add(N ), then Mβ =
⋃
α≤β

Nα is a null set. Let n : ω −→ add(N ) be a generic

sequence for NB(add(N )). In V [n] define the null set M =
⋃
n∈ω

Mn(n), we claim

that M is not contained in any ground model null set. Let A ∈ N ∩V and since⋃
B /∈ N then there is α ∈ add(N ) such that Nα * A. By genericity, there is

m ∈ ω such that α < n (m) . Note that Mn(m) ⊆ M and on the other hand,
Mn(m) * A because Nα * A and Nα ⊆Mn(m).

In [4] it was proved that if κ is a regular cardinal such that κ < add(N ) then
NB (κ) has the Sacks property. We can then conclude the following:

Corollary 19 The cardinal invariant add(N ) is the least regular cardinal κ that
is not a g-Zindulka cardinal for every (any) g ∈ C.

Since the inequality mσ−linked < add(N ) is consistent, we conclude that
mσ−linked may consistently be a g-Zindulka cardinal.

3 The Boundedness property

We call a subtree T ⊆ κ<ω a broom tree if there is s ∈ T such that s has κ
immediate sucessors and every other node has just one successor. The statement
κ  b (κ)

<ω
ω means that for every coloring χ : κ<ω −→ ω there is a finitely

colored broom tree. On the other hand, κ  W (κ)
<ω
ω means that for any

coloring χ : κ<ω −→ ω there is a finitely colored tree T ⊆ κ<ω of size κ.
Obviously κ b (κ)

<ω
ω implies κ W (κ)

<ω
ω . Furthermore, if κ has uncountable

cofinality, then κ b (κ)
<ω
ω if and only if κ W (κ)

<ω
ω . However, this relations

are not equivalent as the next result shows:

Proposition 20 If κ = c+ω 1then κ W (κ)
<ω
ω but κ 6 b (κ)

<ω
ω .

Proof. We will first show that κ  W (κ)
<ω
ω . Let χ : κ<ω −→ ω and let

S = κ<ω. Since c+ is a Zindulka cardinal (see [4])then we may find T (0) ⊆
S〈0〉 with T (0) ∈ NB (c+) that is finitely colored. In the same way, we may
find T (1) ⊆ S〈1,0〉 finitely colored with T (1) ∈ NB (c++) and then we find
T (2) ⊆ S〈1,1,0〉 finitely colored with T (2) ∈ NB (c+++) ... After ω steps, we
define T =

⋃
n∈ω

T (n) and it is clear that it is finitely colored and of size κ.

Now we will show that κ 6 b (κ)
<ω
ω , actually we will prove that if µ has

countable cofinality then µ 6 b (µ)
<ω
ω . Let χ : µ<ω −→ ω such that for every

s ∈ µ<ω and every n ∈ ω, the set {α | χ (s_α) = n} is bounded, then clearly
there can not be a finitely colored broom tree.

The following property was also introduced in [5]:

1i.e. κ =
⋃{

c, c+, c++, ...
}
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Definition 21 We say that κ has the Boundedness property if for every se-
quence A = 〈fα | α ∈ κ〉 where fα : ω −→ ω, there is g : ω −→ ω such that the
set {α | fα < g} has size κ. BP (κ) will abbreviate that κ has the boundedness
property.

IAs pointed before ℵω 6 b (ℵω)
<ω
ω but we will see that it can not be decided

in ZFC if the weak arrow holds or not. Given S a set of ordinals, we will denote
by V [CS ] as the extension obtained by adding S Cohen reals.

Proposition 22 The statement ℵω  W (ℵω)
<ω
ω is independent from ZFC.

Proof. If c < ℵω then ℵω  W (ℵω)
<ω
ω by the previous result, so we just need

to build a model where the relation does not hold. Assume V |= GCH and
consider V [Cℵω ] the forcing extension obtained by adding ℵω Cohen reals. In
V [Cℵω ] define χ : ℵ<ωω −→ ω where χ (〈α0, ..., αn〉) =

∑
i,j<n

cαi (j) and assume

there is T a finitely colored tree of size ℵω and g : ω −→ ω such that T ≤ g.
Clearly, there must be s ∈ T that has (at least) ω1 successors. Let n = |s| and
〈βξ | ξ ∈ ω1〉 ⊆ sucT (s) . Define h : ω −→ ω given by h (m) = g (n+m) then it
follows that cβξ ≤ h for every ξ ∈ ω1 which is clearly impossible since h must
had appeared in an intermediate extension where only ω Cohen reals has been
added.

We will need the following well known lemma:

Lemma 23 If c is a Cohen real over V, then pV = pV [c].

Proof. It is a result of Roitman that pV≤ pV [c] (see [6]) furthermore, it is easy
to see that Cohen forcing does not fill ground model towers, so tV [c] ≤ tV and
by Malliaris and Shelah’s theorem (see [7]) we concluded the desired result.

We may define a natural two cardinal variation of the boundedness property,
given κ, λ the statement BP (κ, λ) will mean that for every sequence 〈fα | α ∈ κ〉
of reals, there is g : ω −→ ω such that the set {α < κ | fα < g} has size at least
λ. Obviously, BP (κ) is the same as BP (κ, κ) . We know that both BP (b) and
BP (d) are false, however we have the following result:

Proposition 24 The statement BP (d, b) is independent from ZFC.

Proof. To get a model where BP (d, b) fails, assume V |= GCH and add ω2

Cohen reals, then it is clear that b = ω1, d = ω2 and BP (ω2, ω1) fails because
of the Cohen reals. To build a model where BP (d, b) holds, start with a model
of p = c = ω2 and add ω1 Cohen reals, clearly in the extension b = ω1.

We now show that in V [Cω1 ] we get d = ω2. Assume this is not the case,
so there must be a dominating family F = {fα | α ∈ ω1} ∈ V [Cω1 ]. For every
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p ∈ Cω1 and α ∈ ω1 define fpα : ω −→ ω given by fpα (n) = min{m | ∃r ≤ p(r 

“ḟα (n) = m”)} and note that {fpα | α ∈ ω1 ∧ p ∈ Cω1} belongs to the ground
model. This is a family of size ω1, so there is g ∈ V that is not dominated by
any fpα. However, since F is dominating in the extension, there must be α ∈ ω1

and p ∈ Cω1
such that p 
 “g < fα” which would then imply g < fpα which is a

contradiction.

It only remains to prove BP (ω2, ω1) so (in V [Cω1
]) take a sequence A =

〈fα | α ∈ ω2〉 and since every real appears in an intermediate extension, then
there is a countable α such that A ∩ V [Cα] has size ω1. Note that W = V [Cα]
is equivalent to a single Cohen extension and since pW = ω2, then ω1 has
the boundedness property in W, so we may find a function that dominates
uncountable many elements of A ∩W.

In [5] it was proved that if κ b (κ)
<ω
ω then cof(κ) b (cof(κ)

<ω
ω ) and it was

asked if the converse is also true. We will now answer this question negatively.

Given P and Q partial orders, we say P is a regular (or complete) suborder of
Q (which we denote by P ≤rQ) if P ⊆ Q, the order and incomparability relation
of P are the order and incomparability relations of Q restricted to P and every
maximal antichain (dense) of P is also a maximal antichain (predense) of Q.
This is equivalent that for every q ∈ Q there is p ∈ P such that if p′ ≤ p then
p′ ‖ q, such p (which in general is not unique) is called a reduction of q. If P ≤rQ
and G ⊆ Q is generic, then G ∩ P is generic for P. For more details the reader
may consult [6].

The key for our result is the next lemma (which we took from [3] but we
proved it here for the sake of completeness).

Lemma 25 ([3]) Assume V ⊆W, P ∈ V and Q ∈W. Moreover (in W ) P ≤r Q
and there is c ∈W which is unbounded for V. Let GQ ⊆ Q be a generic (W,Q)-
generic filter and let GP = GQ ∩ P. Then V [GP] ⊆ W [GQ] and c is unbounded
for V [GP] .

Proof. Assume this is not the case, so there is ḟ ∈ V and q ∈ Q such that
q 
 “c < ḟ”. Let p ∈ P be a reduction of q. In V, define h : ω −→ ω where
h (n) = min{m | ∃r ≤ p(r 
 “ḟ (n) = m”)}. Since h ∈ V then there is n ∈ ω
such that h (n) < c (n) . Find r ≤ p such that r 
 “ḟ (n) = h (n) ” and since p is
a reduction of q there is r ∈ Q such that r ≤ r, q. Note that r forces ḟ (n) < c (n)
and ḟ (n) > c (n) which is a contradiction.

Given F = 〈fα | α ∈ ω1〉 define H (F) (the Hechler forcing restricted to F)
as the set of all pairs of the form (s,G) where s ∈ ω<ω and G ∈ [ω1]

<ω
. If

(s1,G1) , (s2,G2) ∈ H (F) then define (s1,G1) ≤ (s2,G2) is s1 ⊆ s2, G2 ⊆ G1 and
if i ∈ dom (s1) \dom (s2) and α ∈ G2 then s1 (i) > fα (i) . Now we are ready for
the announced consistency result:
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Proposition 26 Assume GCH holds in V. There is P such that if G ⊆ P is
generic, then in V [G] the following hold,

1. ω1 < b so ω1 has the boundedness property,

2. d = ℵω1+1
,

3. ℵω1
does not have the boundedness property.

Proof. Let P = Cℵω1+1
∗〈Pα, Q̇α | α ∈ ℵω1+1

〉 where Pα 
 “∃Ḟα ∈ [ωω]
ω1 (Q̇α =

H(Ḟα))” and we iterate with finite support. Moreover, (with a suitable book-
keeping device) we arrange that every sequence of reals of lenght ω1 in the final
model is used at some successor step. It is clear that ω1 < b and when we prove
that ℵω1 does not have the boundedness property, it will follow that ℵω1 ≤ d
but since b ≤ cof(d) then we may conclude that ℵω1

< d. We will now prove
that ℵω1

does not have the boundedness property.

Let 〈cα | α ∈ ℵω1〉 be the first ℵω1 Cohen reals added by P, we will show
that if g : ω −→ ω ∈ V [G] then the set {α | cα ≤∗ g} has size less than ℵω1 .
Let ġ be a name for g and find M and elementary submodel of H (θ) (for some
big enough θ) such that ω1M ⊆ M, P, ġ ∈ M and let S = ℵω1

∩M. Obviously
V [CS ] ⊆ V [Cℵω1+1

] and if α /∈ S then cα is unbounded for V [CS ] . Now we

define another finite support iteration P = CS ∗ 〈Pα, Q̇α | α ∈ ℵω1+1
〉 where

Pα 
 “Q̇α = H(Ḟα)” if α ∈ M and Pα 
 “Q̇α = {∅} ” in the other case. It
is not evident that this is well defined, since although Ḟα is a Pα-name for a
sequence of reals, at the moment it is not clear it is also a Pα-name, however,
the next claim will take care of this problem:

Claim 27 If α < ℵω1+1 then the following holds:

1α) CS ∗ Pα ≤r Cℵω1+1
∗ Pα,

2α) If α ∈M and a ∈ (Cℵω1+1 ∗Pα)∩M then there is b ∈
(
CS ∗ Pα

)
∩M that

is equivalent to a (i.e. a ≤ b and b ≤ a).

3α) If α ∈M and ḟ ∈M is a Cℵω1+1
∗Pα name for a real, then there is ḣ ∈M

a CS ∗ Pα-name such that that 1 
 “ḟ = ḣ”.

We first note that 1α and 2α imply 3α. Given α, ḟ ∈M then without loss of
generality, we may assume ḟ = {{n} ×An | n ∈ ω} where An ⊆ Cℵω1+1

∗ Pα is
a maximal antichain deciding the value of n. Since ωM ⊆ M and using 2α we
can easily construct such an h. We will now prove 1α and 2α by induction.

Assume they hold for α, we need to show they hold for α + 1. We will first
assume α ∈ M, let a ∈ (Cℵω1+1

∗ Pα) ∩M then we may assume a = (s, p, z,G)
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where (s, p) ∈ Cℵω1+1 ∗ Pα, z ∈ ω<ω and G ∈ [ω1]
<ω

. Since a ∈M then (s, p) ∈
(Cℵω1+1 ∗Pα)∩M and by our hypothesis, there is (s′, p′) ∈

(
CS ∗ Pα

)
equivalent

to (s, p) and then b = (s′, p′, z,G) is equivalent to a. In case α /∈ M then 1α+1

and 2α+1 are trivially true. Now assume α is limit, then 1α follows by lemma
of 10 of [3] and 2α follows since we are taking direct limit.

In this way, we may conclude that g is in some forcing extension of V [CS ]
so we may conclude that if α /∈ S then cα �∗ g by the previous lemma.
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