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Abstract. We prove there is a countable dense homogeneous subspace of R
of size ℵ1. The proof involves an absoluteness argument using an extension of

Lω1ω(Q) obtained by adding predicates for Borel sets.

A separable topological space X is countable dense homogeneous (CDH) if given
any two countable dense subsets D,D′ ⊆ X there is a homeomorphism h of X such
that h[D] = D′. The main purpose of this note is to show the following.

Theorem 1. There is a countable dense homogeneous set of reals X of size ℵ1.
Moreover, X can be chosen to be a λ-set.

Recall that a set of reals is a λ-set if all of its countable subsets are relatively
Gδ, and therefore it cannot be completely metrizable. Theorem 1 and this remark
solve problems 390 and 389 from [4]. Our construction necessarily uses the Axiom
of Choice. In [6] it was shown that under sufficient large cardinal assumptions
every CDH metric space in L(R) is completely metrizable. Our proof of Theorem 1
uses Keisler’s completeness theorem for logic Lω1ω(Q) (see §2), and the secondary
purpose of this note is stating a somewhat general method for proving absoluteness
of the existence of an uncountable set of reals properties of which are described
using Borel sets as parameters.

1. A meager countable dense homogeneous set

Recall that every compact zero-dimensional subset of R without isolated points
is homeomorphic (even isomorphic as linearly ordered sets) to the Cantor set.

Lemma 1.1. There is an uncountable Fσ set F containing the rationals Q and an
Fσ equivalence relation E ⊆ F × F with all equivalence classes countable dense
subsets of R, such that for every dense A ⊆ Q there is a homeomorphism h : F −→
F satisfying

(1) h[Q] = A and
(2) h(x)E x for every x ∈ F .

Proof. Let F = Q ∪ D ∪
⋃

n∈ω Fn, where Q and D are disjoint countable dense
subsets of R and {Fn : n ∈ ω} is a family of pairwise disjoint copies of the Cantor
set disjoint from both Q and D and such that every nonempty open set contains one
of the Fns. Denote by C the set of all relatively clopen subsets of all the Cantor sets
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Fn. For every pair U,W ∈ C fix hU,W : U −→ W an increasing homeomorphism.
Let F be the (countable) family of all compositions of finitely many functions of
the type hU,W and their inverses. Then define xE y if and only if x, y ∈ Q ∪D or
y = h(x) for some h ∈ F . The relation E is then obviously an equivalence relation
with countable and dense equivalence classes and it is Fσ as it is a countable union
of compact sets.

Let A ⊆ Q be dense. Enumerate C as {An : n ∈ ω}, Q as {qn : n ∈ ω}, D as
{dn : n ∈ ω}, D ∪ (Q \ A) as {cn : n ∈ ω} and A as {an : n ∈ ω}. Using the
back-and-forth argument of Cantor, construct the homeomorphism h : F −→ F
as an increasing union of strictly increasing partial homeomorphisms hn, n ∈ ω, so
that, for every n ∈ ω:

(1) hn extends hn−1,
(2) dom(hn) consists of a finite subset of Q ∪D and a finite union of elements

of C,
(3) range(hn) consists of a finite subset of Q∪D and a finite union of elements

of C,
(4) hn restricted to dom(hn) \ (Q ∪ D) is covered by finitely many elements

of F ,
(5) hn(q) ∈ A for every q ∈ Q ∩ dom(hn),
(6) hn(d) ∈ D ∪ (Q \A) for every d ∈ D ∩ dom(hn),
(7) {qm : m ≤ n} ∪ {dm : m ≤ n} ∪

⋃
{Am : m ≤ n} ⊆ dom(hn),

(8) {am : m ≤ n} ∪ {cm : m ≤ n} ∪
⋃
{Am : m ≤ n} ⊆ range(hn).

Then h =
⋃

n∈ω hn is the desired homeomorphism of F . �

Recall that if E is an equivalence relation then a set X is E -saturated if for all
xE y we have x ∈ X if and only if y ∈ X.

Lemma 1.2. Assume Q, D, F, E and F are as in Lemma 1.1 and its proof. If
X ⊆ F is an E -saturated set such that for every countable B ⊆ X there is an
E -saturated A ⊆ X containing B and a homeomorphism h : X → X satisfying
h[A] = Q, then X is countable dense homogeneous.

Proof. Fix a countable dense subset B of X. Let g be an autohomeomorphism
of X such that g−1(Q) is an E -saturated set containing B. Then A = g[B] is a
dense subset of Q. By Lemma 1.1 there is an autohomeomorphism h of F such that
h[Q] = A and h(x)E x for every x ∈ F . Therefore h � X is an autohomeomorphism
of X. Then H = h−1 ◦ g is an autohomeomorphism of X such that H[B] = Q as
required. �

2. Absoluteness

Recall that Lω1ω(Q) is an extension of the first-order logic that allows countable
disjunctions and has quantifier Qx, ‘there exists uncountably many.’ It is well-
known that completeness of this logic is useful for proving that the existence of
certain objects of size ℵ1 is absolute between models of ZFC (see [7, 1, 3, 5, 9]).

Let LB
ω1ω(Q) be the extension of Lω1ω(Q) allowing countably many Borel pred-

icates in the following sense. For some Borel sets An ⊆ (NN)kn (n ∈ N) and Borel
functions fn : (NN)ln → NN (n ∈ N), we have relation and function symbols An

and fn of matching arity, and for bn ∈ NN (n ∈ N) we have constant symbols bn

(n ∈ N).
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If φ is a sentence of LB
ω1ω(Q), we say that a model X of φ (with universe X) is

correct if
(1) each An is interpreted as An∩Xkn , each fn is interpreted as fn � X ln , each

bn is interpreted as bn, and
(2) if An is countable then An ⊆ X.

A model of an Lω1,ω(Q) sentence is standard if it interprets Qx as ‘there exist
uncountably many. Recall that a linear order is ω1-like if it is uncountable yet each
of its initial segments is countable.

Theorem 2. An LB
ω1ω(Q)-sentence φ has a correct model if and only if it has a

correct model in some forcing extension V P of the universe V .

Let us postpone the proof of Theorem 2 for a moment. Fix an LB
ω1ω(Q)-sentence

φ. We shall define an Lω1ω(Q) sentence φM as follows. (For simplicity we shall
treat only the case when we have only one Borel set, A ⊆ NN; a standard coding
argument shows that the general case with infinitely many Borel sets, functions
and constants is really not any more general.) First, the language of φ is expanded
by adding new symbols N, M, {cn : n ∈ N}, B and {Ns : s ∈ N<N}. Let φ0 be the
conjunction of sentences stating the following:

(1) (∀x)N(x) ⇔
∨

n∈N x = cn,
(2) (∀x)B(x) ⇔

∨
s∈N<N x = Ns,

(3) axioms of formal arithmetic for cn (n ∈ N),
(4) first-order properties of basic open sets [s] = {x ∈ NN : s @ x} for Ns

(s ∈ ω<ω),
(5) if M(x), then x ∈ Ns for exactly one s of length n for all n, and moreover

{s : x ∈ Ns} forms a chain (all this can clearly be stated in Lω1ω).
Since A is a Borel set, we can fix arithmetic formulas ψ0(x, y) and ψ1(x, y) such
that x ∈ A ⇔ (∀y)ψ0(x, y) ⇔ (∃y)ψ1(x, y). Let φi (i < 2) be the translation of
ψi into the language of Ns (s ∈ ω<ω). Replace each occurrence of A(x) in φ by
M(x) ∧ (∀y)φ0(x, y), and let φM be the conjunction of thus modified φ, φ0, and
(∀x)((∃y)φ0(x, y) ∨ (∃y)¬φ1(x, y)).

Lemma 2.1. An LB
ω1ω(Q) sentence φ has a correct model if and only if φM has a

standard model.

Proof. Assume φ has a correct model X = (X,A, . . . ). Extend its universe by
adding all natural numbers, basic open subsets of NN, and the set Y of ‘witnesses’
defined as follows. If x ∈ X ∩ A, pick yx such that φ0(x, yx) holds. If x ∈ X \ A,
pick yx such that ¬φ1(x, yx) holds. Let Y = {yx : x ∈ X}. Finally interpret M as
X. It is clear that thus obtained model is a standard model of φM .

Now assume φM has a standard model, Z = (Z,A′, . . . ). Let X = {x ∈ Z : Z |=
M(x)}, and let X be the reduction of (X,A′∩X, . . . ) to the language of φ. We only
need to check that A is interpreted as A′ ∩X. Note that Z |= φi(x, y) iff φi(x, y)
holds, for i < 2. For every x ∈ X we either have Z |= φ0(x, y) or Z |= ¬φ1(x, y) for
some y. If Z |= φ0(x, y) for some y, then Z |= A(x) and x ∈ A. On the other hand,
if Z |= φ1(x, y) for some y, then Z |= ¬A(x) and x /∈ A. �

Proof of Theorem 2. By Lemma 2.1 φ has a correct model if and only if φM has
a standard model. By Keisler’s completeness theorem for Lω1ω(Q) ([8]), φM has a
standard model if and only if it is not inconsistent in the proof system described in
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[8]. However, if φM is inconsistent in V , then it would remain such in the extension.
If φM has a model X in V then X is a weak model (see [8]) of φM in V P, and again
by Keisler’s theorem φM has a standard model in V P as well. �

In the following lemma A,B,C,D are unary relation symbols, h is a unary
function symbol and f is a binary function symbol. We say that a property is
expressible in LB

ω1ω(Q) if there is a sentence of LB
ω1ω(Q) such that in each of its

correct models the interpretations A,B,C,D, f, h of these predicates satisfy the
stated property.

Lemma 2.2. The following properties are expressible in LB
ω1ω(Q).

(1) A is countable.
(2) A binary relation < is an ω1-like linear order.
(3) h : A→ B is a surjection.
(4) h : A→ B is a continuous function.
(5) h : A→ B is a homeomorphism.
(6) h : A→ B and it satisfies h[C] = D.
(7) f(x, ·) : A→ B is a homeomorphism for every x.
(8) x is in the closure of A.
(9) A is a dense subset of B .

(10) A is a relatively open subset of B.
(11) A is a relatively Gδ subset of B.
(12) B has a countable dense subset K that is relatively Gδ in B.
(13) X is E-saturated, for a given Borel equivalence relation E all of whose

equivalence classes are countable.

Proof. Items (3) and (6) are first-order definable, and (1) and (2) are straightfor-
ward to define using Qx.

For (4), (5) and (8) one only needs to observe that since we have a standard
model of Lω1ω(Q), quantifiers such as (∀ε > 0)(∃δ > 0) are evaluated correctly.
Item (7) is immediate from the preceding items, and (10) and (9) are immediate
from (8). For (11), introduce new predicates An (n ∈ N) and require that each An

is a relatively open set of B and A =
⋂

nAn.
To see (12), add a predicate for A and then use (1), (11), (2) and (9).
Let E be as in (13). It is well-known that there are Borel functions fn (n ∈ N)

such that xE y if and only if (∃n)x = fn(y), hence for (13) we only need to add
names for fn (n ∈ N) to our language.

�

3. Proof of Theorem 1

Assume Q, D, F, E and F = {gn : n ∈ N} are as in Lemma 1.1 and its proof.
By Lemma 1.2, an uncountable E -saturated X ⊆ F with an ω1-like ordering <
such that

(1) Each E -equivalence class is an interval in <,
(2) There is a function H : X ×X → X such that for every x ∈ X:

(a) H(x, ·) is an autohomeomorphism of X,
(b) H(x, y) ∈ Q if and only if y < x

will be countable dense homogeneous. By Lemma 2.2, the existence of X and H
can be expressed in LB

ω1ω(Q), and by Theorem 2 it suffices to show that X exists
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in some forcing extension. In order to assure that X is uncountable, we will force
with a ccc poset. In [2] it was proved that if {Cα : α < ω1} and {Dα : α < ω1}
are two families of pairwise disjoint countable dense subsets of R then a ccc forcing
adds a homeomorphism h :

⋃
α<ω1

Cα −→
⋃

α<ω1
Dα such that h[Cα] = Dα for

every α < ω1. Therefore, if we pick any ω1 sequence of equivalence classes so that
the first one is Q∪D and well-order their union X in type ω1 then a standard ccc
forcing such that MA holds in the extension adds H with the required properties.

Since Q is a relatively Gδ subset of F , it is a countable dense and relatively Gδ

subset of X. By the countable dense homogeneity, X is a λ-set.
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