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ABSTRACT. We prove there is a countable dense homogeneous subspace of R
of size N;. The proof involves an absoluteness argument using an extension of
Ly, (Q) obtained by adding predicates for Borel sets.

A separable topological space X is countable dense homogeneous (CDH) if given
any two countable dense subsets D, D’ C X there is a homeomorphism h of X such
that h[D] = D’. The main purpose of this note is to show the following.

Theorem 1. There is a countable dense homogeneous set of reals X of size N;.
Moreover, X can be chosen to be a A-set.

Recall that a set of reals is a A-set if all of its countable subsets are relatively
Gy, and therefore it cannot be completely metrizable. Theorem 1 and this remark
solve problems 390 and 389 from [4]. Our construction necessarily uses the Axiom
of Choice. In [6] it was shown that under sufficient large cardinal assumptions
every CDH metric space in L(R) is completely metrizable. Our proof of Theorem 1
uses Keisler’s completeness theorem for logic L, (Q) (see §2), and the secondary
purpose of this note is stating a somewhat general method for proving absoluteness
of the existence of an uncountable set of reals properties of which are described
using Borel sets as parameters.

1. A MEAGER COUNTABLE DENSE HOMOGENEOUS SET

Recall that every compact zero-dimensional subset of R without isolated points
is homeomorphic (even isomorphic as linearly ordered sets) to the Cantor set.

Lemma 1.1. There is an uncountable F, set F containing the rationals Q and an
F, equivalence relation E C F x F with all equivalence classes countable dense
subsets of R, such that for every dense A C Q there is a homeomorphism h : F' —
F' satisfying

(1) h|Q] = A and

(2) h(z)Ex for everyx € F.

Proof. Let F = QU DU, Fn, where Q and D are disjoint countable dense
subsets of R and {F,, : n € w} is a family of pairwise disjoint copies of the Cantor
set disjoint from both Q and D and such that every nonempty open set contains one
of the F},s. Denote by C the set of all relatively clopen subsets of all the Cantor sets
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F,. For every pair U,W € C fix hyw: U — W an increasing homeomorphism.
Let F be the (countable) family of all compositions of finitely many functions of
the type hy,w and their inverses. Then define z E'y if and only if xz,y € QU D or
y = h(x) for some h € F. The relation E is then obviously an equivalence relation
with countable and dense equivalence classes and it is F,, as it is a countable union
of compact sets.

Let A C Q be dense. Enumerate C as {4, : n € w}, Q as {¢, : n € w}, D as
{dn :n € w}, DU(Q\ A) as {¢, : n € w} and A as {a, : n € w}. Using the
back-and-forth argument of Cantor, construct the homeomorphism h : F — F
as an increasing union of strictly increasing partial homeomorphisms h,,,n € w, so
that, for every n € w:

(1) hy, extends hy,_1,

(2) dom(h,,) consists of a finite subset of QU D and a finite union of elements
of C,

(3) range(h,,) consists of a finite subset of QU D and a finite union of elements
of C,

(4) hy, restricted to dom(h,,) \ (QU D) is covered by finitely many elements

of F,

) hn(q) € A for every ¢ € QN dom(h,),

) hn(d) € DU(Q\ A) for every d € D Ndom(hy,),

) {gm :m <n}U{dy:m <n}UU{4, : m <n} Cdom(h,),
) {am :m < Tl} U {Cm im < ’Il} U U{Am :m < n} - range(hn)'

Then h = J,,., hn is the desired homeomorphism of F. O

Recall that if F is an equivalence relation then a set X is E -saturated if for all
x Ey we have z € X if and only if y € X.

Lemma 1.2. Assume Q,D,F, E and F are as in Lemma 1.1 and its proof. If
X C F is an FE -saturated set such that for every countable B C X there is an
FE -saturated A C X containing B and a homeomorphism h: X — X satisfying
h[A] = Q, then X is countable dense homogeneous.

Proof. Fix a countable dense subset B of X. Let g be an autohomeomorphism
of X such that ¢71(Q) is an E-saturated set containing B. Then A = g[B] is a
dense subset of Q. By Lemma 1.1 there is an autohomeomorphism h of F' such that
hIQ] = A and h(z) E x for every x € F. Therefore h | X is an autohomeomorphism
of X. Then H = h™! o g is an autohomeomorphism of X such that H[B] = Q as
required. ([l

2. ABSOLUTENESS

Recall that L, (Q) is an extension of the first-order logic that allows countable
disjunctions and has quantifier Qz, ‘there exists uncountably many.” It is well-
known that completeness of this logic is useful for proving that the existence of
certain objects of size N; is absolute between models of ZFC (see [7, 1, 3, 5, 9]).

Let LE (Q) be the extension of Ly, (Q) allowing countably many Borel pred-
icates in the following sense. For some Borel sets A,, C (NV)*» (n € N) and Borel
functions f,: (NV)» — NV (n € N), we have relation and function symbols A,
and f,, of matching arity, and for b, € N" (n € N) we have constant symbols b,
(n eN).
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If ¢ is a sentence of L5 (Q), we say that a model X of ¢ (with universe X) is
correct if

(1) each A, is interpreted as A,, N X%~ each f, is interpreted as f,, | X', each
b,, is interpreted as b,,, and
(2) if A, is countable then A, C X.

A model of an L, ,(Q) sentence is standard if it interprets Qz as ‘there exist
uncountably many. Recall that a linear order is w-like if it is uncountable yet each
of its initial segments is countable.

Theorem 2. An Lflw(Q)—sentence ¢ has a correct model if and only if it has a

correct model in some forcing extension V¥ of the universe V.

Let us postpone the proof of Theorem 2 for a moment. Fix an LE (Q)-sentence
#. We shall define an L, (Q) sentence ¢ as follows. (For simplicity we shall
treat only the case when we have only one Borel set, A C NV; a standard coding
argument shows that the general case with infinitely many Borel sets, functions
and constants is really not any more general.) First, the language of ¢ is expanded
by adding new symbols N, M, {c,, : n € N}, B and {N, : s € NV}, Let ¢ be the
conjunction of sentences stating the following:
(1) (¥2)N(2) & V7 = e,
(2) (v2)B(z) & V1oyenw = N,
(3) axioms of formal arithmetic for c,, (n € N),
(4) first-order properties of basic open sets [s] = {z € NY : s = 2} for N,
(s € w<Y),
(5) if M(x), then x € Ny for exactly one s of length n for all n, and moreover
{s: 2 € N} forms a chain (all this can clearly be stated in L, ).

Since A is a Borel set, we can fix arithmetic formulas to(z,y) and 1 (z,y) such
that © € A & (Vy)vo(x,y) & (Fy)1(z,y). Let ¢; (i < 2) be the translation of
1; into the language of N, (s € w<*). Replace each occurrence of A(zx) in ¢ by
M(z) A (Vy)do(x,y), and let ¢ be the conjunction of thus modified ¢, ¢o, and

(Vo) (Fy)do(z, y) V (Fy)=¢1(x, y)).

Lemma 2.1. An Lflw(Q) sentence ¢ has a correct model if and only if ™ has a
standard model.

Proof. Assume ¢ has a correct model ¥ = (X, A,...). Extend its universe by
adding all natural numbers, basic open subsets of NV, and the set Y of ‘witnesses’
defined as follows. If x € X N A, pick y, such that ¢o(x,y,) holds. If x € X \ A,
pick y, such that —¢1(z,y,) holds. Let Y = {y, : « € X}. Finally interpret M as
X. It is clear that thus obtained model is a standard model of ¢™.

Now assume ¢™ has a standard model, 3 = (Z,A’,...). Let X ={x € Z:3
M(z)}, and let X be the reduction of (X, A’NX,...) to the language of ¢. We only
need to check that A is interpreted as A’ N X. Note that 3 = ¢;(z,y) iff ¢;(z,y)
holds, for ¢ < 2. For every « € X we either have 3 |= ¢o(x,y) or 3 = —¢1(x,y) for
some y. If 3 = ¢o(z,y) for some y, then 3 = A(z) and = € A. On the other hand,
if 3 | é1(z,y) for some y, then 3 = —A(z) and = ¢ A. O

Proof of Theorem 2. By Lemma 2.1 ¢ has a correct model if and only if #™ has
a standard model. By Keisler’s completeness theorem for L, (Q) ([8]), #™ has a
standard model if and only if it is not inconsistent in the proof system described in
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[8]. However, if M is inconsistent in V, then it would remain such in the extension.

If ™ has a model X in V then X is a weak model (see [8]) of ¢* in VF and again
by Keisler’s theorem ¢ has a standard model in VT as well. (]

In the following lemma A,B,C,D are unary relation symbols, h is a unary
function symbol and f is a binary function symbol. We say that a property is
expressible in LY (Q) if there is a sentence of L5 ,(Q) such that in each of its
correct models the interpretations A, B,C, D, f, h of these predicates satisfy the
stated property.

Lemma 2.2. The following properties are expressible in Lflw(Q).
A binary relation < is an w-like linear order.

h: A — B is a surjection.

h: A — B is a continuous function.

h: A — B is a homeomorphism.

h: A — B and it satisfies h[C] = D.

f(x,): A — B is a homeomorphism for every x.

x is in the closure of A.

A is a dense subset of B .

A is a relatively open subset of B.

A is a relatively Gs subset of B.

B has a countable dense subset K that is relatively Gs in B.
X is E-saturated, for a given Borel equivalence relation E all of whose
equivalence classes are countable.

Proof. Ttems (3) and (6) are first-order definable, and (1) and (2) are straightfor-
ward to define using Q.

For (4), (5) and (8) one only needs to observe that since we have a standard
model of L, ,(Q), quantifiers such as (Ve > 0)(3§ > 0) are evaluated correctly.
Item (7) is immediate from the preceding items, and (10) and (9) are immediate
from (8). For (11), introduce new predicates A,, (n € N) and require that each A,
is a relatively open set of B and A =, 4,.

To see (12), add a predicate for A and then use (1), (11), (2) and (9).

Let E be as in (13). It is well-known that there are Borel functions f, (n € N)
such that x F'y if and only if (3In)x = f,(y), hence for (13) we only need to add
names for f,, (n € N) to our language.

O

3. PROOF OF THEOREM 1

Assume Q, D, F, E and F = {g, : n € N} are as in Lemma 1.1 and its proof.
By Lemma 1.2, an uncountable F -saturated X C F with an w;-like ordering <
such that

(1) Each FE-equivalence class is an interval in <,
(2) There is a function H: X x X — X such that for every z € X:
(a) H(x,-) is an autohomeomorphism of X,
(b) H(z,y) € Qif and only if y < x
will be countable dense homogeneous. By Lemma 2.2, the existence of X and H
can be expressed in L2 (Q), and by Theorem 2 it suffices to show that X exists

wiw



A COUNTABLE DENSE HOMOGENEOUS SET OF REALS OF SIZE ¥, 5

in some forcing extension. In order to assure that X is uncountable, we will force
with a ccc poset. In [2] it was proved that if {Cy : @ < w1} and {Dy : @ < w1}
are two families of pairwise disjoint countable dense subsets of R then a ccc forcing
adds a homeomorphism % : (J,.,, Ca — Uscwn, Do such that h[Cy.] = D, for
every a < wi. Therefore, if we pick any w; sequence of equivalence classes so that
the first one is Q UD and well-order their union X in type w; then a standard ccc
forcing such that MA holds in the extension adds H with the required properties.

Since Q is a relatively G subset of F', it is a countable dense and relatively Gs
subset of X. By the countable dense homogeneity, X is a A-set.
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