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Introduction

Gravity→ manifestation of the curvature of spacetime. The
dynamics of the gravitational field is governed by the Einstein’s
equations: Rµν− 1

2 gµνR +Λgµν = 8πGTµν.

Action principles

• Metric: S[gµν] = κ
∫

M d4x
√
−gR.

• First-order: S[e,A] =
∫

M

[
∗(eI
∧ eJ)− 1

γ eI
∧ eJ

]
∧FIJ[A];

FI
J = dAI

J + AI
K∧AK

J, γ→ Immirzi parameter.

• BF: S[B,A,φ,µ] =
∫

M

(
BIJ
∧FIJ[A]−φIJKLBIJ

∧BKL +µH(φ)
)
;

φIJKL = −φJIKL = −φIJLK = φKLIJ and H(φ) = εIJKLφIJKL, φIJ
IJ,

a1φ
IJ

IJ + a2εIJKLφIJKL.

3



BF Gravity

Mariano Celada

Introduction

Hamiltonian
analysis of the
CMPR action

Hamiltonian
analysis of BF
gravity with
cosmological
constant

Conclusions and
perspectives

• The Immirzi parameter has a topological nature (PRD 85
024026 (2012)). It does not affect the classical equations of
motion, but it shows up in the spectra of quantum operators.

• Since general relativity is a constrained theory→ use Dirac’s
method.

• Metric→ ADM formulation.
• First-order→ Barbero’s formulation: one of the cornerstones of

loop quantum gravity.

• Novel approach→ spin foam models→ path integral
quantization of gravity based on the BF formulation. This
approach supplements the loop approach and is
Lorentz-covariant.
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Hamiltonian analysis of the CMPR action

The CMPR action (CQG 18 L49)

S[B,A,φ,µ] =

∫
M

[
BIJ
∧FIJ −φIJKLBIJ

∧BKL +µ
(
a1φ

IJ
IJ + a2εIJKLφ

IJKL
)]
.

We assume that M =R×Ω (∂Ω = 0). The (3+1)-decomposition of
the action leads to

S[A,Π,φ,µ0] =

∫
R

dt
∫

Ω
d3x

{
ΠaIJȦaIJ + A0IJDaΠ

aIJ +
1
2

B IJ
0a η̃

abcFbcIJ

−

[
2B IJ

0a ΠaKL
−µ0

(
a1η

I[K|ηJ|L] + a2ε
IJKL

)]
φIJKL

}
,

where ΠaIJ
≡

1
2 η̃

abcB IJ
bc . The equation of motion corresponding to

ΦIJKL is
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B IJ
0a ΠaKL + B KL

0a ΠaIJ
−µ0

[
a1η

I[K|ηJ|L] + a2ε
IJKL

]
= 0,

which has the solution

B IJ
0a =

1
8

Nhabε
IJKLΠb

KL +
1
2
η˜abcΠ

bIJNc +
1

16h
NhachbdΠbIJ

(
Φcd +

a1

a2
hhcd

)
,

µ0 = σV/4a2, Φab +
a1

a2
hhab = 0,

where we have introduced the quantities

V≡
1
3
εIJKLB IJ

0a ΠaKL, Na
≡
σ
2h
η̃abchbdB IJ

0c Πd
IJ, N ≡

V

h

hhab
≡
σ
2

ΠaIJΠb
IJ, Φab

≡ −σ ∗Πa
IJΠ

bIJ.
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By substituting the expression for B IJ
0a in the action we obtain

S[A,Π] =
∫
R

dt
∫
Ω

d3x
[
ΠaIJȦaIJ + A0IJG

IJ + NH + Na
Ha +λabϕab

]
.

Primary constraints

G
IJ
≡DaΠ

aIJ
≈ 0, Ha ≡

1
2

ΠbIJFbaIJ ≈ 0,

H ≡
1
8
η̃abchad ∗Π

dIJFbcIJ ≈ 0, ϕab
≡Φab +

a1

a2
hhab
≈ 0.

The Hamiltonian is H = −
∫
Ω

d3x
(
A0IJG

IJ + NH + Na
Ha +λabϕab

)
.

Now, according to Dirac’s method, the primary constraints must be
preserved in time =⇒ {C,H} ≈ 0 for each constraint C.
The canonical variables (A, Π) satisfy

{AaIJ(x),ΠbKL(y)} = δb
aδ

[K
I δ

L]
J δ

3(x,y).
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The primary constraint algebra has the following form:

• {GIJ,C} ≈ 0, {Ha,C} ≈ 0, {H ,H} ≈ 0, {ϕab,ϕcd
} = 0.

• {H(x),ϕab(y)} =
[
−

a1
4a2

hcf (x)η̃(a|cdϕf |b)(x) ∂
∂xd +Ψab

]
δ3(x,y), where

Ψab
≡

1
2 hcf

(
−Π

f
IJ +

σa1
2a2
∗Π

f
IJ

)
η̃(a|cdDdΠ|b)IJ.

The evolutions of GIJ and Ha generate neither new constraints nor
conditions on the Lagrange multipliers. On the other hand, the
evolution of ϕab leads to

NΨab
≈ 0,

whose solution is Ψab
≈ 0. Then Ψab becomes a secondary

constraint→ evolve Ψab.
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• {Ψab,GIJ
} = 0, {Ψab,Ha} ≈ 0.

• {Ψab(x),H(y)} ≈ Fabδ3(x,y) and
{Ψab(x),ϕcd(y)} = M(ab)(cd)δ3(x,y), where M(ab)(cd) defines a 6×6
non-singular matrix.

M(ab)(cd)
≡ σhef

(
−Π

f
IJ +

σa1
2a2
∗Π

f
IJ

) [(
∗ΠcI

K −
a1
2a2

ΠcI
K

)
η̃(a|deΠ|b)KJ + (c↔d)

]
.

The evolution of Ψab then fixes the Lagrange multipliers λab:
λab ≈

1
4 NFcd(M−1)(cd)(ab) =⇒ the Dirac’s method concludes here!
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Classification of the constraints

• GIJ,Ha and H̄ ≡H + 1
4 Fcd(M−1)(cd)(ab)ϕab are first-class.

• ϕab and Ψab are second-class.

Degree of freedom count

DOF =
1
2

[2× 18︸︷︷︸
AaIJ

−2× ( 6︸︷︷︸
GIJ

+ 3︸︷︷︸
Ha

+ 1︸︷︷︸
H̄

)− ( 6︸︷︷︸
ϕab

+ 6︸︷︷︸
Ψab

)] = 2.
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Alternative BF principle

BF gravity plus cosmological constant (PRD 85 064011)

S[B,A,φ,µ] =

∫
M

[(
BIJ +

1
γ
∗BIJ

)
∧FIJ −φIJKLBIJ

∧BKL
−µφIJKLε

IJKL

+µλ+ l1BIJ ∧BIJ + l2BIJ ∧∗BIJ
]

Following a similar procedure as before, the action can be cast in
the form

S[A,
(γ)
Π] =

∫
R

dt
∫
Ω

d3x
[
Π(γ) aIJȦaIJ + A0IJG

IJ + Na
Ha + NH +λabΦ

ab
]
,

where ΠaIJ
≡

1
2 η̃

abcB IJ
bc ,

(γ)
V IJ
≡ VIJ + 1

γ ∗V
IJ, and we have introduced

the same quantities N, Na, hab and Φab.
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Primary constraints

G
IJ
≡Da

(γ)
Π aIJ

≈ 0, Ha ≡
1
2

(γ)
Π bIJFbaIJ ≈ 0,

H ≡
1
8
η̃abchad ∗

(γ)
Π dIJFbcIJ +Λh ≈ 0, Φab

≈ 0.

Here Λ = 3l2−σλ/4. Moreover, we need to express hab and Φab in

terms of the new canonical variable
(γ)
Π, i.e.,

hhab = η

 (γ)

(hhab) +
γ−1

1+σγ−2

(γ)
Φ ab

, Φab= η

(γ)
Φ ab +

4σγ−1

1+σγ−2

(γ)

(hhab)

,
with η ≡ γ2(γ2+σ)

(γ2−σ)2 .
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It turns out that the Poisson brackets among the primary
constraints are very similar to those of the CMPR action. The only
non-(weakly)vanishing Poisson bracket is given by

{H(x),Φab(y)} =
1
4

Ψ̄abδ3(x,y)

where

Ψ̄ab
≡ −2ηhcf

(
−

(γ)
Π

f
IJ +

2γ−1

1+σγ−2 ∗

(γ)
Π

f
IJ

)
η̃(a|cdDd

(γ)
Π |b)IJ.

Then Ψ̄ab becomes a secondary constraint and its evolution leads
to the fixing of the Lagrange multiplier λab.
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Finally, the classification of the constraints and the degree of
freedom count are as follows:

• GIJ,Ha, and H̄ ≡H + 1
4 F̄cd(M̄−1)(cd)(ab)Φ

ab are first-class.

• Φab and Ψ̄ab are second-class.
• The number of physical degrees of freedom is 2.
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Conclusions and perspectives

1 Both BF action principles of gravity possess 2 local degrees of
freedom, the same number of general relativity.

2 Despite the Immirzi parameter enters in both action principles
(do not consider the cosmological coupling in the second
action principle) in different ways and the constraint algebras
may differ a little from each other, we can make the algebras

coincide by performing the changes
(γ)
Π→Π and 4σγ−1

1+σγ−2 →
a1
a2

in

the constraints of the alternative BF principle. It is also
necessary to redefine suitably the constraint H for
eliminating factors proportional to the constraints Φab.
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3 Manage the second-class constraints to make contact with the
Lorentz-covariant formulations of gravity based on the
first-order action.

4 Coupling of fermions.

5 Work out the quantum theories arising from these constrained
systems.

6 BF gravity with boundary terms.
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¡¡Thank You!!
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