
Pyramids Over the 
Regular 3-Tori

Gordon Williams (with Daniel Pellicer) 
SIGMAP 2018



We’re really sorry.
Well… most of us.



Outline

• Basic definitions 

• Representing connection groups as subgroups of 
wreath products of automorphism groups 

• An interesting infinite family of abstract polytopes



What is an Abstract 
Polytope?

Escape Hatch 
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The Flag Graph

• Nodes: Flags = 
maximal chains 

• Edges: Connected 
adjacent flags, i.e., 
flags differing by 
exactly one element.



The Groups of 
Abstract Polytopes



The Automorphism Group
• An automorphism of a polytope 

P is an inclusion preserving 
permutation of its faces.  

• The automorphisms form a 
group Aut(P), called the 
automorphism group of P. 

• A polytope P is regular if its 
automorphism group acts 
transitively on the flags. 

• Induces an automorphism 
group of the flag graph that 
preserves the edge colors.



Automorphism Groups of 
Regular Abstract Polytopes

Known as String C-groups. 
• Equipped with a privileged set of involutory 

generators. 

• Arise as quotients of string Coxeter groups. 
• Must satisfy the intersection condition. 

• Are an example of an sggi, or string group generated 
by involutions.

ρ0 ρ1 ρ2 ρ3

3 3 4



The Connection Group
•A permutation group on 

the flags determined by 
flag adjacency. 

•Also an sggi. 

•Aut(P) and Con(P) distinct 
subgroups of the 
symmetric group on the 
flags. 

•Isomorphic when P 
regular



An Alternative Representation 
for the Connection Group

k:= # of flag orbits for P 

   

(σ,α)(τ,β)=(στ,φτ(α)∙β) where φτ(α)=[ατ(1),ατ(2),…,ατ(n)] 

Then Con(P) can be embedded in Δ. 

Strictly speaking, we are working with

Δ := Sk ⋉ (Aut(P))k = Sk ≀[k] Aut(P)

NormCon(P)(StabCon(P)(Φ))/StabCon(P)(Φ)



Symmetry Type Graph
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• Pick a spanning tree T in the 
symmetry type graph 

• Lifts of T are chunks 
• Automorphisms in 

representation relate chunks 
• e.g., 

• ι(r0):=((),[(2,3),(2,3),(1,3)]) 
• ι(r1):=((1,3),[(),(2,4),()]) 
• ι(r2):=((1,2),[(),(),(2,4)]) 
• So ι(r1r2)= 

((1,3,2),[(2,4),(),()]∙[(),(),(2,4)]) 

=((1,3,2),[(2,4),(),(2,4)])

Generating the 
Subgroup of Δ 
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A Regular Cover for the 
Truncated Tetrahedron



Minimal Covers
Let Q be an abstract polytope.   

A regular abstract polytope P is a minimal cover of Q if:  

1. P covers Q 

2. for all regular polytopes R such that P covers R and 
R covers Q 

 then P = R. 

i.e., if P↘︎R↘︎Q, then P minimal  ⟺ P=R



Connection Groups and
Minimal Covers

If the connection group of Q is a string C-group, then 
it corresponds to the unique minimal regular cover of 
Q.

In every studied example, if the connection group of 
Q is not a string C-group, then it has more than one 
minimal regular cover.

P

Q

R≇



Pyramids Over 3-Tori

We start with the regular tori of type 
{4,4}(n,0), {4,4}(n,n), {6,3}(n,0), {6,3}(n,0), 
{3,6}(n,0), {3,6}(n,n). 
Observations and Results: 
1. 5 symmetry classes of flags 
2. Elements in the normal closure of 

(r0r1)3, (r1r2)3, and (r2r3)3 fix all flag 
orbits.  

3. Con(P) is a string C-group 
except when P=Pyr({4,4}(n,0)).
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Proving that if n≥3 is odd, then Con(Pyr({4,4}(n,0)) is 
not a string C-group

Proposition: Let S(n) be the set of elements of 
C(n)=Con(Pyr({4,4}(n,0)) that fix all flag orbits. Then  
|S(n)∩C(n)0∩C(n)3|=4j for some j∊ℕ.  

Also, |S(n)∩C(n)0∩C(n)3|>4 iff C(n)0∩C(n)3≠<r1,r2>. 

So it suffices to show there is an element of C(n)0∩C(n)3 not in 
<r1,r2>.  



•The element m3=r1r0r2r1r0(r1r2)3r0r1r2r0r1(r1r0)3 acts trivially on the 
pyramidal facets and like a half turn on the base. 

• ι(m3)=((),[(ρ1ρ2)2, id, id, id, id])∊S∩C(n)3 

• ι((r1r2)3)=((),[ρ1ρ2, id, id, id, ρ1ρ0]) 
•So m3 is not in <r1,r2>, since it stabilizes flag orbits and isn’t a 

power or inverse of (r1r2)3. 
•Pyr({4,4}(n,0)) is self dual.  

•The dual element of m3 is d3∊C(n)0 and  

ι(d3)=((),[id, id, id, id, (ρ1ρ2)2]) 
•Thus ι(d3(ρ1ρ2)6)= 

((),[id, id, id, id, (ρ0ρ1)2])∙((),[(ρ1ρ2)2, id, id, id, (ρ1ρ0)2])  
=((),[(ρ1ρ2)2, id, id, id, id])=ι(m3)∊C(n)0. 

• So m3 is in C(n)0∩C(n)3, but not in <r1,r2>, as desired.

EDCA B



Connections and Questions
Monson and Schulte, 2014:  Found two minimal 
regular covers of Pyr({4,4}(3,0)) of order 2133115.  

We found a new one of order 2163115 — the unique 
minimal regular cover of Pyr({4,4}(6,0)).  

• How many more are there?  
• What sizes are possible?  
• And for Pyr({4,4}(2k+1,0))?



Relationship to Connection 
Group

Does there exist Q s.t. Con(Q) is not a string C-group, 
but the number of minimal regular covers is finite? 

Conjecture: If the connection group of a polytope is 
not a string C-group, then it has infinitely many 
minimal regular covers.



¡Gracias por su 
atención!

COME to UAF for graduate studies!


