Complete regular dessins and skew-morphisms of cyclic groups

Martin Škoviera

(joint work with Yan-Quan Feng, Kan Hu, Roman Nedela, and Naer Wang)

Comenius University, Bratislava, Slovakia

SIGMAP 2018 Centro de Ciencias Matematicas UNAM, Morelia, Mexico

29th June, 2018

Martin Škoviera (Bratislava)

Complete regular dessins

29/06/2018 1 / 19

Definition (Grothendieck, Esquisse d'un programme, 1984)

A dessin d'enfant (dessin, for short) is a 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring.

Definition (Grothendieck, Esquisse d'un programme, 1984)

A dessin d'enfant (dessin, for short) is a 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring.

Grothendieck was inspired by the following remarkable theorem of Belyi:

Theorem (Belyi, 1979)

A compact Riemann surface S, regarded as a projective algebraic curve, can be defined by a polynomial P(x, y) with coefficients from the algebraic number field $\overline{\mathbb{Q}} \iff$ there exists a meromorphic function $\beta \colon S \to \mathbb{P}^1(\mathbb{C})$ unbranched outside $\{0, 1, \infty\}$.

Definition (Grothendieck, Esquisse d'un programme, 1984)

A dessin d'enfant (dessin, for short) is a 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring.

Grothendieck was inspired by the following remarkable theorem of Belyi:

Theorem (Belyi, 1979)

A compact Riemann surface S, regarded as a projective algebraic curve, can be defined by a polynomial P(x, y) with coefficients from the algebraic number field $\overline{\mathbb{Q}} \iff$ there exists a meromorphic function $\beta \colon S \to \mathbb{P}^1(\mathbb{C})$ unbranched outside $\{0, 1, \infty\}$.

The preimage $\beta^{-1}([0,1])$ of the unit interval is a connected bipartite graph drawn on $S \implies \text{dessin d'enfant}$

• dessin = 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring

- dessin = 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring
- automorphism of a dessin = orientation and colour-preserving automorphism of the embedding

- dessin = 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring
- automorphism of a dessin = orientation and colour-preserving automorphism of the embedding
- regular dessin = dessin whose automorphism group acts regularly on the edge set
 - Note: Vertices with different colour may not have the same valency

- dessin = 2-cell embedding of a connected bipartite graph into an oriented surface with a fixed vertex 2-colouring
- automorphism of a dessin = orientation and colour-preserving automorphism of the embedding
- regular dessin = dessin whose automorphism group acts regularly on the edge set

Note: Vertices with different colour may not have the same valency

- complete regular dessin = regular dessin whose underlying graph is a complete bipartite graph
- (m, n)-complete regular dessin = regular dessin whose underlying graph is K_{m,n}

Combinatorial representation of dessins

Every dessin \mathcal{D} can be identified with a triple $(\Omega; \rho, \lambda)$ where

- (1) Ω is a non-empty finite set
- (2) ρ and λ are permutations of Ω
- (3) the permutation group $G = \langle \rho, \lambda \rangle$ is transitive on Ω .

Combinatorial representation of dessins

Every dessin \mathcal{D} can be identified with a triple $(\Omega; \rho, \lambda)$ where

- (1) Ω is a non-empty finite set
- (2) ρ and λ are permutations of Ω
- (3) the permutation group $G = \langle \rho, \lambda \rangle$ is transitive on Ω .

Given such a triple $(\Omega; \rho, \lambda)$

- $\bullet \ \text{edges of } \mathcal{D} \longleftrightarrow \text{elements of } \Omega$
- black vertices \longleftrightarrow cycles of ρ
- white vertices \longleftrightarrow cycles of λ
- $\rho = rotation around black vertices$
- $\lambda = rotation around white vertices$

Representing regular dessins

Every regular dessin \mathcal{D} can be identified with a triple (*G*; *a*, *b*) where *G* is a finite group such that $G = \langle a, b \rangle$.

- edges of $\mathcal{D} \longleftrightarrow$ elements of G
- black vertices \longleftrightarrow left cosets $g\langle a \rangle$
- white vertices \longleftrightarrow left cosets $g\langle b
 angle$
- an edge g joins $s\langle a \rangle$ to $t\langle b \rangle \iff g \in s\langle a \rangle \cap t\langle b \rangle$
- \bullet the underlying graph is simple $\Longleftrightarrow \, \langle a \rangle \cap \langle b \rangle = 1$
- rotation around a black vertex $s\langle a \rangle$: $sa^i \mapsto sa^{i+1}$
- rotation around a white vertex $t\langle b \rangle$: $tb^i \mapsto tb^{i+1}$

Definition

A finite group G is bicyclic if there exist $\langle a \rangle \leq G$ and $\langle b \rangle \leq G$ such that $G = \langle a \rangle \langle b \rangle$. A bicyclic group is exact if $\langle a \rangle \cap \langle b \rangle = 1$.

Bicyclic groups have been extensively studied by group theorists since 1950's: Huppert, Douglas, Ito, Blackburn, etc.

Definition

A finite group G is bicyclic if there exist $\langle a \rangle \leq G$ and $\langle b \rangle \leq G$ such that $G = \langle a \rangle \langle b \rangle$. A bicyclic group is exact if $\langle a \rangle \cap \langle b \rangle = 1$.

Bicyclic groups have been extensively studied by group theorists since 1950's: Huppert, Douglas, Ito, Blackburn, etc.

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

(ii) The isomorphism classes of (m, n)-complete regular dessins with are in a 1-1 correspondence with the equivalence classes of exact bicyclic triples (G; a, b) where |a| = m and |b| = n.

Two triples (G; a, b) and (G; a', b') are equivalent if there is an automorphism of G such that $a \mapsto a'$ and $b \mapsto b'$.

Martin Škoviera (Bratislava)

Complete regular dessins

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

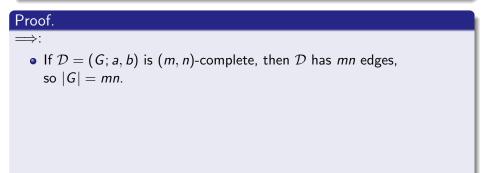
Proof.

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.



Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

Proof. ⇒: If D = (G; a, b) is (m, n)-complete, then D has mn edges, so |G| = mn. Since black vertices are m-valent and white vertices are n-valent, we have |⟨a⟩| = m and |⟨b⟩| = n.

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

Proof. \Rightarrow : • If $\mathcal{D} = (G; a, b)$ is (m, n)-complete, then \mathcal{D} has mn edges,

so |G| = mn.

- Since black vertices are *m*-valent and white vertices are *n*-valent, we have |⟨a⟩| = m and |⟨b⟩| = n.
- The underlying graph is simple, therefore $\langle a\rangle \cap \langle b\rangle = 1.$

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

Proof.

\Longrightarrow :

- If D = (G; a, b) is (m, n)-complete, then D has mn edges, so |G| = mn.
- Since black vertices are *m*-valent and white vertices are *n*-valent, we have |⟨a⟩| = m and |⟨b⟩| = n.
- The underlying graph is simple, therefore $\langle a \rangle \cap \langle b \rangle = 1$.
- Clearly, $|\langle a \rangle \langle b \rangle| = |\langle a \rangle|.|\langle b \rangle|/|\langle a \rangle \cap \langle b \rangle| = mn/1 = |G|.$

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

Proof.

\Longrightarrow :

- If D = (G; a, b) is (m, n)-complete, then D has mn edges, so |G| = mn.
- Since black vertices are *m*-valent and white vertices are *n*-valent, we have |⟨a⟩| = m and |⟨b⟩| = n.
- The underlying graph is simple, therefore $\langle a \rangle \cap \langle b \rangle = 1$.
- Clearly, $|\langle a \rangle \langle b \rangle| = |\langle a \rangle|.|\langle b \rangle|/|\langle a \rangle \cap \langle b \rangle| = mn/1 = |G|.$
- Therefore G = ⟨a⟩⟨b⟩ with ⟨a⟩ ∩ ⟨b⟩ = 1, so G is an exact bicyclic group.

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin $\mathcal{D} = (G; a, b)$ is complete $\iff G = \langle a \rangle \langle b \rangle$ is an exact bicyclic group.

Proof.

\Longrightarrow :

- If D = (G; a, b) is (m, n)-complete, then D has mn edges, so |G| = mn.
- Since black vertices are *m*-valent and white vertices are *n*-valent, we have |⟨a⟩| = m and |⟨b⟩| = n.
- The underlying graph is simple, therefore $\langle a \rangle \cap \langle b \rangle = 1$.
- Clearly, $|\langle a \rangle \langle b \rangle| = |\langle a \rangle|.|\langle b \rangle|/|\langle a \rangle \cap \langle b \rangle| = mn/1 = |G|.$
- Therefore G = ⟨a⟩⟨b⟩ with ⟨a⟩ ∩ ⟨b⟩ = 1, so G is an exact bicyclic group.
- \Leftarrow : Similar.

Skew-morphisms

A skew-morphism is a generalisation of a group automorphism introduced by Jajcay and Širáň (2002) in the context of regular Cayley maps

Definition

A skew-morphism of G is a bijection $\varphi \colon G \to G$ such that

$$\varphi(1) = 1$$
 and $\varphi(xy) = \varphi(x)\varphi^{\pi(x)}(y)$

for some function $\pi \colon A \to \mathbb{Z}$, a power function for φ .

If $\pi(x) = 1$ for all $x \in G$, then φ is an automorphism of G.

Skew-morphisms

A skew-morphism is a generalisation of a group automorphism introduced by Jajcay and Širáň (2002) in the context of regular Cayley maps

Definition

A skew-morphism of G is a bijection $\varphi \colon G \to G$ such that

$$\varphi(1) = 1$$
 and $\varphi(xy) = \varphi(x)\varphi^{\pi(x)}(y)$

for some function $\pi \colon A \to \mathbb{Z}$, a power function for φ .

If $\pi(x) = 1$ for all $x \in G$, then φ is an automorphism of G.

Theorem (Jajcay & Širáň, 2002)

A Cayley map $\mathcal{M} = CM(G, X, \rho)$ is regular \iff there is a skew-morphism φ of G such that $\varphi|X = \rho$.

Skew-morphisms

A skew-morphism is a generalisation of a group automorphism introduced by Jajcay and Širáň (2002) in the context of regular Cayley maps

Definition

A skew-morphism of G is a bijection $\varphi \colon G \to G$ such that

$$\varphi(1) = 1$$
 and $\varphi(xy) = \varphi(x)\varphi^{\pi(x)}(y)$

for some function $\pi \colon A \to \mathbb{Z}$, a power function for φ .

If $\pi(x) = 1$ for all $x \in G$, then φ is an automorphism of G.

Theorem (Jajcay & Širáň, 2002)

A Cayley map $\mathcal{M} = CM(G, X, \rho)$ is regular \iff there is a skew-morphism φ of G such that $\varphi|X = \rho$.

 $\operatorname{Aut}(\mathcal{M}) \cong G\langle \varphi \rangle$ with multiplication defined by the rule $\varphi.g = \varphi(g)\varphi^{\pi(g)}$.

Let G be a finite group expressible as a product AB of two subgroups A and B where $B = \langle b \rangle$ is cyclic and $A \cap B = 1$.

Let G be a finite group expressible as a product AB of two subgroups A and B where $B = \langle b \rangle$ is cyclic and $A \cap B = 1$.

• Every element $x \in G$ can be uniquely written as $x = ab^{i}$.

Let G be a finite group expressible as a product AB of two subgroups A and B where $B = \langle b \rangle$ is cyclic and $A \cap B = 1$.

- Every element $x \in G$ can be uniquely written as $x = ab^{i}$.
- Since AB = BA, for every $x \in A$ we have

 $bx = yb^k$

where $y \in A$ and $0 \le k < |b|$.

Let G be a finite group expressible as a product AB of two subgroups A and B where $B = \langle b \rangle$ is cyclic and $A \cap B = 1$.

- Every element $x \in G$ can be uniquely written as $x = ab^{i}$.
- Since AB = BA, for every $x \in A$ we have

 $bx = yb^k$

where $y \in A$ and $0 \le k < |b|$.

• Both y and $k \in \mathbb{Z}$ are uniquely determined by x.

Let G be a finite group expressible as a product AB of two subgroups A and B where $B = \langle b \rangle$ is cyclic and $A \cap B = 1$.

- Every element $x \in G$ can be uniquely written as $x = ab^{i}$.
- Since AB = BA, for every $x \in A$ we have

 $bx = yb^k$

where $y \in A$ and $0 \le k < |b|$.

- Both y and $k \in \mathbb{Z}$ are uniquely determined by x.
- We define $\varphi_b(x) = y$ and $\pi_b(x) = k$.

Let G be a finite group expressible as a product AB of two subgroups A and B where $B = \langle b \rangle$ is cyclic and $A \cap B = 1$.

- Every element $x \in G$ can be uniquely written as $x = ab^{i}$.
- Since AB = BA, for every $x \in A$ we have

 $bx = yb^k$

where $y \in A$ and $0 \le k < |b|$.

- Both y and $k \in \mathbb{Z}$ are uniquely determined by x.
- We define $\varphi_b(x) = y$ and $\pi_b(x) = k$.
- $\varphi_b: A \to A$ is a skew-morphism and π_b is the associated power function. [Conder, Jajcay & Tucker (2006)].

We call φ_b the skew-morphism of H induced by $b \in B$.

Let G = AB be an exact bicyclic group, $A = \langle a \rangle \cong \mathbb{Z}_m$ and $B = \langle b \rangle \cong \mathbb{Z}_n$.

Let G = AB be an exact bicyclic group, $A = \langle a \rangle \cong \mathbb{Z}_m$ and $B = \langle b \rangle \cong \mathbb{Z}_n$.

• The triple (G; a, b) induces a pair of skew-morphisms $\varphi_b: A \to A$ and $\varphi_a: B \to B$.

Let G = AB be an exact bicyclic group, $A = \langle a \rangle \cong \mathbb{Z}_m$ and $B = \langle b \rangle \cong \mathbb{Z}_n$.

- The triple (G; a, b) induces a pair of skew-morphisms $\varphi_b \colon A \to A$ and $\varphi_a \colon B \to B$.
- Since $(G; a, b) = \text{complete regular dessin} \implies$

Every (m, n)-complete regular dessin \mathcal{D} gives rise to a pair of skew-morphisms (σ, τ) where $\sigma \colon \mathbb{Z}_n \to \mathbb{Z}_n$ and $\tau \colon \mathbb{Z}_m \to \mathbb{Z}_m$.

Let G = AB be an exact bicyclic group, $A = \langle a \rangle \cong \mathbb{Z}_m$ and $B = \langle b \rangle \cong \mathbb{Z}_n$.

- The triple (G; a, b) induces a pair of skew-morphisms $\varphi_b: A \to A$ and $\varphi_a: B \to B$.
- Since $(G; a, b) = \text{complete regular dessin} \implies$

Every (m, n)-complete regular dessin \mathcal{D} gives rise to a pair of skew-morphisms (σ, τ) where $\sigma \colon \mathbb{Z}_n \to \mathbb{Z}_n$ and $\tau \colon \mathbb{Z}_m \to \mathbb{Z}_m$.

• The pair (σ, τ) is a complete invariant of \mathcal{D} :

 \mathcal{D} can be reconstructed from (σ, τ) by letting σ and τ act on the disjoint union $\mathbb{Z}_m \cup \mathbb{Z}_n$ and producing the triple (G; a, b) where

 $a = \tau \rho_m$ and $b = \sigma \rho_n$,

 ρ_k being the cyclic shift in \mathbb{Z}_k .

Example: The standard (m, n)-complete regular dessin

• For every pair of integers $m \ge 2$ and $n \ge 2$, the group $\mathbb{Z}_m \times \mathbb{Z}_n$ gives rise to the triple $(\mathbb{Z}_m \times \mathbb{Z}_n; \mathbf{1}_m, \mathbf{1}_n)$ which represents a regular dessin with underlying graph $K_{m,n}$.

Example: The standard (m, n)-complete regular dessin

- For every pair of integers $m \ge 2$ and $n \ge 2$, the group $\mathbb{Z}_m \times \mathbb{Z}_n$ gives rise to the triple $(\mathbb{Z}_m \times \mathbb{Z}_n; 1_m, 1_n)$ which represents a regular dessin with underlying graph $K_{m,n}$.
- The resulting dessin \mathcal{D} is uniquely determined by $\mathbb{Z}_m \times \mathbb{Z}_n$ up to isomorphism.
- We call \mathcal{D} the standard (m, n)-complete dessin.

Example: The standard (m, n)-complete regular dessin

- For every pair of integers $m \ge 2$ and $n \ge 2$, the group $\mathbb{Z}_m \times \mathbb{Z}_n$ gives rise to the triple $(\mathbb{Z}_m \times \mathbb{Z}_n; 1_m, 1_n)$ which represents a regular dessin with underlying graph $K_{m,n}$.
- The resulting dessin \mathcal{D} is uniquely determined by $\mathbb{Z}_m \times \mathbb{Z}_n$ up to isomorphism.
- We call \mathcal{D} the standard (m, n)-complete dessin.
- The pair of skew-morphisms induced by \mathcal{D} is $(\mathrm{id}_m, \mathrm{id}_n)$.

Example: The standard (m, n)-complete regular dessin

- For every pair of integers $m \ge 2$ and $n \ge 2$, the group $\mathbb{Z}_m \times \mathbb{Z}_n$ gives rise to the triple $(\mathbb{Z}_m \times \mathbb{Z}_n; 1_m, 1_n)$ which represents a regular dessin with underlying graph $K_{m,n}$.
- The resulting dessin \mathcal{D} is uniquely determined by $\mathbb{Z}_m \times \mathbb{Z}_n$ up to isomorphism.
- We call \mathcal{D} the standard (m, n)-complete dessin.
- The pair of skew-morphisms induced by \mathcal{D} is $(\mathrm{id}_m, \mathrm{id}_n)$.
- The algebraic curve associated with D is the generalised Fermat curve $x^m + y^n = 1$.

Reciprocal pairs of skew-morphisms of cyclic groups

Definition

A pair of skew-morphisms $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ and $\varphi^* \colon \mathbb{Z}_m \to \mathbb{Z}_m$ with power functions π and π^* , respectively, is called reciprocal if the following conditions are satisfied:

(i) |φ| divides *m* and |φ*| divides *n* (ii) π(x) = φ*x(1_m) and π*(y) = φ^y(1_n).

Reciprocal pairs of skew-morphisms of cyclic groups

Definition

A pair of skew-morphisms $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ and $\varphi^* \colon \mathbb{Z}_m \to \mathbb{Z}_m$ with power functions π and π^* , respectively, is called reciprocal if the following conditions are satisfied:

(i)
$$|\varphi|$$
 divides *m* and $|\varphi^*|$ divides *n*

(ii)
$$\pi(x) = \varphi^{*x}(1_m)$$
 and $\pi^*(y) = \varphi^y(1_n)$.

Theorem

There exists a one-to-one correspondence between any pair of the following three types of objects:

- (1) isomorphism classes of (m, n)-complete regular dessins,
- (2) equivalence classes of exact (m, n)-bicyclic triples, and
- (3) (m, n)-reciprocal pairs of skew-morphisms.

We determine all regular dessins on $K_{27,9}$ by deriving all (27,9)-reciprocal pairs of skew-morphisms $\varphi \colon \mathbb{Z}_9 \to \mathbb{Z}_9$ and $\varphi^* \colon \mathbb{Z}_{27} \to \mathbb{Z}_{27}$.

There are exactly 27 of them, falling into two types.

We determine all regular dessins on $K_{27,9}$ by deriving all (27, 9)-reciprocal pairs of skew-morphisms $\varphi \colon \mathbb{Z}_9 \to \mathbb{Z}_9$ and $\varphi^* \colon \mathbb{Z}_{27} \to \mathbb{Z}_{27}$.

There are exactly 27 of them, falling into two types.

Type I: Both φ and φ^* are group automorphisms. In this case $\varphi(x) = ex$ and $\varphi^*(x) = fx$ where (i) e = 1 and $f \in \{1, 4, 7, 10, 13, 16, 19, 22, 25\}$, or (ii) $e \in \{4, 7\}$ and $f \in \{1, 10, 19\}$.

Hence, there are 9 + 6 = 15 reciprocal pairs of Type I.

We determine all regular dessins on $K_{27,9}$ by deriving all (27,9)-reciprocal pairs of skew-morphisms $\varphi \colon \mathbb{Z}_9 \to \mathbb{Z}_9$ and $\varphi^* \colon \mathbb{Z}_{27} \to \mathbb{Z}_{27}$.

There are exactly 27 of them, falling into two types.

Type I: Both φ and φ^* are group automorphisms.

In this case $\varphi(x) = ex$ and $\varphi^*(x) = fx$ where

(i)
$$e = 1$$
 and $f \in \{1, 4, 7, 10, 13, 16, 19, 22, 25\}$, or

(ii)
$$e \in \{4,7\}$$
 and $f \in \{1,10,19\}$.

Hence, there are 9 + 6 = 15 reciprocal pairs of Type I.

Type II: φ is a group automorphism but φ^* is not. In this case $\varphi(x) = ex$ and $\varphi^*(y) = y + 3t \sum_{i=1}^{y} \sigma(s, e^{i-1})$ where $e \in \{4, 7\}$ and $\sigma(s, e^{i-1}) = \sum_{j=1}^{e^{i-1}} s^{j-1}$ where (s, t) = (4, 1), (7, 2), (4, 4), (7, 5), (4, 7) or (7, 8).

These give rise to $2 \times 6 = 12$ reciprocal skew-morphism pairs of Type II.

Uniqueness theorem

For what pairs (m, n) of positive integer does there exist a unique (m, n)-complete regular dessin, the standard one?

Uniqueness theorem

For what pairs (m, n) of positive integer does there exist a unique (m, n)-complete regular dessin, the standard one?

Definition

Call a pair (m, n) of positive integers m and n singular if $gcd(m, \phi(n)) = gcd(n, \phi(m)) = 1$.

Uniqueness theorem

For what pairs (m, n) of positive integer does there exist a unique (m, n)-complete regular dessin, the standard one?

Definition

Call a pair (m, n) of positive integers m and n singular if $gcd(m, \phi(n)) = gcd(n, \phi(m)) = 1$.

Theorem

The following statements are equivalent.

- (i) The pair (m, n) is singular.
- (ii) Every finite group factorisable as a product of two cyclic groups of orders m and n is isomorphic to $\mathbb{Z}_m \times \mathbb{Z}_n$.
- (iii) (id_n, id_m) is the only (m, n)-reciprocal pair of skew-morphisms.
- (iv) There is a unique isomorphism class of regular dessins on $K_{m,n}$.

(v) There exists a unique orientable edge-transitive embedding of $K_{m,n}$.

A skew-morphism $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ is symmetric if the pair (φ, φ) is reciprocal.

A skew-morphism $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ is symmetric if the pair (φ, φ) is reciprocal.

A skew-morphism $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ with power function $\pi \colon G \to \mathbb{Z}$ is symmetric \iff

• $|\varphi|$ divides *n*

•
$$\pi(x) = \varphi^x(1)$$

A skew-morphism $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ is symmetric if the pair (φ, φ) is reciprocal.

A skew-morphism $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ with power function $\pi \colon G \to \mathbb{Z}$ is symmetric \iff

• $|\varphi|$ divides *n*

•
$$\pi(x) = \varphi^x(1)$$

Theorem

The isomorphism classes of orientably regular embeddings of complete bipartite graphs $K_{n,n}$ are in a 1-1 correspondence with symmetric skew-morphisms of \mathbb{Z}_n .

The cyclic group \mathbb{Z}_8 has the total of 6 symmetric skew-morphisms. They correspond to 6 different orientably regular embeddings of $K_{8,8}$:

- four automorphisms
- two proper symmetric skew-morphisms:

$$\begin{aligned} \varphi_1 &= (0)(1\,3\,5\,7)(2)(4)(6), & \pi_1 &= [1] \ [3\,3\,3\,3] \ [1] \ [1] \ [1], \\ \varphi_2 &= (0)(1\,7\,5\,3)(2)(4)(6), & \pi_2 &= [1] \ [3\,3\,3\,3] \ [1] \ [1] \ [1]. \end{aligned}$$

Classification of orientably regular embeddings of $K_{n,n}$

Theorem

The isomorphism classes of orientably regular embeddings of complete bipartite graphs $K_{n,n}$ are in a 1-1 correspondence with symmetric skew-morphisms of \mathbb{Z}_n .

 \implies It is possible to classify orientably regular embeddings of $K_{n,n}$ by classifying the corresponding symmetric skew-morphisms of \mathbb{Z}_n .

Classification of orientably regular embeddings of $K_{n,n}$

Theorem

The isomorphism classes of orientably regular embeddings of complete bipartite graphs $K_{n,n}$ are in a 1-1 correspondence with symmetric skew-morphisms of \mathbb{Z}_n .

 \implies It is possible to classify orientably regular embeddings of $K_{n,n}$ by classifying the corresponding symmetric skew-morphisms of \mathbb{Z}_n .

A complete classification of orientably regular embeddings of complete bipartite graphs $K_{n,n}$ has been accomplished in a series of seven papers by Jones, Nedela, S., Du, Kwak, Zlatoš (2002–2013).

Theorem

The isomorphism classes of orientably regular embeddings of complete bipartite graphs $K_{n,n}$ are in a 1-1 correspondence with symmetric skew-morphisms of \mathbb{Z}_n .

 \implies It is possible to classify orientably regular embeddings of $K_{n,n}$ by classifying the corresponding symmetric skew-morphisms of \mathbb{Z}_n .

A complete classification of orientably regular embeddings of complete bipartite graphs $K_{n,n}$ has been accomplished in a series of seven papers by Jones, Nedela, S., Du, Kwak, Zlatoš (2002–2013).

During 2008-2010 Yanquan Feng, Roman Nedela, and M.S. attempted to approach classification of orientably regular embeddings of $K_{n,n}$ via symmetric skew-morphisms of \mathbb{Z}_n .

Problems

Problem 1

Classify complete regular dessins via reciprocal skew-morphisms. Determine the symmetric skew-morphisms by explicit formulae.

Problems

Problem 1

Classify complete regular dessins via reciprocal skew-morphisms. Determine the symmetric skew-morphisms by explicit formulae.

Problem 2

Classify orientably regular embeddings of $K_{n,n}$ via symmetric skew-morphisms of \mathbb{Z}_n .

Problems

Problem 1

Classify complete regular dessins via reciprocal skew-morphisms. Determine the symmetric skew-morphisms by explicit formulae.

Problem 2

Classify orientably regular embeddings of $K_{n,n}$ via symmetric skew-morphisms of \mathbb{Z}_n .

Problem 3

Which complete regular dessins correspond to reciprocal pairs (φ, φ^*) of skew-morphisms where both φ and φ^* are automorphisms?

Thank you for listening

26. 8. – 30. 8. 2019

EUROCOMB 2019 in Bratislava Algebraic graph theory is welcome!

Barcelona, Berlin, Bordeaux, Budapest, Bergen Bratislava!