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Dessins d’enfant

Definition (Grothendieck, Esquisse d’un programme, 1984)

A dessin d’enfant (dessin, for short) is a 2-cell embedding of a connected
bipartite graph into an oriented surface with a fixed vertex 2-colouring.

Grothendieck was inspired by the following remarkable theorem of Belyi:

Theorem (Belyi, 1979)

A compact Riemann surface S, regarded as a projective algebraic curve,
can be defined by a polynomial P(x , y) with coefficients from the algebraic
number field Q̄ ⇐⇒ there exists a meromorphic function β : S → P1(C)
unbranched outside {0, 1,∞}.

The preimage β−1([0, 1]) of the unit interval is a connected bipartite graph
drawn on S =⇒ dessin d’enfant
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Regular dessins

dessin = 2-cell embedding of a connected bipartite graph into an
oriented surface with a fixed vertex 2-colouring

automorphism of a dessin = orientation and colour-preserving
automorphism of the embedding

regular dessin = dessin whose automorphism group acts regularly on
the edge set

Note: Vertices with different colour may not have the same valency

complete regular dessin = regular dessin whose underlying graph is a
complete bipartite graph

(m, n)-complete regular dessin = regular dessin whose underlying
graph is Km,n
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Martin Škoviera (Bratislava) Complete regular dessins 29/06/2018 3 / 19



Regular dessins

dessin = 2-cell embedding of a connected bipartite graph into an
oriented surface with a fixed vertex 2-colouring

automorphism of a dessin = orientation and colour-preserving
automorphism of the embedding

regular dessin = dessin whose automorphism group acts regularly on
the edge set

Note: Vertices with different colour may not have the same valency

complete regular dessin = regular dessin whose underlying graph is a
complete bipartite graph

(m, n)-complete regular dessin = regular dessin whose underlying
graph is Km,n
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Combinatorial representation of dessins

Every dessin D can be identified with a triple (Ω; ρ, λ) where

(1) Ω is a non-empty finite set

(2) ρ and λ are permutations of Ω

(3) the permutation group G = 〈ρ, λ〉 is transitive on Ω.

Given such a triple (Ω; ρ, λ)

edges of D ←→ elements of Ω

black vertices ←→ cycles of ρ

white vertices ←→ cycles of λ

ρ = rotation around black vertices

λ = rotation around white vertices
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Martin Škoviera (Bratislava) Complete regular dessins 29/06/2018 4 / 19



Representing regular dessins

Every regular dessin D can be identified with a triple (G ; a, b) where
G is a finite group such that G = 〈a, b〉.

edges of D ←→ elements of G

black vertices ←→ left cosets g〈a〉

white vertices ←→ left cosets g〈b〉

an edge g joins s〈a〉 to t〈b〉 ⇐⇒ g ∈ s〈a〉 ∩ t〈b〉

the underlying graph is simple ⇐⇒ 〈a〉 ∩ 〈b〉 = 1

rotation around a black vertex s〈a〉: sai 7→ sai+1

rotation around a white vertex t〈b〉: tbi 7→ tbi+1
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From complete regular dessins to exact bicyclic groups

Definition

A finite group G is bicyclic if there exist 〈a〉 ≤ G and 〈b〉 ≤ G such that
G = 〈a〉〈b〉. A bicyclic group is exact if 〈a〉 ∩ 〈b〉=1.

Bicyclic groups have been extensively studied by group theorists since
1950’s: Huppert, Douglas, Ito, Blackburn, etc.

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin D = (G ; a, b) is complete ⇐⇒ G = 〈a〉〈b〉 is
an exact bicyclic group.

(ii) The isomorphism classes of (m, n)-complete regular dessins with are
in a 1-1 correspondence with the equivalence classes of exact bicyclic
triples (G ; a, b) where |a| = m and |b| = n.

Two triples (G ; a, b) and (G ; a′, b′) are equivalent if there is an
automorphism of G such that a 7→ a′ and b 7→ b′.
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From complete regular dessins to exact bicyclic groups

Theorem (Jones, Nedela & S., 2007)

(i) A regular dessin D = (G ; a, b) is complete ⇐⇒ G = 〈a〉〈b〉 is
an exact bicyclic group.

Proof.

=⇒:

If D = (G ; a, b) is (m, n)-complete, then D has mn edges,
so |G | = mn.

Since black vertices are m-valent and white vertices are n-valent,
we have |〈a〉| = m and |〈b〉| = n.

The underlying graph is simple, therefore 〈a〉 ∩ 〈b〉 = 1.

Clearly, |〈a〉〈b〉| = |〈a〉|.|〈b〉|/|〈a〉 ∩ 〈b〉| = mn/1 = |G |.
Therefore G = 〈a〉〈b〉 with 〈a〉 ∩ 〈b〉 = 1,
so G is an exact bicyclic group.

⇐=: Similar.
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Skew-morphisms

A skew-morphism is a generalisation of a group automorphsism introduced
by Jajcay and Širáň (2002) in the context of regular Cayley maps

Definition

A skew-morphism of G is a bijection ϕ : G → G such that

ϕ(1) = 1 and ϕ(xy) = ϕ(x)ϕπ(x)(y)

for some function π : A→ Z, a power function for ϕ.

If π(x) = 1 for all x ∈ G , then ϕ is an automorphism of G .

Theorem (Jajcay & Širáň, 2002)

A Cayley map M = CM(G ,X , ρ) is regular ⇐⇒ there is a skew-morphism
ϕ of G such that ϕ|X = ρ.

Aut(M) ∼= G 〈ϕ〉 with multiplication defined by the rule ϕ.g = ϕ(g)ϕπ(g).
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Skew-morphisms and cyclic subgroups

Let G be a finite group expressible as a product AB of two subgroups A
and B where B = 〈b〉 is cyclic and A ∩ B = 1.

Every element x ∈ G can be uniquely written as x = abi .

Since AB = BA, for every x ∈ A we have

bx = ybk

where y ∈ A and 0 ≤ k < |b|.
Both y and k ∈ Z are uniquely determined by x .

We define ϕb(x) = y and πb(x) = k .

ϕb : A→ A is a skew-morphism and πb is the associated power
function. [Conder, Jajcay & Tucker (2006)].

We call ϕb the skew-morphism of H induced by b ∈ B.
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From bicyclic groups to skew-morphisms

Let G = AB be an exact bicyclic group, A = 〈a〉 ∼= Zm and B = 〈b〉 ∼= Zn.

The triple (G ; a, b) induces a pair of skew-morphisms
ϕb : A→ A and ϕa : B → B.

Since (G ; a, b) = complete regular dessin =⇒

Every (m, n)-complete regular dessin D gives rise to a pair of
skew-morphisms (σ, τ) where σ : Zn → Zn and τ : Zm → Zm.

The pair (σ, τ) is a complete invariant of D:

D can be reconstructed from (σ, τ) by letting σ and τ act on the disjoint
union Zm ∪ Zn and producing the triple (G ; a, b) where

a = τρm and b = σρn,

ρk being the cyclic shift in Zk .
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Every (m, n)-complete regular dessin D gives rise to a pair of
skew-morphisms (σ, τ) where σ : Zn → Zn and τ : Zm → Zm.

The pair (σ, τ) is a complete invariant of D:

D can be reconstructed from (σ, τ) by letting σ and τ act on the disjoint
union Zm ∪ Zn and producing the triple (G ; a, b) where

a = τρm and b = σρn,

ρk being the cyclic shift in Zk .
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Example: The standard (m, n)-complete regular dessin

For every pair of integers m ≥ 2 and n ≥ 2, the group Zm × Zn

gives rise to the triple (Zm × Zn; 1m, 1n) which represents a regular
dessin with underlying graph Km,n.

The resulting dessin D is uniquely determined by Zm × Zn up to
isomorphism.

We call D the standard (m, n)-complete dessin.

The pair of skew-morphisms induced by D is (idm, idn).

The algebraic curve associated with D is the generalised Fermat curve
xm + yn = 1.

Martin Škoviera (Bratislava) Complete regular dessins 29/06/2018 11 / 19



Example: The standard (m, n)-complete regular dessin

For every pair of integers m ≥ 2 and n ≥ 2, the group Zm × Zn

gives rise to the triple (Zm × Zn; 1m, 1n) which represents a regular
dessin with underlying graph Km,n.

The resulting dessin D is uniquely determined by Zm × Zn up to
isomorphism.

We call D the standard (m, n)-complete dessin.

The pair of skew-morphisms induced by D is (idm, idn).

The algebraic curve associated with D is the generalised Fermat curve
xm + yn = 1.
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Reciprocal pairs of skew-morphisms of cyclic groups

Definition

A pair of skew-morphisms ϕ : Zn → Zn and ϕ∗ : Zm → Zm with power
functions π and π∗, respectively, is called reciprocal if the following
conditions are satisfied:

(i) |ϕ| divides m and |ϕ∗| divides n

(ii) π(x) = ϕ∗x(1m) and π∗(y) = ϕy (1n).

Theorem

There exists a one-to-one correspondence between any pair of the
following three types of objects:

(1) isomorphism classes of (m, n)-complete regular dessins,

(2) equivalence classes of exact (m, n)-bicyclic triples, and

(3) (m, n)-reciprocal pairs of skew-morphisms.
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Example: Regular dessins on K27,9

We determine all regular dessins on K27,9 by deriving all (27, 9)-reciprocal
pairs of skew-morphisms ϕ : Z9 → Z9 and ϕ∗ : Z27 → Z27.

There are exactly 27 of them, falling into two types.

Type I: Both ϕ and ϕ∗ are group automorphisms.

In this case ϕ(x) = ex and ϕ∗(x) = fx where

(i) e = 1 and f ∈ {1, 4, 7, 10, 13, 16, 19, 22, 25}, or

(ii) e ∈ {4, 7} and f ∈ {1, 10, 19}.
Hence, there are 9 + 6 = 15 reciprocal pairs of Type I.

Type II: ϕ is a group automorphism but ϕ∗ is not.

In this case ϕ(x) = ex and ϕ∗(y) = y + 3t
∑y

i=1 σ(s, e i−1) where

e ∈ {4, 7} and σ(s, e i−1) =
∑e i−1

j=1 s j−1 where
(s, t) = (4, 1), (7, 2), (4, 4), (7, 5), (4, 7) or (7, 8).

These give rise to 2× 6 = 12 reciprocal skew-morphism pairs of Type II.
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Uniqueness theorem

For what pairs (m, n) of positive integer does there exist a unique
(m, n)-complete regular dessin, the standard one?

Definition

Call a pair (m, n) of positive integers m and n singular if
gcd(m, φ(n)) = gcd(n, φ(m)) = 1.

Theorem

The following statements are equivalent.

(i) The pair (m, n) is singular.

(ii) Every finite group factorisable as a product of two cyclic groups of
orders m and n is isomorphic to Zm × Zn.

(iii) (idn, idm) is the only (m, n)-reciprocal pair of skew-morphisms.

(iv) There is a unique isomorphism class of regular dessins on Km,n.

(v) There exists a unique orientable edge-transitive embedding of Km,n.
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The symmetric case

A skew-morphism ϕ : Zn → Zn is symmetric if the pair (ϕ,ϕ) is reciprocal.

A skew-morphism ϕ : Zn → Zn with power function π : G → Z is
symmetric ⇐⇒

|ϕ| divides n

π(x) = ϕx(1)

Theorem

The isomorphism classes of orientably regular embeddings of complete
bipartite graphs Kn,n are in a 1-1 correspondence with symmetric
skew-morphisms of Zn.
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Example: Regular embedings of K8,8 via skew-morphisms

The cyclic group Z8 has the total of 6 symmetric skew-morphisms.
They correspond to 6 different orientably regular embeddings of K8,8:

four automorphisms

two proper symmetric skew-morphisms:

ϕ1 = (0)(1 3 5 7)(2)(4)(6), π1 = [1] [3 3 3 3] [1] [1] [1],

ϕ2 = (0)(1 7 5 3)(2)(4)(6), π2 = [1] [3 3 3 3] [1] [1] [1].
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Classification of orientably regular embeddings of Kn,n

Theorem

The isomorphism classes of orientably regular embeddings of complete
bipartite graphs Kn,n are in a 1-1 correspondence with symmetric
skew-morphisms of Zn.

=⇒ It is possible to classify orientably regular embeddings of Kn,n by
classifying the corresponding symmetric skew-morphisms of Zn.

A complete classification of orientably regular embeddings of complete
bipartite graphs Kn,n has been accomplished in a series of seven papers by
Jones, Nedela, S., Du, Kwak, Zlatoš (2002–2013).

During 2008-2010 Yanquan Feng, Roman Nedela, and M.S. attempted to
approach classification of orientably regular embeddings of Kn,n via
symmetric skew-morphisms of Zn.
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During 2008-2010 Yanquan Feng, Roman Nedela, and M.S. attempted to
approach classification of orientably regular embeddings of Kn,n via
symmetric skew-morphisms of Zn.
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Problems

Problem 1

Classify complete regular dessins via reciprocal skew-morphisms.
Determine the symmetric skew-morphisms by explicit formulae.

Problem 2

Classify orientably regular embeddings of Kn,n via symmetric
skew-morphisms of Zn.

Problem 3

Which complete regular dessins correspond to reciprocal pairs (ϕ,ϕ∗) of
skew-morphisms where both ϕ and ϕ∗ are automorphisms?
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Thank you for listening
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EUROCOMB 2019 in Bratislava 
Algebraic graph theory is welcome! 

26. 8. – 30. 8. 2019 
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