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Definition

Let M be connected simple graph with a proper edge coloring
c:M—{0,...,n—1}. We say that M is an n-maniplex if
whenever |i — j| > 1, all paths of length 4 that alternate colors
between i and j are closed.

Examples of maniplexes are the flag graphs of polytopes and maps,
hence the vertices of a maniplex are often refered to as flags.
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Polytopality of maniplexes

Definition

A maniplex satisfies the path intersection property (PIP) if
whenever two vertices ® and W are connected by some path with
colors in a set | and another path with colors in J, then they are
connected by a path with colors in I N J.

Theorem
Garza-Vargas and Hubard, 2018 A maniplex M is the flag graph
of a polytope if and only if it satisfies the PIP.
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Symmetry type graph

Definition

Let M be a maniplex and let T (M) be its automorphism group.
Let H < T(M). We define the symmetry type graph (STG) of M
with respect to H to be the quotient T (M, H) := M/H.

Vertices of T(M,H) = flag orbits under H.

If there's an edge of color i between ® and W on = there's an
edge of color i between their orbits. If they are on the same orbit
we draw a semi-edge on that orbit (not a loop).

N
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Symmetry type graph
The STG of a maniplex is a “non-simple maniplex”, that is:

» T(M,H) is an n-valent connected graph with a proper edge
coloring c: E — {0,1,...,n—1}.

» If |i —j| > 1 then the paths of length 4 in T (M, H) that
alternate color between i and j are closed.

Connected components of the graph induced by edges of colors
colors i and j are one of the following:

>

=
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Voltages

To recover a maniplex from one of its quotients we need to use a
voltage assignment.

Definition

Given a graph X, its fundamental groupoid is the set of its reduced
paths together with the (partial) operation
“concatenation+reduction”. It is denoted by I(X).

Given a vertex x in X, we denote the (fundamental) group of
closed paths based at x as [1*(X).
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Voltages

Definition

Let X be a graph. A voltage assignment is a (groupoid)
anti-homomorphism £ : [1(X) — G where G is a group. In this
case, G is called the voltage group.

We only need to define the voltage of the arcs of X to define the
voltage of all its paths. The voltage of a path is the product of the
voltages of its arcs in reverse order.
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Given a graph X with a voltage assignment &, we may construct a
“bigger’ derived graph X¢ in the following way:
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X.

> If there's an arc e from x to y in X, and £(e) = ~, then, for
all o € G there's an arc (e, o) from (x,0) to (y,~vo) (a lift of
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Voltages

Given a graph X with a voltage assignment &, we may construct a
“bigger’ derived graph X¢ in the following way:

» The vertices of X¢ are V x G where V is the set of vertices of
X.

> If there's an arc e from x to y in X, and £(e) = ~, then, for
all o € G there's an arc (e, o) from (x,0) to (y,~vo) (a lift of
e). If e is colored, we give the same color to (e, o).

X x°

1d (x,Id) (,Id)
R
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Voltages

The voltage group G acts naturally by automorphisms on X¢:

(x,0) 7= (x,07)

We can recover X from X¢ by identifying the vertices that are on
the same orbit under the action of G.
X x°

Id (x,Id) (,Id)
o n
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(x,(12)) (y,(12))
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Voltages that give maniplexes

Theorem
Let X be a “non-simple” maniplex and let £ : T1(X) — G be a
voltage assignment. Then:

» X¢ is connected iff £(T¥(X)) = G.If X has a spanning tree
with all of its arcs with trivial voltage (it's always possible),
this is equivalent to G been generated by the voltages of all
the other arcs.

» X¢ is simple iff all semi-edges have non-trivial voltage and all
pairs of paralel edges have different voltages.

» X¢ is a maniplex iff both previous conditions hold, and
whenever |i — j| > 1, the voltage of any path of length 4 that
alternates colors between i and j is trivial.
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Voltages that give polytopes

X¢ is the flag graph of a polytope iff it's a maniplex satisfying the
PIP.

Let W be a path from (x, o) to (y,7) with set of colors /. Its
projection W is a path from x to y with voltage v = 7o~ with
set of colors /. Let V be another path from (x,o) to (y,7), but
with set of colors J. Its projection V is a path from x to y with set
of colors J and voltage 7. If X¢ satisfies the PIP, then there’s a
path P from (x,0) to (y,7) with set of colors / N J. Its projection
is a path P from x to y with set of colors / N J and voltage 7.
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Voltages that give polytopes

Definition

Let X be a non-simple maniplex. Let x and y be vertices and let |
be a set of colors. We define ;" (X) as the set of reduced paths
from x to y that use colors in .

Theorem

Let X be a non-simple maniplex and & : TI(X) — G a voltage
assigment such that X¢ is a maniplex. Then X¢ is the flag graph
of a polytope if and only if for every two vertices x and y and any
two sets of colors | and J the following condition holds:

M) NE(yY) = ().
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Example

0 B
«  » !
Y
B 2

» Connected: G = («, 3,7, 9).

» Simple: «,B,7,6 # 1 and 8 # . In particular o, 5 and ~y are
involutions.

» Maniplex: 42 =1 and (87)% = 1.
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> 5(”?0,1}) = (a, B).
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> &(M )
> 6(My )

o 0
1
0
(o, B).

(9).
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> (MY 1) = (@, B).
> f(n?ojz}) = (d).
> £(My) = 1.
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o 0 B
1 1 0
X y 4

o
1 1
)
x z Y
2 7 2

> f(n){<071}) = (o, B).
> f(n){<1,2}) = <O‘7'76>-
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u 0
1
(04
1
x )
2
a
N
= <C¥,B>-
- 5<a776>
0.
5(a,7°) =0



Using this method we get these seven conditions (and many other
trivial ones):

> (o, B)N(5) =1

> (a, B) N(B,7) = (B)
> (o, ) N {e,7°) = (a)
> (o, B)N(ady) =1
> (o, B) N6, 7°) =0
> (0) N {a,7°) =1

> (B,7)N{ady) = (7)



Using this method we get these seven conditions (and many other
trivial ones):

> {a,B)N{0) =1

> (o, B) N (B,7) = (B)
> {a, ) N{(,7°) = (a)
> (@, B)N{a’ ) =1

> (a, ) Ndla,y’) =0
> () N{a,7%) =1

> (8,7 N{a®7) = (v)

Theorem

Let H be a group. There exists a polytope P such sthat H < I'(P)
and T (P, H) is the graph from the example iff H is generated by
four involutions «, 3,7, & such that (3v)? = 1 and the previous
intersection properties hold.



Thank you!



