# Regular self-dual and self-Petrie-dual maps of arbitrary valency

Olivia Jeans

#### Joint work with Jay Fraser and Jozef Širáň

Open University, UK

olivia.jeans@open.ac.uk

29th June 2018

#### Come up with a sufficent condition

- Come up with a sufficent condition
- **2** Prove this condition does happen for all primes  $k \ge 5$ .

- Come up with a sufficent condition
- **2** Prove this condition does happen for all primes  $k \ge 5$ .
- Sector this to cover all values *nk*.

- Come up with a sufficent condition
- **2** Prove this condition does happen for all primes  $k \ge 5$ .
- Sector this to cover all values *nk*.
- Mind the gap.

- Come up with a sufficent condition
- **2** Prove this condition does happen for all primes  $k \ge 5$ .
- Sector this to cover all values nk.
- Mind the gap.
- Oraw conclusion.





## $G \cong \langle X, Y, Z | X^2, Y^2, Z^2, (XY)^2, (YZ)^k, (ZX)^l, \ldots \rangle$

where k is the vertex degree, and l is the face length.



## $G \cong \langle \mathbf{X}, \mathbf{Y}, \mathbf{Z} | \mathbf{X}^2, \mathbf{Y}^2, \mathbf{Z}^2, (\mathbf{X}\mathbf{Y})^2, (\mathbf{Y}\mathbf{Z})^k, (\mathbf{Z}\mathbf{X})^l, \ldots \rangle$

where k is the vertex degree, and l is the face length.



## $G \cong \langle \mathbf{X}, \mathbf{Y}, Z | X^2, Y^2, Z^2, (XY)^2, (YZ)^k, (ZX)^l, \ldots \rangle$

where k is the vertex degree, and l is the face length.



 $G \cong \langle X, Y, Z | X^2, Y^2, Z^2, (XY)^2, (YZ)^k, (ZX)^l, \ldots \rangle$ where k is the vertex degree, and l is the face length.



 $G \cong \langle X, Y, Z | X^2, Y^2, Z^2, (XY)^2, (YZ)^k, (ZX)^l, \ldots \rangle$ where k is the vertex degree, and l is the face length.

• Self-dual:  $\exists$  an automorphism which fixes Z and  $X \longleftrightarrow Y$ 



 $G \cong \langle X, Y, Z | X^2, Y^2, Z^2, (XY)^2, (YZ)^k, (ZX)^l, \ldots \rangle$ where k is the vertex degree, and l is the face length.

- Self-dual:  $\exists$  an automorphism which fixes Z and  $X \longleftrightarrow Y$
- Self-Petrie-dual:  $\exists$  an automorphism which fixes Y, fixes Z and  $X \rightarrow XY$

### A sufficent condition

O Jeans Maps with trinity symmetry and odd vertex degree

æ

• • = • • = •

There are known generating triples of matrices for X, Y, Z in terms of  $\xi_{2k}$  and  $\xi_{2l}$ , primitive roots of unity over a finite field. (Conder, Potočnik and Širáň, 2008)

There are known generating triples of matrices for X, Y, Z in terms of  $\xi_{2k}$  and  $\xi_{2l}$ , primitive roots of unity over a finite field. (Conder, Potočnik and Širáň, 2008)



There are known generating triples of matrices for X, Y, Z in terms of  $\xi_{2k}$  and  $\xi_{2l}$ , primitive roots of unity over a finite field. (Conder, Potočnik and Širáň, 2008)

#### Corollary

Let  $k \ge 5$  be odd. Suppose that there exists a prime p such that  $p \equiv \pm 1 \mod (2k \text{ and } 12)$ , and a primitive kth root of unity  $\zeta$  in a finite field of order p or  $p^2$  such that  $3(\zeta + \zeta^{-1}) + 2 = 0$ .

There are known generating triples of matrices for X, Y, Z in terms of  $\xi_{2k}$  and  $\xi_{2l}$ , primitive roots of unity over a finite field. (Conder, Potočnik and Širáň, 2008)

#### Corollary

Let  $k \ge 5$  be odd. Suppose that there exists a prime p such that  $p \equiv \pm 1 \mod (2k \text{ and } 12)$ , and a primitive kth root of unity  $\zeta$  in a finite field of order p or  $p^2$  such that  $3(\zeta + \zeta^{-1}) + 2 = 0$ .

Then there exists a (non-orientable) self-dual and self-Petrie dual regular map of valency k with automorphism group  $G \cong PSL(2, p)$ .

周 ト イ ヨ ト イ ヨ ト

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Let  $\alpha$  be a complex *kth* root of unity and let  $\mathcal{K} = \mathbb{Q}(\alpha + \alpha^{-1})$ .

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Let  $\alpha$  be a complex *kth* root of unity and let  $K = \mathbb{Q}(\alpha + \alpha^{-1})$ . Let  $g = 3(\alpha + \alpha^{-1}) + 2 \in O(K)$ 

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Let  $\alpha$  be a complex *kth* root of unity and let  $K = \mathbb{Q}(\alpha + \alpha^{-1})$ . Let  $g = 3(\alpha + \alpha^{-1}) + 2 \in O(K)$ 

Aim: construct an ideal  $J \subset R$  with  $g \in J$  so:  $g \equiv 0$  in field R/J.

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Let  $\alpha$  be a complex *kth* root of unity and let  $K = \mathbb{Q}(\alpha + \alpha^{-1})$ . Let  $g = 3(\alpha + \alpha^{-1}) + 2 \in O(K)$ 

Aim: construct an ideal  $J \subset R$  with  $g \in J$  so:  $g \equiv 0$  in field R/J.

In O(K) the norm  $N(g) \neq \pm 1$  and if prime p|N(g) then  $p \geq 5$ .

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Let  $\alpha$  be a complex *kth* root of unity and let  $K = \mathbb{Q}(\alpha + \alpha^{-1})$ . Let  $g = 3(\alpha + \alpha^{-1}) + 2 \in O(K)$ 

Aim: construct an ideal  $J \subset R$  with  $g \in J$  so:  $g \equiv 0$  in field R/J.

In O(K) the norm  $N(g) \neq \pm 1$  and if prime p|N(g) then  $p \geq 5$ .

Let  $\mathcal{K}' = \mathbb{Q}(\alpha)$ . Then  $O(\mathcal{K}') = \mathbb{Z}(\alpha)$  is a Dedekind domain:  $\langle g, p \rangle$  is a proper ideal, and is contained in a maximal ideal J.

Suppose  $k \ge 5$  is prime.

We need to construct a *finite* field in which: an element *a* has multiplicative order *k* and x = a is a root of the equation  $3(x + x^{-1}) + 2 = 0$ 

Let  $\alpha$  be a complex *kth* root of unity and let  $K = \mathbb{Q}(\alpha + \alpha^{-1})$ . Let  $g = 3(\alpha + \alpha^{-1}) + 2 \in O(K)$ 

Aim: construct an ideal  $J \subset R$  with  $g \in J$  so:  $g \equiv 0$  in field R/J.

In O(K) the norm  $N(g) \neq \pm 1$  and if prime p|N(g) then  $p \geq 5$ .

Let  $K' = \mathbb{Q}(\alpha)$ . Then  $O(K') = \mathbb{Z}(\alpha)$  is a Dedekind domain:  $\langle g, p \rangle$  is a proper ideal, and is contained in a maximal ideal J.

 $O(K')/J = F_p$  is our finite field,  $\alpha + J$  the element of order k.

Previously - the even valency case... (Archdeacon, Conder, Širáň 2014)



Previously - the even valency case... (Archdeacon, Conder, Širáň 2014)



Previously - the even valency case... (Archdeacon, Conder, Širáň 2014)



A self-dual, self-Petrie-dual regular map with valency 2*n* 

Previously - the even valency case... (Archdeacon, Conder, Širáň 2014)



This method extends analagously to our case: we want to preserve self-duality and self-Petrie-duality, the surfaces are non-orientable as the valency is odd. We need a map for k = 9.

No problem!

$$G \cong PSL(2,73)$$
$$\zeta = 2^4$$

Number of vertices 10804. Genus 27012.

#### Theorem

For odd  $k \ge 5$  there exists a regular self-dual, self-Petrie-dual map with valency k.

#### Theorem

For odd  $k \ge 5$  there exists a regular self-dual, self-Petrie-dual map with valency k.

#### Corollary

There is a regular self-dual, self-Petrie-dual map with valency k for all  $k \ge 4$ .

• • = • • = •

#### Table

| k  | N(g)    | Prime p     |
|----|---------|-------------|
| 5  | -11     | 11          |
| 7  | -13     | 13          |
| 9  | -73     | 73          |
| 11 | 263     | 263         |
| 13 | -131    | 131         |
| 15 | -239    | 239         |
| 17 | -4079   | 4079        |
| 19 | 15503   | 37 or 419   |
| 21 | 5209    | 5209        |
| 23 | -4093   | 4093        |
| 25 | 56149   | 56149       |
| 27 | -16417  | 16417       |
| 29 | 3161869 | 59 or 53591 |

Table: Possible primes p by this method...

э