CPR graphs of toroidal regular maps of type $\{4, 4\}$

Maria Elisa Fernandes

maria.elisa@ua.pt

Universidade de Aveiro - Portugal

CPR graphs

Let G be the automorphism group of a regular polytope.

$$G = \langle \rho_0, \ldots, \rho_{d-1} \rangle$$

Suppose that G has degree n.

The *CPR* graph \mathcal{G} of *G* is a graph with *n* vertices and with an *i*-edge $\{a, b\}$ whenever $a\rho_i = b$ with $a \neq b$ (2008, D. Pellicer).

CPR graphs can be used to classify regular polytopes of a given group and for this reason they are an important tool to study polytopes.

Results that were accomplished using CPR graphs

- (2011, Fernandes, Leemans) The symmetric group S_n ($n \ge 4$) is the group of symmetries of a polytope of any rank between 3 and n-1;
- (2011, Fernandes, Leemans) There are exactly two polytopes of rank r = n 2 for S_n ;
- (2018+, Fernandes, Leemans, Mixer) List of all polytopes of rank r = n 3 for S_n ;
- (2017, Cameron, Fernandes, Leemans, Mixer) The maximal rank of a polytope for A_n is $\lfloor \frac{n-1}{2} \rfloor$ when $n \ge 12$.
- (2018+, Fernandes, Leemans, Weiss) A construction of locally toroidal regular hypertopes combining the CPR graphs of {3,6}_(2,0) and {3,6}_(s,0). CPR graphs correspond to faithful permutation representations.

Toroidal regular maps of type $\{4, 4\}$

Consider the regular tessellation $\{4,4\}$ of the plane by identical squares. The full symmetry group of it is the Coxeter group [4,4] generated by three reflections ρ_0 , ρ_1 and ρ_2 .

Identifying opposite sides of the square we obtain a finite toroidal map $\{4,4\}_{(s,t)}$, having $V = s^2 + t^2$ vertices, 2V edges and V faces.

 ρ_0 , ρ_1 and ρ_2 are reflexions of $\{4,4\}_{(s,t)}$ only if st(s-t) = 0, that is when case when the map is regular.

There are two families of regular toroidal maps, denoted by $\{4,4\}_{(s,0)}$ and $\{4,4\}_{(s,s)}$.

The group of symmetries of $\{4, 4\}$

The group of symmetries of $\{4,4\}_{(s,0)}$ and $\{4,4\}_{(s,s)}$ are factorizations of the Coxeter group [4,4], by

$$(\rho_0\rho_1\rho_2\rho_1)^s = 1 \text{ and } (\rho_0\rho_1\rho_2)^{2s} = 1,$$

of sizes $8s^2$ or $16s^2$, respectively.

For the map $\{4, 4\}_{(s,0)}$ consider the unitary translations

 $g = \rho_0 \rho_1 \rho_2 \rho_1$ and $h = g^{\rho_1}$.

In the case of the map $\{4,4\}_{(s,s)}$, consider

$$g = (
ho_0
ho_1
ho_2)^2$$
 and $h = g^{
ho_0}$.

$$U = \langle g, h \rangle$$

 $\{4,4\}_{(3,0)}$

CPR graphs on cells, flags or darts

Toroidal maps have faithful actions on the cells (vertices, edges and faces), on the flags and on the darts (edges with a direction).

Faithful permutation representations are in correspondence to core-free subgroups.

Core-free subgroup: $\{1\}$ $\langle \rho_1 \rangle$ $\langle \rho_0, \rho_2 \rangle$ $\langle \rho_0, \rho_1 \rangle$ $\{4, 4\}_{(s,0)}$ $(s \ge 2)$ $8s^2$ $4s^2$ $2s^2$ s^2 $\{4, 4\}_{(s,s)}$ $16s^2$ $8s^2$ $4s^2$ $2s^2$

(2005, Li and Širáň) Regular maps that have non-faithful actions on the cells or on darts are identified and they are not regular polyhedra.

Other core-free subgroups

Let $a, b \in \{1, \ldots, s\}$ be such that s = lcm(a, b)

	Subgroup	Index
$\{4,4\}_{(s,0)}$	$\langle g^a, h^b \rangle$	8ab
	$\langle g^{a},h^{b} angle times \langle ho_{0} angle$	4 <i>ab</i>
	$\langle g^{a}, h^{b} angle times \langle ho_{0}, ho_{2} angle$	2 <i>ab</i>
$\{4,4\}_{(s,s)}$	$\langle g^a, h^b angle$	16 <i>ab</i>
	$\langle g^a, h^b angle times \langle ho_1 angle$	8ab

$$\langle g^{a},h^{b}
angle \cap \langle g^{a},h^{b}
angle ^{
ho_{1}}=\langle g^{a},h^{b}
angle \cap \langle g^{b},h^{a}
angle =\{1\}$$

CPR graphs of degree n = 8ab for $\{4, 4\}_{(s,0)}$

In the example above a = 3, b = 2 and s = 6.

Main result

Let s = lcm(a, b).
 If s ≥ 2, then n the degree of {4,4}_(s,0) if and only if

$$n \in \{s^2, 2ab, 4ab, 8ab\}.$$

• n is the degree of $\{4,4\}_{(s,s)}$ if and only if

$$n \in \{2s^2, 4s, 4s^2, 8ab, 16ab\};$$

- We describe, up to a conjugacy, all possible core-free subgroups of G;
- For each possible degree we either give an explicitly CPR graph or an algorithm to obtain it.

Blocks of imprimitivity

• If U is transitive then $n = s^2$. In this case U is regular and $G \cong U \rtimes G_1$ where G_1 is the stabilizer of the identity.

For the map $\{4,4\}_{(s,s)}$, U must be intransitive.

If n ≠ s² then G is embedded into S_k ≥ S_m with
k = ab where s = lcm(a, b) and,
Consider a block B. Let U_B = ⟨g_B⟩ × ⟨h_B⟩. The ⟨g_B⟩-orbits and the ⟨h_B⟩-orbits have all the same size.

• $m \in \{2, 4, 8, 16\}$ with m = 16 only if G is the group of $\{4, 4\}_{(s,s)}$. We proof that for $\{4, 4\}_{(s,s)}$:

- if
$$m = 2$$
 then $k = s^2$ and

- if
$$m = 4$$
 then $k \in \{s, s^2\}$.

The core-free groups

Consider the map $\{4,4\}_{(s,0)}$ and consider and suppose that U has 4 orbits, then m = 4.

• Let $f : G \to S_4$ be the induced homomorphism on the blocks. If m = 4 then the $Im(f) \cong D_8$ and the action of Im(f) on the blocks is described by the graph

 Let B a block, up to a conjugacy we may say that G_B = U ⋊ ⟨ρ₀⟩. Thus we have the following possibilities for G_x, up to conjugacy and duality,

$$\langle g^a, h^b
angle
times \langle
ho_0
angle, \ \ {
m or} \ \langle g^a, h^b
angle
times \langle h^{b/2}
ho_0
angle$$

Optimal CPR graphs for $\{4, 4\}_{(s,0)}$ and $\{4, 4\}_{(s,s)}$

4s is the minimal degree for $\{4, 4\}_{(s,s)}$.

This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and FCT - Fundação para a Ciência e a Tecnologia, within project PEst - OE/MAT/UI4106/2014.

