
The revolution brought by Einstein’s theory of gravity lies more
in the discovery of the principle of general covariance than in

the form of the dynamical equations of general relativity. General
covariance brings the relational character of nature into our descrip-
tion of physics as an essential ingredient for the understanding of
the gravitational force. In general relativity the gravitational field is
encoded in the dynamical geometry of space-time, implying a
strong form of universality that precludes the existence of any non-
dynamical reference system—or non-dynamical background—on
top of which things occur. This leaves no room for the old view
where fields evolve on a rigid preestablished space-time geometry
(e.g. Minkowski space-time): to understand gravity one must
describe the dynamics of fields with respect to one another, and
independently of any background structure.

General relativity realizes the requirements of general covari-
ance as a classical theory, i.e., for h– = 0. Einstein’s theory is, in this
sense, incomplete as a fundamental description of nature. A clear
indication of such incompleteness is the generic prediction of
space-time singularities in the context of gravitational collapse.
Near space-time singularities the space-time curvature and energy
density become so large that any classical description turns
inconsistent. This is reminiscent of the foundational examples of
quantum mechanics—such as the UV catastrophe of black body
radiation or the instability of the classical model of the hydrogen
atom—where similar singularities appear if quantum effects are
not appropriately taken into account. General relativity must be
replaced by a more fundamental description that appropriately
includes the quantum degrees of freedom of gravity.

At first sight the candidate would be a suitable generalization of
the formalism of quantum field theory (QFT). However, the stan-
dard QFT’s used to describe other fundamental forces are not
appropriate to tackle the problem of quantum gravity. Firstly,
because standard QFT’s are not generally covariant as they can only
be defined if a non-dynamical space-time geometry is provided:

the notion of particle, Fourier modes, vacuum, Poincaré invariance
are essential tools that can only be constructed on a given space-
time geometry.This is a strong limitation when it comes to quantum
gravity since the very notion of space-time geometry is most likely
not defined in the deep quantum regime. Secondly, quantum field
theory is plagued by singularities too (UV divergences) coming
from the contribution of arbitrary high energy quantum processes.
This limitation of standard QFT’s is expected to disappear once the
quantum fluctuations of the gravitational field, involving the dynam-
ical treatment of spacetime geometry, are appropriately taken into
account. But because of its intrinsically background dependent
definition, standard QFT cannot be used to shed light on this issue.
A general covariant approach to the quantization of gravity is needed.

This is obviously not an easy challenge as in the construction of
a general covariant QFT one must abandon from the starting point
most of the concepts that are essential in the description of ‘no-
gravitational’ physics. One has to learn to formulate a quantum
theory in the absence of preferred reference systems or pre-existent
notion of space and time. Loop quantum gravity (LQG) is a frame-
work to address this task. In this article I will illustrate its main
conceptual ideas, and established results. We will see that if the
degrees of freedom of gravity are quantized in accordance to the
principles of general covariance both the singularity problems of
classical general relativity as well as the UV problem of standard
QFT’s appear to vanish providing a whole new perspective for the
description of fundamental interactions.

This is a brief overview of the theory aimed at non experts where
nothing is explicitly proved. The interested reader can consult the
book [1] and the references therein for more details.

Why background independence?
The remarkable experimental success of the standard model of
particle physics is a great achievement of standard QFT. The stan-
dard model unifies the principles of quantum mechanics and special
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m Fig. 1: The basic loop excitations of geometry are combined into states of an orthonormal basis of the Hilbert space called spin network
states. These states are labelled by a graph in space and assignment of spin quantum numbers to edges and intersections (j, n, m, r, o, p P Z/2).
The edges are quantized lines of area: a spin network link labelled with the spin j that punctures the given surface is an eigenstate of its area
with eigenvalue √ j(—j + 1) times the fundamental Planck area. Intersections can be labelled by discrete quantum numbers of volume (v, and w
here). In order for this page to have the observed area one would need about 1068 spin network punctures with j = 1/2!



relativity in the description of the strong, and electro-weak
interactions. It is therefore valid as an approximation when the
dynamics of the gravitational field is negligible. This limitation is
implicit in the definition of standard QFT through the assump-
tion of the existence of inertial coordinates in terms of which the
field equations are defined.

In this regime it is easy to construct the idealized physical systems
used to define inertial coordinates by starting from an array of test
particles at rest with respect to one another, separated by some fixed
distance, and carrying clocks which can be synchronized using
light signals. By using neutral matter in the construction, the refer-
ence system will not be affected by the physical process being
studied. Thus its dynamics is trivial, and its properties can be com-
pletely hidden in the definition of the inertial coordinates together
with a notion of Minkowskian background geometry. In terms of
these physical reference systems one writes (or discovers) the laws of
physics (either classical or quantum) as long as gravity is neglected.

When the dynamics of the gravitational field cannot be neglected
the situation changes dramatically.Due to the fact that everything is
affected by gravity one can no longer construct a reference system
whose dynamics is known beforehand: whatever physical system
one chooses as reference it will be affected by the gravitational field
involved in the processes of interest. It is no longer possible to
identify any meaningful notion of non-dynamical background.One
has no choice but to represent the dynamics of the system in a rela-
tional manner where the evolution of some degrees of freedom are
expressed as functions of others. Processes do not happen in a god
given space-time metric, they define the space-time geometry as
they occur.

Except for very special situations, coordinates cannot be associ-
ated to physical entities so they are introduced as mere parameters
labelling space-time events with no intrinsic physical meaning. As
in electromagnetism where the choices of vector potential A

→
and

A
→
+∇

→
x represent the same physical configuration, in gravitational

physics a choice of coordinates is a choice of gauge. Any physical
prediction in electromagnetism must be gauge-independent;

similarly, in gravity they must be coordinate-independent or
diffeomorphism invariant.

In classical gravity the importance of diffeomorphism invari
ance is somewhat attenuated by the fact that there are many
interesting physical situations where some kind of preferred
reference systems can be constructed (e.g., co-moving
observers in cosmology, or observers at infinity for isolated
systems). However, the necessity of manifest diffeomorphism
invariance becomes unavoidable in the quantum theory
where simple arguments show that at the Planck scale (<p ≈

10-33 cm) the quantum fluctuations of the gravitational field
become so important that there is no way (not even in princi-

ple) to make observations without affecting the gravitational
field. In this regime only a background independent and diffeo-
morphism invariant formulation can be consistent.
Despite all this one can try to define quantum gravity as a back-
ground dependent theory by splitting the space-time metric gab as

gab = ηab + hab (1)

where ηab is a flat Minkowski metric fixed once and for all and hab
represents small fluctuations. Now if the field hab is quantized using
standard techniques the resulting theory predicts UV divergent
amplitudes that cannot be controlled using the standard renormal-
ization techniques. The background dependent attempt to define
quantum gravity fails. According to our previous discussion, the
key of this problem is in the inconsistency of the splitting [1]. This
statement is strongly supported by the results of the background
independent quantization proposed by loop quantum gravity.

Loop quantum gravity
LQG is a background independent approach to the construction of
a quantum field theory of matter fields and gravity. The theory
was born from the convergence of two main set of ideas: the old
ideas about background independence formulated by Dirac,
Wheeler, DeWitt and Misner in the context of Hamiltonian gener-
al relativity, and the observation by Wilson, Migdal, among others,
that Wilson loops are natural variables in the non-perturbative
formulation of gauge theories. The relevance of these two ideas is
manifest if one formulates classical gravity in terms of suitable vari-
ables that render the equations of general relativity similar to
those of standard electromagnetism or Yang-Mills theory.

The starting point is the Hamiltonian formulation of gravity
where one slices space-time arbitrarily in terms of space and time
and studies the evolution of the space geometry along the slicing.
In the standard treatment the metric of space and its conjugate
momentum—simply related to its time derivative—are the phase
space variables of general relativity. By a suitable canonical trans-
formation one can obtain new variables consisting of: a triplet of
electric fields E

→

i whose conjugate momenta are given by a triplet
of vector potentials A

→

i with i = 1, 2, 3. The (unconstrained) phase
space of general relativity is equivalent to that of an SU(2) Yang-
Mills theory (a non Abelian generalization of electromagnetism).

What is the physical meaning of the new variables? The triplet of
vector potentials A

→

i have an interpretation that is similar to that of A
→

in electromagnetism: they define the notion of parallel transport of
spinors encoded in the ‘Aharonov-Bohm phase’ acquired by matter
when parallel transported along a path γ in space—affecting all forms
of matter due to the universality of gravity. Unlike in electromagnet-
ism, here the ‘phase’ is replaced by an element of SU(2) associated
with the action of a real rotation in space on the displaced spinor.
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m Fig. 2: In loop quantum gravity the Bekenstein-Hawking entropy
formula for a black hole of area A, Sbh = A/(4<p

2 ), can berecovered
from the quantum theory as Sbh = log(N), where N is the number of
microstates (spin network states puncturing the 2-dimensional
horizon with arbitrary spins) compatible with the macroscopic
horizon area of the black hole.



This is mathematically encoded in the Wilson loop (related to the
circulation of the magnetic fields B

→

i) along the loop γ according to 

Wγ[A]=P exp∫γ
t i A

→

i • ds→ e SU(2), (2)

where P denotes the path-ordered-exponential, t i are the genera-
tors of SU(2), and s is an arbitrary parameter along γ.

The electric fields E
→

i have a novel physical interpretation: they
encode the (dynamical) geometry of 3-dimensional space. More
precisely the triplet of electric fields E

→

i define at every point of space
an (densitized) orthonormal local frame, which in turn can be used
to reconstruct the space metric. Therefore, any geometric property
of space can be written as a functional of E

→

i.
There are two geometric quantities that one can construct in

terms of simple functionals of E
→

i that will play an important role
in the quantum theory. The first (and the simplest) one is the area
A(S) of a two dimensional surface S—corresponding to the
‘absolute value of the flux’ of the electric field across S—embedded
in space, while the second is the volume V(R) of a three dimen-
sional region R in space. In equations,

Area of S       →   A(S)=∫
S

| Ei
⊥ Ei

⊥ |,

Volume of R →  V(R)=∫
R 

√E
→

i •
—

(E
→

j x E
→

k)
—

e ijk (3)

where ⊥ denotes the component of Einormal to S, e ijk is the Levi-
Civita skew-symmetric tensor (repeated indices are summed). As
anticipated, both the area of a surface S and the volume of a region
R are written as functionals of the dynamical variable E

→

i.
Einstein’s equations are encoded in relations among the phase-

space variables. They are given by to the so-called kinematic
constraints, related to certain manifest gauge symmetries,

Gauss law             →  Div (E
→

i)=0,
Vector constraint  →  E

→

i x B
→

i(A)=0 (4)
and the Hamiltonian constraint, encoding the non trivial dynamics
of general relativity,

(E
→

i x—E
→

j) • B
→

k(—A)e ijk
—

√E
→

i •
—

(E
→

j x E
→

k)
—

e ijk   
=0 (5)

where B
→

i(A)=∇
→

A x A
→

i is the triplet of magnetic fields constructed
from the SU(2) connection A

→

i.

Quantization
The quantization is performed following the canonical approach,
i.e., promoting the phase space variables to self adjoint operators in
a Hilbert space HH satisfying the canonical commutation relations

according to the rule {  , } → - i /h– [  , ] . The classical constraints
are imposed as operator-equations on the states of the theory.
These are the quantum Einstein’s equations. The kinematical condi-
tions (4) are directly applied in the construction of HH . Quantum
dynamics is governed by the quantum version of the Hamiltonian
constraint, which formally reads 

(E
→

i x—E
→

j) • B
→

k(—A)e ijk
— Ψ[A]= 0    for   Ψ[A] e HH

√E
→

i •
—

(E
→

j x E
→

k)
—

e ijk  
(6)

and can be viewed as the the analog of the Schroedinger equation
of standard quantum mechanics.

As there is no background structure the notion of particle, as
basic excitations of a vacuum representing a state of minimal energy,
does not exist. However, there is a natural vacuum associated with 

the state of no geometry E
→

i |0>=0. This state represents a very 

degenerate quantum geometry where the distance between any
pair of points is zero. The quantum version of (2), Wγ [A] acts on
the vacuum by creating a one-dimensional flux tube of electric field
along γ. As E

→

i encodes the geometry of space, these fundamental
Faraday lines represent the building blocks of a notion of quantum
geometry as we shall see below.

These one-dimensional excitations are however not completely
arbitrary as they must be subjected to the kinematical restrictions
(4). For instance, Div(E

→

i) = 0 requires the flux of electric field
through any arbitrary closed surface to vanish.This means that only
those excitations given by closed lines of quantized electric field are
allowed by quantum Einstein’s equations, i.e., loop states. The con-
struction of the Hilbert space of quantum gravity is thus started by
considering the set of arbitrary multiple-loop states, which can be
used to represent (as emphasized by Wilson in the context of standard
gauge theories) the set of gauge invariant functionals of A

→

i.

Spin network states
Multiple-loop states can be combined to form an orthonormal basis
of the Hilbert space of gravity. The elements of this basis are labelled
by: a closed graph in space, a collection of spins—unitary irreducible
representation of SU(2)—assigned to its edges,and a collection of dis-
crete quantum numbers assigned to intersections. As a consequence
of Div(E

→

i)=0 the rules of addition of angular momentum must be
satisfied at intersections.They are called spin-network states, see Fig.1.

Spin network states are eigenstates of geometry as it follows from
the rigorous quantization of the notion of area and volume (given
by equations (3)). For instance, given a 2-dimensional surface S one

`̀

`̀

`
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m Fig. 3: Spin network intersections are quantum excitations of space volume. They are fundamental atoms of space related to one another
through spin network links carrying quanta of the area associated to the extension shared by neighbouring atoms. The information about how
the atoms are interconnected to form a quantum geometry is contained in the combinatorics of the underlying abstract graph. Here we show
two 4-valent vertices connected by a link carrying spin j. We can interpret this portion of a spin network as being represented by two tetrahedra
of volume <p

3v and <p
3w respectively sharing a face of their boundary (the brown triangle in the second diagram) with area <p

2√ j(—j + 1) .



can define the quantum operator A(S)associated to its area. It turns
out that a spin network state that punctures S with an edge carrying
spin j is an eigenstate of A(S)with eigenvalue <p

2√ j
—

( j+1), see Fig. 1.
In LQG the area of a surface can only take discrete values in units
of Planck scale! Similarly, the spectrum of the volume operator
V(R) can be shown to be discrete and to be associated to the presence
of spin network intersections inside the region R. Hence, the theory
predicts a quantization of geometry.

The discovery of the discrete nature of geometry at the funda-
mental level has profound physical implications. In fact before
completely solving the quantum dynamics of the theory one can
already answer important physical questions. The most represen-
tative example (and early success of LQG) is the computation of
black hole entropy from first principles in agreement with the
semiclassical predictions of Hawking and Bekenstein (see Fig. 2).

Another profound implication of discreteness concerns the
UV divergences that plague standard QFT’s. It is well known
that in standard QFT the UV problem finds its origin in the dif-
ficulties associated with the quantization of product of fields at
the same point (representing interactions). A first hint of the
regulating role of gravity is provided by the fact that, despite their
non-linearity in E

→

i , area and volume are quantized without the
appearance of any UV divergences. This mechanism will become
more transparent when we present the quantization of the
Hamiltonian constraint.

The combinatorial nature of LQG
So far we have avoided UV divergences but perhaps at too high of
a price, since the Hilbert space spanned by spin network states is so
large—in fact two spin networks differing by a tiny modification of
their graphs are orthogonal states!—that would seem to make the
theory intractable. However, one must still impose the vector con-
straint given in (4). This is where the crucial role background
independence starts becoming apparent as the vector constraint—
although is not self-evident—implies that only the information in
spin network states up to smooth deformations is physically rele-
vant. Physical states are given by equivalence classes of spin
networks under smooth deformations: these states are called
abstract spin networks.

Abstract spin network states represent a quantum state of the
geometry of space in a fully combinatorial manner. They can be
viewed as a collection of ‘atoms’ of volume (given by the quanta
carried by intersections) interconnected by edges carrying quanta
of area of the interface between adjacent atoms. This is the essence
of background independence: the spin network states do not live
on any preestablished space, they define space themselves.

The details of the way we represent them on a three dimen-
sional ‘drawing board’ do not carry physical information. The
degrees of freedom of gravity are in the combinatorial information
encoded in the collection of quantum numbers of the basic atoms
and their connectivity (see Fig. 3).

`̀

`̀

`̀

Quantization of the Hamiltonian constraint
Up to this point we have constructed the kinematic setting of LQG
by defining the Hilbert space satisfying the conditions (4). In order to
impose the dynamical equation (6) one must quantize the Hamiltonian
constraint (5). However, the non linearity of the latter brings in
again the question of UV divergences in the quantum theory. From
(3) and (6) one can write the Hamiltonian constraint as

H =- i_
h–

[V, A
→

i]B
→

i(A) (7)

which allows all the non linearities in E
→

i to be hidden in the commu-
tator of the (free of UV singularities) volume operator and A

→

i. As
the magnetic field B

→

i(A) is given by the circulation of A
→

i, one can
express the non linear A-dependence by a non-local Wilson loop
Wγ e[A] around an infinitesimal loop γe of size e. In the quantum
theory Wγ e[A] creates a loop excitation and e is an UV-regulator.

As the volume operator,the regulated Hamiltonian acts only on spin
network intersections, and it does so by creating a new flux excitation
Wγe[A]. Due to background independence the regulated Hamiltonian
depends on e only through the position of the newly created loop γe.
Its action for different values of the regulator e is shown in Fig.4.

The physical Hamiltonian constraint is obtained by taking the
limit e → 0. In standard QFT’s this process brings in all the well

`̀`̀
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m Fig. 4: The regulated Hamiltonian acts by attaching a Wilson loop to vertices and the loop size plays the role of an UV regulator. The
regulator must be removed shrinking the loop. When the latter is small enough (last two diagrams on the r.h.s.) it can no longer entangle the
gravitational field exitations around the vertex and the further reduction of the loop does not have any physical effect according to
diffeomorphism invariance. The combinatorial structure of the quantum states in loop quantum gravity provides a physical cut-off regularizing
all the interactions in LQG!

m Fig. 5: A systematic control of the space of solutions is necessary
to fully understand the dynamics implied by LQG. Feynman's path
integral formulation can be adapted to the formalism in order to
investigate this issue. Transition amplitudes that encode the
dynamics of quantum gravity can be computed as sums of
amplitudes of combinatorial objects representing histories of spin
network states. These histories can be interpreted as quantum
space-time processes and are called spin foams. In the figure we
show a simple spin foam obtained interpolating between an ‘initial’
and ‘final’ spin network. An intermediate spin network state is
emphasized as well as a vertex where new links are created as a
result of the action of the quantum Hamiltonian constraint.



known UV problems that require renormalization. However, in
LQG, background independence in fact assures that this limit
exits without any UV divergences. For finite value of the e the
extra loop created by the quantum constraint can entangle the
weave of links and nodes in the given spin network around the
intersection (first three diagrams on the l.h.s. of Fig. 4). As e
becomes smaller the added loop shrinks and there is a critical value
ec after which it can no longer wind around any of the neighboring
links. At this point changing the value of e amounts to a trivial
deformation of the extra loop that, according to the combinatorial
nature of the quantum states of gravity, has no physical effect.
Therefore, for sufficiently small e the action of the regulated
constraint becomes regulator independent and the limit is defined
without need of renormalization (see Fig. 4). This result also holds
when coupling gravity with the matter of the standard model; the
combinatorial nature of the states of quantum gravity provides a
physical regulator for all interactions.

Perspectives and Conclusions
We have discussed how the dynamical equation of quantum gravity
can be promoted to a quantum operator, and how the dynamics of
the theory is in the solutions of the quantum Hamiltonian constraint.
Although many solutions to the equation are known, there is no
complete control of the space of solutions at present. A systematic
approach to investigate the solution space is the path integral
representation which in the case of LQG is known as the spin
foam approach. In it, physical transition amplitudes are computed
as sums of amplitudes associated with histories of spin network
states (Fig. 5). These histories can be interpreted as the quantum
counterpart of space-time: they represent the quantum evolution
of the quantum states of space geometry.

Despite the fact that a full understanding of the dynamics of
LQG has not yet been achieved, there are interesting physical situ-
ations where one can bypass these limitations. One of these is the

computation of black hole entropy briefly mentioned above and the
other is the application of the framework to systems with additional
symmetry. Important examples are the study of quantum cosmology
and the near-singularity regime in black hole physics, where due to
symmetry assumptions most of the technical problems of the full the-
ory can be overcome. Even though these symmetry-reduced models
must be regarded as toy models, as an infinite number of degrees of
freedom are ignored in the treatment, there are interesting results that
indicate that the singularity problem of classical general relativity would
be resolved due to the fundamental discreteness predicted by LQG.

Another important open issue in LQG is the semiclassical
limit: how to recover from the fundamental polymer-like excita-
tions of LQG the smooth physics of general relativity and the
standard model at low energies.

LQG realizes a unification between the principles of general
covariance and those of quantum mechanics. The approach sug-
gests that the outstanding problem of divergences in QFT’s and
singularities in classical general relativity are resolved when the
quantum dynamical degrees of freedom of gravity are included in
a background independent manner. The results obtained so far
are encouraging; future research will tell whether all this is consis-
tent with the so far elusive nature of quantum gravity. n
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Most physicists realize that the human eye is not made for
seeing under water. For one thing, if we open our eyes

under water to see what’s going on, our vision is blurred. The reason
is obvious: since the index of refraction of the inner eye is practi-
cally that of water, we miss the refractive power of the strongly
curved cornea surface.With its 1/f of about 40 diopters it forms an
even stronger lens than the actual eye lens itself. Could we repair
that with positive lenses? In view of the strong curvature of the
cornea surface (radius 8 mm), the
idea of replacing it by a glass lens
in a water environment is beyond
hope.We really need to restore the
air-water interface in front of the
cornea, and that is precisely what our diving   
mask does.

But there is more to it:
under water, our field of
vision is reduced dramatically.
Whereas we normally have a field
of more than 180° due to the refraction at the air-cornea

interface, we loose that benefit once we’re under water. The diving
mask does not repair that, as schematically indicated in the figure.

So, scuba divers, beware! You have to turn your head much
further than you may think necessary, if you want to be sure that
you are not followed by a
shark. n

Physics in daily life: seeing under water
L.J.F. (Jo) Hermans, 
Leiden University • The Netherlands
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